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Abstract

We provide a new econometric methodology to detect the bias due to strategic
interaction induced by subjective learning. This methodology relies on (i) a new
definition of coherence based on the Likelihood Principle, specifically designed
for economic forecasting; (ii) an environment named “Scoring Structure”, where a
Forecast User interacts with a Forecast Producer and Reality. A formal test for
the null hypothesis of linearity in the Structure is introduced. Linearity implies
that forecasts are strategically coherent with evaluations and viceversa. The new
test has good small-sample properties and behaves consistently with theoretical
requirements. Three case studies on the Federal Reserve Bank’s, the Bank of
England’s and the Norges Bank’s forecasts support the endemic nature of the
strategic judgment in Macroeconomics. The economic interpretation of the results
are discussed.

Keywords: Bias, Coherence, Learning, Likelihood Principle, Mis-specification, Non-
linearity, Scoring Structures.
JEL: C12, C22, C44, C53.
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1 Introduction

Quantifying the forecasting accuracy is one of the most important issues that any

economic expert or policy institution has to deal with. Since the origins of the econo-

metric literature, forecast errors are looked as the empirical counterpart of the un-

observed economic costs that a generic representative forecaster pays in case of poor

decision/forecast. Thus, in a traditional setting, the optimal forecast is the one that

maximizes the sample equivalent of forecaster’s own expected utility (or, equivalently,

that minimizes her own expected loss)1. Any deviation from the optimality (or bias)

is looked as the effect of an econometric misspecification made by forecaster. For an

overview, see De Gooijer (2017); Ghysels and Marcellino (2018); Castle et al. (2019)

among others.

In this paper, the forecasting process is looked as an environment where several,

differently-behaving agents interact and learn on reciprocal actions. These agents can

be generically identified as forecast users and producers (henceforth, FUs and FPs, re-

spectively). The cheating among economic agents is commonly known with the generic

label ‘herding’ and explained by the failure of rational expectation hypothesis. The rise

of the forecasting bias due to herding is not a new idea in the economic literature, see

Clements (2018) for a review and a stylized model that englobes some of these features.

No matter what economic motivation is postulated, the forecasting process is sensi-

tive to subjective bias. We are interested in that peculiar subjective bias that either FPs

or FUs are induced by their own non-sample information (or judgment, henceforth),

as well in the link of this judgment with strategic behavior; see Manganelli (2009) and

Ottaviani and Sorensen (2006), to which we are strictly related and complementary. Ac-

cording to this framework, a representative FU integrates sample information with her

own pre-constituted opinions every time she takes a decision, so that the econometric

treatment of these opinions is non-standard. Nevertheless, and despite the generality

and flexibility of this solution, this approach mis-recognizes the reaction of a (represen-

tative) FP due to a poor evaluation of her forecast by FU. The upper panel of Figure
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1 gives a visual intuition of this forecasting scenario. Henceforth, we use the term quo-

tation when referring to the (potentially) biased estimate obtained by FP; specularly,

we label announcement the (eventually) biased estimate that FU adopts after having

evaluated the FP quotation. In both the cases the quotation/announcement is assumed

being a combination of the output of an optimization problem and a judgmental compo-

nent. Moreover, we consider the key hypothesis that quotation does not coincide with

the announcement. When this hypothesis is verified, we call bias due to strategic judg-

ment – or strategic judgmental bias (SJB, henceforth) – the quotation-announcement

spread.

The next Section 2 provides an illustrative example on how the FP’s reaction to a

poor evaluation by FU can be motivated by her own learning activity, which originates

a bias that cumulates and perdures in the subsequent periods. Very little is known

about the theoretical conditions necessary to set an econometric analysis of such a

strategic problem and its mechanics – the only paper on this topic (Manganelli, 2019)

considers the FU-side only, while the literature on game-properties of forecasting is

mainly theoretical or focused on bayesian calibration or claim validation (Olszewski,

2015). Hence, how can SJB be empirically modelled and tested?

Section 3 answers to this research question by introducing a new mathematical

object named, generically, Scoring (or Judgmental) Structure (SS, henceforth)2. This

object, illustrated in the lower panel of Figure 1, models a game among several players by

using frequentist inference. To this aim, it englobes several elements: a utility function

that both FP and FU are assumed to have; a sequence of quotations; a sequence of

announcements; an entropy function that measures the amount of the uncertainty –

hence, the maximum of the utility – produced by the synergy of Reality, FP and FU3;

a divergence function, allowing to map the distance between the FP’s quotation from

the optimal forecast. Similarly to any game, making the SS operational requires some

general rules to avoid that the final output is unbalanced in favor of FP or FU. Once

these rules has been properly set, the SS makes us able to test for the hypothesis that

the marginal utility of the FP coincides with the (log-)likelihood of the model adopted
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by FU to reproduce the FP’s quotation. When such a coincidence is verified by data,

we say that the forecast is coherent. This coherence test is strictly related to a peculiar

type of utility function, the scoring rule (SR, henceforth). This last assigns a numerical

score to several competing (model-based) density forecasts. According to the statistical

literature – see De Finetti (2017) and Winkler (1967) – a proper SR gives an incentive

to FP to be honest4. However, this “honesty” does not ensure, per se, that FP will not

announce a value that differs from that of the estimated model (similarly, that FU will

not do an announcement different from the one she is supposed to do given the data

and FP evaluation) because she uses non-sample informations in a strategic way. In

other words, proper SRs are robust to judgmental bias, not to SJB.5 The game-theoretic

nature of the SS overcomes this problem.

Section 4 illustrates the feasibility of the proposed approach via three case studies:

the U.S. survey data on GDP and unemployment rate; the professional forecasts of the

U.K. inflation; and the Norwegian Output Gap growth rate forecasts. Two of these

three cases suggest that the amount of strategic bias is significant. The economic and

methodological implications of our findings are discussed. Finally, section 5 concludes.

An Appendix provides mathematical details, while a separate Supplement conveys ad-

ditional explanations and results.

2 The Strategic Bias Problem

In this section we focus on a simple forecasting exercise based on simulated data on the

U.S. Industrial Production. Henceforth, we use .
= and ≡ to mean equal by definition

and equivalence, respectively; aˆto mean estimates resulting from sample information

and˜ for labeling non-sample information; U(Ξ, êt) denotes the utility of the FP, which

is a function of the parameter vector Ξ to be estimated and the estimated residuals

ê
.
= ŷt − yt; an upper-dot means optimality of the estimate.

Let consider the case of a set of {1, . . . , i, . . . , 1000} random paths of length T = 265
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from the following DGP that represent a simulated Reality:

y
(i)
t = 0.9y

(i)
2,t−1−0.795y

(i)
2,t−2+(0.02−0.4y

(i)
2,t−1+0.25y2,t−2)(i)G(i)(Ξ)+ε

(i)
2,t, ε

(i)
2,t ∼ N(0, 0.5),

(1)

where: G(Ξ) =
(
1 + exp

{
−γ(st− c))

]})−1 is a function of the known parameter vector

Ξ = [γ, c, st], formed by a slope γ = 5.0 that governs the transition between the two

extreme states G = 0 and G = 1, a location parameter c = ȳt, and the transition

variable st = (yt−1 − ȳt), with ȳt = 1
T

∑T
t=1 yt.

6 Since the error variance is inversely

proportional to the forecaster’s utility in many SRs, the value σ2 = 0.5 increases the

potential cost of bad quotation. The choice of a Smooth-Transition Autoregressive

family as DGP is motivated by the fact (that will be proved in the course of the next

Section) that this family of models is particularly indicated to nest the forecasting

framework and coherence testing that motivates this paper. In particular, we remark

that the nonlinearity of the process here created is looked as consequence of the raise of

the SJB, while linearity is associated to its non-existence. Thus, the STAR-modelling

have to be considered as instrumental to avoid ad-hoc refinements that would make

the entire methodology less immediate to understand. Finally, the assumption that

the vector parameter Ξ is known is made to allow the reader to focus on SJB as the

main source of uncertainty with respect to other sources (like parameter uncertainty or

measurement error).

Let now consider a forecasting environment formed by two different agents – namely

FP and FU – co-exist and interact in a strategic way. This interaction is summarized

in four steps:

1. At time T of the i-esim random draw, FP makes her own quotationQT+1|T (say, on

the conditional density) for the next period given all the information available at

the current one via MonteCarlo simulation when the closed form is not available by

looking at the vector of observables {yt}tt=1 adopting (1) and the utility function

the U(·) – say, the quadratic utility, U(Ξ, ê) = ê(Ξ)2, so that standard OLS

inference holds. In this step, FP does not use non-sample information, so that
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QT+1|T is the predicted value of a direct estimation (here, an OLS regression of

the dependent variable on the regressors lagged h−periods).

2. At time T +1 of the i-esim random draw, FU evaluates FP’s quotation using data

up to T. For ease of exposition, we assume that (i) FU knows the FP’s DGP; (ii)

FU does not know if FP has used non-sample information to arrive at QT+1|T .

Thus, FU needs to test whether the realized values Qt+1|t is effectively generated

by

ỹt = ŷ
(i)
t + π̃1, (2)

where ŷ(i)
t is the estimated value of the variable, π̃1 represents the non-sample

information that FU suspects in FP’s quotation and is assumed being small (rel-

atively to ŷ(i)
t ) and set to 0.05 to mean that the role of non-sample information

is limited. This requires to compute the probability integral transform (PIT) of

ỹt. Under the assumptions that the sequence of density forecasts {ft(ỹt)}mt has

a nonzero Jacobian with continuous partial derivatives (Diebold et al., 1998), if

{ft(ỹt)}mt coincides with the Data Generating Process density {p(y)|It}mt , then

zt+h =

∫ Ỹt+h

−∞
F̂t+h(u|It)du ∼ i.i.d. U(0, 1) (3)

where F̂t+h is the estimated cumulative density function in t+h (or predictive

density) evaluated at Ỹt+h, It the information up to time T and u a suitable

measure that allow the effective computation of the integral. The PIT is computed

using in the fixed-rolling windows scheme by Rossi and Sekhposyan (2011): in a set

of periods {1, . . . , T}, FP produces a number P of quotations obtained by using

estimates of an OLS regression. Thus, there are P out-of-sample predictions to be

evaluated by FU, where the first out-of-sample prediction is based on a parameter

estimated using data generated by (1) up to time R; the second prediction is

based on a parameter estimated using data up to R + 1, and the last prediction

is based on a parameter estimated using data up to R + P − 1 = T , where
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R + P + h − 1 = T + h is the size of the available sample and h = 1 being

the pseudo-out-of-sample horizon, so that T=264 is the "in-sample" part.7 Once

the sequence of estimation errors has been computed, it is transformed via (3).

Under perfect forecast, the histogram is perfectly rectangular. But the judgmental

component π̃1 makes the effective one-step-ahead histogram corresponding to Step

2 in upper panel of Figure 2 a non-perfect rectangle. Since FU knows the DGP

adopted to produce QT+1|T , FP has now insight that FU is mis-evaluating her

quotation, albeit the magnitude of the mis-evaluation is small. However, FP does

not know where FU is wrong.

3. FP has learnt to be mis-evaluated by FU and, contemporaneously, has to make

the new quotation for the next period QT+2|T+1, where

ỹ
(i)
t = ŷ

(i)
t + ψ̃, (4)

with ψ̃ small (still set to 0.05) and all other parameters of ŷ(i)
t remains the same.

This means that FP adds non-sample information to her original DGP to take

in account for the FU mis-evaluation and, thus, to anticipate another possible

mis-evaluation also in t+ 2.

4. Finally, in time t+2 FU evaluates FP’s new quotation QT+2|T+1. Again, FU knows

FP’s DGP, not the amount of judgment incorporated by her in T + 1 to arrive

at QT+2|T+1. Thus, FU needs to test whether the realized QT+2|T+1 is effectively

generated by

ỹ∗t = ỹ
(i)
t + π̃2, (5)

where π̃2 represents the non-sample information that FU suspects being inQT+2|T+1.

Still, π̃2 = π̃1, for ease of illustration and without loss of generality. Notice that

now ỹ∗t includes several judgmental components: π̃1 (which is incorporated in ỹ(i)
t )

and π̃2. These cumulate, and thus FU computes the one-step-ahead PIT for t+2

corresponding to (3) – with minor modifications to the bounds of the integral to
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take in account for the new period.

Key Result 1. The lower panel of Figure 2 displays the histogram of PIT with h = 1

computed in Step 4 according to the same rolling-windows scheme explained above.

Differently to the equivalent one in Step 2, the effect of the misspecification increases

dramatically. Such a misspecification cannot be imputed to the FP (having no es-

timation bias) neither to FU (because she knows FP’s DGP) if these are considered

singularly. Thus, it must be imputed to the perduring effect of π1, which has been

originated by the FP learning in Step 2, but is measured only in Step 4.8

Assuming the knowledge of DGP by FU may be looked as counterintuitive for

justifying the rise of SJB. One may argue that this assumption corresponds to perfect

specification – ontologically antithetic to the need to add further source of information.

Thus, what would be the rationale to use judgment in such a setting? Answering to this

question implies to formulate an economic theory on the use of information. The inner

motivations for which FU might suspect FP has added non-sample informations are

compatible with several theories. In this paper we rely on the key idea that forecasting

agents are imperfect maximizers facing costs to learn. According to Ilut and Valchev

(2020), these learning costs are directly associated to nonlinearity in the policy function

(corresponding to asymmetry in utility function) that FP has to fulfill, hence to lack

of regularity in updating her beliefs. This theory is compatible with the most recent

empirical literature (Manzan, 2011, 2021). Moreover, on a subjectivist perspective, we

assume that FP may be influenced by indirect signals (for example, the reputation): in

fact, as demonstrated by Ottaviani and Sorensen (2006), reporting the best quotation of

the state is not an equilibrium if assuming a forecasting tournament with pre-specified

rules. Instead, the reporting activity is a balance between two contrasting forces: (i)

the proper (in the sense of De Finetti) incentive to report the honest forecast; (ii) the

gain from moving away from the prior mean, deriving by the fact that the number of

forecasters that correctly guess the state lower as farther is the FP’s state from it. In

our setting, the contest is a simple repeated game among FP with FU that may leads

FP to differentiate her predictions from the true ones despite the FU activity by putting
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greater weight on their private signals (that is, on her SJB) than she would in an honest

report; see the Supplement.

The assumption that the DGP of FP is observable by FU is only for ease of illus-

tration and may be relaxed. In this case, the FU has to deal with the estimation error

additionally to the strategic bias previously considered. It can be shown that, in this

case, for the FU is sufficient to know the form of the U(·). In facts, this allows FU to

select a proper function (that is, the SR) to compute the PIT. Notice that such a func-

tion does take in account of π̃ and π̃2 but only one of them per time. This means that

the FU may use the best SR to perform her evaluation and still obtain a PIT similar to

the one in lower panel of Figure 2. In this case, the FU may abandon the PIT and use

the Autocontours, see González-Rivera et al. (2011); or may use a formal test for cor-

rect specification like the ones presented in Corradi and Swanson (2006) and their more

recent development for dynamic correct specification by Rossi and Sekhposyan (2019),

but the qualitative result of the above example would remain unchanged because this

literature does not consider any strategic component. The next Section fills this gap.

3 Theoretical framework

This Section introduces the econometric theory of SJB that generalizes the example

above illustrated. Namely, Subsection 3.1 introduces the notation; Subsection 3.2 de-

fines and characterizes the notion of coherence; finally, Subsection 3.3 introduces a

formal test for the null hypothesis of forecasting coherence.

3.1 Notation

We are interested in the stochastic process Z .
= {Zt : Ω → Rk+1, k ∈ N, t = 1, . . . , T}.

This process is partitioned as Z ≡ [Y, Ŷt, Ỹt, Xt], where Yt = {y1, . . . , yT} is the vector of

observed data, Ŷt = {ŷ1, . . . , ŷT}′ is the vector of optimal estimates, Ỹt = {ỹ1, . . . , ỹT}′,

is the vector of (potentially biased) estimates corresponding to the ỹt in (2) and Xt =

{x1, . . . , xT}′ is the vector of exogenous variables.9 Moreover, it is defined on a com-
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plete probability space {Ω,F ,P}, where Ω is the sample space; the event space Ft is

partitioned as Ft ≡ [Π,Ψ] ∈ Rk to denote the sub-spaces of FU and FP, respectively;

P .
= {p ∈ A :

∑
x px = 1} defines the set of all real vectors corresponding to strictly

positive probability measures if the sample space is discrete, as assumed in this pa-

per;10 A an algebraic subset of Ỹ representing the set of FP’s actions, which, in turn,

correspond to the set of all possible π̃t that she decides.

The set of all possible values taken by Zt is Zt ≡ [Yt, Ŷt, Ỹt,Xt]. The Log-likelihood

of FU and FP are denoted, respectively, L(Π) and L(Ψ), while the density of Z (or

each of its partitions) is denoted P (Z)
.
=
∫
pY (z)dz, where p(·) is a continuous density

function defined on L(Ω) and t is omitted to ease the notation. The (one-step-ahead)

distributional and density forecasts of Zt are denoted as P (Zt+1) and p(Zt+1), respec-

tively.

The FP seeks to solve a decision problem defined by the triple
{
Ŷt,A,U(p̂, a∗)

}
,

where: Ŷt and A are defined as before; and U(p̂, a∗) is a real-valued utility function that

represents the reward obtained by the FP as the result of minimizing the discrepancy

|ŷt+1− yt+1| – that is, the distance between density forecast for t+ 1 and data that will

be observed at that time – by her own optimal judgement a∗ ∈ A. This last is the one

that maximizes the expected utility, denoted as EU :=
∫
U(P̂ , a∗)p(Ŷt)dŶt, computed

using the distribution P , which is believed to be the true DGP. The same holds for FU,

with minor modification to the notation – that is, ψ instead of π, Ỹ instead of Ŷ and

ã∗ ∈ Ã instead of a∗ ∈ A).

3.2 Representation of the Forecasting Environment

Consider the preliminary theory in A.1. Then, it’s possible to arrive at the following

Definition 1 (Structural Coherence). The (h-step ahead) density forecast yt+h obtained

by p(Π̂;xt) ∈ P is coherent relatively to the scoring structure (or structurally coherent)

if there is one-to-one mapping between L(Π̂;xt) and L(Ψ̂;xt).

This definition is an economic, empirical counterpart of the definition of coherence by
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De Finetti, Ch. 3.1, pp. 62–64, that, to our best knowledge, is the only other definition

available for this issue. According to this last Author, a probabilistic forecast is coherent

if and only if it is finitely additive. However, despite its generality has enabled a series of

mathematical as well as epistemological consequences still today under debate (Dawid,

1982; Regazzini, 1987; Pelloni, 1996; Nau, 2001; Dawid, 2004; Predd et al., 2009), the

operational definition of coherence has not been considered explicitly by the economic

literature. Our definition is (micro-)economically founded, because is based on (i)

a walrasian axiomatization of the forecasting environment (that is, the existence of

a market where the demand and supply of economic forecasts matches); (ii) a game-

theoretic approach to forecasting (see the Supplement for details). The term “structural”

emphasizes the role of the two demand/supply sides constituting the structure of any

exchange-based economy. Secondly, our definition is empirical because it is based on

an equivalence among two estimated objects and links the coherence to the likelihood

principle. The non-manipulability of tests based on Likelihood-Ratio Tests in strategic

forecasting is proved by Pomatto (2021). Our game-theoretic foundation avoids unfair

evaluation in case that agents move away from optimal actions.

Proposition 1. The FP’s reward S(X, Y ) is a proper SR if and only if A1 – A5 are

satisfied. The same holds for the FU side if inverting the orders of the variables.

Proof. This is essentially the Theorem 1 in Gneiting and Raftery (2007).

The next result identifies the testable hypothesis of forecasting coherence and consti-

tutes the basis for the rest of the analysis:

Proposition 2. Let S(z, p) be an SR, possibly the Brègman-Savage representation, with

q-function s. Then, S(z, p) is local and strictly proper if and only if s is such that:

Ls = 0, (6)

where: L :=
∑

k≥0(−1)kDkp0
∂

∂pk
, D := ∂

∂y
+
∑

j>>0 pj+1
∂
pj
, D and L are total derivative

and linear differential operators, respectively.
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Proof. This is essentially the condition (i) in Theorem 6.4 in Parry et al. (2012).

Equation (6) is called the Key Condition. Two further (merely theoretical) condi-

tions concerning the representation of s via Lagrange operators are required to proof the

mentioned Parry et al.’s Theorem. Nevertheless, the Key Condition is sufficient (and,

to the best of our knowledge, it is the only available) to identify a testable hypothesis

of the logarithmic form of the FP’ and FU’s utility.

The connection between forecast coherence and the locality is ensured by the following

Theorem 1. A density forecast p(Zt+h) is structurally coherent if and only if S(z, P )

is local.

Proof. See Appendix A.2.

3.3 Testing for structural coherence

To test the hypothesis that the equation (6) is verified by the data, we assume that

S(z; p) is part of a smooth-transition autoregressive scoring structure with exogenous

regressors (SS-STARX, henceforth) and is treated as an observed transition variable;

for a comprehensive treatment of traditional smooth-transition regression models, see

van Dijk et al. (2002). This treatment is necessary to set up the null hypothesis and

introduce an LM-type test using a linearization of the SS-STARX, which is equivalent

to an auxiliary model with augmented regressors, the number of which depends on the

type of non-linearity of the same structure.

The process {yt} observed at t = 1 − p, 1 − (p − 1), . . . ,−1, 0, 1, . . . , T − 1, T is

assumed to have the following parametrization:

yt = φ′wt +G(γ, zt, ck)θ′wt + εt, εt ∼ iid(0, σ2)

G(γ, zt, ck) =

(
1 + exp

{
− γ

K∏

k=1

(zt − ck)

})−1

, γ > 0, c1 < · · · < ck, < · · · < cK ,

(7)

where: wt = (1, yt−1, . . . , yt−p)′ are the autoregressive covariates; φ = (φ0, φ1, . . . , φp)
′
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are the linear part parameters; θ = (θ0, θ1, . . . , θp)
′ are the nonlinear part parameters;

γ is the slope parameter; ck = (c1, . . . , cK) denoting the (eventually, multiple) location

parameters; zt = a′xt � s is a composite transition variable, with a = [a1, . . . , ap]
′,

ai = 0 if i = d and 1 if i 6= d indicating that delay parameter d, which is such that

1 ≤ d ≤ p, is unknown and xt the vector of FP’s quotation; s = vec(s ⊗ i) with s is

a scalar denoting a generic (strictly) proper SR as in (14) and i is a one-vector of the

same dimensions of xt. The most common choices for K are K = 1, in which case the

parameters φ+ θG(γ, zt, ck) change monotonically as a function of zt from φ to φ+ θ

and K = 2, in which case the parameters φ + θG(γ, zt, ck) change symmetrically at

the point where the function reaches its own minimum. A peculiar form of this latter

case is when K = 2 and c1 = c2 and the transition function defines the SS-Exponential

STARX (SS-ESTARX) model. When γ → ∞, the equation (7) becomes a two-regime

threshold autoregression SS (SS-TARX).

The (nonlinear) SS so defined is an algorithm that applies the Forecasting Protocol

defined in Section 2 of Supplement. Its use requires three steps: (i) the FU specifies

the form of s that will be adopted to evaluate the FP; (ii) the FP estimates p̂(yt+h) and

applies S(ỹt, xt) to it – that is, the FU makes that FP’s bias ψ̃t appears in xt – so that

zt can be computed; and (iii) the quotation is compared with the realizations yt via

(7). In Supplement, Reality is assumed acting as third player, so the number of steps

enlarges without loose of generality.

The mechanics of the forecasting exercise executed by FP is independent of the form

of the SS: no restrictions or assumptions, neither in the forecasting model nor in the

methodology adopted to obtain S(yt+h, xt) is needed. As will appear shortly, equation

(7) is necessary only as a convenient way to test the null hypothesis of structural

coherence, corresponding to (6). Moreover, the Step (ii) can be seen also from the FP’s

side: that is, she presumes that FU will play against her quotation and thus, after

having estimated p̂(xt+h), she incorporates the FU’s bias π̃t in ỹt.11

The null hypothesis of structural coherence can be investigated as follows:

Proposition 3. Let yt be a stochastic process generated by (7). Then:
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(i) The locality can be tested via the hypothesis system

H0 : γ = 0 vs H1 : γ 6= 0 in (7), (8)

which can be measured by the following LM statistics:

S(Ξ)LM = σ̂−2Û′D̂2(D̂′2D̂2 − D̂′2D̂1(D̂′1D̂1)−1D̂′1D̂2)−1D̂′2Û ∼ χ2
n (9)

where Û , D̂1, D̂2 denote properly defined matrices; σ̂−2 is an estimator of the

unconditional variance of SS; n is the length of the vector of nonlinear parameters.

(ii) Alternatively, the system (8) can be measured by one of the following LM statistics:

LM1 = (SSR0 − SSR)/σ̂v
2 ∼ χ2

3p if K = 1 in (7)

LM2 = (SSR0 − SSR)/σ̂2
v1 ∼ χ2

2p if K = 2 and c1 = c2 in (7)

LM3 = (SSR0 − SSR)/σ̂2
v2 ∼ χ2

p if K = 2 and c1 6= c2 in (7),

(10)

where SSR0 and SSR are the sum of the squared residuals of SS-STARX (7) lin-

earized via the Taylor expansion, σ̂v2, σ̂2
v1, and σ̂2

v2 are estimators of unconditional

variance of the same linearized SS-STARX(p); p is the autoregressive order of the

same SS-STARX. F -type tests equivalent to LM statistics in (10) are preferable

in small samples.

Proof. It is a re-proposition of the existing results by Luukkonen et al. (1988) and

Teräsvirta (1994), and thus it is shown in Supplement.

4 Empirical Applications

This Section illustrates the use of the SS and the coherence test by three case stud-

ies. Namely, Subsection 4.1 analyzes the GDP and unemployment forecasts by Survey

of Professional Forecasters of Federal Reserve (SPF-FED, henceforth); Subsection 4.2

deals with the UK inflation using Bank of England’ survey data; Subsection 4.3 con-
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siders the Norwegian output gap (OG, henceforth) forecast by Norges Bank; finally

Subsection 4.4 discusses the relevance of these applications.

4.1 The U.S. survey data

The Federal Reserve Bank has been the first institution to use professional forecast-

ing to justify its policy decisions. The FED-SPF began in 1968 as independent study

of the American Statistical Association and NBER and in late 1990 its maintainance

became part of the institutional activity of the FED. This change in the managing

institution makes the coherence of the SPF of the U.S. economy particularly inter-

esting to test. The data can be downloaded at the FED of Philadelphia at https:

//www.philadelphiafed.org/surveys-and-data/data-files. The release is dated

November 16th, 2020. In this paper we consider two variables: the Real GDP (RGDP)

and the unemployment rate (UNR), both of them for an horizon going from one to four

quarters; the nowcasts are also investigated. The sample span is 1975:Q1–2020:Q4.12

According to Tables 1 and 2, there is a strong evidence of SJB in both the variables.

However, its length is heterogenous: if the full sample is considered, the null hypothesis

of no SJB in the forecast of RGDP is rejected in the first lag in all the horizons, albeit

this is the only rejection case on eight in nowcasts as well as in first step-ahead forecasts.

The two-quarters forecasts are strategically biased also in the fourth lag. Differently,

the three and four-quarters-ahead forecasts are biased in the majority of the cases. On

the other hand, UNR is pervaded by SJB in all the horizons. Interestingly, this finding

is less evident if considering only the ‘FED-managing’ sample 1991:Q1–2020:Q4. Apart

the first lags in nowcast and all step-ahead-forecasts, the only case in which SJB cannot

be neglected is the one-year-ahead forecast. In UNR forecasts the SJB is still evident

in the majority of the cases.

15



4.2 The U.K. inflation

The Bank of England (BoE, henceforth) adopts and publishes probabilistic forecasts

in the form of ‘Fan Charts’ on several key macroeconomic indicators in support of

its policy decisions since 1996. Perhaps the most famous example of these indica-

tors is the inflation rate; see, among others, Wallis (2004); Mitchell and Hall (2005).

The Monetary Policy Committee (MPC, henceforth) provides monthly projections on

the CPI inflation; it acts as FU and is fully responsible for the reach of the Bank’s

institutional targets. Thus, its projections can be seen as announcements. More

recently, the BoE has also published the data on the Survey of External Forecast-

ers (SEF), which constitute the FP in our framework and are the equivalent of the

U.S. SPF. It is very well-known that the BoE use an asymmetric two-pieces Nor-

mal autoregressive process to produce its density forecasts; see, among others, Boero

et al. (2008, 2011). In this paper we consider data since January 2014 to Decem-

ber 2019, corresponding to the release of August 2019. These can be downloaded at:

www.bankofengland.co.uk/inflation-report/2019/august-2019. The data on the

SEF has been considered as mean aggregate to allow their use in our SS-framework

without complicating the statistical model therein nested.

The results are reported in Table 3. The UK inflation forecasts are strategically

non-coherent, despite the heterogeneity of the results according to the type of data: the

Core CPI is affected by strategic judgment in all lags and the Contribution of Energy

to the CPI Inflation in the majority of the lags. Hence, the resulting SS-STARX is

characterized by a significantly high slope parameter (in (7), γ̂ = 5.67 with standard

deviation 0.97). However, since the CPI Inflation is non-coherent only in a minority of

the lags, we need further investigation to have a definitive assessment of these forecasts.

To this aim, we re-adapt the empirical example in Gneiting and Ranjan (2011) to com-

pare the BoE’s announcements with the equivalent professional forecasts. We consider

two f and g two predictive densities, where f is the BoE announcements and g is the

SEF quotation. This last is assumed being the output of a GLSTAR(2) because the
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estimated density function from that model are asymmetric, see Zanetti Chini (2018)13.

Then the average scores

S̄f
n =

1

n− k − 1

m+n−k∑

t=m

S(f̂t+k, yt+k), S̄g
n =

1

n− k − 1

m+n−k∑

t=m

S(ĝt+k, yt+k) (11)

are computed by aggregating the sequences of forecasts generated by the pseudo-out-

of-sample forecasting experiment where the sample is formed by n = 72 observations

and the forecast horizon is k = 4 for uniformity with the evidence in Tab. 3. The null

hypothesis is that the two average scores are equal, so that the hypothesis system is

H0 : ∆∗ = S̄f
n − S̄g

n = 0 vs H1 : ∆∗ = S̄f
n − S̄g

n 6= 0, (12)

which is measured by statistic

tn =
√
n

∆∗

σ̂n
∼ N(0, 1), (13)

where σ̂2
n = 1

n−k+1

∑k−1
j=−(k−1)

∑m+n−k−|j|
t=m ∆t,k∆t+|j|,k, and ∆t,k = Sf

n − Sg
n. In this

exercise, the LogS is in negative orientation, so f is preferable to g if and only if

Sf < Sg.

According to Table 4, there is not a clear superiority of the BoE forecasts with

respect to the GLSTAR. In 2/3 of the cases the null hypothesis cannot be rejected. In

the remaining cases, the BoE is superior to the nonlinear asymmetric model in only one

case on eight, that is the weighted pseudo-spherical score (WPseudoSph) with α = 1,

corresponding to a weighted logarithmic score.

4.3 The Norway Output Gap

The Bank of Norway’s Monetary Policy Report (BoNMPR) issued probabilistic fore-

casts of OG from March 2008 to December 2017, using fan charts to visualize the deciles

of the predictive distributions. The time series of quarterly OG investigated here is

stated in percentage changes over twelve months; the first quarter extends from March
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31 to May 30, while the second quarter extends from July 1 to September 30, and so on.

The data here used corresponds to the release 2014 and can be downloaded at http://

www.norges-bank.no/en/about/published/publications/monetary-policy-report/.

Also in this case, we take the BoN forecasts as primitive observations, so these

are yt in equation (7). On the other side, the BoNMPR forecasts are the product of

the bank’s internal econometric model, such as the System Averaging Model (SAM) or

the Norway Economic Model (NEMO)14. The last ones take the role of the composite

transition variable zt. According to our SS-framework, when γ = 0, the final BoN

announcements correspond to the estimated fan charts (that is, the latter are perfectly

coherent with internal forecasts). Differently to the previous application on UK CPI

inflation, Table 5 rejects this hypothesis in a minority of the lags here considered, so we

conclude that the amount of SJB in the BoN’s fan charts is negligible. In line with this

finding, we assume that the FP adopts a Logistic STAR(1) model with small slope15

to be compared with the final announcement, represented by downloadable BoN fan

charts. Therefore, we repeat the analysis of (11) in the previous Subsection 4.2 with a

window of length of m = 6 quarters. Under LogS, the t-statistic indicates whether the

distance between the BoNMPR forecasts and a forecast obtained by an econometric

model is significant.

Table 6 reports the results of this approach for a prediction horizon of k = 1 quarters

ahead and a test period ranging from the first quarter of 2008 to the first quarter of

2017, for a total of n = 34 density forecast cases. According to the p-values, the

superiority of the BoN approach is not unambiguously clear. Under LogS and other

proper functional forms, such as Quantum (qS), Conditional Likelihood (CLS), and

Interval Scores (IntS), the test rejects the null hypothesis of no equal predictive ability

of SS versus the benchmark model, thus confirming the structural coherence of the

quotation. On the other side, it does not reject the null hypothesis if any of several other

non-proper functionals, such as the Weighted Power (WPwrS), most Weighted Pseudo-

Spherical (WPseudoSph), and Log-Cosh (LCS) scores, are used; see the Supplement

for the details of each SR here adopted.
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4.4 Discussion

The lack of structural coherence defined in the Section 3 is an endemic characteristic of

macroeconomic data – at least the ones published by the main Central Banks. Several

consequences descends by our illustrations: first, the SJB hypothesis spurs the com-

parability of the model-based forecasts. In fact, whereas (as in the case of the U.K.

Inflation) the SJB cannot be rejected in a third of the lags, despite at a confidence level

of 10%, the equal predictive ability tests is not passed in one third on the SRs adopted;

on the other side, whereas (as in the case of the Norwegian OG) the SJB hypothesis

is rejected in almost all the lags, the equal predictive hypothesis is globally acceptable.

This relates directly to the recent finding by Galvao et al. (2021) that judgment tends

to downgrade the accuracy of pure statistically-driven ones. Moreover, the variety of

SRs failing to reveal a winner is also noticeable. This further complication is an effect

of the Patton (2019) results that electing ex-ante the form of the SR does not ensure

coherence. Second, the Score Invariance principle – exposed in Supplement – makes the

elicitation of the true FP’s utility objectively difficult and, consequently, explains the

difficulty in detecting a winner when making forecast comparisons. Thus, we should

question the economic nature of such Score Invariance.

Answering to this question implies having a theory that enlighten the dynamics of

the players of the Forecasting Game and, in ultimate analysis, the foundation of the

SS. We find this in the recent model of costly cognitive decision making by Ilut and

Valchev (2020). According to these authors, FP allocates her effort to make a costly

quotation by perfectly observing all relevant objective state variables. However, the

true policy function corresponding to the scoring function used by FU in her evaluation

is unknown. The uncertainty on the ‘true’ SR is estimated by bayesian nonparametric

methods focused on Gaussian Process distribution over which FP update her beliefs.

The FP gradually accumulates information about the optimal quotation as function

of the underlining state. Such an accumulation (i) reduces the variance of the judg-

ment but, contemporaneously, (ii) increases the system’s Entropy necessary to take the
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decision; thus (iii) it explains only partially the optimal quotation at a different state

realization; as a consequence, (iv) it leads to a propagation of the judgment in all the

forecasting process.

The combination of (i)-(iv) helps to explain the endemic incoherence and the high

variety of SRs estimates (that is the two most important findings of our empirical

investigation) but not the issue of the Score Invariance. This last may be seen as a

consequence of a stationary covariance function which controls the correlation among

beliefs about the values of the (unknown) SR. When this correlation is imperfect, the

information acquired by FP about the ‘true’ SR is more useful in the neighborhood

of the state realization where learning occurs. Hence, in states where learning is more

intense, the uncertainty over the SR is lower than in states where such learning is more

rare. This non-constant reasoning by both FP and FU causes the oscillation of the

SJB, hence demonstrated not identifiable by the SR – even if proper.

The relevance of these consequences requires some caveat: first of all, our SS ap-

proach is characterized by a simplistic parametrization. The forecasting environment

is assumed to be populated by only two homogeneous, representative agents. This as-

sumption have allowed us to ease the illustration and the mathematical representation

of the SS. We are aware that real Economics is less simplistic, being at least two possi-

bile source of additional complexity in both the demand and supply side: for example,

in the U.S. case, (a) the FED-SPF is not used only by FED, but by any firm or investor

interested in macroeconomic forecasting. Specularly, (b) the FED complements SPF

with its own internal forecasting model(s).

Concerning (a), augmenting the complexity of our methodology implies to abandon

the homogeneity assumption and to allow the amount of private information among

the (possibly, large) number of players being asymmetric. Unless assuming that the

FED’s internal forecasting model and SPF (specularly, that SPF and the collection of

institutions using it) have the same information processing dynamics – in which case

the additional FP’ outputs may easy be represented in exogenous vector zt – our actual

parametrization is insufficient to this aim. A first step to deal with this issue may be
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the use of networks; see, among others, Bramoullé et al. (2014). Concerning (b), a

second stochastic term (say, ζt) with opportune distributional assumptions should be

added to equation (2), so that the PIT in first panel of Figure 1 would be radically

different – perhaps similar to the second panel because the model would be very easy

misspecified. In turn, this additional terms will contaminate the further steps. As a

consequence, the game in Section 2 of Supplement should be properly modified to allow

it. In this sense, a more complex forecasting game is available in Vovk and Shafer (2005,

p. 754): this last includes a third player (four if Reality is considered one of them),

the Random Generator (RG), which can be interpreted as an econometric division and

assumed working in parallel with FP. The outputs of FP and RG are then properly

averaged by FU. Again, this requires an additional step and a richer parametrization

in (7).

A second caveat concerns the Step 2 of the Forecasting Protocol (see Supplement),

that assumes the SR is known to exploit the properties of the STARX models and thus

avoid the use of unobserved component modelling. In fact, the representation of the

SS in an unobserved state-space models has never been studied. Finally, we avoided

deliberately to consider a dynamics in the repeated game for economy of space. This

implies that that we are unable to validate the recent findings on the quality of SPF

under/overreactions; see, among others, Bordalo et al. (2020). All these assumptions

may limit the application of the new methodology.

5 Conclusions

Recent advances in economic theory suggest that the rise of the forecasters’ judgmental

bias is associated to their own subjective learning. The latter produces effects via

incorporation of the non-sample information during the execution of the forecasting

process. The strategic nature of this bias cannot be detected by standard econometric

methods. This paper has introduced a new, micro-funded econometric approach that

enables both professional forecasters and their evaluators to take in account of their
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reciprocal learning, either when forecasts are produced, either when these are evaluated.

This framework, named Scoring Structure, allows econometricians to build a stan-

dard LM-type test to verify the hypothesis of coherence among a representative Fore-

cast Producer’s quotations a Forecast User’ subsequent announcement and vice-versa.

From a general perspective, the Scoring Structure establishes a link between likelihood

principle and coherence among Forecast Producer’s quotations and Forecast User’s an-

nouncements. More specifically, it establishes a direct link among forecasting model’s

linearity and coherence. This makes the proposed approach very general, flexible and

easy to implement.

Our empirical investigation leads us to conclude that strategic judgmental bias is

a non negligible feature also in the most well-considered institutions. This can be

explained by the fact that the forecasting agents have not only bad incentives but also

imperfect processing capability. Additionally, this bias represents an important issue in

forecast comparison. However, the specification here introduced is prototypical. Thus,

further research is necessary to make it feasible in more realistic scenarios and in large

forecast comparisons exercises.
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Notes

1 In what follows, we prefer to use the notion of “utility” rather than that of “loss” – more frequently

used in the econometric literature – to emphasize our connection with the Bayesian literature that,

despite our frequentist approach, inspired this paper.

2 The term ‘Scoring’ is due to the function commonly known as scoring rule, which is formally

defined introduced in Appendix A.1. The term ‘Structure’ has been chosen in spite of the most

immediate ‘Game’ in order to remark that evaluating the FP/PU requires not only to define some

mathematical conditions of an equilibrium, but also to pre-define other objects for measuring the

optimality of such an equilibrium. These objects are related to the same FP/FU.

3 The Entropy is a statistical functional very well-known in Physics and only recently appeared in

Econometrics. It acts as link among the distribution function and its moments. The amount of

Entropy functionals currently known is huge. In this paper we adopt one of the most general

forms. The mathematical conditions required to its estimation vary according to the specific form

adopted. One of the few assumptions commonly considered necessary to define an estimator of

the Entropy is the strict stationarity; see Giannerini et al. (2015) as an example.

4 “The scoring rule is constructed according to the basic idea that the resulting device should oblige

each participant to express her true feelings, because any departure from his own personal proba-

bility results in a diminution of his own average score as he sees it” De Finetti (1962, p. 359).

5 Moreover, as documented in Table 1 of the Supplement, the number of proper SRs explicitly built
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for density functions is high. Just as important, many of them are nested, so identifying the true

incentive that drives the FP’s forecast is not trivial.

6 This DGP is similar to the one used in Teräsvirta (1994), equation (4.1).

7 For ease of exposition, we assumed a quadratic loss.

8 This example – as well as this paper – does not consider any dynamics of the learning process

that FP benefits in the transition from Step 2 to Step 3 and aims only to illustrate the SJB as a

(potentially) self-exiting phenomenon that may cause a systematic failure of traditional diagnostics.

This simplistic assumption is made for ease of statistical treatment. Dynamical issues are left to

further research.

9 This notation aims to emphasize the link with previous Section 2. In some parts of this section,

the difference of Y , Ŷ and Ỹ is not essential. For this reason they will be both denoted as Y in

the course of this section. The Supplement provides an exact geometry of the equilibrium among

these variables.

10 If Ω is continuous, the probability space is defined onM, the set of all distributions on X that are

absolutely continuous respect to a σ−finite measure µ.

11 Estimation and inference are analogue to the STARX model; see the Supplement.

12 The first 24 observation have been discarded to avoid non available answer occurring occasionally

in that period.

13 Since this model is potentially able to nest the more traditional STAR model, its use in this

experiment does not constitute a loss of generality of the SS-STAR framework explained in Section

3. The same reference illustrates the Monte Carlo procedure adopted for this family of models.

14 See the BoN web page at http://www.norges-bank.no/en/Monetary-policy/ for references.

15 According to our estimates,γ̂ = 0.89, and the standard deviation is 0.61.
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Figure 1: A synopsis of the classical and proposed forecasting environments

(a) The classical environment

(b) The proposed environment

NOTE: The panel (a) displays a visual synopsis of the classical forecasting environment, in
which the FP and FU are separated entities that act according to a ‘linear’ scheme in which
each of them (i) collects information on the variable(s) of interest from the Reality, (ii) pro-
cesses it via econometric modelling; (iii) eventually, adds a judgmental component on them
(before or after the estimation/processing phase); (iv) finally, produces an announcement for
the next period. This scheme is repeated for any period. In this framework, any cheating
among FU and FP is assumed to be a purely deterministic and thus, to influence only on the
judgmental part. Panel (b) displays the proposed forecasting environment, where a the same
players act in a more complex scenario, where each FP/FU’s action may influence on several,
contemporaneous and future decisions of the other Player in any period; notice that, in this
scenario, Reality acts periodically and unidirectionally (that is, it is not influenced by any
other Player). 28



Figure 2: The problem of Misspecification due to Strategic Judgment

(a)
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(b)
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NOTE: This figure shows the problem of misspecification by FU in the illustrative example
in Section 2 via the rolling-windows scheme by Rossi and Sekhposyan (2011). Namely, in a
sequence of periods {1, . . . , T}, FP observes a set of draws from (1) (corresponding to the
data). Then, the same FP produces a number P of quotations based on direct OLS regression
(assuming a quadratic loss) of the dependent variable on the regressors lagged h−periods.
Thus, there are P out-of-sample predictions to be evaluated by FU, where the first out-of-
sample prediction is based on a parameter estimated using data up to time R; the second
prediction is based on a parameter estimated using data up to R+1, and the last prediction is
based on a parameter estimated using data (generated by DGP) up to R+P − 1 = T , where
R + P + h − 1 = T + h is the size of the available sample, with h = 1 being the pseudo-out-
of-sample horizon, so that T=264 is the "in-sample" part. Once the sequence of estimation
errors has been computed, the first judgmental component π̃1 is added and the vector ỹt in (2)
is collected and, successively, transformed via (3) in Step 2. The panel (b) corresponds to the
same procedure replicated in the subsequent period, where the the judgmental components ψ̃
in (4) and π̃2 in (5) appear. In this example, R=20 and h=1. Moreover, for ease of exposition
and without loss of generality, we set arbitrarily π̃1 = π̃2 = ψ̃ = 0.05.
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Table 1: Structural Coherence test for U.S. Real GDP

Sample: 1975:Q1 - 2020:Q4

d h = 0 h = 1 h = 2 h = 3 h = 4

F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value

1 8.690 <0.001 8.708 <0.001 6.129 <0.001 4.285 <0.001 3.308 <0.001
2 1.225 0.269 1.290 0.228 1.229 0.266 2.000 0.027 1.754 0.059
3 0.919 0.528 1.628 0.087 1.368 0.185 2.232 0.012 1.916 0.035
4 1.276 0.237 0.985 0.465 2.042 0.023 1.662 0.079 2.767 0.002
5 0.806 0.645 0.601 0.839 1.393 0.172 2.190 0.014 2.138 0.167
6 0.778 0.672 0.927 0.520 0.457 0.936 1.373 0.182 2.040 0.023
7 1.003 0.447 0.767 0.682 1.520 0.121 1.146 0.325 1.276 0.236
8 1.144 0.327 0.776 0.675 0.820 0.629 1.291 0.227 0.920 0.527

Sample: 1991:Q1 - 2020:Q4

d h = 0 h = 1 h = 2 h = 3 h = 4

F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value

1 8.076 <0.001 8.256 <0.001 9.608 <0.001 8.473 <0.001 11.167 <0.001
2 0.463 0.931 0.646 0.798 0.766 0.723 0.409 0.957 1.195 0.296
3 0.308 0.986 0.773 0.676 0.418 0.953 1.555 0.116 1.267 0.249
4 0.282 0.991 0.232 0.996 1.061 0.396 0.841 0.607 1.626 0.094
5 0.075 1.000 0.452 0.937 0.698 0.750 1.278 0.241 0.789 0.650
6 1.366 0.193 0.109 0.985 1.384 0.185 1.172 0.319 2.017 0.029
7 0.394 0.966 0.424 0.951 0.155 0.999 1.272 0.244 1.608 0.100
8 0.567 0.863 0.337 0.980 0.298 0.988 0.278 0.991 0.755 0.694

NOTE: This table reports the test statistics LM1 (10) in their F-variant and corresponding
p-values for data on the U.S.GDP forecasts of one, two, three and four quarters-step-ahead.
Rejections are illustrated in bold. The zero-horizon in the first group of columns refers to
nowcasts.

Table 2: Structural Coherence test for U.S. UNR

Sample: 1975:Q1 - 2020:Q4

d h = 0 h = 1 h = 2 h = 3 h = 4

F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value

1 185.110 <0.001 107.664 <0.001 44.650 <0.001 22.432 <0.001 24.380 <0.001
2 5.801 <0.001 5.894 <0.001 5.845 <0.001 5.548 <0.001 7.313 <0.001
3 4.190 <0.001 4.685 <0.001 4.642 <0.001 4.502 <0.001 6.151 <0.001
4 3.202 0.002 3.202 <0.001 3.424 <0.001 3.321 <0.001 4.624 <0.001
5 2.667 0.042 2.198 0.013 2.444 0.006 2.561 0.007 2.962 <0.001
6 1.856 0.080 1.871 0.039 2.055 0.022 2.145 0.016 2.570 0.006
7 1.651 0.114 1.675 0.074 1.785 0.053 1.849 0.042 1.883 0.039
8 1.922 0.033 1.884 0.037 1.870 0.039 1.896 0.036 1.777 0.055

Sample: 1991:Q1 - 2020:Q4

d h = 0 h = 1 h = 2 h = 3 h = 4

F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value F -statistic P -value

1 443.798 <0.001 311.933 <0.001 29.179 <0.001 29.179 <0.001 22.355 <0.001
2 5.462 <0.001 5.296 <0.001 5.166 <0.001 5.088 <0.001 5.456 <0.001
3 4.181 <0.001 3.403 0.005 4.342 <0.001 4.287 <0.001 4.143 <0.001
4 3.141 <0.001 2.586 0.082 3.458 <0.001 3.353 <0.001 3.259 <0.001
5 2.202 0.016 1.675 0.492 2.799 0.023 2.878 0.002 2.748 0.002
6 1.402 0.172 0.952 0.580 1.932 0.052 1.893 0.042 1.192 0.039
7 0.803 0.641 0.868 0.588 1.092 0.374 1.179 0.306 1.204 0.209
8 0.836 0.612 0.861 0.785 0.899 0.550 0.943 0.507 0.965 0.487

NOTE: This table reports the test statistics LM1 (10) in their F-variant, with corresponding
p-values for data on the U.S. UNR forecasts of one, two, three and four quarters-step-ahead.
Rejections are illustrated in bold. The zero-horizon in the first group of columns refers to
nowcasts.
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Table 3: Structural Coherence test for U.K. Inflation

d CPI Inflation Core CPI Inflation Contribution of Energy

F -statistic P -value F -statistic P -value F -statistic P -value

1 1.500 0.049 2.190 0.001 3.526 <0.001
2 1.351 0.109 2.075 0.015 2.822 <0.001
3 1.374 0.097 1.763 0.011 2.550 <0.001
4 1.386 0.091 1.524 0.042 1.968 0.003
5 1.230 0.198 1.477 0.055 1.604 0.028
6 1.199 0.229 1.498 0.049 1.427 0.073
7 1.105 0.342 1.402 0.083 1.250 0.181
8 1.083 0.372 1.566 0.034 1.035 0.449

NOTE: This table reports the test statistics LM1 (10) in their F72,65,-variant, with corre-
sponding p-values for data on the U.K. CPI Inflation forecasts according to the MPC Inflation
Report of August 2019. Rejections are illustrated in bold.

Table 4: Relative predictive ability of Forecaster’s quotations for UK CPI

S(Q, y) S̄f S̄g σ t P -value

LogS 0.068 0.075 0.002 302.50 <0.001
QSR 0.167 0.113 0.356 468.783 <0.001
WPowerS 0.356 0.344 0.270 44,444 <0.001
" (α = −1) 3.456 3.780 1.405 -0.231 0.591
" (α = 0) 0.0124 0.131 0.002 302.50 <0.001
" (α = 1/2) 3.889 3.888 1.000 0 0.500
" (α = 1) 120.050 2.855 3.569 32.891 <0.001
" (α = 2) 2.240 2.256 0.154 -0.101 0.540
PseudoSph 3.884 4.000 0.092 -1.260 0.890
WPseudoSph 2.775 2.200 1.159 0.496 0.311
" (α = −1) 1.050 0.996 0.004 13.500 <0.001
" (α = 0) 1.000 1.000 1.000 0.000 0.500
" (α = 1/2) -3,504.67 235.666 5750.999 0.568 0.286
" (α = 1) 0.855 0.875 0.005 -4.000 <0.001
" (α = 2) 306.440 357.900 900.550 -0.057 0.714
IntS 0.990 2.500 1.060 -1.424 0.920
TsallisS 2.046 2.046 1.000 0.000 0.500
ES -4.780 2.900 18.251 0.000 0.499
GES 16.757 17.700 25.099 -0.037 0.515
PseudoSpectrumS 13.330 1.560 8.950 1.315 0.807
CRPS 0.889 0.046 0.009 93.666 <0.001
QuantS -0.660 0.350 0.315 -3.206 0.998
CLS 0.485 1.290 1.355 -0.594 0.722
CsLS 1.080 2.560 3.069 -0.484 0.685
LCS 0.445 0.543 0.037 -2.648 0.995

NOTE: This table reports the result of the Amisano and Giacomini’s 2007 test for the BoN’s
fan chart of OG at a prediction horizon of one year for different SRs of two density forecasts,
f and g, respectively, where f is the BoE announcement and g is a non-linear specification
(corresponding to a STAR(2)) given a non-local SS. Rejections are marked in bold.
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Table 5: Structural Coherence test for Norway’s Output Gap

d LM1 LM2 LM3

F -statistic P -value F -statistic P -value F -statistic P -value

1 2.391 0.009 3.582 <0.001 1.326 0.221
2 2.510 0.007 2.335 0.011 1.890 0.041
3 1.544 0.118 1.991 0.030 1.006 0.497
4 1.032 0.469 1.409 0.174 1.294 0.241
5 1.205 0.694 1.634 0.090 1.128 0.372
6 1.078 0.421 1.083 0.416 1.080 0.419
7 0.688 0.853 0.777 0.761 0.944 0.567
8 0.530 0.961 0.796 0.740 1.045 0.455

NOTE: This table reports the test statistics F34,29 describer in (10) with corresponding p-
values for data on the Norges Bank Output Growth is estimated according to the fan charts
published in the release of January 2014. Rejections are illustrated in bold.

Table 6: Relative predictive ability of Forecaster’s quotations for OG

S(Q, y) S̄f S̄g σ t P -value

LogS 0.028 0.027 0.007 2.560 <0.001
QSR 0.558 0.539 0.096 -0.325 0.382
WPowerS 2.815 2.953 0.101 -3.358 0.999
" (α = −1) 527.677 2.953 1.08e05 -0.003 0.501
" (α = 0) 527.519 670.871 1.08e05 -0.003 0.501
" (α = 1/2) -1,062.30 -1,352.763 4.43e05 0.002 0.499
" (α = 1) 1.199 1.448 0.328 -1.866 0.965
" (α = 2) -262.602 -333.808 2.6e03 0.007 0.497
PseudoSph 2.982 2.982 1.000 0.000 0.500
WPseudoSph 1.992 1.993 1.27e-05 -299.568 1.000
" (α = −1) 0.499 0.500 7.87e-12 -3.8e05 1.000
" (α = 0) 1.000 1.000 1.000 0.000 0.500
" (α = 1/2) -1,927.528 1.000 3.8e06 0.001 0.499
" (α = 1) 1.199 1.448 0.328 -1.866 0.965
" (α = 2) -0.856 -0.836 0.002 -23.461 1.000
IntS 3.599 3.500 0.005 135.250 <0.001
TsallisS 1.223 1.223 1.000 0.000 0.500
ES -0.124 -0.083 0.009 -11.571 1.000
GES 1.163 1.249 0.039 -5.420 1.000
PseudoSpectrumS -7.8530 -7.853 1.000 0.000 0.500
CRPS 0.0132 0.012 7.276e-06 395.962 <0.001
QuantS -0.184 -0.192 1e04 63.517 <0.001
CLS -0.147 -0.423 0.402 1.684 0.049
CsLS 0.009 0.008 8.08e-06 375.748 <0.001
LCS 0.055 0.057 0.011 -0.210 0.583

NOTE: This table reports the result of the Amisano and Giacomini’s 2007 test for the BoN’s
fan chart of OG at a prediction horizon of 12 months for different SRs of two density forecasts,
f and g, respectively, where f is the BoN announcement and g is a non-linear specification
(corresponding to the same STAR(1)) given a non-local SS. Rejections are illustrated in bold.
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A Mathematical details

A.1 Prelminary theory

Let R = [−∞,+∞] denote the extended real line and the functions H(Y ) : M → R

and D(X, Y ) :M×M→ R be associated with any U(P, ·). The resulting objects are

defined as follows:

Definition 2 (SRs, entropy/divergence functions, scoring structure). We define:

i. (Local) Scoring Rule (SR) the function S(y, p) := U(p, ap) where S : Y × P → R

is local of order m (or m-local) if it can be expressed in the form of:

S(z, p) = s(z, p(z), p′(z), p′′(z), . . . , p(m)(z)), (14)

where s = Z × Pm → R is the scoring function (or “p-function”) of S(z, p),

Pm := R+ × Rm is a real-valued, infinitely differentiable function, m is a finite

integer, and the prime (’) denotes the differentiation with respect to z.

ii. The Entropy is the function H(X) := S(X,X) ≡ supX∈X S(Y,X), where the

notation X and Y omits P (·) and the partition of Y for convenience;

iii. The Divergence is the function D(X, Y ) := H(X) − S(X, Y ), where the same

omission holds;

iv. The Scoring Structure is the 6-ple SS :=
{
Zt,Ft,P , S(·, ·), H(·), D(·, ·)

}
.

The Definition 1 makes all the functions interpretable in terms of utility: S(z, P ) is

the FP’s reward if event z (truly) materializes. Since S(·) is defined on the extended

real line, the expected FPs utility, conditional to X, can be denoted as S(X, Y ) ≡
∫ +∞
−∞ S(X, x)dY (x). H(X) can be interpreted as the maximum possible of the utility

that the FP can achieve using Reality’s true DGP to predictX. The divergence function

is the difference between the maximum utility and the utility achieved by predicting the

quoted predictive distribution P (X), given the true distribution P (Y ) or their density

33



equivalent. Notice that the same interpretations hold for FU while inverting the order

of the variables in the functions – that is S(Y,X), H(Y ) and D(Y,X).

This definition of SS is highly general and is used only to consider both FPs and

FU’s points of view. Several assumptions about each of them must be made to define

the type of interaction that occurs among these three players and to delineate the

econometric methodology to be used:

A 1. P (or M, if sample space is continuous) is assumed such that EU exists for all

a ∈ A, P ∈ P.

A 2. A is compact.

A 3. U(p̂, a) is strictly convex in a.

A 4. S(X, Y ) is strictly convex and minimized in X. Equivalently, the strictly convex

S(Y,X) is minimized in Y .

A 5. D(X, Y )−D(X0, Y ) is affine in X, and D(X, Y ) ≥ 0, with equality achieved at

X = Y . The same property holds if inverting the variables order.

A 6. p̂t+k(Z) is a measurable functions of the data in a rolling estimation window.

A1 – A3 are necessary (but not sufficient) to define the FP’s reward as SR. In

particular, A1 encompasses the three “basic assumptions” discussed in Dawid (2007)16

and suggests that the reward is measurable with respect to A and quasi-integrable with

respect to all p ∈ P (or,M, if continuous). A2 and A3 are convenience assumptions that

are necessary only to have a unique maximizing action. A4 characterizes the general

representation of SRs. A5, justified by Theorem 1 in Bernardo (1979), stresses that the

FP has no loss only if his DGP coincides with that of Reality. A6 is fundamental to

characterizing a general family of SRs for the case that every P ∈ P = A (M = A for

the continuous case) has a density, for example, p(Y ) empirically realized as p(y), with

respect to µ ∈ Y , that is the Brègman score:

S(y, p)Bregman .
= f

[
p(x)

]
+

∫
y
{
f
[
p(y)

]
− p(y)f ′

[
p(y)

]}
dµ (15)
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with associated Brègman divergence:

d(X, Y )Bregman .
=

∫
y
{(
f
[
p(y)

]
+
[
p(y)− p(x)

]
f ′
[
p(x)

])
− f [p(y)]

}
dµ, (16)

where f(·) is a (strictly) concave function and f ′(·) a subgradient of f(·).17 This is a very

general class of non-metric distance, introduced by Brègman (1967) and subsequently

applied by Savage (1971) to elicit forecasters utility and capable to characterize most of

the SRs described in Table 1 of Supplement. Necessary and sufficient conditions under

which D(·, ·) admits a Brègman-Savage representation are provided by Hendrickson and

Buehler (1971). We are particularly interested in the special case that

f(z) = k(z)− λ log(z), (17)

where k, known in Physics as ‘Bolzmann’s constant’, represents the marginal cost of a

unit of information and is set to zero without loss of generality. Under (17) the forecasts

generated byM are coherent with a given SS. Finally, A6 is necessary to apply Amisano

and Giacomini (2007)’s predictive ability test on the SS’ outputs.

A.2 Proof of Theorem 1

Let L and D be the same operators defined in Section 3, Λ =
∑

k≥0(−1)kDk∂/∂pk the

Lagrange operator defined in equation (25) of Parry et al. (2012), and I the identity

operator.

To prove the “if” part of the statement we need to show that, if (i) Ls = 0, (ii)

s = (I − L)s, s being a generic 0-homogeneous q-function, and (iii) s = Λφ, where φ

is a generic 1-homogeneous p-function, then L(Π) ≡ L(Ψ). The Key Condition (i) is a

consequence of the fact that (assuming a comparison amongX and Y as defined in Main

Text just as example), in p(x) = p(y) S(·) is a stationary point under an infinitesimal

variation δp(·) of p(·) (if assuming that p(·) + δp(·) is still a density function); in turn,

this leads to use classical variational analysis arguments by Parry et al. (2012), pages
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569–71. (ii) is a consequence of Corollary 6.3 by Parry et al. (2012). (iii) is a consequence

of Theorem 5.3 and Corollary 6.3 by the same authors. Since each single conditions

(i)–(iii) holds, Proposition 1 can be applied. Now, we need show only that if two S(·)

are key local, their likelihood functions coincide; to this aim, it is sufficient to notice

that Key Equation (6) is the only binding condition because it must be satisfied for

any S(·) function, even if (ii) and (iii) are not satisfied. Now L(·) is, by definition, a

simple linear (product) transform of log
(
p(·)
)
– that is, the same LogS; see Ehm et al.

(2012). The operators D and L here adopted are linearly invariant by Corollary 11.3

and Theorem 11.4 of Parry et al. (2012). Hence the statement.

To prove the “only if” part of the statement we need to show that if L(Π) ≡ L(Ψ), then

S(·) is key local. This is trivial when p(y) ≡ p(x), in which case there is no evaluation.

In the non-trivial case that p(y) 6= p(x), the forecast is coherent when the expected

score of FU coincides with FP’s one; in turn, this condition is ensured by Theorem

1 in Bernardo (1979), where the Expected Information of FU (that is, the “distance”

between changing its opinion from pΠ(·) to pΠ(·|x) after that data materializes and

maintaining pΠ(·) without any regard to data) can be written as a Kullback-Liebler

divergence. By definition, the expected information is zero only when this expected

utility of having such insight for FU coincides with FP – that is, the difference between

expected information for FU and FP is zero. Hence the statement.
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1 Introduction

This Supplement gives additional analysis and results which cannot be put in the Main

Document for space reasons. Namely, the next Section 2 describes the game assumed in

Section 3 of Main Document; Section 3 provides details of the Monte Carlo Simulation

of the SS-STARX model introduced in Section 4 of Main Document; Section 4 gives

a taxonomy of the utility functions characterizing the Scoring Structures to better

understand the motivation leading to the use of Bregman-Savage-type of SR; finally

Section 5 reports the proof of Proposition 3 of Section 4 of Main Document.

2 The Forecasting Game

We assume that the probabilistic forecast of an economic event is the output of a one-

period game with three players: the FP; the FU who has capital K to preserve; and

Reality. The FU suspects the FP’s quotations are biased and, eventually, cooperates

with Reality; however, no matter how the FU plays, Reality acts as though the FU does

not win the game. This rule, called “Cournot’s Principle” , is necessary to avoid that

the game is unbalanced in favor of FU. These players act according to the following
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Forecasting Protocol:

1. K0 := 1;

2. FU announces a bounded function S : R→ R;

3. FP announces his/her (potentially biased) quotation p̂(X) ∈ R;

4. Reality announces a draw from P (Y ) ∈ R;

5. K1 = K0 + D
(
Y, X

)
,

FU must choose S so his capital remains non-negative (K ≥ 0) no matter what values

the FP and Reality announce for p̂(X) and P (Y ). The winner is the FU if K1 >> K0.

Otherwise, the FP wins.

The game illustrated here is a modified version of the “Forecasting sub-game” by

Vovk and Shafer (2005, p. 753). With respect to these authors, to ease the statistical

treatment in Section 4 of Main Document, we avoid the recursion corresponding to

the n ≥ 1 times that the game is re-iterated. This simplification can be removed by

assuming an algorithm that ensures that the main restrictions and assumptions about

the players hold for each recursion.

The Step 2 of the Protocol is an application of one of Patton (2019)’s main con-

clusions. Namely, he demonstrates that utility-based objects like the forecast rankings

are generally sensitive to the choice of a proper SR and asserts that FPs should be told

ex-ante what utility functions will be used to evaluate their quotations1.

The Step 5 of the Protocol is a test for the null hypothesis of forecasting coherence

in terms of the FU’s utility. The form in which the test is written implies that the FP’s

reward cannot be augmented after his quotation. This coherence test is essentially based

on the D−function, which will be better defined soon. In principle, the assumption that

Reality can cooperate with the FU implies that, when the game is repeated n times,

the sequences of outcomes Sn Yn, Xn do not necessarily coincide with realizations

of a stochastic process. As a consequence, classical hypothesis testing and inference

is ineffective and should be substituted by another type of inference who explicitly
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accounts for strategic behavior, see Olszewski (2015) for a theoretical discussion of this

problem. Nevertheless, Shafer and Vovk (2001, Chapter 8.1) ensure that the Cournot’s

Principle allows both of them to be used.

3 Simulation Study

3.1 Simulation Design and Results

We consider two different DGPs:

y
(i)
1,t = 0.4y

(i)
1,t−1 − 0.25y

(i)
1,t−2 + (0.01− 0.9y

(i)
1,t−1 + 0.795y1,t−2)

(i)G(i)(γ,wt, c) + ε
(i)
1,t , (1)

and

y
(i)
2,t = 0.8y

(i)
2,t−1 − 0.7y

(i)
2,t−2 + (0.01− 0.9y

(i)
2,t−1 + 0.795y

(i)
2,t−2)G

(i)(γ,wt, c) + ε
(i)
2,t , (2)

where G(i)(γ,wt, c) = (1+ exp{−γ(wt− c)})−1 , ε(i)t ∼ N(0, 1), i = {1, . . . , I} denoting

the i-th draw of the process {yt}Tt=1 with c = 1
T
y
(i)
t , I = 1, 000.

y
(i)
1,t (henceforth “DGP 1”) is an additive nonlinear model with accentuated nonlinear

behavior because of the high autoregressive parameters that drive G(·), which gave high

sensitivity to the size of the slope parameters. Such can be the case of a macroeconomic

indicator that is affected by an unexpected shock that pervades the time series dynamics.

On the other hand, y(i)2,t (henceforth “DGP 2”) describes a mixed scenario. To simulate

the function G(·), we use a set of values to investigate the cases of null, small, and

high nonlinearity in the SS, corresponding to a coherent, near-to-coherent, and non-

coherent forecast scenario, respectively. We also consider three hypotheses for T and

three sample sizes – T = {75, 150, 300} for very small, small, and medium-sized samples,

respectively – and α = {0.01, 0.05, 0.10}.

Table 2 reports the results of the Monte Carlo simulation of the coherence test for

the statistics F1 and F2 from the hypothesis system (17) discussed in Section 4 of Main

3



Document. The performances of the F3 statistic are poor, so it is omitted. The two test

statistics behave well for what concerns the empirical size. Conversely, the empirical

power is poor if an almost-linear specification of the SS is used, and in general for DGP

1. Moreover, the empirical power is highly sensitive to the values of the slope. For

example, under DGP1 and T=75 and α = 0.10, the power of the F1 statistic passes

from almost 0.02 when γ = 0.5 (hence, an almost linear model) to 0.6 when γ = 500.

Therefore, the increase is proportional but less than linear, as is similar for statistic

F2. When DGP2 is considered, the range is more abrupt: ceteribus paribus, F1 is 0.05

when γ = 0.5 and 0.88 when γ = 500. The role of γ becomes almost inflationary as T

increases. For example, when T = 300, and α = 0.05, the range of the power of F1 in

DGP1 is [0.001 – 0.892] and is still more in DGP2. Therefore, there is strong evidence

of a relationship between the SS’s degree of nonlinearity and the test’s empirical power.

Thus, the test correctly accepts the hypothesis of coherence more easily when the SS

is highly nonlinear than it does in the opposite case of quasi-linear behavior, a feature

we call structure linearity bias. This finding is counter-balanced by the functional form

of the SRs’ having no role in the test’s empirical power. Table 3 reports the results of

a simulation of the same two DGPs, where we fixed γ = 10 and most of the scoring

functions mentioned in Table 1 of the Supplement, apart from the logarithmic score

previously investigated. The value of each F -statistic is the same for all nineteen SRs

adopted (e.g., the power of F1 in DGP1 at the nominal size of 5% is 0.35 with T=75,

0.57 with T=150, and 0.63 with T=300). The empirical power of the test under DGP2

(i.e., the mixed scenario) is high in general – in particular, higher than the nonlinear

scenario. Ceteribus paribus, the power of the F1 statistic is 0.67 with T = 75, 0.72 with

T = 150, and 0.85 with T = 300, and the equivalent F2 power values are slightly lower

– at least in case of middle sample dimensions. In other words, when the SS parameters

are fixed, the empirical power of the test is invariant to the form of the SR that is

assumed to drive the FPs quotation. This second feature is called ‘Score Invariance’

and, as theoretically demonstrated by Paragraph 11.2 in Parry et al. (2012), it holds

also for D(·, ·) and H(·, ·).
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3.2 Discussion

This simulation provides several lessons. First, the Structure’s linearity bias means the

power of the locality test depends on the type of model that the SS assumes. In this

sense, the magnitude of γ is proportional to the degree of bias that the FP is suspected

to have when he or she produces quotations.

Second, the Score Invariance is a direct consequence of the Cournot’s Principle. The

forecasts (drawn by the FP) and the observations (drawn by Reality) are not correlated

if the functional form of the SR is elicited before the event occurs, which is one of the

most critical assumptions of Lindley (1982)’s generalized theory on the admissibility

of the FP’s utility. In fact, according to this last, the Score Invariance is a necessary

and sufficient condition for treating the scores as finitely additive, probability-behaving

objects – that is, for being coherent in the sense of De Finetti (2017). In particular,

Lindley’s Lemma 4 demonstrates the equivalence between two scores that correspond

to two quotations when these are conditional on the same event, thus enhancing the

status of the probability transform of the obtained value x1. In this sense, the results

of our simulations are fully consistent with the De Finetti–Lindley theory.

Third our simulations confirm that the SRs’ consistency – so axiomatically determined

– is a non-sufficient condition for the coherence of the forecasts’ evaluation, as suggested

by Patton (2019). Although some of the nineteen scoring functions used in this exper-

iment have Brègman–Savage representation, the test’s empirical power coincides with

that of the test statistics corresponding to SRs. Therefore, when the FU deals with

FP, even if the FU specifies (axiomatically) ex-ante the exact utility function that will

be used to evaluate the FP, as required by Step 2 of Forecasting Protocol, the FU will

never know, ex-post, if the same utility function is the one the FPs used. This sort of

“undeterminancy” is the motivation for adopting the locality (which means coherence)

as a criterion for assessing the forecasts. In fact, locality tells the FP whether Barnard

et al. (1962) likelihood principle, according to which all the evidence in a sample that is
1According to Lindley (1982, p. 4) “It follows that a person could proceed by choosing his probability

p in advance of knowing what score function was to be used and then, when it was announced, providing
x satisfying P (x) = p.”
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relevant to the model parameters is contained in the likelihood function, holds. In this

case, the forecast must necessarily be driven by some function derived from the likeli-

hood. Since the FU is supposed to have sound knowledge about the estimation methods

used to verify the FP’s work, any deviations from likelihood are likely represented by

judgments.

4 Families of Scoring Structures

In Section 3 of the Main Document we have introduced the general theory of Scoring

Structure (SS). In our subsequent applications of Sections 5, we have considered a

large number of SRs, and each one can be adopted in the same SS. All these SRs are

reported in Table 1 jointly with their associated entropy and divergence functions, their

probabilistic measure and the bibliographic reference.

We remark that many of these SRs are not included in the Brègman family of functions

that recent econometric theory requires in order to have coherent forecasts.

5 Proof of Proposition 3

(i) Let denote the log-likelihood function of the T observations by Λt(wt,Ξ) with

Ξ = [φ,θ, γ, c] and the score vector by Σt(wt,Ξ) evaluated at (θ0,φ0, 0, c0).

Then, standard results lead to the following log-likelihood function:

Λt(zt,Ξ) = const+
T

2
lnσ2 − 1

2
σ2
∑

t

u2t (Ξ), (3)

with const and ut(Ξ) = (yt−φ′wt−θ′wtG) denoting a constant and the model’s

residual, respectively, and to the score:

Σt(wt,Ξ) = ∇ΞΛt(wt,Ξ) =
1

σ2

∑

t

ut(Ξ)dt,

dt = ∇Ξut(Ξ) = [wt,wtG,θ
′wtGγ,θ

′wtGc]
T,

(4)
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with Gγ = ∂G/∂γ and Gc = ∂G/∂c denoting the first derivatives of G with

respect to γ and c.

Moreover, let define: τ = (τ1, τ2)
T, where τ1 = (φ0,φ

T)T, τ2 = γ2, τ̂1 the LS

estimator of τ1 under H0 : γ = 0, τ̂ = (τ ′1, 0
T)T and d̂t = dt(τ̂ ) = (d̂1,t, d̂2,t),

where the partition conforms to that of τ , D̂i = [d̂i1, . . . , d̂it, . . . , d̂iT]
T, i = {1, 2},

t = 1, . . . , T , σ̂2 = 1
T

∑T
1 û

2
t and ût = yt − τ̂T

1 wt. Then by standard Breusch and

Pagan (1980) arguments, under H0, the test statistic is the equation (15) in Main

Text.

When the nonlinear function G(·) is a logistic, d̂1,t = −wt = −(1, yt−1, . . . , yt−p)T

while ŵ2t ≡ ∂2ut
∂γ∂γ′

∣∣
γ=0

= −1
2

{
θ20[yt(yt−d)] − cytθ′wt + θ

′
2wtytyt−d

}
. Just minor

modifications are needed in notation of d̂t and sLt in case of exponential or second-

order-logistic model due to an additional c parameter with respect to the logistic

model. The proposed test statistic depends on θ and is still unidentified unless

θ2 = 0. This problem has been originally identified by Davies (1977).

(ii) Luukkonen et al. (1988) prove that the Davies’ problem can be circumvented by

linearizing the nonlinear model via (third order) Taylor expansion. Namely, let

denote T3 a third-order Taylor expansion operator. Then, the linearized LSTAR-

SS

yt = φ′wt + θ′wtT3G
(
·
)
ε′t, (5)

leads to the following auxiliary regression for testing linearity:

ε̂′t = ŵ′1tβ̃1+

p∑

j=1

β2jsyt−jyt−d+
p∑

j=1

β3jsyt−jy
2
t−d+

p∑

j=1

β4jsyt−jy
3
t−d+vt, vt ∼ NIID(0, σ2),

(6)

where: β̃1 = (β10,β
T
1 )

T, β10 = φ0 − (c/4)θ0, β1 = φ − (c/4)θ + (1/4)θ0ed,

ed = (0, 0, . . . , 0, 1, 0, . . . , 0)T with the d-th element equal to unit and T3(G) =

f1G + f3G
3 is the third-order Taylor expansion of G(Ξ), f1 = ∂G(Ξ)/∂Ξ

∣∣
γ=0

and f3 = (1/6)∂3G(Ξ)/∂Ξ
∣∣
γ=0

, Ξ being defined above. Hene null hypothesis of

7



locality become testable by following hypothesis system:

H0 : β2j = β3j = β4j = 0 j = 1, . . . , p, vs H1 : β2j = β3j = β4j 6= 0 (7)

corresponding to statistic LM1 in equation (17) of Main Text, with SSR0 and SSR

denoting the sum of squared estimated residuals from the estimated auxiliary re-

gression (6) and under the null and alternative, respectively and σ2
v = (1/T )SSR,

has an asymptotic χ2
3p distribution under H0.

If the model is a ESTAR(p), then it is possible to show that the corresponding

auxiliary regression is

ε̂′t = β̃
T
1 ŵ1 + β

T
2 wtsyt−d + β

T
3 wtsy

2
t−d + v′t, v

′
t ∼ NIID(0, σ2), (8)

where β̃1 = (β10,β
′
1)
′, with β10 = φ0− c2θ0 and β1 = φ− c2θ+ 2cθ0ed; moreover

β2 = 2cθ − θ0ed and β3 = −θ. Thus the null hypothesis of linearity is

H ′0 : β2 = β3 = 0 vs H ′1 : β2 = β3 6= 0 (9)

which can be tested by the test statistic LM2 in equation (17) of Main Text, where

SSR0 and SSR are the sum of squared residuals from (8) under the null and the

alternative respectively, σ̂2
v1 = (1/T )SSR. A peculiar case of (9) is when β2 = 0

as θ0 = c = 0, in which case, the null becomes

H ′′0 : β3 = 0 vs H ′′1 : β3 6= 0 (10)

which test statistic corresponds to statistic LM3 in equation (17) of Main Text,

with SSR0, SSR and σv2 defined in a similar way with respect the LM2 case. As

well known in the literature, F-version of LM1, LM2 and LM3, denoted as F1,

F2 and F3, may be preferable when testing (7) or (9) or (10) in order to preserve

power in low samples; in this case the F-statistics has n and T − p− n degrees of

8



freedom. In practice the form of G is not known by the investigator; see CH 5.3

in Teräsvirta et al. (2010) among others. Teräsvirta (1994) proposes a battery of

F-tests on the auxiliary model (6):

H01 : β4 = 0 vs H11 : β4 6= 0

H02 : β3 = 0|β4 = 0 vs H12 : β3 6= 0|β4 = 0

H03 : β2 = 0|β3 = 0 and β4 = 0 vs H22 : β2 6= 0|β3 = 0 and β4 = 0.

(11)

and suggests an empirical rule – based on the results of a simulation experiment –

to select the right transition function. For our aims, however, this is not a crucial

issue, so we will do not discuss in details. This ends the proof.

6 Estimation

In the line of Teräsvirta (1994) the estimation of (11) in Main Text is done via condi-

tional least squares (CLS) by concentrating the sum of square residuals function with

respect to θ and φ, that is minimizing:

SSR =
T∑

t=1

(
yt − ψ̂′ξ′t

)2
, (12)

where:

ψ̂ = [φ̂, θ̂] =

( T∑

t=1

x′t(γ, c)ξt(γ, c)

)−1( T∑

t=1

ξ′t(γ, c)yt

)
, (13)

and

ξt(γ̂, ĉ) =
[
wt,w

′
tG(·)

]
. (14)

This is possible because if γ and c are known and fixed, the GSTAR model is linear

in θ and φ, which can be easy computed. In a such a way, the nonlinear least square

minimization problem, otherwise necessary, computationally more demanding and not

available in closed-form, reduces to a minimization on two parameters, and is solved

via a grid search over γ, c.3

9
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