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Abstract
Apension fundmanager typically decides the allocation of the pension fund assets taking into
account a long-term sustainability goal. Many asset and liability management models, in the
form of multistage stochastic programming problem, have been proposed to help the pension
fund manager to define the optimal allocation given a multi-objective function. The recent
literature proposes univariate stochastic dominance constraints to guarantee that the optimal
strategy is able to stochastically dominate a benchmark portfolio. In this work we extend
previous results (i) considering alternative types of multivariate stochastic dominance that
appearmore suitable in amultistage framework, (ii) proposing away tomeasure the economic
cost of introducing stochastic dominance constraints, (iii) proposing a sort of augmented
stochastic dominance through a safetymargin.Numerical results show the difference between
the alternative ways to interpret and apply the multivariate stochastic dominance. These
results are evaluated thanks to the proposed economic cost of the stochastic dominance
constraints and either in presence or not of a safety margin.

Keywords Stochastic programming · Portfolio selection · Sensitivity analysis · Asset and
liability management · Pension fund · Stochastic dominance

1 Introduction

Asset and LiabilityManagement (ALM)models are efficient andwidely used tools tomanage
pension funds. The study of this class of problemsmoved from thework of Bradley andCrane
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(1972, 1980) where the authors proposed one of the first ALMmodel called BONDS model
to help a portfolio manager to select bonds under uncertainty. Nevertheless, in that model the
liability side was not analysed in deep. After this seminal work, other models were studied,
see Kusy and Ziemba (1986), until the milestone model proposed in Dempster and Ireland
(1988, 1989, 1991) and called MIDAS, focusing on the immunization of the liability side.
The multistage stochastic optimization turned out to be a natural way to face ALM models.
The Russell–Yasuda Kasai Model described in Cariño et al. (1994); Cariño and Ziemba
(1998a); Cariño et al. (1998b) has been the first work to formulate an ALM problem as a
multistage stochastic problem. In the same period, Mulvey and Zenios performed a complete
analysis of the multistage stochastic problem applied to ALM problems considering the
fixed income investment, see e.g. Mulvey (1994a, b), Nielsen and Zenios (1996) and Zenios
(1995). Finally, their research produced the Tower Perrin scenario generation system and the
well-known Towers Perrin-Tillinghast ALM model, see Mulvey et al. (2000).

All these ALM models did not specifically tackle a pension fund management problem
which typically requires to consider additional features. For example, Pflug and Świetanowski
(1999) introduced an ALM model for pension funds considering the specificities of both the
asset and the liability side, while Consigli and Dempster (1998a, b) and Dempster et al.
(2003) proposed the CALM model that considers a long-term target and jointly allows to
have different types of pension contracts on the liability side. In general, there are two main
characteristics that define the type of pension fund and, thus, the suitable type of ALM
model. The former distinguishes the pension funds that follow a defined contribution from
those that follow a defined benefit schema. In particular, in the defined contribution pension
fund the final pension benefit is unknown andwill be the result of the contribution investment,
i.e. the pensioner bears the risk; in a defined benefit pension fund the final pension benefit
is predetermined in the pension contract, i.e. the pension fund sponsor bears the risk. A
specific focus for the defined benefit pension fund can be found in Dert (1998). The second
characteristic relies on the pension pillar in which the pension fund is classified. Most of the
countries distinguish three pension pillars: the first is the state pension system, the second is
based on the worker category and/or on the employee’s employer, the third is composed of
private insurance contracts. For example, the InnoALM model developed in Ziemba (2007)
and Geyer and Ziemba (2008) implicates a second pillar pension fund since it considers the
pension fund of the employees of an electricity company. For a review, we suggest Zenios and
Ziemba (2006, 2007) and Ziemba and Mulvey (1998). More innovative and comprehensive
formulations of ALMmodels for second pillar pension funds having a defined benefit schema
can be found in Consigli and Moriggia (2014), Consigli et al. (2017), and Moriggia et al.
(2019).

In particular, ourworkmoves from themodel developed inConsigli et al. (2017);Moriggia
et al. (2019); Vitali and Moriggia (2021) that will be discussed in the next sections.

More recent approaches extended the pension fund problem to consider not only the
pension fund manager point of view, but also the pension fund sponsor (the issuer of the
pension fund), see e.g. Vitali et al. (2017), and the pension fund investor, see e.g. Consigli et
al. (2012), Kopa et al. (2018) and Consigli et al. (2019).

The main challenge of an ALM model is to improve the adaptability of the mathematical
formulation to the real characteristics of the pension fund implementing the state-of-the-art
in terms of risk control and portfolio selection. In particular, one of the most appreciated tools
to improve the quality of a portfolio is the stochastic dominance which allows to compare
different portfolios and, simultaneously, to prove the preference of one portfolio with respect
to a benchmark portfolio for large classes of utility functions and, therefore, of economic
agents.
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The notion of stochastic dominance was introduced in statistics more than 50 years ago
and it was firstly applied to economics and finance in Quirk and Saposnik (1962), Hadar and
Russell (1969) andHanoch andLevy (1969). Later on, the second-order stochastic dominance
constraints were applied to static stochastic programs in Dentcheva and Ruszczynski (2003)
and Luedtke (2008) and to portfolio efficiency analysis, see e.g. Post (2003), Kuosmanen
(2004), Dupačová and Kopa (2012) and, more recently, Kopa and Post (2015). Similarly, the
first-order stochastic dominance constraints were used in Kuosmanen (2004), Dentcheva and
Ruszczyński (2004) or Dupačová and Kopa (2014). In multistage stochastic programming,
the second-order stochastic dominance constraints were applied to asset-liability modeling in
Yang et al. (2010) or Moriggia et al. (2019) and in an individual pension allocation problem
in Kopa et al. (2018). In all the mentioned papers, the stochastic dominance constraints have
been applied either on a single stage or on multiple stages separately. The latter approach is
namedmultistage stochastic dominance. In particular, such approach requires the dominance
on several stage, but the different relations are independent from each other, meaning that
the way in which the dominance is fulfilled in one stage has no relation with the way it
is fulfilled in another stage and, thus, the dominance relates a node with another node. In
a recent contribution, Armbruster and Luedtke (2015) formulate a condition stronger than
the multistage stochastic dominance, namely the multi-dimension (multivariate) stochastic
dominance. Such approach requires that the dominance relation on a specific stage is the same
of the dominance relation on another stage, i.e. the dominance is between scenarios instead of
single nodes. This relation implies a time persistence of the stochastic dominance changing
the interpretation of the dominance itself that becomes a scenario dominance rather than
a nodal dominance. Further than this multi-dimension multivariate second-order stochastic
dominance,we also analyze and discuss componentwise (Muller&Stoyan, 2002;Armbruster
& Luedtke, 2015), linear (Dentcheva & Ruszczyński, 2009) and weak types of multivariate
second degree stochastic orders.

Moving from the ALM models proposed in Consigli et al. (2017) and Moriggia et al.
(2019), that already incorporate univariate stochastic dominance, the main contributions of
this paper are the following:

• the comparison of themost recent alternatives proposed to formulatemultivariate stochas-
tic dominance orderings with a specific focus on the hierarchies among them;

• the implementation of each type of multivariate stochastic dominance in an ALMmodel
in order to compare their different impact on the ALM objective variables;

• a detailed analysis of a decision variable of the model, the unexpected sponsor contribu-
tion, highlighting its relevance in the model and showing how this variable can be used
to measure the cost of imposing stochastic dominance constraints;

• the proposal of an innovative way of stress testing of portfolios when stochastic domi-
nance constraints are applied in pension fund models through a safety margin.

Thanks to these improvements, we extend the understanding of the ALM model and the
comparison of its solution to a given benchmark. We introduce the multivariate stochastic
dominance into the model concluding that it is more suitable than the univariate stochastic
dominance in a multistage framework.

The paper is structured as follows. Section2 recalls the formulation of the ALM model.
Section3 analyses the different types ofmultivariate stochastic dominance. Section4 presents
the setting of the model and the definition of the benchmark. Section5 shows the numerical
results and Sect. 6 concludes the paper.
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2 Model description

As alreadymentioned, we propose an extension of theALMmodel for pension fund proposed
in Consigli et al. (2017); Moriggia et al. (2019). Therefore, following Consigli et al. (2017),
the stochastic tree is differentiated between decisional nodes and intermediate nodes: in the
decisional nodes the stochastic tree branches and the portfolio can be rebalanced, while in the
intermediate nodes the stochastic tree does not branch and the model accounts the financial
evolution of the variables (income cashflows, pension payments, etc.) but the portfolio is not
rebalanced. The intermediate stages are every year. The set of decisional stages is denoted
T = {th}h=0,...,H , where t0 = 0 represents the here-and-now stage, then we take into account
five further decisional stages at time 1, 2, 3, 5 and 10, and the final horizon at tH = 20 years.
The scenario tree is represented by the nodal notation and contains the asset returns: both the
price returns and the income returns. For each node n we define t(n) as the corresponding
stage time and withC(n)we denote the set of the children and nephews of n in all subsequent
stages. For more detail on the nodal notation for a scenario tree, cf. Consigli et al. (2017).

Following Moriggia et al. (2019), only the already pensioned people generate liabilities.
Therefore, we assume that the pension fund manager wants to ensure its sustainability in
case there will not be new contracts in the next years and, then, we deal with the so called
runoff case. In such framework, as time goes by, the number of pensioners decreases and
consequently, in each node n also the net liability flows �NET

n decrease. The pension fund
has still to pay the net liabilities with the asset financial incomes and/or by selling them.
Therefore, the liquidity gap and the ALM risk proposed in Consigli et al. (2017) have been
adjusted considering the new liability flows and their duration. Moreover, contrary to the
original model that adopts a portfolio replication approach, we define in each node n the
Defined Benefit Obligation (DBO) Dn as the present value of the future payments in all
children nodes weighted by the probability of each node.

Dn =
∑

m∈C(n)

[
e−rn,m (t(m)−t(n)) · E

[
�NET

m |t(m) = th
]
,∀th > t(n)

]
(1)

where rn,m is the forward interest rate from node n till node m. The maximum surviving
horizon for pensioners is 50 years. Then, we take into account the final conditions in 20-year
final horizon because the fund continues for other 30 years.

For all other constraints of theALMmodel, refer toAppendixA and to the cited references.
In the current work, it is of particular interest the role played by a variable that represents

the unexpected sponsor contribution�n . Indeed, for the purposes of our analysis, we assume
that the pension fund is remarkably underfunded, i.e. the value of Dn is higher than the value
of the portfolio. Nevertheless, the sponsor of the pension fund - who is the payer of last resort
of the pension fund obligations - is willing to pay in case in some future stage the current value
of the portfolio is not sufficient to pay the liabilities. This unexpected sponsor contribution
is quantified by �n and represents a direct injection of cash. In the optimal model �n is a
decision variable that appears also in the objective functionwhere it is significantly penalized.
However, its presence is fundamental for the definition of the benchmark used for the SD
constraints and for the quantification of the economic costs generated by the introduction of
the various types of SD constraints, as explained in Sect. 3.
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2.1 Objective formulation

The objective function is a representation of a multicriteria approach that synthesizes a short-
term risk control, a medium-term profitability and a long-term sustainability. The objective
function aims to minimize the expected shortfall of a set K of variables Yk with respect to
a specific threshold Ȳk and, jointly, to maximize the expected values of the variables Yk .
The k-th variable is defined only in a specific stage tk . The expected value of the different
variables, as well as the expected shortfalls, are summed up considering a weight λk > 0 for
each objective variable, with

∑K
k=1 λk = 1. The total expected value and the total expected

shortfall are then combined through a risk-aversion coefficient α. Therefore, the objective
function is:

max

{
(1 − α) ·

K∑

k=1

λk · E[Yk,n] − α ·
K∑

k=1

λk · E[Ȳk − Yk,n |Yk,n < Ȳk], ∀n|t(n) = tk
}

(2)

In the objective function, we consider the same four target variables Yk,n adopted in
Moriggia et al. (2019) (for more details refer to Appendix A):

Y1,n : a joint measure of the ALM risk and of the liquidity gap,
Y2,n : a measure of the return adjusted by the risk,
Y3,n : the cumulative of the sponsor unexpected contribution �n ,
Y4,n : the difference between the DBO and the portfolio value.

at stages tk = 1, 3, 10, 20 and weights λ1 = 10%, λ2 = 30%, λ3 = 40% and λ4 = 20%,
respectively, while the risk-aversion coefficient α is set to 50%.

3 Multivariate stochastic dominance

Before discussing the multivariate second degree stochastic orders, we present a basic defi-
nition of the second-order stochastic dominance (SSD) in the univariate case:
A random variable A SSD dominates a random variable B (A � B) if the integrated cumu-
lative distribution function of A is below the integrated cumulative distribution function of
B, that is:

∫ x

−∞
FA(y)dy ≤

∫ x

−∞
FB(y)dy ∀x ∈ R.

Equivalently, the second-order stochastic dominance holds if and only if no risk averse
decision maker prefers B to A, that is:

Eu(A) ≥ Eu(B)

for all concave non-decreasing functions u. Moving to the multivariate case, we consider the
following four types of multivariate second-order stochastic dominance (MSSD) relations:

1. Multidimension MSSD (MD-MSSD): A random vector A = (A1, ..., An) dominates a
random vector B = (B1, ..., Bn) if

Eu(A) ≥ Eu(B)

for all concave non-decreasing (in each component) functions u : Rn → R.
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Fig. 1 Multivariate SSD relations

2. LinearMSSD (Lin-MSSD): A randomvectorA = (A1, ..., An) dominates a randomvector
B = (B1, ..., Bn) if

n∑

i=1

ci Ai �
n∑

i=1

ci Bi

for all ci ≥ 0 such that
∑n

i=1 ci = 1.
3. Componentwise MSSD (C-MSSD): A random vector A = (A1, ..., An) dominates a ran-

dom vector B = (B1, ..., Bn) if Ai � Bi for all i = 1, 2, .., n.
4. Weak MSSD (Weak-MSSD): A random vector A = (A1, ..., An) dominates a random

vector B = (B1, ..., Bn) if
∫

M
FA(y)dy ≤

∫

M
FB(y)dy

for all n-dimensional intervals M = (−∞,m1) × (−∞,m2) × ... × (−∞,mn).

For more details about MD-MSSD and C-MSSD we refer to Muller and Stoyan (2002)
and Armbruster and Luedtke (2015). Lin-MSSD relation was extensively discussed, among
others, in Dentcheva and Ruszczyński (2009), Dentcheva and Wolfhagen (2015), Dentcheva
and Wolfhagen (2016) and Dentcheva et al. (2016). The last type of multivariate second-
order stochastic dominance order (Weak-MSSD) can be seen as a modification of orthant
dominance known as the multivariate extension of the first-order stochastic dominance, see
Muller and Stoyan (2002) for more details.

Figure1 summarizes implications among these four types of MSSD. In particular:

• when only positively affine (linear and non-decreasing in each variable) multivariate util-
ity functions are considered in the definition of MD-MSSD, one gets directly a condition
equivalent to Lin-MSSD, hence MD-MSSD implies Lin-MSSD;

• C-MSSD can be seen as a special case of Lin-MSSD when only binary values of ci are
considered. Therefore, Lin-MSSD implies C-MSSD;

• similarly to the univariate case, using integration by parts and properties of multivariate
concave non-decreasing functions, one can derive that MD-MSSD impliesWeak-MSSD,
c.f. Levy (2006);

• similarly to thefirst-ordermultivariate stochastic dominancewhere the orthant dominance
implies componentwise MFSD, one can show that Weak-MSSD implies C-MSSD, c.f.
Muller and Stoyan (2002).

To show that the opposite implications do not hold we consider the following examples.

123



Annals of Operations Research

Example 1

LetA = (A1, A2) take values (1,0) and (0,1)with the same probabilities and letB = (B1, B2)

take values (0,0) and (1,1) again with probabilities 0.5. Since the marginal distributions of
A are exactly the same as of B, C-MSSD between A and B is trivially fulfilled. Moreover,∑2

i=1 ci Ai takes values c1 and c2 = 1 − c1 with the same probabilities while
∑2

i=1 ci Bi
has alternative distribution with parameter 0.5. Hence

∑2
i=1 ci Ai dominates

∑2
i=1 ci Bi with

respect to SSD, that is, Lin-MSSD holds true. Finally, it is easy to see that FA(y) ≤ FB(y)
for all y ∈ R

2, therefore A dominates B with respect to Weak-MSSD, too. Summarizing, we
proved C-MSSD, Lin-MSSD and Weak-MSSD between A and B.

Let u(x1, x2) = min(x1, x2) that is a non-decreasing and concave function. ThenEu(A) =
0 while Eu(B) = 0.5 Hence, A does not dominate B with respect to MD-MSSD.

Example 2

Let A and B have a bivariate normal distribution with zero means and variance-covariance
matrices:

VA =
(
1 0
0 4

)
, VB =

(
1 −0.5

−0.5 4

)

Since the marginal distributions of A are the same as of B, A dominates B with respect to
C-MSSD.

The distributions of
∑2

i=1 ci Ai and
∑2

i=1 ci Bi are normal with zero mean and
σ 2∑2

i=1 ci Ai
= c21 + 4c22, σ 2∑2

i=1 ci Bi
= c21 + 4c22 − c1c2, respectively. Since the variance

of
∑2

i=1 ci Ai is greater than the variance of
∑2

i=1 ci Bi for c1 > 0 and c2 = 1 − c1 > 0,∑2
i=1 ci Ai does not dominate

∑2
i=1 ci Bi with respect to SSD for strictly positive c1, c2 and,

hence, A does not dominate B with respect to Lin-MSSD.
Finally, one can easily show that FA(y) ≥ FB(y) for all y ∈ R

2. Therefore, A does not
dominate B with respect to Weak-MSSD.

Since the random variables in our model are discrete with equiprobable realizations it
is useful to formulate the SSD conditions using a double stochastic matrix as proposed in
Kuosmanen (2004), Luedtke (2008) and Armbruster and Luedtke (2015). In particular, if we
define wth the vector of the optimal portfolio wealth realizations occurring in all nodes at
stage th with the same probability and, similarly, we define wB

th the vector of a benchmark
portfolio wealth realizations occurring in all nodes at stage th with the same probabilities,
we can assert that the optimal portfolio SSD dominates the benchmark portfolio at stage th
if and only if

wth ≥ Qth · wB
th (3)

for some matrix Qth which is double stochastic, i.e. satisfies the following conditions:

∑

i

Qth
i, j = 1 (4)

∑

j

Qth
i, j = 1. (5)
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and elements of Qth have to belong to the interval [0, 1], so each row and each column
represents a convex combination.

Finally, the C-MSSD is obtained just by selecting jointly more than one stage, i.e. defining
a subset T SSD ⊆ T , and then defining the constraint:

wth ≥ Qth · wB
th , ∀th ∈ T SSD (6)

Notice that the matrices Qth can differ from stage to stage.
The corresponding constraint becomes simply

wth ≥ Q · wB
th , ∀th ∈ T SSD (7)

where, clearly, the matrix Q is the same for all stages th ∈ T SSD and then the vectors wth
and wB

th must be expanded to meet the dimension of Q. For instance, assume we have a 5
scenarios tree having the following structure:

n1
n2

n4 n5
n3

n6 n7 n8

Then, the SD constraint on the last stage becomes:

⎡

⎢⎢⎢⎢⎣

w(n4)
w(n5)
w(n6)
w(n7)
w(n8)

⎤

⎥⎥⎥⎥⎦
≥

⎡

⎢⎢⎢⎢⎣

Q(1, 1) Q(1, 2) Q(1, 3) Q(1, 4) Q(1, 5)
Q(2, 1) Q(2, 2) Q(2, 3) Q(2, 4) Q(2, 5)
Q(3, 1) Q(3, 2) Q(3, 3) Q(3, 4) Q(3, 5)
Q(4, 1) Q(4, 2) Q(4, 3) Q(4, 4) Q(4, 5)
Q(5, 1) Q(5, 2) Q(5, 3) Q(5, 4) Q(5, 5)

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎣

wB(n4)
wB(n5)
wB(n6)
wB(n7)
wB(n8)

⎤

⎥⎥⎥⎥⎦
(8)

And, in the MD-MSSD case, the SD constraint on the previous stage becomes:

⎡

⎢⎢⎢⎢⎣

w(n2)
w(n2)
w(n3)
w(n3)
w(n3)

⎤

⎥⎥⎥⎥⎦
≥

⎡

⎢⎢⎢⎢⎣

Q(1, 1) Q(1, 2) Q(1, 3) Q(1, 4) Q(1, 5)
Q(2, 1) Q(2, 2) Q(2, 3) Q(2, 4) Q(2, 5)
Q(3, 1) Q(3, 2) Q(3, 3) Q(3, 4) Q(3, 5)
Q(4, 1) Q(4, 2) Q(4, 3) Q(4, 4) Q(4, 5)
Q(5, 1) Q(5, 2) Q(5, 3) Q(5, 4) Q(5, 5)

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎣

wB(n2)
wB(n2)
wB(n3)
wB(n3)
wB(n3)

⎤

⎥⎥⎥⎥⎦
(9)

where Q of (9) is the same of (8). The SSD constraints (6) and (7) can be imposed in any
stage th, h > 0.

Finally, we present a necessary and sufficient condition for Weak-MSSD between
random vectors with equiprobable realizations wth = (wth ,1, ..., wth ,K )′ and wB

th =
(wB

th ,1
, ..., wB

th ,K
)′.

Theorem 1 A random vector (w̃t1 , ..., w̃tH )′ with equiprobable realizationswth = (wth ,1, ...,

wth ,K )′, h = 1, ..., H dominates random vector (w̃B
t1 , ..., w̃

B
tH )with equiprobable realizations

wB
th = (wB

th ,1
, ..., wB

th ,K
)′, h = 1, ..., H with respect to Weak-MSSD if and only if

K∑

k=1

H∏

h=1

(zh − wth ,k)
+ ≤

K∑

k=1

H∏

h=1

(zh − wB
th ,k)

+ ∀(z1, ..., zH ) ∈ R
H , (10)

where (y)+ = max(0, y).
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Proof: Since the random vector (w̃t1 , ..., w̃tH )′ takes realizations with equal probabilities
1/K its cumulative distribution function could be formulated as follows:

F(y1, ..., yH ) = P(w̃t1 ≤ y1, ..., w̃tH ≤ yH ) = 1

K

K∑

k=1

I(wt1,k ≤ y1, ..., wtH ,k ≤ yH )

= 1

K

K∑

k=1

H∏

h=1

I(wth ,k ≤ yh)

where I(. . . ) is the indicator function. Hence

∫ z1

−∞
..

∫ zH

−∞
F(y1, .., yH )dyH ..dy1 =

∫ z1

−∞
..

∫ zH

−∞
1

K

K∑

k=1

H∏

h=1

I(wth ,k ≤ yh)dyH ..dy1

= 1

K

K∑

k=1

∫ z1

−∞
..

∫ zH

−∞

H∏

h=1

I(wth ,k ≤ yh)dyH ..dy1.

Since

∫ z1

−∞
..

∫ zH

−∞

H∏

h=1

I(wth ,k ≤ yh)dyH ..dy1

=
∫ z1

−∞
..

∫ zH−1

−∞

H−1∏

h=1

I(wth ,k ≤ yh)(zH − wtH ,k)
+dyH−1..dy1

=
∫ z1

−∞
..

∫ zH−2

−∞

H−2∏

h=1

I(wth ,k ≤ yh)(zH − wtH ,k)
+(zH−1 − wtH−1,k)

+dyH−2..dy1

...

=
H∏

h=1

(zh − wth ,k)
+

for all k = 1, 2, ..., K , we conclude that

∫ z1

−∞
..

∫ zH

−∞
F(y1, .., yH )dyH ..dy1 = 1

K

K∑

k=1

H∏

h=1

(zh − wth ,k)
+.

The same derivation could be done for cumulative distribution function of w̃B
th what completes

the proof.
To verify (10), one can solve the following optimization problem:

max
(z1,...,zH )∈RH

K∑

k=1

H∏

h=1

(zh − wth ,k)
+ −

K∑

k=1

H∏

h=1

(zh − wB
th ,k)

+. (11)

Then (10) holds if and only if optimal objective value of (11) equals to zero, because: (i)
positive optimal objective value implies violation of (10) and (ii) optimal objective value can
not be negative (sufficiently small z1, ..., zH give zero objective value).
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Table 1 Asset universe

i Asset Asset type Index/Underlying Upper Initial portfolio
bound (%)

1 Bank account Cash EURIBOR 3-month 30 EUR 10,000

2 1–3 years Treasury bond Euro-Aggregate 1–3year 100 EUR 10,000

3 3–5 years Treasury bond Euro-Aggregate 3–5year EUR 10,000

4 5–7 years Treasury bond Euro-Aggregate 5–7year EUR 10,000

5 7–10 years Treasury bond Euro-Aggregate 7–10year EUR 40,000

6 10+ years Treasury bond Euro-Aggregate 10+year EUR 60,000

7 Securitized Securitized bond Euro-Aggregate: Securitized EUR 20,000

8 Investment grade Corporate bond Euro Corporate ex EUR 20,000

Subordinated 1 Cap

9 High yield Corporate bond Euro HY B and above EUR 20,000

10 Real estate Real estate GPR General Europe 20 EUR 150,000

11 MSCI Public equity MSCI Europe 50 EUR 150,000

4 Model setting

We consider an asset universe composed by 11 assets split in 4 classes: Cash, i = 1; Bonds,
i = 2, ..., 9; Real Estate, i = 10; Public Equity, i = 11. For each asset class we define an
allocation upper bound according to the pension fund policy and regulatory constraints, see
Table 1. Such limits are relatively loose and refer to a real case of a pension fund managed by
an European insurance company. However, the main findings on the multivariate stochastic
dominance have been confirmed also considering other asset settings.

The Treasury bond asset type is represented by five different maturity buckets. The Corpo-
rate bonds are subdivided into investment grade (rating higher than Baa3 Moody’s or BBB-
Standard&Poor’s) and high yield (rating in the interval (Ba1, B3) Moody’s or (BB+, B-)
Standard&Poor’s), see (Bertocchi et al, 2013, Chapter 5).

As shown in Table 1, each asset refers to a security that replicates a given index. For
each index we have historical series of 17 years of quarterly returns, from the beginning of
1999 till the end of 2015. All series have been downloaded by DataStream. The scenario
generation approach assumes that the process of the returns of each asset can be described as
a linear regression of all assets, of the GDP and of the CPI. For more details on the scenario
generation approach, please refer to Appendix B and to the cited references.

Moreover, we generate in each node the yield-curve for nominal interest rate using the
Svensson model adopted by the European Central Bank. Consequently, using the simulated
CPI, we generate also the real interest rate curves for each node.

The branching structure of the stochastic tree is 8-4-2-2-2-2, i.e. the root node has 8
children, each of them has 4 children, etc. Then, the tree is composed of 512 scenarios which
grow over the 7 stages. Such choice is consistent with the number of scenarios in Consigli et
al. (2017) that is adopted in practice by an insurance company that manages a pension fund
and, thus, it is considered as representative of the degree of uncertainty faced by the portfolio
manager. As in Moriggia et al. (2019), we slightly reduced the branching in the first stage to
compensate the complexity induced by the stochastic dominance constraints.
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4.1 Benchmark definition

The aim of this work is to analyse how the multivariate stochastic dominance impacts on
the dynamic strategy of an underfunded pension fund, meaning that the current value of
the asset is lower than the discounted value of the future pension payments. Indeed, we are
tackling the case of a bank or an insurance (the sponsor of the pension fund) that assigns
to a financial company (internal in the bank or in the insurance, or external, the pension
fund manager) the task to manage the asset of the pension fund in order to pay the pension to
pensioners. If, for any reason, the pension fund assets are not able to pay these liabilities, then
the sponsor guarantees the pensions using the so-called unexpected sponsor contribution.
In this perspective, our analysis considers the unexpected sponsor contribution needed to
make the strategy feasible and the pension fund able to pay the future liabilities. Under this
perspective, the benchmark against which we compare through the SD constraints is the
wealth achieved by the pension fund keeping constant the allocation of the initial portfolio.
This means that we assume that the most significant competitor for the optimal portfolio
is the allocation actually implemented, i.e. the portfolio that is considered the best by the
pension fund manager. Moreover, given the current situation of underfunding of the pension
fund, we assume that the sponsor is already willing to cover the 50% of the future liabilities
and, therefore, the expected sponsor contribution will corresponds to the 50% of the pension
payments in each node. Therefore, the benchmark wealth wB

t is computed as follows:

1. We consider the initial portfolio wealth of EUR 500,000
2. We assume it is currently allocated as shown in Table 1
3. We assume it evolves over the same scenario tree used for the optimization (the same

asset returns)
4. At each decisional node, we assume that the portfolio is rebalanced to return to the initial

allocation
5. We assume that at each node (decisional and intermediate) the sponsor pays the 50% of

the liabilities

The amount of sponsor’s payments in this case, is clearly not optimal and not unexpected.
Indeed, we call it expected sponsor contribution. Our aim is to run the optimal model without
this expected sponsor contribution and leaving the possibility to the solver to ask for some
unexpected sponsor contribution onlywhen it is strictly needed to guarantee the sustainability
of the pension fund. Then, comparing the expected sponsor contribution considered in the
benchmark construction with the unexpected sponsor contribution required to obtain the
optimal solution, we will be able to measure, on the one hand, the savings in terms of
sponsor contribution by implementing an optimal investment strategy and, on the other hand,
the economic costs in terms of sponsor contribution increment due to the imposition if the
SD constraints. The results obtained using this benchmark are reported in Sect. 5.1. As it is
reported in the next section, even considering an expected sponsor contribution of 50% of the
pension payments, the benchmark portfolio allocation is so non-optimal that the benchmark
turns out to be relatively weak and, therefore, not useful to investigate the effect of the
different SD constraints. Thus, we assume that the pension fund sponsor wants to observe
the optimal solution under stressed conditions represented by a so-called safety margin, i.e.
the sponsor requires that the optimal portfolio is capable to generate a relevant extra amount
of wealth with respect to the benchmark in the stages where the SD constraints are applied. In
particular, when the SD is applied to the fourth stage the sponsor requires an extra wealth of
EUR 300,000, when the SD is applied to the fifth stage the sponsor requires an extra wealth
of EUR 300,000, and when the SD is applied to the sixth stage the sponsor requires an extra
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Table 2 Size of the models according to the number of equations, variables and non zero elements

Equations Variables Non zero elements

no SSD 845,656 921,655 4,201,757

SSD 4 845,848 925,751 4,214,109

SSD 5 846,040 938,039 4,251,037

SSD 6 846,424 987,191 4,398,621

SSD 7 847,192 1,183,799 4,988,701

C-MSSD 5-6-7 848,344 1,265,719 5,234,845

C-MSSD 4-5-6-7 848,536 1,269,815 5,247,197

MD-MSSD 5-6-7 848,984 1,265,719 5,677,853

MD-MSSD 4-5-6-7 849,624 1,269,815 5,948,701

wealth of EUR 250,000. The results obtained using this stronger benchmark that includes
the safety margin are reported in Sect. 5.2.

5 Results

In this section, we produce the following results:

• The case without applying SSD constraints, i.e. guaranteeing the sustainability of the
pension fund but without comparing the obtained wealth with any benchmark;

• The case with univariate SSD constraints on stages 4, 5, 6 and 7 (disjointly);
• The case with C-MSSD either on the set of stages 5-6-7 or on the set of stages 4-5-6-7;
• The case with MD-MSSD either on the set of stages 5-6-7 or on the set of stages 4-5-6-7.

When the SSD constraints are used, the benchmark is considered without safety margin in
Sect. 5.1, and with safety margin in Sect. 5.2.

All the results are given by the implementation of a linear programming model solved by
CPLEX 12.1.0 in GAMS, with an Intel(R) Core(TM) i7-8650UCPU 1.90GHzwith 16.00GB
RAM runningWindows 10. Input management, parameter and coefficient computations, and
output analysis are performed in MATLAB R2019a. Problem dimensions for each model are
reported in Table 2.

For the larger size case, the solvers take less than one hour to find the optimal solution
which is compatible with the pension fund manager requirements. Problem instances with
larger dimension gave similar results but inducing memory issues.

5.1 Results considering the benchmark without safety margin

The results are reported highlighting the optimal here-and-now solution and showing the
objective value of the multistage stochastic model. Moreover, we report the statistics of
the distribution of the wealth at the final horizon and the amount of unexpected sponsor
contribution required to make the pension fund able to pay the liabilities.

We begin analyzing the solution of the model applied to the non-stressed benchmark.
Figure2 presents the optimal results obtained solving the multistage stochastic model either
without SD constraints, or with univariate SSD constraints, or with multivariate SSD con-
straints.
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Let’s first compare the no SSD optimal solution with the benchmark strategy. As we
explained previously, implementing the benchmark strategy, i.e. a constant rebalancing to
keep the initial proportion, the sponsor is willing to pay the 50%of the liabilities. This amount
cumulated over the stages is, on average, EUR 290,870. Since the V@R and the AV@R of
the wealth at the final horizon are below the average of the unexpected sponsor contribution,
it is clear that without this injection of money the pension fund would not be able to pay
the liability, at least on some scenarios. The optimal solution remarkably changes the here-
and-now portfolio composition, reducing the allocation in the riskier assets, i.e. Real Estate
and Public Equity, and increasing the allocation in Cash. Doing this, the portfolio is able to
guarantee a sustainable solution requiring only EUR 12,589 from the sponsor, on average.
However, the other statistics of the final wealth are somehowworse than the benchmark since
the optimal solution does not aim at maximizing the final wealth, but it only aims at having
a sustainable portfolio reaching the targets.

Since we also want to compare the wealth produced by the optimal solution to the wealth
produced by the benchmark, we run themodel with the SSD constraints. In the case of SSDon
the fourth stage (SSD 4) we notice that the solution is very similar to the no SSD because the
distribution of the wealth of the benchmark at the fourth stage is not particularly challenging
so the achievement of the SD relation is relatively easy. The objective value slightly worsens
and the unexpected sponsor contribution increases to EUR 28,281 while the statistics of the
final wealth improves. We have the same results in the SSD 5 case, meaning that dominating
the benchmark at stage 4 implies the dominance also at stage 5 and vice-versa. Moving to
SSD 6 and SSD 7, the benchmark becomes more and more challenging. Indeed, the objective
value reduces significantly while the unexpected sponsor contribution increases as well as
the final wealth statistics. Especially in the hardest case SSD 7 we can notice that the optimal
strategy achieves a final wealth improving all the statistics with respect to the benchmark.
Moreover, the unexpected sponsor contribution reduces to EUR 180,721 compared to EUR
290,870 required in the benchmark case.

Considering the multivariate SSD cases, it is clear that the dominance at stage 5 implies
the dominance at stage 4 as highlighted in the univariate case. Moreover, since the SSD 7
solution coincides with the C-MSSD 5-6-7, it is obvious that the dominance at stage 7 implies
all the others. The difference between the MD-MSSD and the C-MSSD is insignificant both
in terms of unexpected sponsor contribution and in terms of objective value, while it is null
in terms of here-and-now solution.

Indeed, it appears that imposing univariate SSD constraints or C-MSSD or MD-MSSD
does not have a clear effect on the optimal solution. Such behaviour should be driven by
the fact that the benchmark is relatively weak in the inner stages and the really binding
constraints are only at stage 7. Such conclusions are strengthened by the evidences in Table3
where we show the distributions of the wealth achieved by the benchmark and by the optimal
solution at the stages 4, 5, 6, 7. In particular, in the first row, we can see the results obtained
applying the univariate SSD in each single stage 4, or 5, or 6, or 7. In the second row, there
are the results obtained by applying the C-MSSD on stages 5-6-7, and, in the third row, by
applying the C-MSSD to stages 4-5-6-7. Similarly, in the fourth row, we can compare the
results obtained by applying theMD-MSSD to stages 5-6-7, and, in the fifth row, by applying
the MD-MSSD on stages 4-5-6-7. As already explained above, when the solution dominates
the distribution of the wealth of the benchmark at the stage 7, the dominance holds also in
the previous stages. Therefore, we can conclude that when the benchmark is relatively weak,
C-MSSD and MD-MSSD almost coincides. For this reason, in Sect. 5.2, we apply a stressed
benchmark making the SD constraints active in all stages when applying the multivariate SD.
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Fig. 2 Benchmark allocation and optimal here-and-now allocations obtained with the proposed model using
the non-stressed benchmark. For each solution, the unexpected sponsor contribution, the statistics of thewealth
of the pension fund at the final horizon, and the optimal objective value are reported

Table 3 Distributions of the wealth variable of the optimal portfolio (orange) and of the benchmark (blue)
without safety margin
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5.2 Results considering the benchmark with safety margin

Figure3 reports the optimal solution of the model without SD constraints for sake of com-
parison, and the optimal solution of the model with univariate SSD constraints and with
multivariate SSD constraints applied with respect to the stressed benchmark. As mentioned
before, the stressed benchmark represents a situation inwhich the pension fund ismore robust
in terms of the dominance and, thus, requires a safety margin of EUR 300,000, in the fourth
and fifth stage and of EUR 250,000 in the sixth stage. These margins produce the effect to
activate the multivariate SD constraints also in the inner stages. Indeed, we observe that the
univariate SSD indicates more aggressive here-and-now allocation that makes possible to
beat the stressed benchmark still requiring less unexpected contribution to the sponsor.

Of particular interest is the behaviour of themultivariate SSD.Here, the difference between
the C-MSSD 4-5-6-7 and the C-MSSD 5-6-7 is more sensible showing that dominating the
stages 5-6-7 does not imply to dominate the benchmark also in the fourth stage. Moreover,
the here-and-now portfolios are different and the C-MSSD 5-6-7 allocation is slightly less
risky. It is also tangible the difference between the C-MSSD and the MD-MSSD proving
that the different mathematical formulation reflects in an empirical and real-life application
when the constraints are active on all the considered stages. Indeed, C-MSSD 4-5-6-7 and
MD-MSSD 4-5-6-7 solutions show that the MD-MSSD is stronger because it requires more
sponsor contribution but also provides better final wealth statistics. Similarly, MD-MSSD
5-6-7 solution is more expensive for the sponsor than C-MSSD 5-6-7 solution but, again,
better in terms of final wealth statistics. However, the stronger MD-MSSD does not cost too
much neither in terms of unexpected sponsor contribution (EUR 269,461 vs EUR 268,824
and EUR 226,591 vs EUR 221,591) nor in terms of objective value, i.e. of target achievement
(-92,817 vs -92,029 and -84,203 vs -83,322). It is interesting to notice that now the here-and-
now portfolio allocation of the MD-MSSD 4-5-6-7 is less risky than C-MSSD 4-5-6-7 which
is instead equal to SSD 4. The same effect (even if less relevant) appears comparing the here-
and-now portfolio of MD-MSSD 5-6-7, C-MSSD 5-6-7 and SSD 5. Such evidence suggests
that to dominate the benchmark in stage 4 (or in stage 5) almost implies to dominate the
benchmark in the subsequent stages. In our opinion, this is one of the effect of the multistage
stochastic dominance when it is applied to a variable that evolves and accumulates over the
stages, like the wealth variable that we use in our model. To prove this observation, we ran
again all the cases for several scenario trees (both with safety margin and without) and we
observed that these similarities persist.

In Table, we show the distributions of the wealth achieved by the stressed benchmark
and by the optimal solution at the stages 4, 5, 6, 7. In particular, in the first row, we show
the results applying the univariate SSD either on the stage 4, or 5, or 6, or 7. In the second
row, we show the results obtained by applying the C-MSSD on stages 5-6-7, and, in the
third row, by applying the C-MSSD on stages 4-5-6-7. Similarly, in the fourth row, we show
the results obtained by applying the MD-MSSD on stages 5-6-7, and, in the fifth row, by
applying the MD-MSSD on stages 4-5-6-7. We can notice that in the multivariate SSD cases
the distribution of the wealth of the optimal solution and of the benchmark are very close
to each other showing that the SD constraints are active. Still, a careful look indicates how
the distributions obtained under the C-MSSD and under the corresponding MD-SSD differs
from each other.
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Fig. 3 Benchmark allocation and optimal here-and-now allocations obtained with the proposed model using
the stressed benchmark. For each solution, we indicate the unexpected sponsor contribution, the statistics of
the wealth of the pension fund at the final horizon, and the optimal objective value

Table 4 Distributions of the wealth variable of the optimal portfolio (orange) and of the benchmark (blue)
with safety margin
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6 Conclusion

In this work, we propose three main innovations with respect to the state-of-the-art of ALM
models. The MD-MSSD shows to be an effective tool for a pension fund manager and, more
generally, for a decision maker, to compare the optimal solution with a given benchmark.
Indeed, the results of the MD-MSSD case are consistent with the results obtained using other
types of SSD constraints. In our opinion, this happens when the stochastic dominance is
imposed considering a variable that accumulates over the stages. However, in a multistage
problem, theMD-MSSD ismore suitable than other types of SSD constraints since it provides
a dominance relation between scenarios (and not only between nodes). Moreover, when the
benchmark is particularly hard to dominate, the differences between the different types of
SSD constraints emerge in the sense that MD-MSSD suggests a more conservative portfolio
than C-MSSD; it is a stronger and more demanding condition and, thus, it requires more
sponsor contribution; and it generates a wealth process with better statistics on the final
wealth. In a similar way the C-MSSD relates to the univariate SSD. The computing effort to
solve a model with MD-MSSD increases, but the problem is still tractable.

The other contributions regard the economic cost of the stochastic dominance constraints
and the idea of including a safety margin on the benchmark. In our contest, we adopt the
sponsor contribution variable as measure of the cost of including SSD constraints. It is easy
to interpret and it gives an effective picture of the impact of the dominance constraints on
the solution. Such measure could be easily extended to other models in which it is possible
to include a slack variable to measure the extra cost that the decision maker should pay to
dominate the benchmark. On the other hand, if the benchmark appears unrealistically too
much easy to dominate, our results show that the decisionmaker can introduce a safetymargin
that makes the solutionmore robust, especially when the problem requires some intermediate
targets.
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Appendix

A The ALMmodel

The ALM problem is formulated as a linear programming problem. Here we describe the
equations of the constraints used in the version of the model adopted in this paper to produce
the results shown within the empirical section. For more details see Consigli et al. (2017).
These are the decision variable of the model:

x+
i,n investment in node n, of asset i ;

x−
i,n selling in node n, of asset i ;
xi,n holding in node n, of asset i ;
zn = z+n − z−n cash account in node n.

Inventory balance constraints: The inventory balance constraints affect the time evolution of
each asset, and the sum of the holding in each asset determines the wealth wn of the pension
fund:

xi,0 = x̊i + x+
i,0 − x−

i,0 ∀i,
w0 = ∑

i xi,0.
(12)

where x̊i is the initial allocation, and

xi,n = xi,n−
(
1 + ρi,n

) − x−
i,n + x+

i,n ∀i, n,

wn = ∑
i xi,n ∀n.

(13)

where ρi,n is the price return of asset i at node n.
Cash balance constraints:We consider cash outflows due to: liability payments (Ln), negative
interest (ζ−

n ) on cash account deficits, corporate taxes (Tn), buying decisions (x+
i,n) and

operating and human resource costs (On); cash inflows are due to: insurance premiums (Rn),
selling decisions (x−

i,n), interest (ζ
+
n ) on cash account surpluses and the unexpected sponsor

contribution (�n). Given an initial cash balance z̊:

z̊ + ∑
i x

−
i,0 − ∑

i x
+
i,0 + z+0 − z−0 = 0. (14)

the following cash balance constraints become:

z+n−
(
1 + ζ+

n

) − z−n−
(
1 + ζ−

n

) − z+n + z−n
+

∑

i

x−
i,n −

∑

i

x+
i,n

+Rn − Ln − On − Tn + �n = 0,∀n. (15)

Bounds on the asset portfolio: Rebalancing decisions are typically constrained to maintain a
sufficient portfolio diversification:

liwn ≤ xi,n ≤ uiwn,∀i, n (16)

where li and ui are the lower and upper bounds on holdings in asset i with respect to the
current portfolio position. A maximum turnover (γ ) will limit portfolio rebalancing from
one stage to the next.

∑

i

x−
i,n +

∑

i

x+
i,n ≤ γ ·

[
∑

i

xi,n− · (
1 + ρi,n

)
]

,∀n. (17)
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For the definition of the variable in the objective function we need also to compute:

Y1,n : a joint measure of the ALM risk and of the liquidity gap: we compute the mismatch
between the average duration of the assets and the duration of the liability (ALM risk)
and we associate a liquidity coefficient to each asset to compute the average liquidity
of the portfolio;

Y2,n : a measure of the return adjusted by the risk: we consider the wealth wn of the port-
folio and we penalize it with the riskiness of the portfolio measured by specific risk
coefficients associated to each asset;

Y3,n : the cumulative of the sponsor unexpected contribution �n : we simply compute the
sum of �n over the ancestor nodes of n;

Y4,n : the difference between the DBO Dn and the portfolio value wn .

B Scenario generation

We generate the scenarios starting from the historical series of quarterly price and income
returns for all the assets. We assume that each process of price return can be described as a
linear regression of all asset price returns and of two main macroeconomic variables: Gross
Domestic Product (GDP) and Consumer Price Index (CPI). Regressors are initially included
with 5 lags and we also assume that they can be included with lag 0 in a hierarchical sense,
that means that according to the order in Table 1 variable i = 1, ..., n can depend on variables
j = 1, ..., i − 1 at the same time, so that, excluding simultaneous equations, we obtain the
following general model for the price return of asset i :

ρi,t = βi,0 +
i−1∑

j=1

βi, j,0ρ j,t +
n∑

j=1

5∑

l=1

βi, j,lρ j,t−l

+
∑

v=1,2

5∑

l=1

γi,v,lwv,t−l + εi,t , i = 1, ..., n

where ρi,t is the price return of the asset i at time t , wv,t is the price return of the macroeco-
nomic variable v at time t , βi, j,l and γi,v,l are the coefficients to estimate, and εi,t is the error
term. The same process is needed also to determine the regression for the macroeconomic
variables:

wv,t = αv,0 +
n∑

i=1

5∑

l=0

αv,i,lρi,t−l +
∑

j=1,2

5∑

l=1

κv, j,lw j,t−l + ξv,t , v = 1, 2

where αv,i,l and κv, j,l are the coefficients to estimate, and ξv,t is the error term. Then,
for each linear regression, we proceed iteratively. At each step we estimate the β, γ , α

and κ coefficients, we remove the most non-significant one and we estimate again until all
coefficients are statistically significant. Finally, if the associated R2 statistics is large enough,
we assume that the model is reliable to be used for further estimations, otherwise we estimate
only the regression ρi,t = βi,0 +εi,t (orwv,t = αv,0 +ξv,t for the macroeconomic variables)
and we assume that the underlying process is a geometric Brownian motion having μ = βi,0

and σ = σ(εi,t ) (or μ = αv,0 and σ = σ(ξv,t ) for the macroeconomic variables). Once
the models have been defined for all assets and macroeconomic variables, we adopt a Monte
Carlo approach to generate the tree nodal values for price returns. For all assets, except the
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cash, we proceed in a similar way to define the tree nodal values of the income returns. For
more details see Moriggia et al. (2019).
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Dupačová, J., & Kopa, M. (2014). Robustness of optimal portfolios under risk and stochastic dominance
constraints. European Journal of Operational Research, 234(2), 434–441.

Geyer, A., & Ziemba, W. T. (2008). The Innovest Austrian pension fund financial planning model InnoALM.
Operations Research, 56(4), 797–810.

Hadar, J., & Russell, W. R. (1969). Rules for ordering uncertain prospects. The American Economic Review,
59(1), 25–34.

Hanoch, G., & Levy, H. (1969). The Efficiency Analysis of Choices Involving Risk. The Review of Economic
Studies, 36(3), 335–346. https://doi.org/10.2307/2296431

Kopa, M., & Post, T. (2015). A general test for SSD portfolio efficiency. OR Spectrum, 37(3), 703–734.
Kopa, M., Moriggia, V., & Vitali, S. (2018). Individual optimal pension allocation under stochastic dominance

constraints. Annals of Operations Research, 260(1–2), 255–291.
Kuosmanen, T. (2004). Efficient diversification according to stochastic dominance criteria. Management Sci-

ence, 50(10), 1390–1406.
Kusy, M. I., & Ziemba, W. T. (1986). A bank asset and liability management model. Operations Research,

34(3), 356–376.
Levy, H. (2006). Stochastic dominance: Investment decision making under uncertainty. Springer.
Luedtke, J. (2008). New formulations for optimization under stochastic dominance constraints. SIAM Journal

on Optimization, 19(3), 1433–1450.
Moriggia, V., Kopa, M., & Vitali, S. (2019). Pension fund management with hedging derivatives, stochastic

dominance and nodal contamination. Omega, 87, 127–141.
Muller, A., & Stoyan, S. (2002). Comparison methods for stochastic models and risks. Wiley.
Mulvey, J. M. (1994). An asset-liability investment system. Interfaces, 24(3), 22–33.
Mulvey, J. M. (1994b). Financial planning via multi-stage stochastic programs. Mathematical Programming:

State of the Art
Mulvey, J. M., Gould, G., & Morgan, C. (2000). An asset and liability management system for Towers Perrin-

Tillinghast. Interfaces, 30(1), 96–114.
Nielsen, S. S., & Zenios, S. A. (1996). A stochastic programming model for funding single premium deferred

annuities. Mathematical Programming, 75(2), 177–200.
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