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LOCALIZATION FOR RIESZ MEANS OF FOURIER
EXPANSIONS

LEONARDO COLZANI, GIACOMO GIGANTE, AND ANA VARGAS

Abstract. The classical Riemann localization principle states that if an in-
tegrable function of one variable vanishes in an open set, then its Fourier

expansion converges to zero in this set. This principle does not immediately
extend to several dimensions, and here we study the Hausdorff dimension of
the sets of points where localization for Riesz means of Fourier expansions may

fail.

The Fourier transform and Fourier inversion formula are defined by

f̂(ξ) =
∫

Rd

f(x) exp (−2πiξx) dx, f(x) =
∫

Rd

f̂(ξ) exp (2πiξx) dξ.

Since these integrals may not be absolutely convergent, a number of summation
methods have been introduced, and one of these are the Riesz means,

Sα
R ∗ f(x) =

∫
{|ξ|≤R}

(
1 − |ξ|2 /R2

)α

f̂(ξ) exp (2πiξx) dξ

=
∫

Rd

π−αΓ(α+ 1)Rd/2−α |y|−α−d/2
Jα+d/2 (2πR |y|) f(x− y)dy.

The multiplier
(
1 − |ξ|2 /R2

)α

+
is a damping for high frequencies, and the higher

the exponent α, the smoother the multiplier, and the more efficient the summation
method. In particular, when α = 0 one obtains the so called spherical partial sums.
See [24, Chapter IV]. The classical Riemann localization principle states that if an
integrable function of one variable vanishes in an open set, then the partial sums
of its Fourier expansion converge uniformly to zero in every compact subset of the
open set. It has been observed by Tonelli that this localization principle does not
immediately extend from dimension one to dimension d > 1, and Bochner has
proved that localization may fail for Riesz means with α < (d−1)/2, while it holds
above this critical index, that is if α ≥ (d − 1)/2 then limR→+∞ {Sα

R ∗ f(x)} = 0
at all points in an open set where the function vanishes. Indeed, these results are
corollaries of the Banach Steinhaus theorem. If 1 ≤ p, q ≤ +∞ and 1/p+ 1/q = 1,
the norms of the linear functionals Sα

R ∗ f(x) on p integrable functions vanishing
in {|y − x| ≤ ε} are the q norms of the kernels Sα

R(y) in {|y| > ε}. Since these
kernels have sizes R(d−1)/2−α |y|−(d+1)/2−α, the functionals are uniformly bounded
if and only if α ≥ (d − 1)/2. Indeed in [14] and [20] it is shown through explicit
examples that pointwise localization may fail even for quite nice functions: If d ≥ 3
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2 LEONARDO COLZANI, GIACOMO GIGANTE, AND ANA VARGAS

then S0
R ∗χ{|x|<1}(0) does not converge. Despite these negative results, it has been

proved in [3] and [6] that for spherical partial sums of square integrable functions
localization holds almost everywhere, that is at almost all points of an open set
where a square integrable function vanishes one has limR→+∞

{
S0

R ∗ f(x)
}

= 0.
See also [2, 17, 18] for previous analogues for spherical harmonic expansions, and
[10, 11] for alternative proofs. It is known that nice functions have better properties
than almost everywhere convergence. In particular, Beurling and then Salem and
Zygmund, see [25, Chapter XIII], studied the capacity of sets of divergence of
one dimensional Fourier series of functions in Sobolev classes, and these results
have been extended to multidimensional Fourier expansions in [7, 8, 12, 19]. In
particular, in [19] it is proved that the spherical partial sums S0

R ∗ f(x) of functions
in a Sobolev space Lγ, p

(
Rd
)
, with 0 < γ ≤ d/p and 2 ≤ p < 2d/(d− 1), converge

Cγ−ε, 2 quasieverywhere for every 0 < ε < γ, and localization holds also with ε = 0.
Continuing this line of research in the area of exceptional sets in harmonic anal-

ysis, here we study the convergence of Riesz means of functions which are locally
smooth, but not globally in Sobolev classes. Our purpose is to fill the gap and in-
terpolate between the pointwise result at α = (d− 1)/2 and the almost everywhere
result at α = 0. In particular, we would like to prove that when 0 < α < (d− 1) /2,
then localization holds with a possible exception in a set of points of dimension
0 < δ < d. As usual, instead of the limit limR→+∞ {Sα

R ∗ f(x)}, it is convenient
to consider the maximal operator supR>0 {|Sα

R ∗ f(x)|}. More generally, one can
consider supR>0

{
R−β |Sα

R ∗ f(x)|
}
, for some −∞ < β < +∞. This parameter

when positive measures the speed of divergence and when negative the speed of
convergence. In what follows f(x) is a tempered distribution in the Sobolev space
Hγ

(
Rd
)
, with −∞ < γ < +∞, defined by the norm{∫

Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dx}1/2

< +∞.

Indeed it turns out that all these indices α, β, γ are somehow redundant, and
what really counts is the quantity α+ β + γ.

Theorem 1. Fix an ε > 0, and assume that one of the following holds:
(1) α ≥ 0, α+ β + γ ≥ (d− 1) /4, δ ≥ d− 2 (α+ β + γ) − 1 ≥ 0,
(2) α > 0, α+ β + γ > 0, δ > d− 2 (α+ β + γ) ≥ 0.
Then there exists a positive constant c with the property that for every tempered

distribution f(x) vanishing in an open set Ω and for every non negative Borel
measure dµ(x) with support in Ω ∩ {distance {x, ∂Ω} > ε},∫

Rd

sup
R>0

{
R−β |Sα

R ∗ f(x)|
}
dµ(x)

≤ c

{∫
Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dξ}1/2

{∫
Rd

∫
Rd

dµ(x)dµ(y)

|x− y|δ

}1/2

.

(3) Finally, if α ≥ 0 and α+ β + γ ≥ (d− 1) /2, then

sup
R>0, x∈Ω∩{distance{x,∂Ω}>ε}

{
R−β |Sα

R ∗ f(x)|
}
≤ c

{∫
Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dξ}1/2

.
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By the above theorem, the means R−β |Sα
R ∗ f(x)| cannot diverge on the supports

of measures with finite energy. Hence, by the relations between energy, capacity,
and dimension, these means cannot diverge on sets with large dimension.

Corollary 2. Assume that a tempered distribution f(x) in the Sobolev space Hγ
(
Rd
)

vanishes in an open set Ω, and also assume one of the following:
(1) α ≥ 0, α+ β + γ ≥ (d− 1) /4, δ = d− 2 (α+ β + γ) − 1,
(2) α > 0, α+ β + γ > 0, δ = d− 2 (α+ β + γ).
Then limR→+∞

{
R−βSα

R ∗ f(x)
}

= 0 at all points in the open set Ω, with possible
exceptions in a set with Hausdorff dimension at most δ.

(3) Finally, if α ≥ 0 and α+β+γ ≥ (d− 1) /2, then limR→+∞
{
R−βSα

R ∗ f(x)
}

=
0 at all points in Ω.

In the above theorem and corollary the estimate (1) δ ≥ d − 2 (α+ β + γ) − 1
is better than (2) δ > d− 2 (α+ β + γ), but is limited to the interval α+ β + γ ≥
(d− 1) /4. We do not know if these indices are best possible, however observe
that the natural conjecture given by the linear interpolation between the almost
everywhere result (α+ β + γ, δ) = (0, d) and the pointwise result (α+ β + γ, δ) =
((d− 1) /2, 0), at least when α+β+γ ≥ (d− 1) /4 is worse than the above results.

By the Sobolev embedding, if 1 ≤ p < 2 and γ < d (1/2 − 1/p), or 1 < p < 2
and γ ≤ d (1/2 − 1/p), then{∫

Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dx}1/2

≤ c

{∫
Rd

|f(x)|p dx
}1/p

.

See [22, Chapter V]. Hence the above theorem and corollary immediately give
a localization result for the Lebesgue spaces Lp

(
Rd
)

with p ≤ 2. It is stated in
[7, 8, 9] that at the indices α = β = γ = 0 localization may fail on sets of measure
zero but of full dimension. For related results see also [1, 5, 12, 19]. The next
result generalizes these counterexamples, with γ = 0, which is the case of square
integrable functions.

Theorem 3. Assume that d ≥ 2 and 1 < δ ≤ d − 4(α + β), and assume that the
set E is contained in the intersection of the ball {|x| < 1} with the product domain
(−1, 1) × E′, with E′ ⊂ (−1, 1)d−1 and E′ of δ − 1 dimensional measure 0. Then
there is a square integrable function f(x) which vanishes in {|x| < 2} and such that
supR>0

{
R−β |Sα

R ∗ f(x)|
}

= +∞ for every x in E.

In particular, there exist sets with dimension d−4α which are of non localization
for some square integrable functions, and every set with d − 4α − 1 dimensional
measure zero is of non localization. As said before, we do not know if these results
are sharp, however observe that Theorem 1 with d = 2 and β = γ = 0 and α = 1/4
gives localization up to sets of dimension 1/2, while Theorem 3 with d = 2 and
β = γ = 0 and α < 1/4 gives non localization in sets of dimension 2 − 4α > 1.
Hence at α = (d− 1) /4 with β = γ = 0 and d = 2 there is a real discontinuity.

Proof of Theorem 1. The main tool in what follows is a decomposition of the Riesz
means into a convolution with a kernel with compact support and a kernel with
small Fourier transform. Let Sα

R(x) be the kernel of the Riesz means,

Ŝα
R(ξ) =

(
1 − |ξ|2 /R2

)α

+
,

Sα
R (x) = π−αΓ(α+ 1)Rd/2−α |y|−α−d/2

Jα+d/2 (2πR |y|) .
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Dimension δ

Summability
Index α

bd

bc

b

b
d−1
2

b

b
d−1
4

δ = d − 2α

δ = d − 4α

δ = d − 2α − 1

d+1
2

d−1
2

1

Figure 1. The upper (Theorem 1) and lower (Theorem 3) bounds
for the maximal dimension δ of a set of non localization for Riesz
means of order α of a function in L2

(
Rd
)
.

Dimension δ

Summability
Index α

d = 2
b2

bc

b

b
1
2

bc

b
1
4

δ = 2 − 2α

δ = 2 − 4α

δ = 1 − 2α

3
2

1
2

1

Figure 2. The 2-dimensional case.
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Also let ε > 0 and let ψ(x) be a radial non negative smooth function with
ψ(x) = 1 if |x| ≤ ε/2 and ψ(x) = 0 if |x| ≥ ε. Then

R−βSα
R(x) = R−βψ(x)Sα

R(x) +R−β (1 − ψ(x))Sα
R(x) = AR(x) +BR(x).

In order to prove the theorem it suffices to show that AR∗f(x) = 0 for every x in
Ω with distance (x, ∂Ω) > ε, and that the maximal function supR>1 {|BR ∗ f(x)|}
can be integrated against a measure dµ(x) with finite energy.

Lemma 4. If f(x) vanishes in an open set Ω, then for all x in Ω with distance {x, ∂Ω} >
ε,

AR ∗ f(x) = 0.

Proof. If AR(x) has support in {|x| ≤ ε}, and if f (x) has support in a set Rd −Ω,
then AR ∗ f(x) has support in

{
distance

{
x,Rd − Ω

}
≤ ε
}
, and this set does not

intersect Ω ∩ {distance {x, ∂Ω} > ε}. �

Lemma 5. For every k > 0, there exists c > 0 such that for every ξ in Rd and
every R > 1, ∣∣∣B̂R(ξ)

∣∣∣ ≤ cR−α−β (1 + |R− |ξ||)−k
.

Proof. The idea is that ÂR(ξ) = R−βψ̂ ∗ Ŝα
R(ξ) is an approximation of R−βŜα

R(ξ),
and away from the singularities of this function in |ξ| = R the approximation is
particularly good. First observe that R− |ξ − ζ| ≤ |R− |ξ|| + |ζ|, and that

Ŝα
R(ξ − ζ) = R−2α (R+ |ξ − ζ|)α (R− |ξ − ζ|)α

+ ≤ 2αR−α (|R− |ξ|| + |ζ|)α
.

Also observe that for every multi index n there exists a polynomial Pn (ξ) of
degree |n| such that

∂n

∂ξn

(
1 −

∣∣R−1ξ
∣∣2)α

+
= R−|n|Pn

(
R−1ξ

) (
1 −

∣∣R−1ξ
∣∣2)α−|n|

+
.

Hence, for some constant which may depend on the multi index,∣∣∣∣ ∂n

∂ξn

(
1 − |ξ|2 /R2

)α

+

∣∣∣∣ ≤ CR−α |R− |ξ||α−|n|
.

Since ψ̂(ξ) has rapid decay at infinity, if |R− |ξ|| ≤ 1 then

Rβ
∣∣∣B̂R(ξ)

∣∣∣ = ∣∣∣Ŝα
R(ξ) − ψ̂ ∗ Ŝα

R(ξ)
∣∣∣ ≤ ∣∣∣Ŝα

R(ξ)
∣∣∣+ ∣∣∣ψ̂ ∗ Ŝα

R(ξ)
∣∣∣

≤ 2αR−α |R− |ξ||α + 2αR−α

∫
Rd

(|R− ξ| + |ζ|)α
∣∣∣ψ̂ (ζ)

∣∣∣ dζ ≤ CR−α.
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Now consider the case |R− |ξ|| ≥ 1. Since ψ̂(ξ) has mean one and all other
moments are zero,

Rβ
∣∣∣B̂R(ξ)

∣∣∣ = ∣∣∣Ŝα
R(ξ) − ψ̂ ∗ Ŝα

R(ξ)
∣∣∣

=

∣∣∣∣∣∣
∫

Rd

(1 − |ξ − ζ|2 /R2
)α

+
−
∑

|n|<N

∂n

∂ξn

(
1 − |ξ|2 /R2

)α

+

(−ζ)n

n!

 ψ̂(ζ)dζ

∣∣∣∣∣∣
≤
∫
{|ζ|≥|R−|ξ||/2}

(
1 − |ξ − ζ|2 /R2

)α

+

∣∣∣ψ̂ (ζ)
∣∣∣ dζ

+
∑

|n|<N

1
n!

∣∣∣∣ ∂n

∂ξn

(
1 − |ξ|2 /R2

)α

+

∣∣∣∣ ∫
{|ζ|≥|R−|ξ||/2}

|ζn|
∣∣∣ψ̂ (ζ)

∣∣∣ dζ
+
∑

|n|=N

1
n!

sup
{|ζ|≤|R−|ξ||/2}

{∣∣∣∣ ∂n

∂ξn

(
1 − |ξ − ζ|2 /R2

)α

+

∣∣∣∣} ∫
{|ζ|≤|R−|ξ||/2}

|ζn|
∣∣∣ψ̂(ζ)

∣∣∣ dζ.
The integrals over {|ζ| ≥ |R− |ξ|| /2} can be estimated as follows:∫

{|ζ|≥|R−|ξ||/2}

(
1 − |ξ − ζ|2 /R2

)α

+

∣∣∣ψ̂ (ζ)
∣∣∣ dζ

≤ 2αR−α

∫
{|ζ|≥|R−|ξ||/2}

(|R− ξ| + |ζ|)α
∣∣∣ψ̂ (ζ)

∣∣∣ dζ
≤ 6αR−α

∫
{|ζ|≥|R−|ξ||/2}

|ζ|α
∣∣∣ψ̂ (ζ)

∣∣∣ dζ ≤ CR−α |R− ξ|−k
,

∣∣∣∣ ∂n

∂ξn

(
1 − |ξ|2 /R2

)α

+

∣∣∣∣ ∫
{|ζ|≥|R−|ξ||/2}

|ζn|
∣∣∣ψ̂ (ζ)

∣∣∣ dζ
≤ CR−α |R− |ξ||α−|n|

∫
{|ζ|≥|R−|ξ||/2}

|ζn|
∣∣∣ψ̂(ζ)

∣∣∣ dζ ≤ CR−α |R− ξ|−k
.

The integrals over {|ζ| ≤ |R− |ξ|| /2} and with |n| = N can be estimated as
follows:

sup
{|ζ|≤|R−|ξ||/2}

{∣∣∣∣ ∂n

∂ξn

(
1 − |ξ − ζ|2 /R2

)α

+

∣∣∣∣} ∫
{|ζ|≤|R−|ξ||/2}

|ζn|
∣∣∣ψ̂(ζ)

∣∣∣ dζ
≤ CR−α |R− |ξ||α−N

∫
Rd

|ζ|N
∣∣∣ψ̂(ζ)

∣∣∣ dζ ≤ CR−α |R− ξ|α−N
.

The desired result follows by taking N ≥ α+ k. �

As usual, it is convenient to replace the maximal operator supR>1 {|Bα
R ∗ f(x)|}

with a linearized version BR(x) ∗ f(x), with R(x) an arbitrary Borel function. In
what follows, the support of the distribution f (x) will play no role.

Lemma 6. If (d− 1) /4 ≤ α + β + γ ≤ (d− 1) /2, then there exists a constant
c > 0 with the property that for every distribution f(x) in Hγ

(
Rd
)
, for every Borel
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function R(x) > 1, and for every non negative finite Borel measure dµ(x),∫
Rd

∣∣BR(x) ∗ f(x)
∣∣ dµ(x)

≤ c

{∫
Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dx}1/2

{∫
Rd

∫
Rd

dµ(x)dµ(y)

|x− y|d−2(α+β+γ)−1

}1/2

.

Similarly, if α+ β + γ ≥ (d− 1) /2, then∫
Rd

∣∣BR(x) ∗ f(x)
∣∣ dµ(x)

≤ c

{∫
Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dx}1/2{∫

Rd

∫
Rd

dµ(x)dµ(y)
}1/2

.

Proof. If g(x) = BR(x) ∗ f(x)/
∣∣BR(x) ∗ f(x)

∣∣, then∫
Rd

∣∣BR(x) ∗ f(x)
∣∣ dµ(x)

=
∫

Rd

∫
Rd

g(x)B̂R(x)(ξ)f̂(ξ) exp (2πiξx) dξdµ(x)

≤
{∫

Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dξ}1/2

×

{∫
Rd

(
1 + |ξ|2

)−γ
∣∣∣∣∫

Rd

g(x)B̂R(x)(ξ) exp (2πiξx) dµ(x)
∣∣∣∣2 dξ

}1/2

.

Moreover, ∫
Rd

(
1 + |ξ|2

)−γ
∣∣∣∣∫

Rd

g(x)B̂R(x)(ξ) exp (2πiξx) dµ(x)
∣∣∣∣2 dξ

=
∫

Rd

∫
Rd

∫
Rd

(
1 + |ξ|2

)−γ

B̂R(x)(ξ)B̂R(y)(ξ) exp (2πi (x− y) ξ) g(x)g(y)dµ(x)dµ(y)dξ

≤
∫

Rd

∫
Rd

∣∣∣∣∫
Rd

(
1 + |ξ|2

)−γ

B̂R(x)(ξ)B̂R(y)(ξ) exp (2πi (x− y) ξ) dξ
∣∣∣∣ dµ(x)dµ(y).

Since B̂R(ξ) is a radial function, an integration in polar coordinates with the abuse
of notation B̂R(x)(ξ) = B̂R(x)(|ξ|) gives∫

Rd

(
1 + |ξ|2

)−γ

B̂R(x)(ξ)B̂R(y)(ξ) exp (2πi (x− y) ξ) dξ

=
∫ +∞

0

(
1 + ρ2

)−γ
B̂R(x)(ρ)B̂R(y)(ρ)

(∫
{|ϑ|=1}

exp (2πi (x− y) ρϑ) dϑ

)
ρd−1dρ

= (2π)d/2
∫ +∞

0

(
1 + ρ2

)−γ
B̂R(x)(ρ)B̂R(y)(ρ)

J(d−2)/2 (2π |x− y| ρ)
(2π |x− y| ρ)(d−2)/2

ρd−1dρ.
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The Bessel functions satisfy the estimates |Jν (z)| ≤ cmin
{
|z|ν , |z|−1/2

}
and, by

the previous lemma,
∣∣∣B̂R(ρ)

∣∣∣ ≤ cR−α−β (1 + |R− ρ|)−k for every k. Hence,

I (x, y) =

∣∣∣∣∣(2π)d/2
∫ +∞

0

(
1 + ρ2

)−γ
B̂R(x)(ρ)B̂R(y)(ρ)

J(d−2)/2 (2π |x− y| ρ)
(2π |x− y| ρ)(d−2)/2

ρd−1dρ

∣∣∣∣∣
≤ cR(x)−α−βR(y)−α−β

∫ +∞

0

min
{

1, (|x− y| ρ)−(d−1)/2
}

(1 + |R(x) − ρ|)k (1 + |R(y) − ρ|)k

(
1 + ρ2

)−γ
ρd−1dρ.

If k is large and if R(x) and R(y) are close to each other, R(x) ≤ R(y) ≤ 3R(x),
then

I (x, y) ≤ cR(x)d−2(α+β+γ)−1 min
{

1, (|x− y|R(x))−(d−1)/2
}
.

If R(x) and R(y) are far from each other, 3R(x) < R(y), then one can split the
domain of integration into 0 < ρ ≤ R(y)/2 and R(y)/2 ≤ ρ < +∞. In the first
interval, |R(y) − ρ| is essentially R (y), while in the second interval |R(x) − ρ| is
essentially larger than R (y). Thus one obtains

I (x, y) ≤ cR(x)d−1−2(α+β+γ) min
{

1, (|x− y|R(x))−(d−1)/2
}

+cR(y)d−1−2(α+β+γ) min
{

1, (|x− y|R(y))−(d−1)/2
}
.

In both cases, since (d− 1) /4 ≤ α+ β + γ ≤ (d− 1) /2,

I (x, y) ≤ cRd−1−2(α+β+γ) min
{

1, (R |x− y|)−(d−1)/2
}
≤ c |x− y|2(α+β+γ)+1−d

.

Similarly, if α+ β + γ ≥ (d− 1) /2, then |I (x, y)| ≤ c. �

Part (1) of Theorem 1 follows from Lemma 4 and Lemma 6.
The idea behind the proof of (2) is quite simple. Decompose BR ∗ f(x) as

BR ∗ Gγ ∗ G−γ ∗ f(x), with Gγ (x) the Bessel potentials defined by Ĝγ (ξ) =(
1 + |ξ|2

)−γ/2

. By Lemma 5, supR>0

{∣∣∣ ̂BR ∗Gγ(ξ)
∣∣∣} ≤ c |ξ|−α−β−γ and, since

|ξ|−α−β−γ is the Fourier transform of c |x|α+β+γ−d, one may guess that the maximal
function supR>0 {|BR ∗ f(x)|} is dominated by the fractional integral |G−γ ∗ f | ∗
|x|α+β+γ−d. Finally,∫

Rd

(∫
Rd

∣∣G−γ ∗ f(z)
∣∣ |x− z|α+β+γ−d

dz

)
dµ(x)

≤
{∫

Rd

∣∣G−γ ∗ f(z)
∣∣2 dz}1/2

{∫
Rd

∣∣∣∣∫
Rd

|x− z|α+β+γ−d
dµ(x)

∣∣∣∣2 dz
}1/2

=
{∫

Rd

∣∣G−γ ∗ f(z)
∣∣2 dz}1/2

×
{∫

Rd

∫
Rd

(∫
Rd

|x− z|α+β+γ−d |y − z|α+β+γ−d
dz

)
dµ(x)dµ(y)

}1/2

= c

{∫
Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dx}1/2

{∫
Rd

∫
Rd

dµ(x)dµ(y)

|x− y|d−2(α+β+γ)

}1/2

.



LOCALIZATION FOR RIESZ MEANS OF FOURIER EXPANSIONS 9

The details of the proof are more involved, and indeed we shall lose an ε of the
exponent. In particular, we shall prove that for every ε > 0 there exists a square
integrable function F (x) such that

sup
R>0

{|BR ∗ f(x)|} ≤ F ∗ |x|α+β+γ−ε−d
,{∫

Rd

|F (z)|2 dz
}1/2

≤ c

{∫
Rd

∣∣G−γ ∗ f(z)
∣∣2 dz}1/2

.

In what follows a few properties of Bessel kernels will be needed. If γ ≤ 0 then
Gγ(x) is a tempered distribution, while if γ > 0 then it is a positive integrable
function. Indeed, Gγ(x) can be subordinated to the heat kernel,

Gγ(x) =
∫

Rd

(
1 + |ξ|2

)−γ/2

exp (2πiξx) dx

= Γ (γ/2)−1
∫ +∞

0

(4πt)−d/2 exp
(
− |x|2 /4t

)
exp (−t) tγ/2−1dt.

From this representation it follows that when 0 < γ < d, then Gγ(x) blows up as
|x|γ−d at the origin and decays exponentially at infinity. When γ = d then Gd(x)
has a logarithmic singularity − log (|x|) at the origin, and when γ > d then Gγ(x)
is bounded. See [22, Chapter V].

Lemma 7. If 0 < ε < α+ β + γ, then there exists c > 0 such that

sup
R>1

{|BR ∗ f(x)|} ≤ cGα+β+γ−ε ∗
(

sup
R>0

{∣∣S0
R ∗Gε−γ ∗ f

∣∣}) (x).

Proof. Define

P (|ξ|) =
(
1 + |ξ|2

)(α+β)/2

B̂R(ξ),

Q(t) = S0
t ∗Gα+β ∗ f(x) =

∫
{|ξ|≤t}

(
1 + |ξ|2

)−(α+β)/2

f̂(ξ) exp (2πiξx) dξ.

Observe that P (t) is also a function of R, and Q(t) is also a function of x. Then

BR ∗ f(x) =
∫ +∞

0

P (t)dQ(t) = −
∫ +∞

0

Q(t)dP (t),

sup
R>1

{|BR ∗ f(x)|} ≤ sup
t>0

{|Q(t)|} sup
R>1

{∫ +∞

0

∣∣∣∣ ddtP (t)
∣∣∣∣ dt} .

As in Lemma 5, it can be proved that the integral of dP (t)/dt can be bounded
independently on R. Indeed, with a small abuse of notation,

d

dt
P (t) =

d

dt

(
R−β

(
1 + t2

)(α+β)/2
((

1 − t2/R2
)α
+
− ψ̂ ∗

(
1 − t2/R2

)α
+

))
= (α+ β)R−βt

(
1 + t2

)(α+β)/2−1
((

1 − t2/R2
)α
+
− ψ̂ ∗

(
1 − t2/R2

)α
+

)
−2αR−β−2t

(
1 + t2

)(α+β)/2
((

1 − t2/R2
)α−1

+
− ψ̂ ∗

(
1 − t2/R2

)α−1

+

)
.
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Observe that if α > 0 then
(
1 − t2/R2

)α−1

+
is integrable. Then, by an analog of

Lemma 5,

(α+ β)R−β

∫ +∞

0

t
(
1 + t2

)(α+β)/2−1
∣∣∣(1 − t2/R2

)α
+
− ψ̂ ∗

(
1 − t2/R2

)α
+

∣∣∣ dt ≤ cR−1,

2αR−β−2

∫ +∞

0

t
(
1 + t2

)(α+β)/2
∣∣∣(1 − t2/R2

)α−1

+
− ψ̂ ∗

(
1 − t2/R2

)α−1

+

∣∣∣ dt ≤ c.

Finally, since Gα+β(x) = Gα+β+γ−ε ∗ Gε−γ(x) and since Gα+β+γ−ε(x) is positive
when α+ β + γ − ε > 0,

sup
t>0

{|Q(t)|} = sup
R>0

{∣∣S0
R ∗Gα+β ∗ f

∣∣ (x)}
≤ Gα+β+γ−ε ∗

(
sup
R>0

{∣∣S0
R ∗Gε−γ ∗ f

∣∣}) (x).

�

Lemma 8. If ε > 0 then there exists c > 0 such that for every f(x),

∫
Rd

sup
R>0

{∣∣S0
R ∗Gε−γ ∗ f(x)

∣∣}2
dx ≤ c

∫
Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dξ.

Proof. One has to prove that if g(x) = Gε−γ ∗ f(x) then

∫
Rd

sup
R>0

{∣∣S0
R ∗ g(x)

∣∣}2
dx ≤ c

∫
Rd

(
1 + |ξ|2

)ε

|ĝ(ξ)|2 dξ.

Indeed it has been proved in [6] that more is true,

∫
Rd

sup
R>0

{∣∣S0
R ∗ g(x)

∣∣}2
dx ≤ c

∫
Rd

|ĝ(ξ)|2 log2
(
e+ |ξ|2

)
dξ.

See also [11], and [13] for a simple proof based on the Rademacher-Menshov theo-
rem. �

Lemma 9. For every square integrable function F (x), for every non negative finite
Borel measure dµ(x), and for every η > 0,

∫
Rd

|Gη ∗ F (x)| dµ(x) ≤
{∫

Rd

|F (x)|2 dx
}1/2{∫

Rd

∫
Rd

G2η(x− y)dµ(x)dµ(y)
}1/2

.
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Proof. If g(x) = Gη ∗ F (x)/ |Gη ∗ F (x)|, then∫
Rd

|Gη ∗ F (x)| dµ(x)

=
∫

Rd

∫
Rd

g(x)
(
1 + |ξ|2

)−η/2

F̂ (ξ) exp (2πiξx) dξdµ(x)

≤
{∫

Rd

∣∣∣F̂ (ξ)
∣∣∣2 dξ}1/2

{∫
Rd

∣∣∣∣∫
Rd

g(x)
(
1 + |ξ|2

)−η/2

exp (2πiξx) dµ(x)
∣∣∣∣2 dξ

}1/2

≤
{∫

Rd

|F (x)|2 dx
}1/2

×
{∫

Rd

∫
Rd

∣∣∣∣∫
Rd

(
1 + |ξ|2

)−η

exp (2πi (x− y) ξ) dξ
∣∣∣∣ dµ(x)dµ(y)

}1/2

=
{∫

Rd

∣∣∣F̂ (ξ)
∣∣∣2 dξ}1/2{∫

Rd

∫
Rd

G2η(x− y)dµ(x)dµ(y)
}1/2

.

�

The proof of (2) in Theorem 1 follows from Lemma 7, Lemma 8, and Lemma
9 with F (x) = supR>0

{∣∣S0
R ∗Gε−γ ∗ f

∣∣}, η = α + β + γ − ε, 0 < ε < α + β + γ.
It suffices to recall that if 0 < 2η < d then the Bessel kernel G2η(x) blows up as
|x|2η−d at the origin and decays exponentially at infinity.

Finally, (3) is a simple generalization of the classical Bochner result, which follows
from the estimate

|BR ∗ f(x)| =
∣∣BR ∗Gγ ∗G−γ ∗ f(x)

∣∣
≤
{∫

Rd

|BR ∗Gγ(x)|2 dx
}1/2{∫

Rd

∣∣G−γ ∗ f(x)
∣∣2 dx}1/2

=
{∫

Rd

(
1 + |ξ|2

)−γ ∣∣∣B̂R(ξ)
∣∣∣2 dξ}1/2{∫

Rd

(
1 + |ξ|2

)γ ∣∣∣f̂(ξ)
∣∣∣2 dξ}1/2

.

Indeed, it follows from Lemma 5 that if α+ β + γ ≥ (d− 1) /2, then

sup
R>0

{∫
Rd

(
1 + |ξ|2

)−γ ∣∣∣B̂R(ξ)
∣∣∣2 dξ}1/2

< +∞.

�

Proof of Corollary 2. In order to prove (1) or (2), it suffices to show that the max-
imal function supR>0

{
R−β |Sα

R ∗ f(x)|
}

cannot be infinite on subsets of Ω with
Hausdorff dimension larger than δ. A set of dimension η has infinite σ dimensional
measure for every σ < η and, by Frostman lemma, it supports a positive measure
with µ {|x− p| < r} ≤ rσ, and this measure has finite τ energy for every τ < σ.
See [16, Chapter 8]. It then suffices to apply part (1) or part (2) of Theorem 1 with
δ < τ < σ < η. Similarly, (3) follows from part (3) of the theorem. �

The proof of Theorem 3 is inspired by [15], which shows that for every set of
measure zero there is a continuous function with Fourier series diverging on it.
Some auxiliary results are needed. The first lemma states that a countable union
of sets of non localization is a set of non localization.
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Lemma 10. Let Ω be an open set, A a bounded open subset of Ω, and {Bn}+∞
n=1 a se-

quence of compact subsets of A, with distance (A, ∂Ω) > ε and distance (Bn, ∂A) >
ε, for some ε > 0. Assume that for every n there exists a square integrable function
hn(x) with support off Ω and with

sup
R>0

{
R−β |Sα

R ∗ hn(x)|
}

= +∞ for every x in Bn.

Then there exists a square integrable function f(x) with support off A and with

sup
R>0

{
R−β |Sα

R ∗ f(x)|
}

= +∞ for every x in ∪+∞
n=1 Bn.

Proof. Assume that in the sequence {Bn}+∞
n=1 each compact set is repeated infinitely

many times,

{B1, B2, B1, B2, B3, B1, B2, B3, B4, B1, B2, B3, B4, B5, ...} .

Also assume that
{∫

Rd |hn(x)|2 dx
}1/2

≤ 1. Let χ(ξ) be a radial non negative
smooth function, with 0 ≤ χ(ξ) ≤ 1, χ(ξ) = 1 if |ξ| ≤ 1/3 and χ(ξ) = 0 if |ξ| ≥ 2/3.
Decompose Sα

R(x) into UR(x) + VR(x), with

ÛR(ξ) = χ
(
R−1ξ

) (
1 − |ξ|2 /R2

)α

+
,

V̂R(ξ) =
(
1 − χ

(
R−1ξ

)) (
1 − |ξ|2 /R2

)α

+
.

Since ÛR(ξ) is smooth, UR(x) has fast decay at infinity, and for every x in Ω,

lim sup
R→+∞

{
R−β |UR ∗ hn(x)|

}
= 0.

Hence,
sup
R>0

{
R−β |VR ∗ hn(x)|

}
= +∞ for every x in Bn.

Set R0 = 1 and, by induction, define {τn}+∞
n=1, {Rn}+∞

n=1, by

τn > 3n, Rn > 12Rn−1,

sup
12Rn−1≤R≤Rn

{
R−β |VR ∗ hn(x)|

}
> τn for every x in Bn.

Also define {kn(x)}+∞
n=1 by

k̂n(ξ) =
(
χ
(
(3Rn)−1

ξ
)
− χ

(
(6Rn−1)

−1
ξ
))

ĥn(ξ).

Observe that {∫
Rd

|kn(x)|2 dx
}1/2

≤
{∫

Rd

|hn(x)|2 dx
}1/2

.

Also observe that

χ
(
(3Rn)−1

ξ
)
− χ

(
(6Rn−1)

−1
ξ
)

=
{

0 if |ξ| ≤ 2Rn−1 or |ξ| ≥ 2Rn,
1 if 4Rn−1 ≤ |ξ| ≤ Rn.

Hence, if 12Rn−1 ≤ R ≤ Rn, then

VR ∗ km(x) =
{
VR ∗ hn(x) if m = n,
0 if m ̸= n.
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Fix a smooth function ψ (x) with support in Ω, with ψ (x) = 1 if x is in A and
ψ (x) = 0 if distance {x,A} ≥ ε/2. Define

f(x) =
+∞∑
n=1

2−n (1 − ψ (x)) kn(x), g(x) =
+∞∑
n=1

2−nψ (x) kn(x).

In order to prove that R−β |VR ∗ f (x)| is unbounded on ∪+∞
n=1Bn, it suffices to

show that R−β |VR ∗ (f + g) (x)| is unbounded on ∪+∞
n=1Bn, while R−β |VR ∗ g (x)|

is bounded everywhere. If 12Rn−1 ≤ R ≤ Rn, then

VR ∗ (f + g) (x) = VR ∗

(
+∞∑
m=1

2−mkm

)
(x) = 2−nVR ∗ hn(x).

Hence,

sup
12Rn−1≤R≤Rn

{
R−β |VR ∗ (f + g) (x)|

}
> 2−nτn for every x in Bn.

Finally, since in {Bn}+∞
n=1 each compact set is repeated infinitely many times,

sup
R>0

{
R−β |VR ∗ (f + g) (x)|

}
= +∞ for every x in ∪+∞

n=1 Bn.

Now estimate VR ∗ g (x). If HR(x) = RdH(Rx) is the kernel associated to the
multiplier χ

(
R−1ξ

)
, then

VR ∗ g (x) =
+∞∑
n=1

2−n

∫
Rd

(∫
Rd

VR (x− y)H3Rn
(y − z)ψ (y) dy

)
hn(z)dz

−
+∞∑
n=1

2−n

∫
Rd

(∫
Rd

VR (x− y)H6Rn−1 (y − z)ψ (y) dy
)
hn(z)dz.

The two series are similar and it suffices to consider the first one. In order to
estimate the inner integral, fix an integer j and define a new kernel WR (x) =
RdW (Rx) by

ŴR(ξ) =
(
4π2

∣∣R−1ξ
∣∣2)−j (

1 − χ
(
R−1ξ

)) (
1 − |ξ|2 /R2

)α

+
.

If ∆ = −
∑d

i=1 ∂
2/∂x2

i is the Laplace operator, then VR (x) = R−2j∆jWR (x) and
an integration by parts gives∫

Rd

VR (x− y)H3Rn (y − z)ψ (y) dy

= R−2j

∫
Rd

∆jWR (x− y)H3Rn (y − z)ψ (y) dy

= Rd−2j (3Rn)d
∫

Rd

W (R (x− y))∆j (H (3Rn (y − z))ψ (y)) dy.

First of all, |W (R (x− y))| ≤ c. Moreover, since the function ψ (y) is smooth with
compact support and since all derivatives of the kernel HR (x) have fast decay at
infinity, for every r > 0 one has∣∣∆j (H (3Rn (y − z))ψ (y))

∣∣ ≤ cR2j−r
n |y − z|−r

.
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Since ψ (y) has support in {distance {y,A} ≤ ε/2}, this implies that∣∣∣∣∫
Rd

VR (x− y)H3Rn (y − z)ψ (y) dy
∣∣∣∣

≤ cRd−2jRd+2j−r
n

∫
{distance{y,A}≤ε/2}

|y − z|−r
dy.

Hence, if j ≥ (−β + d) /2 and r ≥ d+ 2j,

R−β |VR ∗ g (x)|

≤ c

+∞∑
n=1

2−n

∫
Rd

(∫
{distance{y,A}≤ε/2}

|y − z|−r
dy

)
|hn(z)| dz

≤ c
+∞∑
n=1

2−n


∫

Rd−Ω

∣∣∣∣∣
∫
{distance{y,A}≤ε/2}

|y − z|−r
dy

∣∣∣∣∣
2

dz


1/2{∫

Rd

|hn(z)|2 dz
}1/2

≤ c.

�

The second result needed in the proof of Theorem 3 is a construction of bump
functions supported in long and thin tubes, with Riesz means suitably large in
disjoint adjacent tubes. The following lemma is similar to Lemma 1 in [8].

Lemma 11. Let φ (x) be a smooth bump function supported in {|x| < 1}, and
let φR (x) = exp (2πiRx1)φ

(
x1 − 3, R1/2x′

)
, where R > 1 and x = (x1, x

′) ∈
R × Rd−1. Then the following hold:

(1) The function φR (x) has support in the tube {|x1 − 3| ≤ 1, |x′| ≤ R−1/2}.
(2) There exists a constant C > 0 such that in the tube {|x1| ≤ 1, |x′| ≤ R−1/2},

|Sα
R ∗ φR (x)| ≥ CR−α.

(3) For every k > 0 there is a constant c such that for all x,

|Sα
R ∗ φR(x)| ≤ cR−α

(
1 +R1/2 |x′|

)−k

.

(4) For every k > 0 there is a constant c such that for all |x| < 1 and T/R /∈
(1/2, 2),

|Sα
T ∗ φR(x)| ≤ c (max {R, T})−k

.

Proof. The kernel Sα
T (x) oscillates as T (d−1)/2−α |x|−α−(d+1)/2 exp (2πiT |x|), and

when |x| < 1 then Sα
T ∗ φR(x) is essentially

R−(d−1)/2T (d−1)/2−α

∫
Rd

φ (y1 − 3, y′) exp
(

2πi
(
Ry1 + T

√
(x1 − y1)

2 +
∣∣x′ −R−1/2y′

∣∣2)) dy.
The phase y  Ry1 + T

√
(x1 − y1)

2 +
∣∣x′ −R−1/2y′

∣∣2 has critical points in the
support of φ (y1 − 3, y′) only if R = T and |x′| ≤ R−1/2, and the lemma follows
from standard estimates for oscillating integrals. �

Proof of Theorem 2. With the notation of the above lemma, φR(x) is square inte-
grable with norm about R−(d−1)/4 and support in {|x1 − 3| ≤ 1, |x′| ≤ R−1/2},
and |Sα

R ∗ φR(x)| ≥ cR−α in {|x1 − 3| ≤ 1, |x′| ≤ R−1/2}. Hence, if f(x) =
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n=1 n

−22n(d−1)/4φ2n(x), then f(x) is square integrable with support in {|x1 − 3| ≤
1, |x′| ≤ 1}. Moreover, if |x1 − 3| ≤ 1, x′ = 0, R = 2m, then

R−β |Sα
R ∗ f (x)|

≥ m−22m((d−1)/4−β) |Sα
2m ∗ φ2m (x)| − 2−βm

∑
n ̸=m

n−22n(d−1)/4 |Sα
2m ∗ φ2n (x)|

≥ cm−22m((d−1)/4−α−β) − c2−βm
∑
n̸=m

n−22n(d−1)/4 (max {2m, 2n})−k
.

Hence if α+ β < (d− 1) /4 then supR>0

{
R−β |Sα

R ∗ f(x)|
}

= +∞ on the segment
{|x1| ≤ 1, |x′| = 0}. This shows that when α + β < (d− 1) /4, the sets of non
localization can have dimension 1.

The construction of sets of non localization with dimension δ > 1 is similar,
only more complicate. Let {βn} be a positive sequence tending very slowly to
infinity and let {θn} be a positive sequence such that

∑+∞
n=1 βnθ

1/2
n converges. By

hypothesis, one can find a countable family of tubes F = {Tj}, with axis parallel
to the first coordinate axis and of length 1, and with

∑+∞
j=1 w(Tj)δ−1 ≤ εθ1, where

w(Tj) denotes the cross section diameter of the tube Tj and ε is a small dimensional
constant. One can also assume that F covers E infinitely often, and also that
the sequence {w(Tj)} is non increasing. We want to decompose the set E into
a finite union of sets

{
El
}

with a sort of Cantor structure. For a large constant
M , altering ε by a dimensional constant one may assume that each Tj has size
1×M−k×M−k · · ·×M−k, for some integer k which depends on the tube. Moreover,
one may assume that if two tubes have the same cross section M−k, then they are
disjoint. Let D be a large constant. We partition F into subfamilies {Fl}Dd−1

l=1 with
the property that parallel congruent tubes in any Fl of any given size are separated
by a factor D times their cross section. Let El be the set of those x ∈ E which are
in infinitely many members of Fl. Since every x ∈ E is in infinitely many members
of F , each x ∈ E belongs to some El. Since finite unions of sets of divergence are
sets of divergence, it suffices to show that each El is a set of divergence.

Rename a typical El as E. Now let {jm} be a subsequence of N such that∑+∞
j=jm

w(Tj)δ−1 ≤ θm. Also let Am = {jm, jm + 1, . . . , jm+1 − 1}, Tm = {Tj :
j ∈ Am}, and Em = ∪j∈AmTj . Since the w(Tj) are decreasing, by replacing the
sequence {jm} by one tending more rapidly to infinity, one can assume that no two
congruent tubes lie in different Tm’s. Now let T be any tube of width w(T ) = R−1/2,
and denote by φT (x) the translation of the function exp (2πiRx1)φ

(
x1 − 3, R1/2x′

)
from the above lemma which is adapted to the tube T + (3, 0). For every m, there
is a choice of ± such that

∫
Rd

∣∣∣∣∣ ∑
T∈Tm

±w(T )−2(α+β)φT (x)

∣∣∣∣∣
2

dx ≤
∑

T∈Tm

∫
Rd

∣∣∣w(T )−2(α+β)φT (x)
∣∣∣2 dx

≤ C
∑

T∈Tm

w(T )d−1−4(α+β) ≤ C
∑

T∈Tm

w(T )δ−1 ≤ Cθm.

Set fm (x) =
∑

T∈Tm
±w(T )−2(α+β)φT (x) for that choice of ±. Then for each

x ∈ Em, there is a Tx such that x ∈ Tx ∈ Tm, Tx has size 1 ×R−1/2 × · · · ×R−1/2
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for some R depending on x and m and, by the above lemma,

|Sα
R ∗ fm(x)| ≥ CR−αw(Tx)−2(α+β) = Rβ .

Moreover, if n ̸= m then the members of Tn differ in cross-sectional diameter
from those of Tm by a multiplicative factor of at least M |n−m| and Sα

R ∗ fn(x)
is negligible. Set f (x) =

∑+∞
n=1 βnfn (x). Then f (x) is square integrable with

support disjoint from {|x| < 1}. Moreover by the previous remarks, if x ∈ Em,
there is an R such that R−β |Sα

R ∗ f(x)| ∼ βmR
−β |Sα

R ∗ fm(x)| ≥ Cβm, provided
the sequence {βn} goes to infinity very slowly. Now if x ∈ E, there is a sequence mk

such that x ∈ ∩+∞
k=1Emk

, thus there is a sequence Rmk
, depending on x, such that

R−β
mk

∣∣∣Sα
Rmk

∗ f(x)
∣∣∣ ≥ Cβmk

for all k, and so supR>0

{
R−β |Sα

R ∗ f(x)|
}

= +∞. �

We would like to conclude with a couple of remarks.
There is a sort of analogue of the above pointwise localization for localization

in norm. If a square integrable function vanishes in an open set, then the Riesz
means converge inside this set with respect to some L(p) norm with p > 2. In-
deed, using the decomposition of the kernel associated to the Riesz means into a
kernel with compact support ψ(x)Sα

R(x) and a kernel with small Fourier transform
(1 − ψ(x))Sα

R(x) and some restriction properties of Fourier transforms to surfaces
with positive Gauss curvature, [23, Chapter VIII], one can prove that if a square
integrable function f(x) vanishes in an open set Ω, then

lim
R→+∞

R−β

{∫
{x∈Ω, distance{x,∂Ω}>ε>0}

|Sα
R ∗ f(x)|p dx

}1/p

= 0,

where {
α+ β = (d− 1) (p− 2) /4p if 2 ≤ p ≤ (2d+ 2) / (d− 1) ,
α+ β = (d− 1)/2 − d/p if (2d+ 2) / (d− 1) ≤ p ≤ +∞.

In particular, observe that when α + β ≥ (d− 1) /2 then one can take p = +∞,
which is Bochner result.

Finally, some of the above results for trigonometric expansions on Euclidean
spaces can be easily transferred to eigenfunction expansions on manifolds. See for
example [4, 21] for a wave equation approach to this transference.
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