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Abstract

In air pollution studies a key issue concerns the change of support: pol-
lutant concentrations are continuous phenomena in space but their measure-
ments are typically available at a finite number of point-referenced monitoring
stations or result from numerical models. When linking exposure to health
outcomes, the latter are usually available at administrative level, hence on
an irregular lattice, providing challenges in terms of data misalignment.

In this paper we tackle the change of support problem for air pollution
and health studies through a two-stage Bayesian approach; in the first stage
our model estimates the air pollution concentration at the area level and then
in the second stage it links the exposure to the health outcome, accounting
for the uncertainty on the exposure estimates. We show through an extensive
and realistic simulation that our model is able to predict the concentration
accurately at the administrative level as well as estimate the association be-
tween exposure and health outcome. We use the Integrated Nested Laplace
Approximation, coupled with the Stochastic Partial Differential Equation
method for model implementation. Finally we apply the proposed model to
evaluate the effect of NOy concentration on hospital admissions for respira-
tory diseases in the Piemonte region (Italy). We found that the upscaling
method and the approach used to propagate uncertainty from the first to the
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second stage has an impact on the posterior distribution of the relative risk.
Moreover, we found a significant increased risk of 1.6% and 1.8% associated
to an increase of 10 pug/m?® in NO, concentration.

Keywords: Spatial misalignment; Integrated Nested Laplace
Approximation (INLA); Stochastic Partial Differential Equations (SPDE);
Hierarchical modeling; Uncertainty propagation; Air pollution

1. Introduction

Air pollution is both an environmental and social criticality and it rep-
resents the single largest environmental health risk in Europe today (Lim
et al., 2012). The recent report of the European Environmental Agency
(EEA, 2017a) states that 19% of the urban population in the EU-28 was
exposed in 2015 to PMy, (particulate matter with an aerodynamic diame-
ter of less than 10 pm) concentrations above the EU daily limit value of 50
pg/m3; the same percentage rises to 53% if the WHO stricter threshold (set
to 20 pg/m?) is considered. The same report states that 9% of the EU-28 ur-
ban population lived in areas with concentrations of NOy (nitrogen dioxide)
exceeding the annual EU limit value of 40 ug/m? in 2015.

In terms of health impact, in 2014 long-term exposure to PM, 5 was re-
sponsible for about 428,000 premature deaths in Europe (of which around
399,000 were in the EU-28), mainly due to heart and lung diseases (EEA,
2017a), while NO; concentration accounted for about 78,000 premature deaths
per year (about 75,000 in the EU-28). A large number of epidemiological
studies have shown short and long term effects of air pollution on mortality
(see for instance Raaschou-Nielsen et al. 2012; Faustini et al. 2014; Atkinson
et al. 2016; Halonen et al. 2016; Carugno et al. 2016) or hospital admissions
(among the others see for instance Halonen et al. 2016; Carey et al. 2016;
Sanyal et al. 2018). Recently some work has appeared suggesting even a
link with drug prescriptions for chronic diseases like asthma and COPD, in a
primary care perspective (Blangiardo et al., 2016; Lee, 2018). Air pollution
has also a considerable economic impact in terms of increased medical costs,
reduced productivity and decrease in crop yields: the OECD estimates that
these costs will gradually increase to 1% of global worldwide GDP (around
USD 2.6 trillion annually) by 2060 (OECD, 2016).

Substantive methodological work has been published to assess the pres-
ence of health effects associated with air pollution, including cohort, time
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series and small area studies (e.g. see the recent review by Bruno et al.,
2016). In this paper we focus on the latter case and consider ecological spa-
tial regression models for aggregated health data consisting of mortality or
morbidity counts at the small area level (typically administrative, e.g. elec-
toral wards, district, etc.) together with pollutant measurements available
for a set of monitoring stations or grid cell centroids.

In this modeling framework the first statistical challenge regards the spa-
tial misalignment between health and exposure data, with the consequence
that pollutant concentration has to be upscaled at the area level, while being
measured at a finite number of point-referenced monitoring stations, a pro-
cedure known as change of support (Gelfand, 2010). The simplest solution
consists in averaging the concentration point measurements available for each
area, possibly using distance- or population-based weights (e.g. Elliott et al.,
2007; Madsen et al., 2008; Young et al., 2009). However this approach is not
feasible where the network is sparse, i.e. there are areas without monitoring
stations, or when the considered pollutants show a strong spatial heterogene-
ity. As a solution, it is possible to estimate the area-level concentration by
computing weighted averages over grid level concentrations available from
deterministic atmospheric dispersion models (see e.g. Bell, 2006; Rushworth
et al., 2014; Lee and Sarran, 2015). Alternatively, in a model-based per-
spective, a spatial statistical model can be built which combines pollutant
measurements from stations with the output of numerical dispersion models
in a data fusion approach (see for instance Fuentes et al., 2006; Peng and Bell,
2010; Sahu et al., 2010; Berrocal et al., 2010; Pannullo et al., 2015; Moraga
et al., 2017). Under this modeling framework, beside accounting for spatial
correlation and measurement error, it is easy to include additional covariates
like meteorological variables. In this paper we adopt a model-based approach
and we deal with the spatial misalignment by computing concentration at the
area level through a weighted mean with two different types of weights (lin-
ear combination with neighbourhood intersections or simple mean). This
approach requires to use the exposure model to obtain predictions for a set
of points belonging to a regular grid which covers the region of interest.

The second statistical challenge concerns how to link the exposure with
the health outcomes. Commonly a two-stage approach is used: the pollutant
concentrations estimated at the first stage are then averaged at the level of
the irregular lattice where the health data are available; then the posterior
mean or median for each area is included as covariate in the second stage (see
e.g. Lee and Shaddick, 2010; Huang et al., 2015; Lee et al., 2015; Pannullo

3
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et al., 2016; Liu et al., 2016). The advantage of this approach is mainly
computational since the exposure and health models are fitted separately.
The crucial issue with a two-stage approach is that it typically treats the
area predicted exposures as known and constant, without accounting for the
uncertainty in the prediction of the first stage. This may result in overprecise
estimates of the risk effect associated to air pollution concentration, or even
biased results if the exposure is also assumed to suffer from measurement
error.

Some solutions have been recently proposed in the literature and re-
gard the propagation of the uncertainty from the first to the second stage
through: ) multiple simulation of exposure values (from the pollutant con-
centration posterior predictive distributions) followed by iterative fits of the
health model (Blangiardo et al., 2016; Liu et al., 2016; Lee et al., 2017); i)
considering the exposure as a random variable in the health model with an
informative prior obtained from the posterior distributions of the exposure
model (Warren et al., 2012; Powell and Lee, 2014; Lee et al., 2017; Huang
et al., 2017). However no papers have explicitly compared the performance
of these different strategies to account for uncertainty from the exposure into
the health model.

In this paper we are framed in the same perspective as Liu et al. (2016)
and Lee et al. (2017), and build a two-stage model to predict air pollution
at a regular grid and to evaluate its health effects at small (administrative)
area level. In particular in the first stage we estimate the pollutant concentra-
tion via the integration of data from monitoring stations as well as numerical
model output and additional covariates, while in the second stage we link the
estimated exposure to the health outcome. The novel aspect of the paper
consists in the thorough evaluation of the impact of the averaging from grid to
small area on the exposure estimates as well as of the uncertainty propagation
from stage 1 to stage 2 of the modeling framework on the health outcomes. In
order to do so we develop an extensive and realistic simulation study, which
we believe will be useful for other researchers working on environmental and
health studies at the area level. We then use the proposed framework to study
the relationship between NO, concentration and hospitalisations for respira-
tory causes for each communality of the Piemonte region (Italy) for the year
2011. We implement the two-stage model by means of the Integrated Nested
Laplace Approximation (INLA; Rue et al., 2009) and Stochastic Partial Dif-
ferential equations (SPDE; Lindgren et al., 2011) approach, as a computa-
tionally effective alternative to the standard approach based on Markov chain

4
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Monte Carlo methods (MCMC). The R code to reproduce the simulation anal-
ysis is available at https://github.com/michelacameletti/INLA_COSP.

The rest of the paper is structured as follows: in section 2 we introduce
the case study on air pollution and hospital admissions in the Piemonte re-
gion in Italy; in section 3 we present the modeling framework, while section
4 briefly describes the INLA-SPDE approach used for the implementation.
Section 5 introduces the simulation design and presents its results, then sec-
tion 6 presents the results of the real data application on NO, and hospital
admissions in Piemonte, while in section 7 we raise discussion points and
concluding remarks.

2. Motivating problem: air pollution and hospitalizations in Pie-
monte regions, Italy

Piemonte is located in the North-Western part of Italy (see Figure 1,
left). Together with Lombardia, Veneto and Emilia Romagna, it is part of
the Po Valley, a densely populated and heavily industrialised area located
at the footstep of the Alps and characterized by a wide variety of pollution
sources mainly related to traffic, domestic heating, farming activities, etc.
Its particular geographic position, with the Alps acting like a shelter, leads
to frequent occurrence of stagnant meteorological conditions with absence of
wind and reduction of pollutant dispersion. For these reasons, Po Valley has
been identified as one of the most polluted European regions where pollutant
standards, set for human health protections, are regularly exceeded (EEA,
2017a,b).

For this work we consider the annual NO, mean concentrations (in pg/m?)
for 2011, obtained from the 55 monitoring stations depicted with red (for
training sites) and green (for validation sites) points in the left plot of Figure
1. NOy values range from 16 to 71.88 pg/m? with a median of 35.63 ug/m?.
In order to make the distribution of NO, approximately normal, we use a
logarithmic transformation. In addition, in the exposure model the follow-
ing covariates are considered: precipitation (in mm), mixing height (in m),
temperature (in K), windspeed (in m/s) and NOy emissions (in g/s), that
are obtained from a nested system of deterministic computer-based models
implemented by the environmental agency ARPA Piemonte. These deter-
ministic models provide data at the monitoring station sites and for all the
points of a 4 km x 4 km grid covering Piemonte region (Cameletti et al.,
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2011, 2013). This grid, which has a resolution of 56 x 72 = 4032 points (see
the blue points in Figure 1, left) will be used for spatial prediction.

To assess the impact of air pollution exposure on human health, we con-
sider hospitalizations data provided by the Ministry of Health. For each
patient discharged from either a public or private healthcare facility, we have
data about socio-demographic variables (e.g. gender, age) and the hospi-
talization event (e.g., diagnosis, dates of admission and discharge). In this
paper we consider cardio-respiratory hospitalizations occurred in Piemonte
region during 2011 and aggregated at the municipality level. The Standard-
ized Morbidity Ratio (adjusted by age and gender) is reported in the right
plot of Figure 1 and shows substantial spatial variability, with higher risks
around large cities such as Turin and Alessandria, while the more rural cen-
tral part as well as most of the mountain region is characterized by risks
lower than averages.

(1.2,2.23]
(1.01,1.2]
(0.99,1.01]
(0.8,0.99]

[0.167,0.8]

Figure 1: Left: Piemonte map: the red and green dots denote the NOy monitoring sta-
tions used for model estimation and validation, respectively. The blue dots represent the
centroids of the regular grid. Right: Standardized Morbidity Ratio (adjusted by age and
gender) for cardio-respiratory hospitalizations in the Piemonte municipalities in 2011.
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3. Poisson health model

The standard spatial model for the observed number of health events y;
in the area A; (i = 1,...,n4), when there is a relatively low count of disease
and/or the area is small, is given by

y; ~ Poisson (E;p;)

where F; represents the expected number of events obtained applying stan-
dard rates from the whole study region (by age and gender) to the population
of each area (Shaddick and Zidek, 2016). The term p; represents the area
specific relative risk and a linear predictor is defined on its logarithmic trans-
formation as follows:

log(pi) = Y0 + Tiv1 + Ziv2 + &5 (1)

This linear predictor includes an intercept =y, (representing the average rate
in the entire study region), the area air pollution concentration x;, random
effects ¢; and a vector of measured confounders z/. In the application pre-
sented in Section 6 we include the social vulnerability index provided by the
Italian National Institute of Statistics (ISTAT) for 2011, which measures the
deprivation level of individuals within municipalities. To evaluate the health
risk associated to air pollution, the parameter of interest is y; or the cor-
responding relative risk given by exp(7y10), which represents the change in
the risk of experiencing the considered health outcome when air pollution
concentrations increases by § pg/m3.

The random effects ¢; capture any overdispersion and potential residual
spatial correlation in the health data after the covariate effects have been
accounted for. An additive specification can be adopted such that ¢; = u;+v;,
and several structures can be assumed on these two terms (see Lee, 2011 for a
review). In the application of Section 6 we use the specification by Besag et al.
(1991), which places an exchangeable random effect on v; and a conditional
autoregressive structure on u; so that

v; ~ Normal(0,0?2)

Sy o2
wi | u_; ~ Normal( ]ﬁ% ]’|D?Z| ,

where D; represents the set of areas sharing borders with the i-th area and
| D;| its cardinality. This assumes that only the areas close to each other can
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influence one another and provides some local smoothing to the estimates
of the relative risks. In addition some global smoothing is provided by the
spatially unstructured random effects v;.

3.1. Ezxposure estimation through upscaling

The term x; in Eq. (1) represents the exposure level for area A;; it can not
be measured directly as air pollutant concentrations are available only for a
finite number of spatial points with coordinates sq,...,s,. The set of point-
referenced concentration measurements is denoted by (z(s1),...,z(s,)) and
is a realization of the latent stochastic process z(s) representing the true air
pollution field, which is continuous in space. The average exposure level for
area A; would be given by

- / _als) pls) ds @)

where p(s) is a weight for a generic spatial point s € A; such that [, p(s) ds
1 (Gelfand, 2010).

This stochastic integral can be estimated using the set of measurements
from the n monitoring stations by simply averaging the concentration data
from the stations falling within each area A;. However, given that monitoring
networks are typically sparse, some areas could end up with no monitoring
stations; a possible solution would consist in estimating the concentration
only within a specific distance from monitoring stations and then evaluating
the health effects only on the population within the same areas (as in Zhu
et al. 2003). Alternatively, in order to cover all the spatial domain, the area
exposure level x; can be computed through Monte Carlo integration using a
set of additional points, denoted by s*, which are the centroids of a regular
grid covering the region of interest (see e.g. Lee and Shaddick, 2010; Lee and
Sahu, 2016). With this approach the exposure value for area A; is estimated
through the following weighted mean:

T = 1‘(5;"]’) P(Sfj)a (3)

j=

N

where z(s};) is the pollutant concentration value for the generic location s,

which is one of N; regular grid centroids inside area A;. The corresponding
weights are normalized so that Z;VZI p(sj;) = 1. The exposure values z(sj;)

8
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can: i) be provided by an air pollution (deterministic) dispersion model, such
as the Community Multiscale Air Quality Modeling System (CMAQ), used
by the US Environmental Protection Agency, or the Atmospheric Dispersion
Modeling System (ADMS), particularly useful for urban areas; i) be the
output of simple spatial interpolation (e.g. inverse distance weighting, krig-
ing) using the monitoring network data; 4ii) be derived by spatial prediction
from an exposure model which can fuse different sets of data, account for the
measurement error and include explicitly a continuous spatial process (see
e.g. Sahu, 2011; Lee et al., 2017) as described in Section 3.2; in the Bayesian
framework, this means that an exposure posterior predictive distribution is
available for each grid point sj; and it can be used to derive the area level ex-
posure posterior distribution. In particular, the prediction of the exposure at
the area level is performed in two steps: firstly the exposure posterior distri-
bution is obtained for a set of points sj; belonging to a regular grid. Secondly,
for each area A;, the exposure average is computed using two methods:

1. Method 1 (linear combination with neighbourhood intersections): the
area exposure is computed using Eq. (3), with z(sj;) being the exposure
estimates available at the centroid sj; of the N; cells which have an
intersection with the considered area A; (j = 1,...,N;). Note that
we assume that the generic weight p(s};) is given by the proportion
of the j-th grid cell overlapping with area A;. For example, Figure 2
(left) represents a generic area of the considered region which intersects
11 cells of the regular grid (IV; = 11) and with corresponding weights
ranging from 0.001 to 0.236.

2. Method 2 (simple mean): the area exposure is computed using Eq. (3),
but considering x(sj;) as the exposure estimates available at the grid
cell centroids sj; that lie in the considered area. If no grid centroids
are located inside the area, then the closest grid point is used. In this
case we consider a system of equal weights for all the considered grid
points used in the linear combination. For example, for the generic
area shown in Figure 2 (right) 3 grid points lie inside the area and their
weights are all equal to 1/3.

It would also be possible to estimate the area exposure x; by averaging
grid predictions with weights p(sj;) proportional to the population at-risk
(e.g. Wakefield and Shaddick, 2006). This approach requires to have high-
resolution information about the population size (for example the LandScan™
project provides global population estimates at 1km spatial resolution) and

9
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to perform some geoprocessing to align the spatial datasets (e.g. Shaddick

et al., 2018).
o A o )
L | &

0.016

0.003 0.017

Figure 2: Methodl: intersections between a generic area and the regular grid and cor-
responding weights (left). Method2: grid points inside a generic area and corresponding
weights (right).

3.2. Gaussian exposure model

Let 2(s;) (j = 1,...,n) be the set of air pollution data measured by n
monitoring stations. The pollutant concentration is assumed to be centred
on the true concentration x(s;) and depends on the measurement error e(s;):

2(s;) = x(s;) + e(sy), (4)

where ¢e(s;) ~ Normal(0, 0?) independently for each location. The true con-
centration is defined by the following linear predictor

z(sj) = by + v(s;)'b+ w(s;) (5)

which includes an intercept by (i.e. the average level of pollution for the
considered area), a set of site specific covariates v(s;) (e.g. meteorological
and geographical variables) with b vector of coefficients (assumed to be site-
invariant) and a latent process w(s;) representing the residual spatial field.
The n-dimensional process w = (w(s1), . ..,w(s,)) is assumed to be Normally
distributed with zero mean vector and spatially structured covariance matrix
which is defined by the following Matérn covariance function

2

Cov(w(sj),w(s;)) = W

(klls; — ;) K (kl]s; — spll),  (6)
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where ||s; — s;|| € R is the Euclidean spatial distance, o2 is the spatial
variance and k is the scaling parameter. The term K, (-) denotes the modified
Bessel function of second kind and order A > 0. The parameter A, which is
usually kept fixed, measures the degree of smoothness of the process and
its integer value determines the mean square differentiability of the process.
Instead, x > 0 is a scaling parameter related to the range r, i.e. distance
at which the spatial correlation is close to 0.1 for each A > 1/2; Lindgren
et al. (2011) proposed an empirically derived definition for the spatial range
r, given by r = \/8_>\/ k. Many other exposure models are available in the
literature including also extensions to the spatio-temporal case (see e.g. Sahu,
2011; Cameletti et al., 2011, 2013; Fasso and Finazzi, 2011; Pirani et al., 2014;
Pannullo et al., 2015).

In a fully Bayesian approach we denote by @ = {by,b,w} the latent
Gaussian field and by @ = {02,602, k} the vector of hyperparameters. This
identifies a three-level hierarchical model with the first stage given by ob-
served data distribution 7(z | 8,%) with z = (2(s1),...,2(s,)), the second
stage specified by the latent field distribution (8 | @) and the last level de-
voted to the hyperparameter prior distribution 7(¢»). Within this modeling
framework, the exposure distribution for a new spatial point s}; not included
in the set of monitoring stations, is simply given by substituting s; with s7;
in Eq. (4) and (5). The corresponding posterior predictive distribution is
then denoted by 7(z(s};) | 2) and is given by

walsy) [2) = [ [ 7 (alsi).0.012) doay (7)
= [ [ =Gty 16.2) @0 w2 7| 2) doay.

When performing Bayesian inference through Markov chain Monte Carlo
methods, samples from the posterior predictive distribution (7) are drawn by
composition (Sahu, 2011). In this paper instead we adopt the INLA approach
for jointly estimating the parameters and performing spatial prediction both
at the grid point and area level.

3.3. Linking the exposure and health model

The easiest and most commonly used method for estimating the adverse
effect of air pollution on human health is through a plug-in (PI) approach:
first the exposure model is estimated (see Section 3.2) and the pollutant

11
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concentration is upscaled at the area level as described in Section 3.1; from
this first stage a summary statistic is computed for each area (e.g. exposure
posterior mean or median). The second stage consists in including such value
as the term z; in the linear predictor of the health model (see Eq. (1)), which
is then fitted separately from the first stage. While being computationally
advantageous, this approach does not consider the uncertainty intrinsic in the
prediction of the pollutant concentration as only the summary statistics is
plugged in. Thus, the resulting risk estimate tends to be unnaturally precise
and might even be biased if the concentration suffers from measurement error.

Here we implement two ways of propagating the uncertainty from the
exposure into the health model. The first, which we call feed-forward (FF)
approach, consists in sampling J samples (e.g. J = 100) from the joint
posterior predictive distribution of the pollutant concentration at the area
level and to fit the health model for each one of these simulated exposure
values. The posterior distribution of the risk estimate v; (see Eq.(1)) will then
be obtained by combining all the results across the J runs. This approach
has been adopted also by Blangiardo et al. (2016), Liu et al. (2016) and Lee
et al. (2017) and it represents a relatively computationally cheap solution for
taking into account the variability of the exposure estimates.

Alternatively, we consider a prior-exposure (PE) approach, which specifies
an informative prior distribution for the exposure area level z; in Eq.(1) as
follows

;' ~ Normal (p;, 07 (8)
2

where y; and o are given by the posterior means and variances from the
area level exposure posterior predictive distributions (see Section 3.1). This

corresponds to a multivariate Normal distribution for z4 = (zf,..., 27 )

Y na
with spatially structured mean vector and diagonal covariance matrix with
values given by 2.

Note that the product of two Gaussian distributions for the term v,z

follows by assuming a vague Normal prior distribution also for ;.

4. Implementation: the INLA-SPDE approach

We performs Bayesian inference using the integrated nested Laplace ap-
proximations (INLA) (Rue et al., 2009; Blangiardo and Cameletti, 2015; Rue
et al., 2017), a computationally efficient alternative to MCMC methods for
latent gaussian models which can be implemented through the R-INLA library
(see http://www.r-inla.org).

12
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For the first stage of our modeling framework, we couple INLA with
SPDE approach proposed by Lindgren et al. (2011) required when Bayesian
inference is needed on a spatial process defined over a continuous domain.
The SPDE method represents a Gaussian field with Matérn spatial covari-
ance function (see Eq.(6)) as a discrete indexed Gaussian Markov random
field (GMRF), which is characterized by a sparse precision matrix and en-
joys computational benefits in terms of fast inference. This representation
is based on a finite combination of piecewise linear functions defined over
a triangulation (or mesh) of the domain of interest and with basis weights
defined by a GMRF with sparse precision matrix explicitly depending on the
Matérn parameters (Lindgren and Rue, 2015). Spatial prediction in a given
location belonging to the considered spatial domain is straightforward since
SPDE provides the approximation of the entire spatial process; it is just a
matter of including in the INLA model the locations where predictions are
required as missing values observations (Lindgren and Rue, 2015).

Note that the PE modeling described in Section 3.3 cannot be run in
INLA as it involves the product of two Gaussian distributed parameters (v
and ') which breaks normality of the latent field. However, by conditioning
on 71, it is possible to rewrite the product z;7v, as follows:

w1 = (s + 205) 71 = i1 + V106

where z; ~ N(0,1). This model conditioned on v; can be estimated using
INLA: in particular, in the R-INLA setting the term pu;y; must be consid-
ered as an offset, while the term ~v,0; is the weight of the i.i.d. random
effect given by z; (see Gémez-Rubio and Rue, 2018). Thus, it is possible
to obtain the posterior conditional marginals of all the remaining parame-
ters in @ (including the parameters from the exposure and health model),
i.e. (@ | 71,y), and the conditional likelihood 7(y | 71). To draw values
for 71 the Metropolis-Hastings (MH) algorithm could be used: after a suit-

able number of iterations (say L), the MH algorithm will produce samples

from 7(v; | y) denoted by {79) jLzl. Finally, it is possible to get the pos-

terior marginals of all the remaining parameters in @ by combining all the
conditional marginals as follows (see Gomez-Rubio and Rue, 2018):

L

1 .
70,1 9) = [ 70 ywn(n ) d= 7 Y0l

J=1
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4.1. Priors

In R-INLA the smoothness parameter \ of the Matérn covariance function
in Eq.(6), which is usually kept fixed to ensure model identifiability, is by
default equal to 1. The SPDE parameters are represented as log(7) = 6,
(7 is related to the variance through the relationship o2 = 1/(47k?7?)) and
log(k) = 63, with 0; and 6, being given independent Normal(0,1) prior dis-
tributions (for more details see Blangiardo and Cameletti, 2015). Moreover,
weakly informative Normal priors centered on 0 and with a small precision
equal to 0.01 are specified for the fixed effects parameters by, b and vy and
~v1. Finally all the log precisions are assigned inverse Gamma distributions
with parameters equal to 1 and 0.00005.

5. Simulation study

In this section we describe the simulation study which has a twofold aim:
firstly, it evaluates the goodness of exposure predictions at the area level ob-
tained through the change of support by using Method 1 and Method 2 (see
Section 3.1); secondly it assesses the effect of different ways for incorporating
exposure in the health model on the relative risk estimate (i.e. the PI, the
FF and the PE approach described in Section 3.3). For the simulation study
we use the Belo Horizonte region shapefile, available through the spdep R
package (Bivand and Piras, 2015); this has a smaller number of areas com-
pared to our Piemonte case study (nqg = 98 vs ng = 1206) hence it is more
computationally manageable.

5.1. Simulation of the exposure field

In order to create a continuous spatial field, we simulate exposure at a
large number m of locations (m = 4009) which are aligned in space and
cover completely the considered region (see for example left plot in Figure
3). The model used for simulating exposure is based on Eq. (4) and (5) for
7 =1,...,m. In particular, we assume to have just one covariate v, simulated
from a Normal(0,1) distribution, with coefficient b = 2 and an intercept equal
to by = 10. Regarding the spatial parameters (see Eq. (6) and recall that
in R-INLA A = 1 and x = v/8/7), we set the spatial variance o2 equal to 0.5
and consider a range r given by 1.63 degrees, corresponding to the 40% of
the maximum distance.
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Finally, the true exposure at the area level is denoted by Z; (i = 1,...,n,4)
and computed for each area A; by averaging the exposure values of the sites
located inside the area (see right plot in Figure 3):

5, = men 8] )

my
where m; denotes the number of sites inside area A; (" m; = m). Note

that the cardinality ranges from 7 to 174 points with a median of 30 points
per area.

@ (11.6,17.5]
0 (10.2,11.6]
o (8.78,10.2]
O [2.84,8.78]

B ai6175]

(10.2,11.6]
(8.78,10.2]
[2.84,8.78]

Figure 3: Example of true exposure values simulated at 4009 points inside the Belo Hori-
zonte region (left) and corresponding area averages computed for the 98 areas (right).

5.1.1. Monitoring station sampling

From the set of m spatial locations used for simulating the true expo-
sure field (see the previous Section 5.1), we randomly select n sites which
correspond to the monitoring stations where exposure concentration is mea-
sured. We consider three cases with the number of stations in each area
ni (D4 n; = n) being 2%, 10% or 30% of the total number of available
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points m; in each area. This leads to a total number of monitoring sites
equal to 80, 403 and 1200, respectively. The distribution of points across
areas is reported in the left plot of Figure 4: note that the median number
of monitoring stations for each area is equal to 1, 3 and 9 for the three cases,
respectively.

We assume that the exposure is measured with an error, as specified in
Eq. (4). For this reason we add a term to the monitoring station exposure
x(s;), simulated independently from a Normal distribution with mean zero
and variance equal to 02 = 0.1. This set of data will be used to estimate the
exposure field and to predict exposure first at the grid level and then at the
area level, as described in the next section.

a
o

200-

N
o

w

o
=
a1
o

[
o
o

N. of pred. points

N
o

N. of monitoring stations per area

‘ 50

i = L éi-

0- 0-

100

2% 10% 30% {
Proportion of points Grid resolution

Figure 4: Left: distribution of the number of monitoring stations across areas for the
three considered cases (number of monitoring stations equal to 2%, 10% or 30% of the
total number of available grid points inside each area, respectively). Right: distribution of
the number of prediction points across areas according to the regular grid resolution (252,
502 and 1002 points) and the upscaling method (Method 1 and Method 2).

5.1.2. Regular grid for prediction

Spatial prediction of exposure is performed considering a regular square
grid with n, cells covering the entire region and extending also slightly outside
(see for example Figure 5 for the case with n, = 25 = 625 points). This
regular grid is employed for predicting exposure at the grid cell centroids s}
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using the exposure model described in Section 3.2. As in Section 5.1, the
values of the covariate v for the grid cell centroids are drawn independently
from a Normal(0, 1) distribution. For the simulation study we consider three
grid resolutions with n, equal to 625, 50> = 2500 and 100* = 10000 points,
respectively. Note that the latter corresponds exactly to the grid used for
simulating the true exposure field with m = 4009 points inside the region
(see Section 5.1).

The grid resolution is strictly related to the number of prediction points
used for computing the exposure level at the area level using Method 1 and
Method 2 described in Section 3.1. The right plot of Figure 4 displays the
distribution of the number of prediction points across area according to the
regular grid resolution and the upscaling method. It can be observed that,
as expected, Method 1 - that considers the intersections between prediction
grid and area - employs a higher number of prediction points than Method
2: the median number of points, according to the three grid resolutions, is
equal to 7, 16.5 and 47.5 for Method 1 and 2, 7.5 and 30 for Method 2. The
total number of prediction points in the whole region is equal to 774, 1957
and 5831 for Method 1 and 257, 1001 and 4009 for Method 2. We expect
to be able to predict exposure more accurately at the area level by using a
higher number of prediction points, especially for small areas which do not
contain any grid square centroids when the grid is coarse.

5.2. Simulation of the health data

Given the true exposure &; (i = 1,...,ny4) at the area level, it is possible
to simulate the health count data y; using the Poisson model introduced in
Section 3. In particular, for the linear predictor of Eq. (3.1) we set x; = &;
and log(7y1) equal to log(1.05), which would be realistic for the impact of air
pollution on hospital admissions or mortality in Europe (see for instance Lee
and Sarran, 2015; Moore et al., 2016). The corresponding value for the inter-
cept 7 is fixed equal to -0.4, a value which guarantees a reasonable spread of
the Poisson simulated data. We include also a spatially unstructured random
effect v; ~ Normal(0, 03)) with 0’3) = 0.05 but for the sake of simplicity omit
the spatially structured random effect u; (see Section 3). The choice of the
value for U; is done in order to avoid too much variability in the random
effect given that the relative risk is small. Finally, we assume that the ex-
pected number of cases Fj is fixed and equal to 100 for all the areas (Lee and
Sarran, 2015; Wang et al., 2019).
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Figure 5: Regular prediction grid with n, = 625.

5.2.1. Simulation scenarios and performance assessment

Combining together the proportions of monitoring stations (n; equal to
2, 10% and 30% of the sites m; in each area) with the grid resolution n, (252,
502 and 100? grid centroids) we obtain 9 scenarios which are summarized in
Table 1.

% of monitoring stations

ng | 2% 10% 30%

25 [() () ®)

00l ® O

100* | (7) ©

Table 1: Simulation scenarios considering different values for the resolution of the regular
grid (ny) and the percentage of sampled points as monitoring stations.

For the h-th scenario (h = 1,...,9) we run 500 simulations which differ
for the true simulated exposure (at the point and area level) and the Poisson
data. The monitoring station coordinates are instead fixed across simula-
tions to avoid that their locations influence the estimation and prediction
results. Within a specific scenario, the k-th simulation run (k = 1,...,500)
is structured as follows:
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1. Simulation: (i) the exposure field is simulated using m = 4009 points
and then the true exposure at the area level is computed (see Sec-
tion 5.1); (ii) the n; monitoring stations are assigned exposure values
equal to the true exposure plus the measurement error realisation, as
described in Section 5.1.1; (iii) the health data y; (i = 1,...,ny4) are
simulated from the Poisson model using the true area exposure (see
Section 5.2).

2. Estimation and prediction: (i) Using the INLA-SPDE approach the
spatial parameters of the exposure model (by, b, 02, 02, r) are estimated

and the exposure field is predicted for the grid prediction points. At the

same time, the exposure is estimated at the area level using Method 1

and Method 2 for upscaling; (ii) using the three methods for linking the

exposure with the health model (PI, FF and PE), the Poisson model
with parameters g, 71, 02 is estimated.

Let 0 denote the true value for the generic parameter of interest 6. Given
a scenario h and a simulation run k, for each parameter we simulate 100
values, denoted by {0nu} (I = 1,...,100) from the corresponding posterior
distribution. Then for each scenario, simulation and parameter we compute
the bias and root mean square error (RMSE) as follows:

100

| 1 .
bias(d) = 09 2 (ehkl—e> (10)
| oo N
RMSE() = mZ(Qhkl—‘)) . (11)

=1

The same performance indexes are used in order to evaluate the goodness
of fit of the exposure predictions for each area A;, by comparing the true
exposure area value Tp; and the corresponding estimates Zx; which is the
[-th value drawn from the exposure posterior predictive distribution of area
A;.

5.2.2. Simulation results

The goodness of fit of the area exposure predictions depends strongly on
the number of prediction grid points: as shown in the left and middle plots
of Figure 6 the performance indexes (bias and RMSE) are worse for scenarios
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1-3 (with 252 prediction points), improve for scenarios 4-6 (with 50? predic-
tion points) and reach the best values for scenarios 7-9 (with 100 prediction
points). The latter was expected as the number of prediction points for sce-
narios 7-9 coincides with the number of points used for simulating the true
area exposure (m = 4009). Regarding the two upscaling methods (Method 1
and Method 2) it is important to note that Method 2 for scenarios 7-9 rep-
resents the benchmark as it is exactly the same method used for simulating
the true area exposure (computed as average of the exposure values observed
in the prediction points inside each area, with a grid resolution of 100? pre-
diction points). The corresponding bias, RMSE and correlation reported in
the plots of Figure 6 are not exactly equal to 0 and 1 as expected only due
to sampling variability. At the same time, it seems that the performance
of Method 1 for scenarios 7-9 is quite similar to the benchmark (Method 2).
This holds especially for the bias and RMSE, even if for Method 1 we observe
a higher variability of the results. Moreover, for scenarios 1-3 (low resolution
prediction grid) Method 1 seems to have larger median biases but lower me-
dian RMSEs and higher correlation values. For the remaining scenarios 3-5,
the two methods behave very similarly and the indexes’ medians basically
coincide. Finally, it is worth to note that from the computational point of
view Method 1 and Method 2 require the same time to run.

The effect of the number of monitoring stations can be assessed by evalu-
ating differences in the indexes’ distribution within groups of scenario 1-3, 4-6
and 7-9: while it seems uninfluential for the prediction bias, increasing the
number of monitoring stations helps improve the area predictions in terms
of RMSE and correlation, especially within the scenarios 7-9.

The number of monitoring stations has an effect also on the bias and
RMSE of the spatial model parameters (bg, by, 02, 02 and r) since the ac-
curacy of the posterior distributions increases when more locations are used
for estimation. As expected, there is no effect of the prediction size grid and
the parameter estimates for scenario 1-4-7, 2-5-8, 3-6-9 coincide. The results
reported in Table A.1 show that the RMSE is lower for the scenarios 3, 6
and 9, which are the ones with the highest number of stations. This is not
true only for the spatial variance o2 which shows the lowest RMSE for the
intermediate scenarios (2, 5 and 8). Regarding the bias, we observe that, on
average, we overestimate the spatial variance o2 and the range r, with the
lowest values obtained in the intermediate scenarios (2, 5 and 8) with 403
monitoring stations. It is worth noting that in general the spatial variance
and the range are the most difficult parameters to be estimated and more
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informative prior could be adopted to help the inferential procedure (Bakar
and Sahu, 2015). For the remaining parameters the values of the bias are
quite small, especially for b; and o2. Overall the mean bias (RMSE), aver-
aged across all the scenarios, is -0.022 (0.9) for by, -0.001 (0.033) for by, -0.003
(0.019) for 62, 0.179 (0.676) for o and 0.19 (1.115) for r.
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Figure 6: Distribution over areas of the exposure prediction mean bias (left) and mean
RMSE (centre), averaged across simulations (see Eq.(10) and (11)), by scenario and up-
scaling method (Method 1 and Method 2). Right: distribution over simulations of the
correlation coefficient between area true exposure values and corresponding predictions,
by scenario and upscaling method.

The analysis for the log relative risk parameter v, is based on the results
reported in Figure 7. It can be observed that the higher the resolution of
the prediction grid (moving from scenarios 1-3 to scenarios 7-9) the lower the
parameter bias, independently from the upscaling method. The RMSE index
has a slightly different behaviour because the lowest values of the index are
observed for scenarios 4-6; in any case all the RMSE medians are small and
lower than 0.051. No strong differences are observed across the three Pois-
son methods (PI, FF and PE) or across upscaling methods (Method 1 and
Method 2), with the exception of the bias values for scenarios 1-3 which are
always slightly lower for Method 1 even if showing higher variability across
simulations. These results are confirmed by the plots of the ~; posterior
distributions reported in Figure A.1 which show very similar patterns across
the 6 cases (3 propagation combined with 2 upscaling methods), in terms of
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variability and location, especially for the scenarios from 4 to 9. We expected
that the three different methods (PI, FF and PE) employed to acknowledge
the exposure uncertainty would have led to differences in the posterior distri-
bution of the Poisson parameter ;. This effect is not evident from the plot
of Figure A.1 or from the posterior standard deviation (SD) values reported
in Table A.2, as the three methods return similar posterior distribution with
the same level of precision. Nevertheless, it is worth noting that the upscaling
method seems to have an effect on the uncertainty: Method 1 (linear com-
bination with neighbourhood effect) is always associated with a less precise
estimation of 4y (higher SD), especially for scenarios 1-6.

22



PI
method1
PI
method2
FF
method1
FF
method2
PE
method1

PE
method2

Bias

0.15' ..’... -: .‘ .;: . P|
| method1
. . . PI
method2
FF
method1
FF
method?2
PE
method1l

PE
0.05- method?2

Figure 7: Distribution over simulations of the bias (left) and RMSE (right) for the
Poisson parameter, by scenario, uncertainty propagation method (PI, FF or PE) and
exposure upscaling approach (Method 1, Method 2) for the 9 considered scenarios.



564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

6. Motivating example: results

Going back to the NOy and hospitalisations data for the municipalities
in the Piemonte region (presented in Section 2), we first estimate the NOq
exposure model described in Section 3.2 by considering the data from 45 mon-
itoring stations among the 55 available sites (10 sites are randomly chosen
and set apart for validation purposes) and a SPDE mesh with 533 vertexes.
The vector b of Eq.(5) contains 6 coefficients for the standardized covari-
ates (NOs emissions, wind speed, temperature, precipitation, mixing height
and altitude). The parameter posterior estimates are reported in Table 2 for
Method 1 as upscaling method (the results for Method 2 are not reported
because they coincide). It can be observed that NOy emissions is the only
regressor showing a small but positive posterior mean, with the 95% credible
interval completely above zero - while for all the meteorological and geo-
graphical variables there is not strong evidence of an effect. The intercept
estimate, equal to 3.52 on the log scale, corresponds to a posterior median
pollution level of 34.54 pg/m?, after adjustment for covariates. The esti-
mate of the measurement error variance o2 is small (posterior median equal
to 0.02) while the variability related to the spatial process is higher with a
posterior median for o2 equal to 0.10. The posterior mean for o2 is 0.12 and
this denotes a right skewed posterior distribution; the same happens for the
range r which shows a posterior median and mean of about 81 km and 104
km, respectively (consider that the maximum distance in the region is 274
km).

The data of the 10 validation stations are used for computing the pre-
diction performance indexes: the correlation between NO, observed and pre-
dicted measurements is equal to 0.835, the bias is -0.00003 and the RMSE is
equal to 0.231. As a basis for comparison, consider that the universal kriging
model with the same covariates and Matern variogram performs as follows:
correlation 0.732, bias 0.026 and RMSE 0.285. Thus, the exposure model
outperforms the universal kriging for NOs point prediction.

Figure 8 reports the maps of the posterior medians of NO, concentration
(transformed back to the original scale in ug/m?3) for the 56 x 72 regular
grid (left plot) and for the 1206 areas in Piemonte (right plot). As expected,
higher concentration are predicted in the areas close to the biggest cities
and the main highways that connect Piemonte with Lombardia region on
the east. All the municipalities located near the mountain areas surrounding
the region on the northern, western and southern side are characterized by
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concentration lower than 15 pg/m®. These area predictions are obtained
using Method 1 for upscaling; Method 2 returns similar patterns, as it can
be seen in the difference map reported in Figure A.2. However, we observe
that some areas are characterized by different concentration estimates under
Method 1 and Method 2 and this may have an effect on the results of the
Poisson health model. These differences could be related to the geographical
structure of Piemonte region and the number of points used for predicting
exposure with Method 1 and Method 2. In this regard, consider that the
median (mean) number of prediction points is 4 (5.4) for Method 1 and 1
(1.6) for Method 2 (see also Figure A.3 for the distribution of the number of
prediction points across areas).

Parameter Mean Sd  0.025quant  Median 0.975quant
Intercept by 3.52 0.21 3.06 3.52 3.98
bNO2emissions 0.09 0.04 0.01 0.09 0.17
bwindspeed -0.03 0.05 -0.13 -0.03 0.07
btemperature -0.06 0.06 -0.18 -0.06 0.06
bprecipitation 0.10 0.05 0.00 0.10 0.18
bmixingheight 0.12 0.07 -0.01 0.12 0.25
baltitude -0.19 0.10 -0.39 -0.19 0.02
o2 0.02 0.01 0.01 0.02 0.05
o2 0.12 0.08 0.04 0.10 0.34
r (in metre) | 104249.25 76087.92 31034.37 81308.65  311351.38

Table 2: Posterior summaries (mean, standard deviation (sd), 2.5%, 50% and 97.5% quan-
tiles) of the parameters of the NOy exposure model estimated using data from 45 moni-
toring stations.

The posterior distributions of the Poisson model parameters are reported
in Figure 9. No evidence of substantial differences can be seen for the inter-
cept Yo, the vulnerability parameter v, and the variances o2 and o2: all the
6 compared cases (PI, FF and PE with Method 1 and Method 2) provide
very similar posterior distributions (see also the posterior summary statistics
reported in Table A.3). Some differences can be seen instead for the log-
risk parameter v; (for a 10 pg/m? increase in NOg concentration), which is
the main quantity of interest for assessing the impact of NO, exposure on
the health outcome. First of all, we can observe that the upscaling method
has an effect on the location of the posterior distribution: Method 2 (simple
mean of exposure) shifts the distribution to the left (the posterior mean de-

25



623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Figure 8: Map of the posterior median of NOy concentration (in ug/m?) at the grid level
(left) and at the area level using Method 1 for upscaling (right).

creases from 0.0016 to 0.0013 for the PI approach, from 0.0109 to 0.0087 for
FF and from 0.0177 to 0.0145 for PE) while keeping the variability basically
unchanged. The uncertainty propagation method (PI, FF or PE) has an ef-
fect both on the location and on the dispersion of the posterior distributions:
for the FF approach the ~; posterior distribution shows higher variability
than the PI and PE strategies, in accordance with the results presented in
Blangiardo et al. (2016), and the posterior medians are closer to zero. As
a consequence, in the FF case there is not strong evidence that the log-risk
parameter 7, is different from zero, both for Method 1 and Method 2. The
PI approach is the one showing less variability and this is expected since we
do not take into account the uncertainty of the exposure estimation. The
PE case represents an intermediate situation between PI and FF in terms of
variability (for example, considering Method 1, the posterior standard devi-
ation is equal to 0.0072 for PI, 0.0076 for PE and 0.0103 for FF). Finally,
note that the 95% credible interval for 7; does not include zero only in two
cases: PI-Method 1 and PE-Method 1.
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Figure 9: Posterior distributions of the Poisson model parameters: vq, 71 for a 10 pg/m?
increase in NOy concentration, the vulnerability index parameter 7o, the variance o2 of
the iid random effect and the variance o2 of the spatially structured random effect.
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7. Discussion and conclusions

In this paper we presented a two-stage Bayesian model that predict air
pollution concentration at the small area level and evaluate its effect on
health outcomes. During the first stage the model integrates data from dif-
ferent sources characterized by spatial misalignment: monitoring stations are
available at point location, while meteorological variables and NOg emissions
are available at the monitoring station locations as well as for regular grid
points; we have then shown two different methods to aggregate the estimates
at the regular grid level to the irregular lattice, which is the spatial resolu-
tion available for the health outcome. The second stage links the predicted
concentration to the health outcome cases and we have presented different
ways of accounting for uncertainty from the first to the second stage. In
particular, with the feed-forward approach we draw some samples from the
joint NOs posterior predictive distributions at the area level and fit for each
sample the Poisson health model, thus obtaining a posterior distribution of
the risk parameter v;. As an alternative, we propose the prior-exposure ap-
proach which assumes an informative Normal prior distribution for the area
pollutant concentration in the health model (see Eq.(8)). The mean param-
eters of these priors are spatially correlated as they are taken from the area
level exposure predictive distribution estimated by the SPDE approach. Con-
sequently, also the area exposure prior distribution will inherits the spatial
structure. Note that instead of using the posterior means and variances from
the first stage in the prior, we could sample from the posterior predictive
distribution, fit many models with INLA and then obtain a Bayesian model
average of the marginals from the fitted models (similarly to Bivand et al.,
2014 and Gémez-Rubio and Rue, 2018). As computationally very intensive
we have not followed this approach. However, as noted by Gémez-Rubio and
Palmi-Perales (2019), fixing some of the parameters to the ML estimates or
posterior means may have little impact on the posterior marginals of the re-
mainder of the parameters when fitting (spatial) models with INLA. Another
possible extension of the prior-exposure approach of Eq.(8) would consist in
using a proper multivariate Normal prior distribution where the mean vector
and covariance matrix are determined by posterior predictive distribution
samples from the exposure model (see e.g. Warren et al., 2012; Lee et al.,
2017).

The main challenge we faced in terms of model evaluation was how to
assess how accurate a model predicts area level exposure considering that it is
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not possible to perform cross-validation as it is usually done with spatial point
prediction since there are no observed values for the pollutant concentration
at the area level. In addition, within a simulative approach, it is non trivial
to simulate exposure values for administrative regions given that pollutant
concentrations is a continuous spatial field which is usually measured in a
limited number of monitoring stations. To overcome this issue, in this paper
we simulate the true exposure for a very big number of spatial points covering
completely the considered region (as to recreate a continuous surface) and
then we averaged the values across areas.

From the simulation study we found that the exposure performance in-
dexes (bias and RMSE) for the predictions at the area level improves with
a higher resolution of the prediction grid. However, it is important to note
that commonly in real applications this resolution is fixed and given by the
regular grid of the numerical models that provide covariates included in the
model. Also the number (and position) of monitoring stations, which has a
positive effect on the RMSE and correlation indexes, cannot be chosen by
researchers but are set by environmental agencies. To deal with the issue
of covariate driven grid size, current work consists in a Bayesian space-time
model which integrates several numerical outputs characterised by different
spatial resolutions together with ground measurements, and is able to predict
pollutant concentration at the desired spatial resolution. With this approach
the resolution of the covariate grid does not represent a constraint anymore,
as the model reconstructs the spatial fields of the misaligned covariates jointly
with the latent field of pollutant concentration from ground measurements
in a data assimilation framework.

From the simulation results it can be observed that Method 1 and Method
2 do not seem to have a large effect on the risk parameter ~;, in terms of
bias, RMSE and posterior distribution pattern. However, the results may
depend on the spatial variation within and between the areas; as Method 1
averages across more points it should provide more stable estimates of the
concentration, particularly in case of local spatial variability. This is more
evident on the case study on Piemonte, where Method 2 shifts the posterior
distribution of the parameter towards zero. In addition, it is interesting to
note that while the FF method of uncertainty propagation results in estimates
of the health effect shifted towards 0 and more variable with respect to the
other approaches, the PE method leads to higher deviation from 0 with an
intermediate level of variability.

The choice of the methods to link stage 1 to stage 2 were motivated by
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the fact that we wanted these to be easily adopted by the researchers’ wide
community; hence we focused on methods which are easily implemented in
a readily available R package such as R-INLA without the need for algorithm
writing. An alternative to the two-stage specification will consist of a joint
model of the exposure and of its health effects; this would ensure that uncer-
tainty is directly propagated across it. However the level of computational
power required to run the model would increase substantially and at the
same time a two-stage approach proves more robust if the exposure model is
misspecified, hence we believe that a two-stage approach is to be preferred.
Future works will extend the current framework to fit spatio-temporal data
and to model multi-pollutant concentrations.
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0 Appendix A. Extra tables and figures

bo

b

g

2

(o)

2

Scenario Bias RMSE Bias RMSE Bias RMSE | Bias 5RMSE Bias RMSE
11-0.044 1.033|-0.001 0.064 | -0.012 0.039 | 0.181  0.708 | 0.188  1.450
2| 0.001 0.845 | -0.001 0.023 | 0.001 0.012 | 0.151  0.624 | 0.174  1.007
31-0.018 0.830 | -0.000 0.013 | 0.001 0.006 | 0.195 0.683 | 0.195  0.869
41-0.044 1.032 | -0.001 0.064 | -0.012 0.039 | 0.180  0.707 | 0.188  1.450
51-0.014 0.838 | -0.001  0.023 | 0.001 0.011 | 0.155 0.638 | 0.186  0.997
6|-0.012 0.821 | 0.000 0.013| 0.001 0.006 | 0.204 0.688 | 0.200  0.903
71-0.044 1.039 | -0.001  0.064 | -0.012  0.040 | 0.181  0.708 | 0.196  1.461
8 1-0.014 0.838 | -0.001  0.023 | 0.001 0.011 | 0.154 0.636 | 0.185  0.996
91-0.012 0.822 | 0.000 0.013| 0.001 0.006 | 0.206  0.692 | 0.200  0.903

Table A.1: Bias and RMSE (averaged across simulations) for the spatial parameters.
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Figure A.1: Posterior distributions of the Poisson model parameter -; for the 9 scenarios
considered in the simulation study according to the upscaling method (Method 1, Method
2) and the uncertainty propagation approach (PI, FF, PE). The vertical green line repre-
sents the true parameter value.
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Scenario | Propagation method Upscaling method
Method 1 Method 2
1 PI 0.033 0.023
1 FF 0.032 0.023
1 PE 0.033 0.023
2 PI 0.032 0.023
2 FF 0.032 0.023
2 PE 0.032 0.023
3 PI 0.032 0.023
3 FF 0.032 0.023
3 PE 0.032 0.023
4 PI 0.043 0.040
4 FF 0.042 0.039
4 PE 0.043 0.040
5 PI 0.042 0.039
5 FF 0.042 0.039
5 PE 0.042 0.039
6 PI 0.042 0.039
6 FF 0.042 0.039
6 PE 0.042 0.040
7 PI 0.060 0.058
7 FF 0.058 0.056
7 PE 0.058 0.057
8 PI 0.057 0.055
8 FF 0.056 0.055
8 PE 0.057 0.055
9 PI 0.057 0.055
9 FF 0.056 0.055
9 PE 0.056 0.054

Table A.2: Posterior standard deviation for the Poisson model parameter ; for the 9
scenarios considered in the simulation study according to the upscaling method (Method
1, Method 2) and the uncertainty propagation approach (PI, FF, PE).
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Figure A.2: Map of the differences between the posterior medians of NOs concentrations
(in prg/m?) obtained using Method 1 and Method 2.
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Figure A.3: Distribution of the number of prediction points across areas of the Piemonte
region according to the upscaling method (Method 1 and Method 2).
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Parameter Method | Mean Sd  Quant0.025 Median Quant0.975
PI methodl | 0.8866 0.5850 -0.2622  0.8851 2.0308

PI method2 | 0.8989 0.5851 -0.2500  0.8974 2.0433

Y | FF methodl | 0.8824 (.5879 -0.2738  0.8798 2.0309
FF method2 | 0.8916 0.5873 -0.2633  0.8890 2.0391

PE methodl | 0.8741 0.5817 -0.2693  0.8733 2.0147

PE methodl | 0.8887 0.5817 -0.2551  0.8880 2.0290

PI methodl | 0.0159 0.0072 0.0018  0.0159 0.0301

PI method2 | 0.0130 0.0072 -0.0011  0.0129 0.0270

~v1 | FF methodl | 0.0109 0.0103 -0.0088  0.0106 0.0326
FF method2 | 0.0087 0.0100 -0.0105  0.0084 0.0298

PE methodl | 0.0177 0.0076 0.0027  0.0176 0.0326

PE method2 | 0.0145 0.0075 -0.0003  0.0145 0.0293

PI method1 | -0.0100 0.0060 -0.0217  -0.0100 0.0017

PI method2 | -0.0100 0.0060 -0.0217  -0.0101 0.0016

2 | FF methodl | -0.0098 0.0060 -0.0216  -0.0098 0.0019
FF method2 | -0.0098 0.0060 -0.0216  -0.0099 0.0019

PE methodl | -0.0099 0.0059 -0.0216  -0.0099 0.0017

PE method2 | -0.0100 0.0059 -0.0216  -0.0100 0.0016

PI method1 | 0.0181 0.0017 0.0148  0.0181 0.0214

PI method2 | 0.0181 0.0017 0.0149 0.0181 0.0214

ag FF methodl | 0.0181 0.0017 0.0148  0.0181 0.0214
FF method2 | 0.0181 0.0017 0.0148  0.0181 0.0214

PE methodl | 0.0179 0.0017 0.0147  0.0179 0.0212

PE method2 | 0.0180 0.0017 0.0148  0.0180 0.0213

PI methodl | 0.0005 0.0004 0.0001  0.0004 0.0017

PI method2 | 0.0005 0.0004 0.0001  0.0004 0.0017

o2 | FF methodl | 0.0005 0.0004 0.0001  0.0004 0.0017
FF method2 | 0.0005 0.0004 0.0001  0.0004 0.0017

PE methodl | 0.0005 0.0004 0.0001  0.0004 0.0017

PE method2 | 0.0005 0.0004 0.0001  0.0004 0.0017

Table A.3: Posterior summary statistics (mean, standard deviation (sd), 2.5%, 50% and
97.5% quantiles) for the Poisson model parameters according to the upscaling method
(Method 1, Method2) and the propagation approach (PI, FF, PE). Recall that ~; refers
to a 10 pug/m? increase in NOy concentration.
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