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Abstract6

Measurement uncertainty of atmospheric profiles obtained by radiosoundings

is crucial in climate change studies. This paper shows how the understanding

of geographic gaps of radiosonde networks calls for a functional approach

able to handle spatio-temporal profile data, and related complexity issues

are addressed.
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1. Introduction8

Measurement system uncertainty in climate data records (CDRs) and9

its impact in climate change assessment has been raised by various climate10

scientists and metrologists. This is especially true for observations of temper-11

ature and humidity provided by radiosoundings. Addressing this issue, the12

GRUAN reference measurement network (GCOS Reference Upper-Air Net-13

work, www.gruan.org) has been established, and started to provide valuable14

contribution to the understanding of measurement uncertainty, see Bodeker15

et al., 2016. Although GRUAN gives fully traceable measurements, its geo-16
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graphic and historical coverage is quite limited. For this reason climatological17

studies are largely based on baseline measurement networks, which have an18

intermediate metrological quality but a larger spatio-temporal coverage.19

In perspective, integrated data sets will include both ground based and20

satellite observations of land, sea and atmosphere. Moreover ensembles, ob-21

tained by various simulation techniques, are of increasing importance to de-22

scribe uncertainty. Hence, considering the data growth rate we are facing,23

the size of such data sets is fast increasing from the order of terabytes to24

petabytes. This frame requires a new cooperation effort to elaborate new25

multi-discipli nary approaches and services for different types of users. Hence,26

the integration of atmospheric, metrology, statistical and computer sciences27

is considered a fruitful route to fully exploit the available historical CDRs of28

several Essential Climate Variables (ECVs) collected by satellite observations29

platforms and by ground based networks operating at the global scale.30

In this frame the uncertainty of baseline networks is a challenging issue31

and the present paper aims at being a step to face this problem. In partic-32

ular geographic gaps of temperature and humidity radiosonde networks are33

discussed and the need for advanced statistical methods is illustrated.34

The rest of the paper is organized as follows. In Section 2 ongoing projects35

involving production and analysis of climate data sets in general and in par-36

ticular radiosoundings are discussed and showed to call for new statistical37

developments. Section 3 considers spatio-temporal modeling for functional38

data in connection to network gap identification. Moreover Section 4 deepens39
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some computational issues related to data and model size.40

2. Data sets and projects41

Copernicus is the European union’s Earth observation programme (www.-42

coopernicus.eu). Its aim is to help in understanding how our planet and its43

climate are changing, the role played by human activities in these changes44

and how these will influence our daily lives. To do this Copernicus is involved45

in a complex set of systems, which collect data from multiple sources: earth46

observation satellites and in situ sensors such as ground stations, airborne47

and sea-borne sensors. It processes these data and provides users with reliable48

and up-to-date information through a set of services related to environmental49

and security issues.50

In particular, the Copernicus Climate Change Service (C3S), which is op-51

erated by the European Centre for Medium-range Weather Forecasts (ECMWF,52

www.ecmwf.int), will provide comprehensive climate information covering53

a wide range of components of the Earth-system and timescales spanning54

decades to centuries. It will maximise the use of past, current and future55

earth observations (from in-situ and satellite observing systems) in conjunc-56

tion with modeling, supercomputing and networking capabilities. This will57

produce a consistent, comprehensive and credible description of the past,58

current and future climate.59

Various other projects developed in the frame of the Horizon 2020 pro-60

gram have been the scientific precursors of C3S. In particular Fiduceo (Fi-61
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delity and Uncertainty in climate data records from Earth Observations,62

www.fiduceo.eu) aims at bringing insights from metrology to the observation63

of Earth’s climate from space (Merchand et al. 2017). Moreover, GAIA-64

CLIM (Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring,65

www.gaia-clim.eu) aims at understanding gaps in integrated monitoring of66

upper troposphere and to improve our ability to use ground-based and sub-67

orbital observations to characterise satellite observations for a number of68

atmospheric ECVs, see Thorne et al., 2017. In fact despite that satellite69

Earth observation technology has undoubtedly facilitated the development70

of global climate change research, ground-based networks such as radiosonde71

networks are required to identify biases and issues in the satellite CDRs.72

Therefore, radiosonde observations remain an essential component of the ob-73

serving system of systems. In this frame, geographic gaps are characterized74

by poor spatial coverage of a monitoring network.75

On their turn, to represent a reliable and effective reference informa-76

tion all of these conventional anchor data sources must be harmonized and77

homogenized to achieve physical consistency of the decadal time series. Ho-78

mogeneization, is essentially change detection and adjustment of data for79

any kind of known and quantifiable inhomogeneities (bias, change of sensors,80

calibration drift, local environment changes etc). Homogeneization meth-81

ods have been developed for radiosonde has a long history, see for example82

Haimberger et al. (2012), Thorne et al. (2011) and Sherwood et al. (2008) .83

Although the statistical interpretation of these methods is very interesting,84
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is omitted here for brevity. Harmonization is involved with the traceable85

characterization of the total uncertainty budget. For example the harmo-86

nization of temperature and humidity CDRs is one of the funded activity by87

C3S under contract C3S 311a Lot3 (Madonna et al., 2017), and may benefit88

from the geographic gap analysis discussed in this paper.89

3. Statistical issues and modeling90

One of the objectives of GAIA-CLIM project is to understand the in-91

formation content of ground based monitoring networks and to identify geo-92

graphic gaps of these networks. We focus here on the network of the Universal93

RAwinsonde OBservation program or simply RAOB (www.raob.com), which94

has a global coverage with about 2400 stations and some decades with bi-95

daily prevailing temporal frequency. This type of baseline networks are also96

involved in the C3S harmonization problem.97

From the statistical point of view, Fassò et al. 2014 and Ignaccolo et98

al., 2015, showed that atmospheric soundings may be conveniently described99

as functional data using appropriate basis function expansion, at least when100

these data can be handled as independent replications of the same model. In101

case of global networks spatial and temporal correlation must be considered.102

Various functional models have been considered for spatio-temporal data103

where usually time dynamics is embedded in the functional object, see e.g.104

Menafoglio et al. (2013) and Mateu and Romano (2017) and references105

therein for recent advances in the field.106
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The idea of spatially correlated functional data (e.g. Delicado et al., 2010,107

and Ruiz-Medina, 2012) may be extended, to handle a manifold domain such108

as the sphere and the temporal dimension (e.g. Porcu et al., 2016). Although109

the idea of modeling these data as spatio-temporally correlated functional110

data is quite natural, from the point of view of probability theory, this ob-111

ject may be considered as a stochastic process defined on sphere × time with112

values in a functional space. Alternatively, it may be considered as a stochas-113

tic process defined on a spherical shell × time with scalar values. In both114

cases, the full characterization of the underlying stochastic process is still115

under study, including the definition of flexible families of valid covariance116

functions (Porcu, 2017, private communication).117

Taking into account computational burden and data dimensionality, the118

statistical model needs to be simple enough. Various solutions for modeling119

large spatial datasets have been proposed including nearest neighbor models120

(Vecchia, 2008, and Datta et al., 2016). A first step in computation reduc-121

tion is to use separable models with discrete time, possibly after adjusting122

for relevant trends. Following this approach, maximum likelihood estimation123

can be based on the EM algorithm extending the multivariate dynamic core-124

gionalization model (Finazzi and Fassò, 2014 and Calculli et al., 2011). This125

can be easily done by applying a multivariate spatio-temporal model to the126

coefficients of the basis function expansion. In some sense this approach is127

close to kriging for function-valued data discussed by Delicado et al. (2010).128

A relevant difference is related to the smoothing factor used to obtain the129
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basis function coefficients: while in Delicado et al. (2010) a crossvalidation130

approach based on spatial prediction is used, for RAOB data, Fassò et al.131

(2017) proposed a criterion deploying metrological concepts, namely optimiz-132

ing the approximation to the high quality GRUAN reference network data.133

Moreover this approach is easily coupled with extensions of block tapering134

as discussed in Section 4.135

Using an appropriate spatio-temporal statistical model, a monitoring net-136

work geographic gap may be defined as a region where the uncertainty of the137

spatial forecast is larger than a threshold. The threshold may be based on138

statistical and/or metrological considerations. Since the variability of the139

spatial forecast error is influenced by the atmospheric variability, such a con-140

founder may be controlled by adjusting for the effect of meteorology. A viable141

solution is to use the output of a numerical weather prediction model or a142

re-analysis such as ERA-Interim (Dee et al., 2011) as a model covariate, in143

fact these data are available with a reasonable resolution (about 80x80km144

grid) both on the RAOB stations for estimation and in the rest of the Earth145

for forecast.146

4. High dimensionality challenges147

The prediction problem of previous section is inherently high-dimensional148

due to the fact that the number q of coefficients per profile can be high,149

q > 15 say. In turn, it follows that the variance covariance matrices involved150

in model estimation are large, even when the number of stations is not very151
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large. The problem becomes even bigger if multiple ECVs are jointly modeled152

to improve prediction, in which case the basis function coefficients add up.153

Modeling spatio-temporal correlations across coefficients is not trivial,154

especially when the support is complex and the underlying process is non-155

stationary and anisotropic. In particular, the spatial correlation needs to156

be valid for the spherical shell and in the multivariate case. The problem157

becomes simpler if the statistical model includes a re-analysis model output158

as discussed in the previous section. In this case, stationarity and a reduced159

spatio-temporal correlation range are less strong assumptions.160

Even when simple covariance functions are adopted, the estimation of the161

model parameters is computationally demanding in the multivariate case.162

For instance, a simple linear coregionalization model requires to estimate the163

parameter of a common correlation function and the elements of a correla-164

tion matrix the dimension of which is q×q. This calls for efficient estimation165

methods when the model parameters are estimated using MCMC or the EM166

algorithm. In general, computational efficiency is attained allowing large167

matrices to be sparse without loosing unbiasedness and consistency of the168

estimators. Kaufmann et al., 2008 proposed covariance tapering. This ap-169

proach allows to control the matrix sparsity but may have poor estimation170

properties as shown by Stein (2013), which suggested the simpler and better171

approach called block-tapering. In this case, the spatial locations are di-172

vided into blocks and each block contributes independently to the likelihood173

function. This allows to work with smaller matrices and to obtain consistent174
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estimates speeding up the computation.175

For spatio-temporal models with multivariate response, block-tapering176

may be extended from spatial blocks to spatio-temporal blocks and/or to177

spatio-temporal-response dimension blocks. As a result, in applications in-178

volving complexity similar to RAOB data set under consideration, computa-179

tion time may be reduced by 10-20 times.180

Although straightforward and easy to be implemented, the block-tapering181

approach still requires a more in-depth study about how it affects the esti-182

mation of the model parameters. Open questions includes the optimal def-183

inition of block sizes and block allocation. Additionally, attention must be184

paid when block-tapering is applied to the multivariate case. Matrices must185

be constructed in such a way that all the model parameters are identifiable186

when blocks are defined. Again, care must be taken when multiple ECVs187

are considered and the monitoring networks are unbalanced. Blocks must be188

defined in a way that the cross-correlation between ECVs can be consistently189

estimated. Finally, if the latent processes are non-stationary and anisotropic,190

the way block are defined may affect the estimation of the model parameters191

that control the nonstationarity and/or the anisotropy.192

In our opinion, block-tapering is appealing since it does not require to193

alter the definition of the latent processes and the likelihood function simply194

factorizes across the blocks, allowing model estimation to be accomplished195

faster. On the other hand, effort must be spent to carefully defines blocks,196

possibly in an adaptive manner during the parameter estimation.197
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