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Abstract

We study the Harry Dym hierarchy of nonlinear evolution equa-
tions from the bi-Hamiltonian view point. This is done by using the
concept of an S-hierarchy, which permits us to define a matrix Harry
Dym hierarchy. We conclude by showing that the conserved densi-
ties of the matrix Harry Dym equation can be found by means of a
Riccati-type equation.

1 Introduction

An intriguing equation known as the Harry Dym (HD) equation has attracted
the attention of a number of researchers in integrable systems [4, 9, 12, 13,
14, 21, 26, 27, 28]. In one of its incarnations it can be written as

qt = 2(1/
√

(1 + q))xxx (1)
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or equivalently
ρt = ρ3ρxxx (2)

after the substitution ρ = −(1 + q)−1/2.
Equation (1) was discovered in an unpublished work by Harry Dym [15],

and appeared in a more general form in works of P. C. Sabatier [29, 30,
31]. More recently, its relations with the Kadomtsev-Petviashvili (KP) and
modified-KP hierarchy have been studied in detail by Oevel and Carillo [20].

In the present work we discuss the HD hierarchy from the bi-Hamiltonian
point of view and show that it is amenable to the systematic treatment de-
veloped in [5, 10, 11, 18, 19]. The main result of this paper is the existence of
a matrix HD hierarchy , giving rise to the usual (scalar) HD hierarchy after
a projection. It is well known that a lot of integrable PDEs can be obtained
as suitable reductions from (integrable) hierarchies living on loop-algebras,
the main example being the Drinfeld-Sokolov reduction [8]. However, only
recently it was realized that also the Camassa-Holm hierarchy has this im-
portant property [11]. The HD case is settled in this work, starting from the
results in [17], where it has been shown that the bi-Hamiltonian structure
of HD is the reduction of a suitable bi-Hamiltonian structure on the space
M = C∞(S1, sl(2)) of C∞ maps from the unit circle to sl(2).

The plan of this article is the following:
In Section 2 we review the general definitions of Poisson geometry and

bi-Hamiltonian theory. We review the important concept of an S-hierarchy
which was already used in [23] in connection with the Boussinesq equation.

Section 3 is devoted to endowing the loop-space on the Lie algebra of
traceless 2 × 2 real matrices with a bi-Hamiltonian structure following a
construction in [17].

Section 4 describes the construction of the matrix HD hierarchy, i.e.,
a hierarchy of commuting Hamiltonian flows in two fields that reduces to
the Harry Dym equation (1) upon a suitable reduction. Two-component
extensions of the HD equation have interested a number of researchers, see,
e.g., [2, 3, 25]. We will see at the end of Section 5 that the hierarchy presented
herein is different from those presented by these authors.

We conclude in Section 5 with a Riccati-type equation for the conserved
quantities of the matrix HD hierarchy.
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2 Bi-Hamiltonian preliminaries

This section collects a number of facts from bi-Hamiltonian geometry. More
information could be found in [18].

A bi-Hamiltonian manifold is a triple (M, P1, P2) consisting of a manifold
M and of two compatible Poisson tensors P1 and P2 on M. In this context,
we fix a symplectic leaf S of P1 and consider the distribution D = P2(KerP1)
on M. As it turns out, the distribution D is integrable. Furthermore, if E =
D ∩ TS is the distribution induced by D on S and the quotient space N =
S/E is a manifold, then it is a bi-Hamiltonian manifold. In situations where
an explicit description of the quotient manifold N is not readily available,
the following technique to compute the reduced bi-Hamiltonian structure is
very useful [7]. Assume that Q is a submanifold of S that is transversal to
the distribution E, in the sense that

TpQ⊕ Ep = TpS for all p ∈ Q . (3)

Then, Q is locally diffeomorphic to N and inherits a bi-Hamiltonian structure
from M. The reduced Poisson pair on Q is given by

(

P rd
i

)

p
α = Πp ((Pi)pα̃) , i = 1, 2 , (4)

where p ∈ Q, α ∈ T ∗
pQ, the map Πp : TpS → TpQ is the projection relative

to (3), and α̃ ∈ T ∗
pM satisfies

α̃|Dp
= 0 , α̃|TpQ = α . (5)

Let us assume that {Hj}j≥0 is a bi-Hamiltonian hierarchy on M, that is,
P2dHj = P1dHj+1 for all j ≥ 0 and P1dH0 = 0. In other words, H(λ) =
∑

j≥0 Hjλ
−j is a (formal) Casimir of the Poisson pencil P2 − λP1. The bi-

Hamiltonian vector fields associated with the hierarchy can be reduced on
the quotient manifold N according to

Proposition 1 The functions Hj restricted to S are constant along the dis-

tribution E. Thus, they give rise to functions on N . Such functions form a

bi-Hamiltonian hierarchy with respect to the reduced Poisson pair. The vec-

tor fields Xj = P2dHj = P1dHj+1 are tangent to S and project on N . Their

projections are the vector fields associated with the reduced hierarchy.
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In the sequel, we shall need a more general definition than that of a bi-
Hamiltonian hierarchy. The point being that, once we have fixed a symplectic
leaf S of P1, it is not always possible to determine a hierarchy on M that is
defined also on S. In other words, there exist singular leaves for the hierar-
chies of a bi-Hamiltonian manifold. Nevertheless, it is sometimes possible to
define hierarchies which are, in a certain sense “local” on S.

Definition 2 An S–hierarchy is a sequence {Vj}j≥0 of maps from S to

T ∗M,

Vj : s 7→ Vj(s) ∈ T ∗
s M ,

with the following properties:

• Vj restricted to TS is an exact 1-form, that is, there exist functions Hj

on S such that Vj|TS = dHj;

• P2Vj = P1Vj+1 for all j ≥ 0 and P1dH0 = 0.

Obviously, every bi-Hamiltonian hierarchy on (M, P1, P2) defined in a
neighborhood of S gives rise to an S–hierarchy. In contradistinction, in this
paper we will see an example of S–hierarchy that does not come from any
bi-Hamiltonian hierarchy. This is also the case of the Boussinesq hierarchy
[23].

It is not difficult to extend Proposition 1 to the case of S–hierarchies. In
the sequel, whenever talking about S–hierarchies and referring to such result,
it shall be understood that we mean such straightforward extension.

3 A bi-Hamiltonian structure on a loop-algebra

In this section we recall from [17] that the bi-Hamiltonian structure of the
(usual) HD hierarchy can be obtained by means of a reduction.

Let M = C∞(S1, sl(2)) be the loop-space on the Lie algebra of traceless
2× 2 real matrices, i.e., the space of C∞ functions from the unit circle S1 to
sl(2). The tangent space TSM at S ∈ M is identified with M itself, and we
will assume that TSM ≃ T ∗

SM by the non-degenerate form

〈V1, V2〉 =

∫

tr(V1(x)V2(x)) dx, V1, V2 ∈ M ,

4



where the integral is taken (here and throughout this article) on S1. It is
well-known [16] that the manifold M has a 3-parameter family of compatible
Poisson tensors. To wit,

P(λ1,λ2,λ3) = λ1∂x + λ2[ · , S] + λ3[ · , A] , (6)

where λ1, λ2, λ3 ∈ R, the matrix A ∈ sl(2) is constant, and

S =

(

p q
r −p

)

∈ M .

In this paper we focus on the pencil

Pλ = P2 − λP1 = ∂x + [ · , A + λS] (7)

with

A =

(

0 0
1 0

)

.

This means that

P2 = ∂x + [ · , A] , P1 = [S, · ] . (8)

Remark 1 We briefly recall from [18] the construction of the matrix KdV
hierarchy, since what we will do in the following for the HD case is completely
similar, even though technically more complicated. In the KdV case the
Poisson pair is

P2 = ∂x + [ · , S] , P1 = [A, · ]
and the symplectic leaf is chosen to be

S =

{(

p q
1 −p

)

| p, q ∈ C∞(S1, R)

}

.

The quotient space N can be identified with C∞(S1, R) and the projection
from S to N is given by

(p, q) 7→ u = px + p2 + q . (9)

The matrix KdV hierarchy is given by the flows

∂S

∂tj
= P2Vj−1 = P1Vj

5



on the symplectic leaf S, where the Vj are the coefficients of

V (λ) =
∑

j≥−1

Vjλ
−j

and V (λ) is uniquely determined by the conditions PλV (λ) = 0 and trV (λ)2 =
2λ. The conserved densities can be found also by solving the Riccati equa-
tion hx +h2 = px + p2 + q +λ. The usual (scalar) KdV hierarchy lives on the
quotient space N and can be obtained from the matrix one by applying the
projection (9). In this case, this amounts to the well known Drinfeld-Sokolov
reduction.

We close this remark by recalling that the Hamiltonian flows

∂tS = ∂xV + [V, S] , V = dH ,

of the Poisson tensor P2 = ∂x+[ · , S] admit the zero-curvature representation

[∂t + V, ∂x + S] = 0.

Such a representation does not seem to exist in our (HD) case.

In [17] the bi-Hamiltonian reduction procedure was applied to the pair
(P1, P2). In this case,

DS =

{(

(µp)x + µq (µq)x

(µr)x − 2µp −(µp)x − µq

)

| µ ∈ C∞(S1, R)

}

, S ∈ M.

The distribution D is not tangent to the generic symplectic leaf of P1. How-
ever, it is tangent to the symplectic leaf

S =

{(

p q
r −p

)

| p2 + qr = 0, (p, q, r) 6= (0, 0, 0)

}

, (10)

so that Ep = Dp ∩ TpS coincides with Dp for all p ∈ S. It is not difficult to
prove that the submanifold

Q =

{

S(q) =

(

0 q
0 0

)

| q ∈ C∞(S1, R), q(x) 6= 0 ∀x ∈ S1

}

(11)

of S is transversal to the distribution E and that the projection ΠS(q) :
TS(q)S → TS(q)Q is given by

ΠS(q) : (ṗ, q̇) 7→ (0, q̇ − ṗx) . (12)
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The reduced bi-Hamiltonian structure (4) coincides with the bi-Hamiltonian
structure of the Harry Dym hierarchy (see [17] for details):

(

P rd
1

)

q
= −(2q∂x + qx)

(

P rd
2

)

q
= −1

2
∂3

x .

Starting from the Casimir
∫ √

q dx of P rd
1 , one constructs a bi-Hamiltonian

hierarchy, which is called the HD hierarchy. We refer to [24] and the refer-
ences therein for more details, and for a discussion about a “KP extension”
of the HD hierarchy (see also [20]).

Remark 2 We take this opportunity for correcting a mistake in [24]. Equa-
tion (3.5) in that paper should be replaced with

K(2j+1) = λ

(

−1

2
(λjw)+,x + k(λjw)+

)

. (13)

The remaining of the paper is correct, up to minor changes.

We consider now the bi-Hamiltonian hierarchies of the Poisson pair (8). Ac-
cording to the bi-Hamiltonian theory, the computation of the flows of these
hierarchies is divided in two steps.

1. First we have to look for a 1-form V (λ) =
∑

Vjλ
−j that belongs to the

kernel of the pencil Pλ. By construction the coefficients Vj satisfy the
relations

P2Vj = P1Vj+1.

By definition the flows of the hierarchy are

∂S

∂tj
= P2Vj−1 = P1Vj. (14)

In the case of S–hierarchies the 1-form V (λ) is defined only on a sym-
plectic leaf S.

2. Then, we have to verify that the 1-form is exact. If this is the case, the
coefficients of the potential H(λ) =

∑

Hjλ
−j, the so-called Casimir

of the pencil, are the Hamiltonians of the flows (14). In the case of
S–hierarchies the Hamiltonians are the coefficients of the potential of
the restriction of V (λ) to TS.

7



We apply now this procedure to the Poisson pencil (7). In particular, we
shall study a 1-form V (λ) defined only on the symplectic leaf S defined by
(10) and the corresponding S–hierarchy.

Let us suppose that

V =

(

α β
γ −α

)

is a solution of PλV = 0, that is,

Vx + [V , A + λS] = 0 , (15)

and let us write the previous equation in componentwise form











αx + (λr + 1) β − λq γ = 0

βx + 2λq α − 2λp β = 0

γx + 2λp γ − 2(λr + 1) α = 0

(16)

Upon expressing α and γ in terms of β,











α =
1

2q

(

− βx

λ
+ 2βp

)

γ = − βxx

2λ2q2
+

βx

λq2

(

p +
qx

2λq

)

+ β
( px

λq2
− qxp

λq3
+

r

q
+

1

λq

)

(17)

we find that β satisfies the equation

− βxxx

2q2λ2
+

3qx βxx

2q3λ2
+

(

2

qλ
+

2px

q2λ
+

2r

q
− 3q2

x

2q4λ2
− 2qxp

q3λ
+

qxx

2q3λ2
+

2p2

q2

)

βx +

+

(

rx

q
− qx

q2λ
+

pxx

q2λ
− 3qxpx

q3λ
+

3q2
xp

q4λ
− qxxp

q3λ
− qxr

q2
+

2ppx

q2
− 2p2qx

q3

)

β = 0

This equation can be rewritten as

1

β

d

dx
(α2 + βγ) = 0 . (18)

Indeed, it is a well-known consequence of equation (15) that the spectrum of

V does not depend on x, so that
d

dx
tr V 2 = 0. Let us set

tr
V 2

2
= α2 + βγ = F (λ) , (19)

8



where F (λ)x = 0. Then, the equation for β becomes

2qβxxβ−qβ2
x−2qxββx+4(qxp−qpx−q2)β2λ−4q(p2+qr)λ2β2+4q3F (λ)λ2 = 0 .

(20)
We now consider the possibility of finding a solution β(λ) of (20) as a

formal series expansion in (negative) powers of λ, that is, β =
∑∞

i=−1 βiλ
−i.

In order to find the coefficients βi recursively, we must equate the coefficients
of the same degree in λ starting from the highest order one. We choose F (λ)
to be a power of λ. Let us suppose that q(x) 6= 0 for all x. Then, it turns
out that we have to distinguish the two cases:

• If p2 + q r 6= 0, then the degree of F (λ) has to be even;

• If p2 + q r = 0, then the degree of F (λ) has to be odd.

We are interested in the latter case, in order to perform the reduction process
described in Section 2. If the degree of F (λ) is odd then there exists a solution
β expanded in a formal Laurent series only on the symplectic leaf S. Such
a solution cannot be extended outside S because if p2 + q r 6= 0, then the
degree of F (λ) has to be even. This means that in this article, we will study
a S-hierarchy on the symplectic leaf (10) that cannot be obtained from a
bi-Hamiltonian hierarchy on the whole M = C∞(S1, sl(2)).

The bi-Hamiltonian hierarchy corresponding to the former case will not
be considered here, although the proof of the exactness given in the next
section can be easily adapted to this case.

4 The matrix HD hierarchy

In this section we will show that it is possible to find a solution

V =
∞
∑

i=−1

Viλ
−i =

∞
∑

i=−1

(

αi βi

γi −αi

)

λ−i (21)

of equation (15) at the points of the symplectic leaf S, such that every Vi

restricted to TS is an exact 1-form. This yields an S-hierarchy, to be called
the matrix HD hierarchy. We will see that it projects to the usual (scalar) HD
hierarchy. In particular, its second vector field projects to the HD equation.

First of all, we restrict to the symplectic leaf S and we use the now
classical dressing transformation method [32, 8, 6] to show that the matrix

9



V (λ) whose entries are given by the solution of (20) and (17) defines an S-
hierarchy if F (λ) does not depend on the point of S. Indeed, equation (19)
implies that there exists a nonsingular matrix K such that

V (λ) = KΛK−1 ,

where 1

Λ =

(

0 1
F (λ) 0

)

.

Let us introduce

M = K−1(S +
A

λ
)K − 1

λ
K−1Kx . (22)

Thus, we have the following:

Proposition 3 If F (λ) does not depend on the point S ∈ S, then V (λ)
restricted to TS is an exact 1-form. More precisely, if H : S → R is given

by

H(λ) =

∫

tr (MΛ) dx , (23)

then V |TS = dH.

Proof. If V is a solution of (15), then

1

λ
K−1VxK +

1

λ
K−1[V, A + λS]K = 0 .

This in turn, implies that

1

λ
Λx + [Λ, M ] = 0 .

Since Λ does not depend on x, we have that Λ commutes with M . Therefore,
for every tangent vector Ṡ to the symplectic leaf S, we have

〈dH, Ṡ〉 =

∫

tr (ṀΛ) dx =

∫

tr (K−1ṠKΛ) + tr ([M, K−1K̇]Λ) dx

=

∫

tr (ṠKΛK−1) dx =

∫

tr (ṠV ) dx = 〈V, Ṡ〉 ,

1Of course any other traceless matrix Λ depending only on λ and such that tr Λ
2

2
= F (λ)

is suitable for our purpose. Our choice simplifies the following computations.
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since
∫

tr ([M, K−1K̇]Λ) dx = 0. This completes the proof.

Let us now compute explicitly H. A possible choice for K is

K =

(

β
1

2 0

−αβ− 1

2 β− 1

2

)

.

Since M commutes with Λ and both matrices have distinct eigenvalues, it
follows that M is a polynomial of Λ. However, since they are traceless and
we are working with 2×2 matrices it follows that M is a multiple of Λ. This
simplifies the computation of M , since it becomes

M =
q

β
Λ .

Thus, we have that

H(λ) =

∫

2
q

β
F (λ) dx . (24)

We define the matrix HD hierarchy to be the S-hierarchy corresponding to
the choice

F (λ) = λ.

In order to find its first vector fields, let us substitute p2 + qr = 0 and
F (λ) = λ in equation (20), to find

2qβxxβ − qβ2
x − 2qxββx + 4(qxp − qpx − q2)β2λ + 4q3λ3 = 0 . (25)

From now on, we use the functions p and q to describe a point of S. We
know that it is possible to solve equation (25) recursively, starting from the
highest power of λ:

λ3 : 4(qxp − qpx − q2)β2
−1 = −4q3 .

We choose the positive solution

β−1 =

√

q3

q2 − qxp + qpx

. (26)

Using the expressions (17) for α and γ we get a recursive formula for the
matrices Vi. Indeed, we have that











α−1 = p
β−1

q

γ−1 = r
β−1

q

(27)

11



and










αi =
1

2q
(−(βi−1)x + 2βip)

γi =
1

q
((αi−1)x + βir + βi−1)

(28)

for all i ≥ 0. Therefore, we can compute the first 1-form

V−1 =

(

p q
r −p

)

ϕ(x) ,

where

ϕ(x) :=

√

q

q2 − qxp + qpx

.

We can verify immediately that V−1 indeed commutes with S, as expected.
Applying the Poisson tensor P2 to V−1 we obtain the first vector field

X0 := P2(V−1) = V−1x + [V−1, A] of the hierarchy:

{

ṗ = (pϕ)x + qϕ

q̇ = (qϕ)x

(29)

We saw in Section 2 that every S-hierarchy can be projected on the reduced
bi-Hamiltonian manifold. We will show in Remark 3 that the projection of
the matrix HD hierarchy is the (scalar) HD hierarchy. Now we compute the
projections of the first vector fields of the hierarchy. Since V−1 belongs to
the kernel of P1, we have that V−1|TS = 0 and that P2(V−1) belongs to the
distribution D, so that the projection of X0 vanishes. However, let us check
it explicitly. We must evaluate X0 at the points p = 0 of the transversal
submanifold Q, then we have to project this vector field according to the
formula (12), thus obtaining the predicted result:

∂q

∂t0
= q̇ − ṗx = 0 .

More generally, let us observe that the formula for the vector field Xi :=
P2(Vi−1) for i ≥ 0 is

{

ṗ = αi−1x + βi−1

q̇ = βi−1x

and its projection is q̇ − ṗx = −αi−1xx evaluated at p = 0.

12



The next step in the iteration is:

λ2 : 2qβ−1β−1xx − q(β−1x)
2 − 2qxβ−1β−1x = 8(q2 − qxp + qpx)β−1β0 .

Using also equation (26), we get that

β0 =
ϕ

8 q

(

2q2ϕ ϕxx + 2qϕ2qxx − ϕx
2q2 − 3ϕ2qx

2
)

(30)

and then

V0 =

(

α0 β0

γ0 −α0

)

,

where

α0 = −ϕx

2
− qxϕ

2q
+

pϕ

8 q2

(

2q2ϕϕxx + 2qϕ2qxx − ϕx
2q2 − 3ϕ2qx

2
)

γ0 =
1

8 q3

(

8ϕxpq
2 + 8ϕpxq

2 − 2ϕ2p2q2ϕxx − 2ϕ3p2qqxx + ϕp2ϕx
2q2+

+ 3ϕ3p2qx
2 + 8ϕq3

)

.

We can now determine the second vector field X1 := P2(V0) = V0x + [V0, A].
It is given by







ṗ = −1

2
ϕxx −

(

qx

2q
ϕ

)

x

+

(

p

q
β0

)

x

+ β0

q̇ = β0x

(31)

Using equation (30), we can write out the above equation as follows:







































ṗ =

(

ϕ

8q
+

pxϕ

8q2
− qxϕ

8q3

)

(2q2ϕ ϕxx + 2qϕ2qxx − ϕx
2q2 − 3ϕ2qx

2) +

−1

2
ϕxx −

(

qx

2q
ϕ

)

x

+
p

q

(

ϕ

8q
(2q2ϕϕxx+ 2qϕ2qxx − ϕx

2q2 − 3ϕ2qx
2)

)

x

q̇ =

(

ϕ

8 q
(2q2ϕ ϕxx + 2qϕ2qxx − ϕx

2q2 − 3ϕ2qx
2)

)

x
(32)
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Starting from (31), we calculate the reduced vector field, first evaluating X1

at the points p = 0 of the transversal submanifold Q,


























ṗ =
5 qx

2

32 q
5

2

− qxx

8 q
3

2

q̇ =

(

− 7 qx
2

32 q
5

2

+
qxx

8 q
3

2

)

x

(33)

and then projecting this vector field on the transversal submanifold. We thus
obtain the HD equation (1)

∂q

∂t1
= q̇ − ṗx = −1

2

(

1√
q

)

xxx

.

This equation is equivalent to (1) after the change of variables q 7→ (1 + q)
and t1 7→ −4t.

5 A Riccati equation for the conserved den-

sities

The goal of this final section is to point out that the conserved densities
of the matrix HD hierarchy can also be found by means of a Riccati-type
equation.

We recall that equation (24) gives, for F (λ) = λ, the expression of the
potential H of the 1-form V |TS . The corresponding density is clearly defined
up to a total x-derivative. This fact allows us to introduce

h =
qλ

3

2

β
+

βx

2β
,

which transforms the equation (20) in the Riccati-type equation

hx + h2 − qx

q
h =

(

px + q − qx

q
p

)

λ . (34)

Its solution h yields

H(λ) =
2√
λ

∫

hdx (35)
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for the functional H. We set z =
√

λ, and substitute h =
∑∞

i=−1 hiz
−i in the

Riccati equation (34), which takes the form

∞
∑

i=−1

(

hix +
1
∑

j=0

(hi−jhi)
)

z−i − qx

q

∞
∑

i=−1

hiz
−i =

(

px + q − qx

q
p

)

z2 . (36)

Once again, this equation can be solved recursively, starting from the highest
degree of z. The first step is

z2 : h2
−1 = px + q − qx

q
p ,

which gives, up to a sign,

h−1 =

√

px + q − qx

q
p .

Similarly, we have that

z1 : h−1x + 2h−1h0 −
qx

q
h−1 = 0

from which we obtain

h0 = −h−1x

2h−1

+
qx

2q
.

Let us notice that this is a total x−derivative. More generally, it is evident
from (35) that every even density is a total x−derivative. Indeed, H(λ) =
∑

i≥0 Hiλ
−i, with

Hi = 2

∫

h2i−1dx . (37)

In particular, H0 = 2
∫

h−1dx, and it can be checked that dH0 = V0|TS , as
claimed in Proposition 3.

The next equation is

z0 : h0x + 2h−1h1 + h2
0 −

qx

q
h0 = 0

and the corresponding density is

h1 = − 1

2h−1

(

h0x + h2
0 +

qx

q
h0

)

.
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This leads to

H1 = 2

∫ (

h−1xx

4h2
−1

− 3h−1
2
x

8h3
−1

− qxx

4h−1q
+

3q2
x

8h−1q2

)

dx .

Integrating by parts and substituting the expression for h1, we find

H1 = 2

∫











(

pxx + qx −
(pqx

q

)

x

)2

32

(

px + q − pqx

q

) 5

2

− qxx

4q

√

px + q − pqx

q

+
3q2

x

8 q2

√

px + q − pqx

q











dx .

This is the Hamiltonian (with respect to the symplectic structure obtained
by restricting P1 to its symplectic leaf S) of the 2-component extension (32)
of the HD equation.

Remark 3 In this paper we chose to express the equation (19) in terms of
β, using the equations of the system (16). An analogous calculation can be
performed in terms of γ, leading to the expression

H̃(λ) =

∫

2
λr + 1

λγ
F (λ)dx

for the functional on S such that V |TS = dH̃ (see equation (24) and Propo-
sition 3). The functional H defined by (24) could in principle differ from H̃
by an additive constant, but we will see that they coincide. In section 4 we
set F (λ) = λ and then in this section we proved that

H(λ) =
2√
λ

∫

hdx ,

where h satisfies the Riccati-type equation (34). In the same way we can
prove that

H̃(λ) =
2√
λ

∫

h̃dx ,

where h̃ satisfies the following different Riccati-type equation,

(h̃x + h̃2)(λr + 1) + λrxh̃ = λ(q − px) + λ2(rxp − pxr + p2 + 2qr) , (38)
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where p2 + qr = 0 since we are on the symplectic leaf S. The two Riccati
equations are both equivalent to equation (19), respectively expressed in
terms of β and γ through the transformations

h =
qλ

3

2

β
+

βx

2β
,

and

h̃ =
λr + 1

γ
λ

1

2 +
γx

2γ
.

It can be checked directly that the densities h and h̃ differ by a total x-
derivative, so that H and H̃ actually coincide. Indeed, using (19) and the
system (16), we obtain

h − h̃ =

√
λ αx

βγ
+

βx

2β
− γx

2γ

=

√
λ αx

λ − α2
+

βx

2β
− γx

2γ

=
1

2
∂x

(

√
λ log

∣

∣

∣

∣

∣

√
λ + α√
λ − α

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

β

γ

∣

∣

∣

∣

)

.

The choice of dealing with the first Riccati equation (34) is due to the fact
that equation (38) is more complicated to handle, in order to perform the
iteration. But it is easy to see that (38), evaluated at the points of Q, is the
Riccati equation for the scalar HD hierarchy (see, e.g., [24]),

h̃x + h̃2 = qλ .

This shows that the matrix HD hierarchy projects on the usual HD hierarchy.

We close our paper with an explanation of the difference between our
2-component extension of the HD hierarchy and those already present in the
literature. Ours is more precisely a lifting , since it gives rise to the usual HD
hierarchy after a projection. On the contrary, those already known in the
literature restrict to the HD hierarchy. For example, in [2] one has to put
one of the two fields equal to zero. This is completely obvious if one looks
at the corresponding second order linear problems (from our point of view,
the Riccati equations): our equation (34) is similar to the one of the usual

17



HD hierarchy, while the one in [2, eq.(20)] is different, since a polynomial
of degree 2 in λ appears. The same happens for the matrix KdV hierarchy
(see Remark 1) and the N -component extensions discussed in [1]. Finally,
we point out that there certainly exist coordinates in which the matrix HD
hierarchy is triangular. Indeed, we showed that it projects on the usual HD
hierarchy, and it is well known that every projectable vector field becomes
triangular once written in coordinates which are adapted to the projection.
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