23rd International Systems and Software Product Line Conference

September 9 - 13, 2019
Paris, France

Proceedings - Volume A

EDITED BY:

Thorsten Berger, Philippe Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnavaj, Thomas Thüm, Tewfik Ziadi
# Table of Contents

Welcome Message ................................................................. xi

Organizing Committee ........................................................... xii

Program Committees .............................................................. xiv

Keynotes

Performance Analysis for Highly-Configurable Systems .................. xviii
  *Christian Kästner*

Becoming and Being a Researcher – What I Wish Someone Would Have Told me When I Started Doing Research .......................... xix
  *Carlo Ghezzi*

Variability Variations in Cyber-Physical Systems ........................ xx
  *Lidia Fuentes*

DSLs, Formal Methods, and Feature Models ............................... xxi
  *Björn Engelmann*

SAT Oracles, for NP-Complete Problems and Beyond ..................... xxii
  *Daniel Le Berre*

Joint SPLC/ECSA Panel "Women in Software Engineering" .............. xxiii

Testing

[Research] Automating Test Reuse for Highly Configurable Software: An Experiment ................................................. 1
  *Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed*

[Journal First] Mutation Operators for Feature-Oriented Software Product Lines ......................................................... 12
  *Jacob Krüger, Mustafa Al-Hajjaji, Thomas Leich, and Gunter Saake*

[Journal First] Extended Abstract of "Spectrum-Based Fault Localization in Software Product Lines" ................................. 13
  *Aitor Arrieta, Sergio Segura, Urtzi Markiegi, Goituria Sagardui, and Leire Etxeberria*
Domain Implementation

Rolf Ebert, Jahir Jolaisis, Stefan Kriebel, Matthias Markthaler, Benjamin Pruenster, Bernhard Rumpe, and Karin Samira Salman

[Journal First] Feature-Oriented Contract Composition ................................................. 25
Thomas Thüm, Alexander Knüppel, Stefan Krüger, Stefanie Bolle, and Ina Schaefer

[Industry] Extraction of Configurable and Reusable Microservices from Legacy Systems: An Exploratory Study ............................................................. 26
Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assunção, Rodrigo Bonifácio, Leonardo P. Tizzei, and Thelma Elita Colanzi

Majid Makki, Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen

Marc Dahlem, Ricarda Rahm, and Martin Becker

Solution-Space Analysis

[Research] Static Analysis of Featured Transition Systems ............................................. 39
Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti, and Luca Paolini

[Research] Learning from Difference: An Automated Approach for Learning Family Models from Software Product Lines ......................................................... 52
Carlos Diego N. Damasceno, Mohammad Reza Mousavi, and Adenilso Simao

[Journal First] Feature-Family-Based Reliability Analysis of Software Product Lines ...... 64

Lea Gerling and Klaus Schmid

Challenges and Solutions

[Challenge Proposal] Applying Product Line Engineering Concepts to Deep Neural Networks ................................................................................................................. 72
Javad Ghafrani, Ehsan Kozegar, Anna Lena Fehlhaber, and Mohammad Divband Soorati
Emerging Application Areas

[Research] DNA as Features: Organic Software Product Lines ........................................ 108
Mikaela Cashman, Justin Firestone, Myra B. Cohen, Thammasak Thianniwat, and Wei Niu

[Research] Automated Search for Configurations of Convolutional Neural Network Architectures ........................................ 119
Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon

[Research] Piggyback IDE Support for Language Product Lines ........................................ 131
Thomas Kühn, Walter Cazzola, Nicola Pirritano Ciampietro, and Massimiliano Poggi

[Industry] Industrial Perspective on Reuse of Safety Artifacts in Software Product Lines . 143
Christian Wolschke, Martin Becker, Sören Schneickert, Rasmus Adler, and John MacGregor

Community Efforts

[Industry] How Domain-Specific Modeling Languages Address Variability in Product Line Development: Investigation of 23 Cases ........................................ 155
Juha-Pekka Tolvanen and Steven Kelly

[Research] Software Product Line Engineering: A Practical Experience .......................... 164
Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes
Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Linsbauer, Jabier Martinez, and Thorsten Berger

[Research] Industrial and Academic Software Product Line Research at SPLC: Perceptions of the Community ........................................ 189
Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botterweck, Matthias Galster, Iris Groher, and Danny Weyns

Requirements Engineering

[Industry] Feature Oriented Refinement from Requirements to System Decomposition: Quantitative and Accountable Approach ........................................ 195
Masuki Asano, Yoichi Nishiura, Tsuneo Nakanishi, and Keiichi Fujiwara

[Journal First] Enabling Automated Requirements Reuse and Configuration ................................................................. 206
Yan Li, Tao Yue, Shaukat Ali, and Li Zhang

Metrics and Refactoring

[Research] Formal Foundations for Analyzing and Refactoring Delta-Oriented Model-Based Software Product Lines ........................................ 207
Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl

[Research] Covert and Phantom Features in Annotations: Do They Impact Variability Analysis? ................................................................. 218
Kai Ludwig, Jacob Krüger, and Thomas Leich

[Research] Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems ......................................................... 231
Xhevahire Tërnava, Johann Mortara, and Philippe Collet

Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid

Feature-Model Evolution

[Research] Semantic Evolution Analysis of Feature Models ........................................ 245
Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe
[Journal First] Achieving Change Requirements of Feature Models by an Evolutionary Approach .................................................. 256
Paolo Arcaini, Angelo Gargantini, and Marco Radavelli

[Research] Foundations of Collaborative, Real-Time Feature Modeling .................................................. 257
Elias Kuijer, Sebastian Kröter, Jacob Krüger, Thomas Leich, and Gunter Saake

Configuration and Sampling

[Research] Process Mining to Unleash Variability Management: Discovering Configuration Workflows Using Logs .................................................. 265
Ángel Jesús Varela-Vaca, José A. Galindo, Belén Ramos-Gutiérrez, María Teresa Gómez-López, and David Benavides

[Research] Towards Quality Assurance of Software Product Lines with Adversarial Configurations .................................................. 277
Paul Temple, Mathieu Acher, Gilles Perrouin, Battista Biggio, Jean-Marc Jézéquel, and Fabio Roli

[Research] Uniform Random Sampling Product Configurations of Feature Models That Have Numerical Features .................................................. 289
Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory

Problem-Space Analysis

José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-Fernández, and Antonio Ruiz-Cortés

[Research] A Kconfig Translation to Logic with One-Way Validation System .................................................. 303
David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

[Industry] Using Relation Graphs for Improved Understanding of Feature Models in Software Product Lines .................................................. 309
Slawomir Duszynski, Saura Jyoti Dhar, and Tobias Beichter

Workshops

Michael Nieke, Lukas Linsbauer, Jacob Krüger, and Thomas Leich
Second International Workshop on Experiences and Empirical Studies on Software Reuse (WEESR 2019) ........................................ 321
Jaime Chavarriaga and Julio Ariel Hurtado

Fourth International Workshop on Software Product Line Teaching (SPLTea 2019) .... 322
Mathieu Acher, Rick Rabiser, and Roberto E. Lopez-Herrejon

First International Workshop on Languages for Modelling Variability (MODEVAR 2019) . 323
David Benavides, Rick Rabiser, Don Batory, and Mathieu Acher

Seventh International Workshop on Reverse Variability Engineering (REVE 2019) .... 324
Mathieu Acher, Tewfik Ziadi, Roberto E. Lopez-Herrejon, and Jabier Martinez

Tutorials

Machine Learning and Configurable Systems: A Gentle Introduction .......................... 325
Hugo Martin, Juliana Alves Pereira, Mathieu Acher, and Paul Temple

Software Reuse for Mass Customization ......................................................... 327
Mike Mannion and Hermann Kaindl

Variability Modeling and Implementation with EASy-Producer ................................. 328
Klaus Schmid, Holger Eichelberger, and Sascha El-Sharkawy

Describing Variability with Domain-Specific Languages and Models ......................... 329
Juha-Pekka Tolvanen and Steven Kelly

Automated Evaluation of Embedded-System Design Alternatives .......................... 330
Maxime Cordy and Sami Lazreg

Feature-Based Systems and Software Product Line Engineering: PLE for the Enterprise . 331
Charles W. Krueger and Paul C. Clements

Variability Modeling and Management of MATLAB/Simulink Models .................... 332
Aitor Arrieta
Achieving Change Requirements of Feature Models by an Evolutionary Approach

Extended Abstract

Paolo Arcaini
National Institute of Informatics
Tokyo, Japan
arcaini@nii.ac.jp

Angelo Gargantini
University of Bergamo
Bergamo, Italy
angelo.gargantini@unibg.it

Marco Radavelli
University of Bergamo
Bergamo, Italy
marco.radavelli@unibg.it

CCS CONCEPTS
- Software and its engineering → Software product lines;
  Search-based software engineering;
- Theory of computation → Evolutionary algorithms;

KEYWORDS
feature models, software product lines, mutation, search-based software engineering

ACM Reference Format:

DESCRIPTION OF THE JOURNAL-FIRST PAPER
Software Product Lines (SPLs) are families of products that share some common features, and differ on some others. The variability of SPLs is usually described at design time by using variability models; one of the main used variability models are feature models (FMs).

Overtime, feature models need to be updated in order to avoid the risk of having a model with wrong features and/or wrong constraints. Two main causes for change requirements exist: either the model is incorrect (it excludes/includes some products that should be included/excluded), or the SPL has changed. The change requirements come from different sources: failing tests identifying configurations evaluated not correctly, or business requirements to add new features, to allow new features, to not support some products any more, and so on. All these change requirements identify configurations/features to add or remove, but do not identify a way to modify the feature model to achieve them. Manually updating a feature model to achieve all the change requirements can be particularly difficult and, in any case, error-prone and time consuming.

In the corresponding journal-first paper [1], we propose an approach (shown in Fig. 1) to automatically update a feature model upon change requirements. The user must only specify an update request, based on the change requirements coming from testing or from business requirements. The update request is composed of three kinds of feature-based change requirements and two kinds of product-based ones: the feature-based ones consist in features that must be renamed, and features that must be added to and removed from the products of the original feature model; the product-based ones, instead, consist in configurations that should be no more accepted as products by the final model, and configurations that should instead be accepted as new products. Starting from the update request, the approach tries to apply the feature-based change requirements directly on the starting model; however, some of these requirements could be not completely fulfilled. Then, by means of an evolutionary algorithm, the approach tries to obtain a feature model that captures all the change requirements: the feature-based ones not fulfilled in the previous phase, and the product-based ones. The process iteratively generates, from the current population of candidate solutions, a new population of feature models by mutation. Population members are evaluated considering primarily the percentage of correctly evaluated configurations, and secondly a measure of the structural complexity of the model, defined in terms of number of cross-tree constraints. When a correct model is found or some other termination condition holds, the process terminates returning as final model the one having the highest fitness value.

The approach has been evaluated on real world feature models; experiments show that, on average, around 89% of requested changes are applied.

ACKNOWLEDGMENTS
P. Arcaini is supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1693). JST. Funding Reference number: 10.13039/501100009024 ERATO.

REFERENCES