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Abstract: In this paper we propose a hierarchical spatio-temporal model for daily mean 
concentrations of PM10 measured in 11 monitoring sites located in the main cities of the 
Emilia-Romagna Region. Main aims of the proposed model are: the identification of the 
sources of variability characterising the PM10 process, the imputation of missing 
observations in order to obtain time series free from missingness that can be used in 
ecological regression studies, the estimation of pollution levels in unmonitored spatial 
locations. The modelling approach is fully Bayesian, the implementation has been 
performed via Monte Carlo Markov Chain algorithms. The model has been carefully 
checked using Bayesian p-values and graphical posterior predictive checks. 
 
Keywords: Bayesian Hierarchical Models, Air Pollution, Dynamic Linear Models, Space-
Time Modelling  
 
 
1. Introduction 
 

The analysis of the dynamics of airborne particulate matter (PM) concentration is a 
central issue in environmental monitoring. In fact, several epidemiological studies have 
shown association between daily levels of PM and adverse health effects (see Pope et al., 
1995, for a summary). 

In recent years a number of papers has been devoted to spatio-temporal modelling of 
air pollutants data recorded from monitoring networks (Huerta et al., 2004; Park et al., 
2004; Smith et al., 2003; Shaddick and Wakefield, 2002; Tonellato, 2001). Models for air 
pollutants aim at studying several aspects of the generating process. The detection of space 
and time long term trend, the location of major air pollution sources in a study area, the 
design of the positioning of a new monitoring site are the most relevant. Moreover, such 
models have been devoted to determine whether environmental standards are being met for 
regulatory purposes. The need for an effective measurement of air pollutants and for 
regulatory policies arises from the estimated relationship between pollution events and 
adverse health effects. Although the long term effect of air pollutants are of main interest, 
the great majority of studies consider short-term or acute effects of air pollution on 
population health. However, air pollution adverse health effects have been found both in 
cohort studies (see Pope et al., 1995; Dockery et al., 1993) and in time series studies 
detecting short-term effects (Samet et al., 2000; Biggeri et al., 2004). 

In several of these studies an effect of PM on human health was found, particularly 
with regard to circulatory and respiratory diseases. For these studies, besides the 
understanding of the observed processes dynamics, spatio-temporal modelling of PM 
concentrations can be useful to produce exposure variables useful in ecological risk models 
by: a) cleaning observed time series from confounding effects and measurement errors; b) 
adjusting observed time series for missing data; c) estimating the values of exposure 
variables for sites where data are not available. 
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In this paper we propose a hierarchical model for daily mean concentrations of PM10 
measured in 11 monitoring sites located in the main cities of the Emilia-Romagna Region 
from January 1st 2000 to December 31st 2002. Data are characterized by a considerable 
presence of missing values. A number of meteorological variables are available in each 
monitoring site. The proposed model explicitly takes into account the spatial relationship 
among data collected in each monitoring site, the temporal structure of the observed time 
series, and the relationships between PM10 and meteorological variables. Among the aims 
of this model there is the identification of the different sources of variability of observed 
data (spatial variability, temporal variability, variability due to dependence on 
meteorological conditions, unexplained variability). The model is built in order to allow 
prediction in spatial locations where data are not available, while less attention is given to 
prediction in temporal points out of the study period. 

As regards inference, we adopt a fully Bayesian approach. Posterior distributions are 
not obtainable in analytical form because of the complexity of the distributions involved in 
the hierarchical model. Posterior summaries of model parameters are computed by means 
of Gibbs sampling routines, as they are implemented in the WinBUGS software 
(Spiegelhalter et al., 1998).  

A further major aim of the model is to impute missing observations in order to obtain 
time series free from missingness that can be used as covariates in studies of the short term 
effect of PM10 exposure on public health. In the Bayesian context, missing values can be 
treated as parameters and inference on such values is obtained by integrating out model 
parameters from the distribution of the missing data given the observed values. This 
approach to dealing with missing values may be easily implemented in WinBUGS. 

The paper is organised as follows. In Section 2 we describe the analysed dataset and 
the meteorological variables selection criteria. In Section 3 the space-time hierarchical 
model is presented. In Section 4 we show the results of our application including parameter 
estimates, missing values imputation, spatial prediction and characterisation of the sources 
of variability. A discussion of the proposed methods and future developments is then 
presented in Section 5. 
 
 
2. Particulate Matter and Meteorological data: preliminary analysis 
 

The analysed data set contains time series of PM10 daily means (µg/m3) collected at 
11 monitoring sites within the Emilia-Romagna Region from January 1st 2000 to December 
31st 2002; the spatial location of the monitoring sites is displayed in Figure 1. At least one 
monitoring site is available for each of the 9 provinces of the Region. This allows 
achieving a reasonable spatial representativeness: by the way we stress that such 
representativeness is limited to urban areas. Spatial information at non-urban locations is 
not available in the dataset. 

Percentage of missing values varies from 7% to 40% in the monitoring sites. The 
monitoring sites have to be distinguished according to their location: 4 of them are located 
in background urban areas such as parks (Type A) while the remaining 7 are located in 
zones with high population density or high traffic density (Type B and C). PM10 levels are 
in average lower in Type A monitoring sites while Type B and C monitoring sites show 
comparable levels. The time series seasonality is very similar regardless of the Type.  

Logarithmic transformation has been applied to PM10 data in order to obtain a 
symmetric distribution of the dependent variable in each monitoring site and to stabilize 



 3

the mean variance relationship. A strong correlation has been observed among site 
measurements, ranging from 0.86 for nearest sites to 0.6 for those further away. Even if a 
slight decrease of correlation with distance is observed, a great amount of the between-sites 
correlation is due to the common time process generating the data, in fact a strong 
correlation is observed in very distant monitoring sites time series measurements. 

It is well known that measured PM10 levels are heavily influenced by the 
measurement instrument (Ayers et al., 1999): in our data set, the 11 monitoring stations are 
equipped with automatic samplers, known to produce comparable results. 

Meteorological variables for each site are obtained from the mass-consistent model 
CALMET, implemented by the Emilia-Romagna Regional Meteorological Service. Such 
model provides estimates on a regular grid of 10km×10km for daily mean temperature, 
daily mean mixing height (MH) and daily mean wind speed (WS). Temperature is highly 
correlated among monitoring sites (the correlation between time series is always greater 
than .98). Moreover temperature and MH show the same seasonal trend in each site and are 
highly correlated: inclusion of both variables in a regression model could give rise to 
collinearity problems. Despite temperature is the most used meteorological variable in 
space-time modelling of air pollutants, we choose to include only MH in the model because 
of its greater spatial variability that could be useful in explaining different time behaviours 
of the monitoring sites. Dependence of PM10 levels by MH has a physical justification 
since, when MH is low, the particulate matter does not spread in the atmosphere, and thus a 
negative relationship is expected between MH and PM10. On the contrary, the relationship 
between particulate matter and temperature is likely to be spurious: an increase in pollution 
level when temperature decreases can be explained by anthropic factors such as traffic and 
emission due to heating. Finally we stress that a crucial meteorological variable in 
explaining particulate matter variations is precipitation, but unfortunately such variable is 
not available in our data set. 

MH and WS values have been centred and divided by their range in order to speed up 
convergence of the Monte Carlo Markov Chain algorithm used for parameters estimation. 
 
 
3. The hierarchical model 
 

Let tsY , tsMH , tsWS  denote respectively the log of PM10 concentration, the mixing 
height and the wind speed at spatial location s (s=1,…,S) on day t (t=1,…,T) and let  
(X1s, X2s) be the spatial coordinates of site s. In the analysed dataset, S=11 and T=1096. We 
assume that: 
 

( )22 ,~,| stsststs NY σµσµ   

tsttstssssts WSMHXXZ εθββββαµ ++++++= 432211  (1) 
 

In this model 2
sσ  represents the residual variance in site s. Such parameter includes 

the measurement error variance as well as the unexplained variability: it is assumed that 
the error variance does not depend on time, but different monitoring sites are allowed to 
have different unexplained variances and thus different measurement errors. At the first 
level of the hierarchy, given tsµ  and 2

sσ , observations are modelled as they are 
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independent: spatial and temporal dependence is introduced in the second level of the 
hierarchy. 

The variable Z is defined as follows: Zs=1 if the site s is of Type A while Zs=-1 
otherwise; hence the parameter α, a Type-specific intercept, measures the effect of the 
monitoring site Type on the average log-PM10 concentration. We observe that, in order to 
obtain prediction at unmonitored locations, some information about the level of 
urbanisation and traffic in such location is needed to classify the spatial location as a Type 
A or a Type B-C site. 

Parameters 1β  and 2β  capture the large-scale spatial trend while coefficients 3β  and 

4β  capture the dependence of log-PM10 concentrations on the considered meteorological 
variables. Here we assume that the relationship between meteorological variables and PM10 
is linear and the same effect is hypothesised in each monitoring site. From preliminary 
analysis the hypothesis of comparable effect in each monitoring site seems to hold. 
Moreover, using site-specific slope parameters to describe the relationship between 
meteorological conditions and PM10 prevents from obtaining predictions in spatial 
locations where data are not available.  

As for tθ , which can be regarded as a time-dependent intercept measuring the mean 
log-PM10 regional level at day t, we assume that: 
 

( )2
1 ,     ~ 0,t t t t N θθ θ ω ω σ−= +  (2) 

 
This represents a first-order smoothing non-stationary temporal model. In terms of 
Dynamic Linear Models, equation (1) is known as the observation equation, equation (2) is 
the system equation and tθ  is the state (see West and Harrison, 1997). The model is a 
limiting form of the autoregressive first order model and provides a non-stationary 
temporal model. This term has the effect of shrinking observed values at day t toward the 
regional mean: the deviation of the level in monitoring site s is captured from the 
information about meteorological conditions, Type of the monitoring site, spatial location 
and the random effects tsε . We observe that the atmospheric lifetime of particulate matter 
can be high, particularly for the smaller size particles, then a strong daily dependence is 
expected. 

The terms tsε  represent spatially correlated random effects. We assume that at each 
time t, the random effects ( )tStt εεε ,...,, 21=•tε  arise from a multivariate normal 
distribution with mean vector 0 and SxS correlation matrix Σ : 
 

( )2~ ,t sMVN εσε 0 Σ   

 
A zero-mean constraint for the random effects at each time t has to be used for model 
identifiability. The parameter 2

εσ  plays the role of the between site variance. The ss’ entry 
of the correlation matrix represents the correlation between site s and s’ and is specified as 
follows:  
 

( )'' exp ssss dφ−=Σ   
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This is an isotropic covariance model, where the correlation between two generic sites 
depends only on their distance. Since the Emilia-Romagna Region exhibits spatially stable 
meteorology, the isotropy assumption seems not too restrictive. The correlation is assumed 
to be a decreasing function of the distance 'ssd : more precisely, under this model the 
logarithm of the correlation decreases linearly with distance. The parameter 0φ >  
describes the decay’s rate of correlation with distance. Moreover the spatial structure is 
considered constant over time: the underlying assumption is that the spatial correlation 
among random effects does not depend on time, that is spatial and temporal processes are 
separable. From this point of view, posterior estimates of parameters 2

εσ  and φ  can be 
viewed as estimates of the parameters of the same spatial process over repeated 
observations. 

Model hierarchy is completed by prior specification for the hyperparameters. A 
normal prior ( )1000,0N  is assumed for the coefficients iβ , i=1,…,4. Small parameters 
inverse Gamma distributions ( ( )01.0,01.0IG ) have been specified for the variance 
parameters 2

sσ , 2
θσ  and 2

εσ . A uniform distribution ( )2,0U  is assumed for φ : this turns 
out in a prior belief for the spatial correlation ranging from .13 to 1 at a distance of 1 km 
and from 0 to 1 at the maximum distance of 250 kms. Finally a prior distribution is needed 
for parameter θ0: we choose a normal prior with mean equal to the observed mean at 31th 
December 1999 and variance 10 in order to specify a fairly vague prior. 
 
 
3.1 Model assessment and posterior predictive checks 
 

In order to assess the plausibility of the posited model and the adequacy of model 
fitting, we make use of the posterior predictive Bayesian p-values (Gelman et al., 1996; 
Rubin, 1984). The rationale on which posterior predictive checks are based is that observed 
data should look plausible under the posterior predictive distribution or, in other words, the 
replicated data generated under the model should look similar to the observed data. Thus 
we draw samples from the posterior predictive distribution of replicated data and compare 
these samples to the observed data by defining some test statistics ( )⋅T  in order to assess 
different features of model fitting. Let repY  denote the replicated data that could have been 
observed coherently with the model, and let ψ denote the set of model parameters. The 
posterior predictive distribution is obtained as follows: 
 

[ ] [ ][ ]∫= ψψψ dYYYY reprep |||   

 
The Bayesian p-value is defined as the probability that replicated data are more extreme 
than the observed data, as measured by the chosen test statistic: 
 

( ) ( )( )YYTYTp rep |Pr ≥=   
 
In practice, the posterior predictive distribution is obtained via MCMC simulation: given G 
draws from the posterior density of model parameters ( )gψ , g=1,…,G , we draw one repY  
from the posterior predictive distribution for each ( )gψ , computing the value assumed from 
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the test statistic ( )repYT  for each draw. The estimated p-value is the proportion of these G 
simulations for which the test statistic ( )repYT  equals or exceeds the statistic ( )YT . 
Another effective model checking tool is graphical predictive check: this checking 
procedure consists in displaying data versus simulated data from the fitted model and 
looking for systematic discrepancies between real and simulated data set. 
 
 
4. Results 
 
4.1 Discussion of estimation results 
 

In Table 1 posterior distributions of model parameters are summarized. The posterior 
means of parameters β1 and β2 indicate a decreasing spatial trend in North-South and 
West-East directions. The effect of the monitoring site Type, as measured by α, has the 
expected sign, that is the mean level is significantly lower in Type A monitoring sites. A 
negative relationship has been estimated between the considered meteorological variables 
and the level of PM10 concentrations. In the original scale of the meteorological variables, 
when MH increases 100 m, a decrease of 0.02 in PM10 concentrations (in the log scale) is 
estimated and when and WS increases 1 m/s, a decrease of 0.04 in PM10 concentrations (in 
the log scale) is estimated.  

Unexplained variability is quite low for all the monitoring sites but monitoring sites 
1, 4 and 7. These monitoring sites show a greater variability with respect to the other 
monitoring sites, probably because of a greater measurement error and for the massive 
presence of outliers. Moreover monitoring site 7 is characterised by a period of three 
months of low measurements likely due to a failure of the measuring instrument. 

The posterior mean of parameter φ (0.027, see Table 1) shows that the spatial 
correlation decreases to zero at a distance of approximately 90 kms, while spatial 
correlation is still considerable (greater than 0.5) at a distance of 25 kms, showing that a 
monitoring site can be considered as representative of a relatively wide area. 

 
 

4.2 Model checking 
 

The effectiveness of the model in predicting missing observations has been checked 
excluding a period of three weeks from the available data in monitoring site 5 and the 
predicted values obtained estimating the model with such data have been compared with 
the observed values excluded from the analysis. As displayed in Figure 3, the model show 
adequacy in predicting missing observations, since all the observations in the three weeks 
period are included in the Bayesian posterior credibility interval. We have repeated this 
exercise in several monitoring sites for different periods of the year, an the model 
confirmed its ability in predicting missing observations, except for data that can be 
classified as outliers.  

With regard to posterior predictive checks, 1000 post-convergence replications of the 
data set under the posited model have been drawn. Model fitting has been evaluated 
separately in each monitoring site with respect to the 5th percentile, the median and the 95th 
percentile.  
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While the posterior predictive check on the median describes the adequacy of the 
model in reproducing the mean level in each monitoring site, the 5th and 95th percentiles 
give information about model fitting in summer and winter respectively, since PM10 levels 
are sensibly lower in summer than in winter. 

When the Bayesian p-value is contained between 0.05 and 0.95, the observed data 
can be considered coherent with the model, with respect to the proposed test statistic. A 
Bayesian p-value lower than 0.05 denotes a systematic underestimation of the test statistic 
computed on the observed data. On the contrary, a Bayesian p-value greater than 0.95 
denote a systematic overestimation of the test statistic computed on the observed data.  

The Bayesian p-values resulting from the estimated model are shown in Table 2. 
With regard to the median test statistic, we observe a satisfactory model performance for 
all monitoring sites, since all p-values are included in the interval 0.05-0.95. Analysis of 
the results for the 5th and 95th percentile suggests a better performance of the model in 
winter: this could be in part explained by a different relationship between PM10 levels and 
meteorological conditions in this season, suggesting a non-linear relationship. Moreover 
during summer the PM10 levels are quite low and explaining the variations in such period is 
more difficult since a considerable amount of the total summer variability could be due to 
random fluctuations. 

With regard to the model ability in reproducing the between sites correlation, in 
Figure 4 we display the observed correlations (dots) and the median of the correlations 
computed on the replicated data sets (triangles): the posterior marginal correlation among 
the replicated series reproduces adequately the marginal correlation observed in the 
analysed data set. 

 
 

4.3 Characterisation of the sources of variability 
 
One of the main aims of the proposed model is the identification of the different 

sources of variability of the PM10 generating process, evaluating the contribution to the 
total variability due to spatial and temporal trend, as well as dependence from 
meteorological variables. The strategy we adopt for attributing posterior variability to the 
different sources is quite similar to the method proposed in Gelman and Pardoe (2005) for 
evaluating explained variance in multilevel (hierarchical) model. We stress that our model 
can be considered as a multilevel model in which levels are determined from spatial and 
temporal dimensions. 

In order to characterise the variability of the process generating particulate matter in 
each monitoring site, we observe that the posterior variance at the second level of the 
hierarchy can be decomposed as follows: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )YMCovYMCovYCov

YVYMVYVYV

ssss

sss

|,|,|,
||||

••••

•••

+++
+++=

εθεθ
εθµ

 
 

 
where sss WSMHM ••• += 43 ββ  consists e model components included to take account of 
the meteorological variables effect. These quantities can be easily evaluated via MCMC 
sampling. 
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In Table 3, the components of the linear predictor s•µ  posterior variance are shown. 
The posterior variance ( )YV s |•µ of the monitoring sites is largely due to the time process 
θ, that contributes for about 68% to the total posterior variance. Spatial random effects 
account for a smaller portion of the posterior variability (about 18%), while contribution of 
the meteorological variables is about 5%. Covariances between spatial, temporal and 
meteorological component are ignorable. We conclude that a large amount of the 
variability, given the estimated model, is explained by a common temporal behaviour. 
Spatial information plays a remarkable role in explaining deviations from such temporal 
behaviour, while little information is added by the inclusion of meteorological covariates. 

Finally, we remark that observed time series can be broadly thought as replications of 
the same temporal process, with a feeble large scale spatial trend and a spatial correlation 
that vanishes at a distance of 90 kms. 
 
 
4.4 Spatial prediction 
 

Spatial prediction in unmonitored points can be easily obtained given the proposed 
model: to obtain such prediction we need to classify the new point as a Type A or Type 
B/C location and to know meteorological variables in such point during the study period. 
Let s’ denote the new monitoring site, prediction at this site at time t is obtained by 
sampling from the posterior predictive distribution [ ]yts |'µ  whose components are: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )YYWSYMHY

XYXYZYy

tsttsts

sssts

||||     
||||

''4'3

'22'11''

εθββ
ββαµ

++++
+++=

 
(3) 

 
In model specification we assumed that, at each time t, the random effects 

( )tStt εεε ,...,, 21=•tε  arise from a multivariate normal distribution with zero mean vector 
and SxS correlation matrix Σ . For predicting spatial random effect in point s’ we observe 
that the vector of spatial random effects ( )'21 ,,...,, tstStt εεεε  follows a multivariate normal 
distribution with zero mean and ( ) ( )11 +×+ SS  variance covariance matrix, with the final 
row containing the correlations ( )'

2 exp ssdφσ ε − . Let Ω denote the first 11 elements of this 
row. The conditional distribution of the random effect in the new monitoring site given the 
random effects •tε  is normal with mean and variance: 
 

( ) •
−−

• ΣΩ= tttsE εσεε ε
12

' '|             ( ) ( ) 112
' '1| −−

• ΩΣΩ−= εσεε ttsV   

 
Samples from the predictive distribution [ ]Yts |'µ  are obtained via MCMC sampling from 
distribution (3). 

For testing the model adequacy in predicting PM10 levels in point where data are not 
available, we have considered a spatial location not considered in model estimation in 
which data have been recorded for two years during the study period, using is as a test data. 
This monitoring site, classified as a Type B, is located in the neighbourhood of monitoring 
sites 7 and 8 included in the analysed data set. The distance between the new monitoring 
site and the nearest site included in the model is about 4 kms. As shown in Figure 5, 



 9

predicted values are very close to the true observed values: the correlation between 
observed values and predicted values is about 0.92 and the most extreme peaks of the test 
data are captured by the model. The good model performance in predicting test data is not 
surprising because of three main reasons: first of all, the additional time series is 
characterised by regular time behaviour and is not affected from high measurement error 
and massive presence of outliers. Secondly, no matter of the spatial information, the 
common time process is sufficient in predicting a very large amount of the variability of 
the time series in a point of the study region, independently from its spatial location. 
Finally, spatial information in this test is high because of its proximity to monitoring sites 7 
and 8 included in the data set, then a considerable improve in prediction in such monitoring 
site is expected since, as stated in the previous Section, spatial correlation has a non-
negligible effect in explaining the PM10 variability.  

 
 

5. Discussion and future developments 
 

We constructed a hierarchical Bayesian model for predicting missing observations, 
predicting PM10 levels where data are not available and characterising the PM10 generating 
process sources of variability. The model has been carefully checked via posterior 
predictive checks, including Bayesian p-values and graphical inspections displaying the 
data alongside with simulated data from the fitted model. Model adequacy in predicting 
missing observations has been checked by eliminating some periods of observation from 
each time series: predictive adequacy has been then evaluated comparing predicted values 
with observed values excluded from the analysis. 

Results show that a large amount of the variability is due to a common temporal 
process; another important source of variability is small-scale spatial dependence. 
Variability due to dependence from meteorological variables is ignorable with respect to 
the other sources of variability. The observed time series in the Emilia-Romagna Region 
can be broadly considered as replications of the same temporal process: spatial random 
effects and the terms related with meteorological values take account of the deviations 
from the common temporal trend. This statement is confirmed by the ability of the model 
in predicting PM10 levels where data are not available (see Section 4.4): we are able to 
predict data in points out of the monitoring network just because the generating process is 
quite homogeneous in the study region and few monitoring sites allow obtaining an 
adequate representation of the process. This is consistent with the fact that Emilia-
Romagna is characterised by a considerable homogeneity with respect to meteorological 
conditions, social behaviours and economic system. 

With regard to the modellisation of the relationship between meteorological variables 
and particulate matter, the most restrictive hypothesis is linearity. Such assumption has 
been checked by the inclusion of a squared term for both the mixing height and the wind 
speed. This addition does not improve model fitting, while credibility intervals for the 
squared term coefficients include zero. The inclusion of time dependent regression 
parameters, which could be modelled as random walks, gives very instable estimates and 
poor performances of the MCMC algorithm, that shows convergence problems even after 
many iterations. The main reason behind this is that for each time point, the regression 
coefficient has to be estimated on a maximum of 11 data (when no missing data are 
recorded in day t for every monitoring site). However a non-linear relationship is 
suggested, mainly because such relationship seems to hold in winter, when PM10 levels are 
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higher, while a weaker relationship is observed in summer when random fluctuations 
weight more significantly in the total variability. Further modelling of PM10-
meteorological conditions relationship would be useful. 

It is well known that the measurement instrument heavily influences measured PM10 
levels: in our analysis we consider only monitoring sites equipped with automatic samplers 
that produce comparable results. Monitoring sites equipped with measurement instruments 
(TEOM samplers) that are known to underestimate PM10 levels have been excluded from 
the analysis. Our work will be extended in order to obtain calibration for such measuring 
instruments. 
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Figure 1: Monitoring sites spatial locations. 
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Figure 2: Between-sites correlations vs distances. 



 13

5 10 15 20

2
3

4
5

6

 
Figure 3: Missing data imputation: estimated values and 95% credibility interval (red lines); observed data 
(black line).  
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Figure 4: Observed (black dots) and predicted (red dots) between-sites correlations. 
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Figure 5: Observed (black line) and predicted (red line) PM10 levels in the additional monitoring site used as 
test data. 



 15

 

 
Posterior 

mean 
Posterior 
median 

95% credibility 
interval  

Posterior 
mean 

Posterior 
median 

95% credibility 
interval 

α -0.0789 -0.0789 -0.0886 -0.0690 σ3
2 0.0465 0.0464 0.0343 0.0591 

β1 -0.0013 -0.0013 -0.0016 -0.0011 σ4
2 0.0917 0.0915 0.0763 0.1083 

β2 -0.0037 -0.0037 -0.0042 -0.0031 σ5
2 0.0345 0.0344 0.0237 0.0469 

β3 -0.2714 -0.2721 -0.3449 -0.1974 σ6
2 0.0518 0.0517 0.0381 0.0666 

β4 -0.1659 -0.1650 -0.2356 -0.0973 σ7
2 0.1014 0.1012 0.0898 0.1138 

φ 0.0272 0.0271 0.0231 0.0315 σ8
2 0.0336 0.0336 0.0263 0.0414 

σε
2 0.0781 0.0780 0.0702 0.0862 σ9

2 0.0231 0.0231 0.0156 0.0314 
σθ

2 0.0553 0.0553 0.0499 0.0613 σ10
2 0.0131 0.0129 0.0084 0.0191 

σ1
2 0.1369 0.1364 0.1138 0.1615 σ11

2 0.0302 0.0299 0.0197 0.0422 
σ2

2 0.0699 0.0698 0.0553 0.0861          

Table 1: Summaries of model parameters posterior distributions 

 
Monitoring site 5th percentile Median 95th percentile 
1 0.992 0.479 0.679 
2 0.387 0.933 0.356 
3 0.158 0.141 0.180 
4 0.981 0.424 0.764 
5 0.998 0.269 0.720 
6 0.770 0.140 0.407 
7 0.996 0.610 0.784 
8 0.049 0.554 0.746 
9 0.841 0.690 0.883 
10 0.025 0.296 0.799 
11 0.934 0.828 0.770 

Table 2: Bayesian p-values 

 
Site 1 2 3 4 5 6 7 8 9 10 11 

( )YV s |•µ  0.354 0.341 0.343 0.350 0.339 0.350 0.277 0.279 0.294 0.276 0.299
( )YV |θ  0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217
( )YMV s |•  0.019 0.018 0.018 0.018 0.020 0.018 0.017 0.018 0.019 0.018 0.012
( )YV s |•ε  0.076 0.070 0.064 0.057 0.056 0.064 0.043 0.044 0.054 0.053 0.060
( )YC s |,θε •  0.006 0.004 0.008 0.015 0.007 0.012 -0.012 -0.013 -0.011 -0.016 -0.001
( )YMC ss |, ••ε  0.001 0.001 0.002 0.002 0.001 0.001 -0.001 -0.001 -0.001 -0.003 -0.001
( )YMC s |, •θ  0.009 0.008 0.007 0.007 0.009 0.007 0.008 0.009 0.008 0.007 0.005

Table 3: Explained variances 


