
Article
Integrative Single-Cell RN
A-Seq and ATAC-Seq
Analysis of Human Developmental Hematopoiesis
Graphical Abstract
Highlights
d The epigenetic and transcriptional landscape of human fetal

hematopoiesis

d Blood stem cells differentiate into three distinct oligopotent

progenitor populations

d Changes in motif accessibility in blood stem cells precede

transcriptional priming

d Refined sorting strategy to isolate and enrich for human fetal

blood stem cells
Ranzoni et al., 2021, Cell Stem Cell 28, 472–487
March 4, 2021 ª 2020 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.stem.2020.11.015
Authors

Anna Maria Ranzoni,

Andrea Tangherloni, Ivan Berest, ...,

Irina Mohorianu, Judith B. Zaugg,

Ana Cvejic

Correspondence
as889@cam.ac.uk

In Brief

Ranzoni et al. provide a detailed

transcriptional and chromatin

accessibility map of fetal liver and bone

marrow hematopoietic stem cells (HSCs).

Within HSCs, they revealed extensive

epigenetic but not transcriptional

priming. They identified transcriptional

and functional differences between HSCs

from liver and bone marrow.
ll

mailto:as889@cam.ac.�uk
https://doi.org/10.1016/j.stem.2020.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stem.2020.11.015&domain=pdf


OPEN ACCESS

ll
Article

Integrative Single-Cell RNA-Seq and ATAC-Seq
Analysis of Human Developmental Hematopoiesis
Anna Maria Ranzoni,1,2,3,6 Andrea Tangherloni,1,2,3,6 Ivan Berest,4,6 Simone Giovanni Riva,1,2,3 Brynelle Myers,2,3

Paulina M. Strzelecka,1,3,5 Jiarui Xu,1,2,3 Elisa Panada,2,3 Irina Mohorianu,2 Judith B. Zaugg,4 and Ana Cvejic1,2,3,7,*
1University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK
2Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
3Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
4European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69115 Heidelberg, Germany
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SUMMARY
Regulation of hematopoiesis during human development remains poorly defined. Here we applied single-cell
RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scA-
TAC-seq) to over 8,000 human immunophenotypic blood cells from fetal liver and bone marrow. We inferred
their differentiation trajectory and identified three highly proliferative oligopotent progenitor populations
downstream of hematopoietic stem cells (HSCs)/multipotent progenitors (MPPs). Along this trajectory, we
observed opposing patterns of chromatin accessibility and differentiation that coincided with dynamic
changes in the activity of distinct lineage-specific transcription factors. Integrative analysis of chromatin
accessibility and gene expression revealed extensive epigenetic but not transcriptional priming of HSCs/
MPPs prior to their lineage commitment. Finally, we refined and functionally validated the sorting strategy
for the HSCs/MPPs and achieved around 90% enrichment. Our study provides a useful framework for future
investigation of human developmental hematopoiesis in the context of blood pathologies and regenerative
medicine.
INTRODUCTION

During embryonic development, hematopoietic stem cells

(HSCs) need to rapidly differentiate into mature blood cells.

Our current knowledge of fetal hematopoietic stem and progen-

itor cells (HSPCs) has mainly been advanced by murine and

in vitro model systems. It has been demonstrated that fetal

hematopoiesis consists of several separate waves of specifica-

tion, migration, and differentiation of rare HSCs at distinct or-

gans during development (Ivanovs et al., 2017). In humans,

definitive hematopoiesis starts with the appearance of HSCs

within hematopoietic clusters, in the dorsal aorta, 27 days

post-conception. These definitive HSCs first colonize the fetal

liver at 4 post-conceptional weeks (pcw), where they expand

in numbers. At 10.5 pcw, the hematopoietic site shifts once

more to the cavities of bones (i.e., bone marrow [BM]), where

adult hematopoiesis is established permanently. The first

HSCs that seed the bone marrow are thought to continue to

rapidly increase in numbers before undergoing a dramatic

change in their proliferative and differentiation properties to

accommodate the need for high production of differentiated

progeny (Mikkola and Orkin, 2006).
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Historically, differentiation processes in the hematopoietic

system have been depicted as a series of intermediate steps,

defined by panels of cell surface markers (i.e., cluster of differen-

tiation [CD]). In this model, often represented as a ‘‘hematopoiet-

ic tree,’’ HSCs give rise to increasingly lineage-restricted cell

types, eventually leading to mature blood cells (Akashi et al.,

1999; Weissman, 2000). This paradigm has shifted in the last 5

years, with several studies reporting the transcriptomes of thou-

sands of single hematopoietic cells, isolated by cell surface

markers, in the mouse model and in adult humans (Paul et al.,

2015; Velten et al., 2017). These reports showed that progenitor

populations, thought previously to be homogeneous, are actu-

ally very heterogeneous on the transcriptional level.

The mechanisms underlying early fate decisions in HSCs are

largely unknown. It has been postulated that the stochastic

expression of lineage-specific transcription factors (TFs) above

the noise threshold can ‘‘lock’’ a cell into a distinct cell fate

(Graf and Enver, 2009). In line with this, co-expression of genes

associated with antagonistic lineages, including key TFs, have

been observed in multipotent hematopoietic cells, albeit at low

levels (Hu et al., 1997; Miyamoto et al., 2002). This points toward

the presence of sub-populations of cells within the multipotent
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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compartment that are permissive for opposing cell fates prior to

their lineage commitment, a phenomenon referred to as priming

(Nimmo et al., 2015). More recently, single-cell RNA sequencing

(scRNA-seq) of human HSPCs introduced a different concept of

priming. Studies of adult bone marrow and fetal liver hematopoi-

esis have identified sub-populations of HSCs and multipotent

progenitors (MPPs) with coordinated expression of marker

genes, specific for distinct unilineage differentiation programs,

that gradually increase along all differentiation branches (Velten

et al., 2017; Popescu et al., 2019). In addition, there are some in-

dications that lineage priming in the HSC compartment might be

happening not only on the transcriptional but also at the epige-

netic level (Nimmo et al., 2015). Data from single-cell assay for

transposase-accessible chromatin sequencing (scATAC-seq)

of phenotypic HSPCs from adult human bone marrow show

that phenotypic MPPs have variations in chromatin accessibility

consistent with a bias toward erythroid and lymphoid lineages

(Buenrostro et al., 2018).

Here we performed an integrative analysis of scRNA-seq and

scATAC-seq of more than 8,000 immunophenotypic HSPCs

from 17–22 pcw human fetal liver, femur, and hip to define tran-

scriptional and epigenetic changes during blood differentiation.

We explored lineage priming at the transcriptional and chromatin

levels in HSCs/MPPs and refined the sorting strategy for isola-

tion of a highly enriched HSC/MPP population.

RESULTS

Single-Cell Transcriptome of the Hematopoietic
Compartment in Human Fetal Liver and Bone Marrow
To capture the full repertoire of hematopoietic cells during fetal

development, we single-cell-sorted phenotypically defined

blood populations from matched (i.e., from the same individual)

fetal livers, femora, and hip (iliac) bones between 17 and 22 pcw

(Figure 1A). Cells from the liver, hip, and femur were sorted and

processed independently in all experiments. Thus, each cell can

be traced back to the fetus and organ it came from. We used a

hierarchical approach where we first isolated non-committed

(Lin� [CD3, CD8, CD11b, CD14, CD19, and CD56] CD34+

CD38�) progenitors that contain all immature hematopoietic

populations and are present at a frequency of less than 0.1%

of the total fetal bone marrow (Golfier et al., 2000), followed by

a more restrictive panel to capture differentiated and mature

cell types. We next isolated committed (Lin�, CD34+ CD38+)

progenitors as well as phenotypic HSCs, MPPs, common

myeloid progenitors (CMPs), megakaryocyte-erythroid progeni-

tors (MEPs), granulocyte-monocyte progenitors (GMPs), and

common lymphoid progenitors (CLPs). In addition, based on

broad phenotypic markers, we sorted T cells, natural killer (NK)

cells, innate lymphoid cells (ILCs), monocytes, dendritic cells,

mast cells, basophils, neutrophils, eosinophils, erythroid progen-

itors, erythrocytes, immature megakaryocytes (MKs), mature

MKs, progenitor B cells (pro-B cells), precursor B cells (pre-B

cells), mature B cells, and endothelial cells (Table S1; Figure S1).

Single cells from 15 fetuses were processed for scRNA-seq

using the SmartSeq2 protocol (Picelli et al., 2014) (Figure 1A).

Overall, 4,504 cells passed quality control (QC) (Table S2) with

an average of �3,600 genes per cell and �670,000 reads per

cell (Figures S2A–S2C, S2K, and S2L). To exclude technical
batch effects, we merged the datasets from all samples and tis-

sues using autoencoders (AEs) and applied the batch-balanced

k nearest neighbors (BBKNN) approach (Pola�nski et al., 2020;

Luecken et al., 2020) to the latent space (Tangherloni et al.,

2019; Figure S2O). We applied the graph-based Leiden clus-

tering algorithm (Traag et al., 2019) to the batch-corrected neigh-

borhood graph. Based on differential expression (DE) analysis

and the top 20 marker genes (Figure 1B) ranked by significance

of standardized expression, we manually annotated 23 distinct

populations. Within the hematopoietic progenitor compartment,

we annotated clusters as HSCs/MPPs, cycling HSCs/MPPs

(HSCs/MPPs-Cycle), lymphoid-myeloid progenitors (LMPs),

MK-erythroid-mast progenitors (MEMPs), cycling MEMPs

(MEMPs-Cycle), granulocytic progenitors (GPs), as well as

numerous mature blood cell types, as shown in the uniform

manifold approximation and projection (UMAP) space (Becht

et al., 2018; Figure 1D).

Of the mature blood cell types, we identified clear transcrip-

tional signatures of erythroid cells (expressing HBG1, HBA1,

GYPA, and ALAS2), MKs (expressing FLI1, ITGA2B, and GP9),

monocyte progenitors and monocytes (expressing CD14,

MPEG1, and CD33), CD4+ monocytes, mast cells (expressing

CD63, GATA2, and HDC), plasmacytoid dendritic cells (pDCs;

expressing IL3RA, IRF8, MPEG1, and JCHAIN) with an

additional cluster of highly cycling pDCs (expressing pDC and

proliferation markers; e.g., MKI67), and granulocytes 1, 2, and

3 (expressing AZU1, MPO, and PRTN3) (Figure 1B; Figure S3).

Although granulocytes were present in our dataset, we could

not clearly distinguish neutrophils, basophils, and eosinophils

because of the mixed expression signatures. In the lymphoid

compartment, we identified NK cells (expressing CD3D, IL2RB,

andCD96) and B cells (expressingCD19 andCD79B) (Figure 1B;

Figure S3). The B cell lineage included pro-B cells, which showed

expression of IGLL1 and RAG1, and pre-B cells, expressing high

levels of CD79B, VPREB1, and CD24 (Figure 1B). Finally, we

identified a cluster of mature B cells expressing high levels of

IGHM and decreased levels of IGLL1 compared with pro/pre-B

cell clusters (Figure 1B). We did not detect any T cells or ILCs

in the liver or femur despite sorting phenotypic T cells and ILCs

using broad cell surface markers for these populations. Unlike

B cells, which mature in the BM, T cells derive from lymphoid

progenitors that migrate from the BM to the thymus, where

they complete their maturation. The development of ILCs is

less understood, but there have been suggestions that ILC pre-

cursors migrate early from BM into non-hematopoietic tissues;

e.g., gut (Cichocki et al., 2019). Because we only sorted BM

and not thymus or gut, we might have captured only progenitors

but not T cells and ILCs. By using a deep neural network (DNN)

(LeCun et al., 2015) and the top 30marker genes for each cluster,

we were able to correctly classify the cells to the prospective

clusters with 90.46% accuracy, confirming that our manual

annotation of clusters well separated the distinct cell types/

states (STAR Methods; Figure S4A).

In the last decade, human HSCs and other progenitor popula-

tions have been isolated and used in functional assays based on

specific sets of cell surface markers. It has been suggested that

the fetal hematopoietic progenitor compartment differs substan-

tially from its adult counterpart (Notta et al., 2016). Our approach

allowed us to compare the extent to which the phenotypic
Cell Stem Cell 28, 472–487, March 4, 2021 473
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Figure 1. Single-Cell Transcriptome Analysis of Human Fetal Hematopoiesis

(A) Schematic overview of the experimental workflow. From each fetus (17–22 pcw), phenotypically defined HSPCs andmature blood cells were sorted from bone

marrow (femur and hip) and liver and processed for scRNA-seq (n = 15), scATAC-seq (n = 3), and single-cell in vitro differentiation assays (n = 4).

(B) Heatmap of the mean expression value of twomanually selected marker genes for each cell type. The expression of the genes is standardized between 0 and

1. For each gene, the minimum value is subtracted, and the result is divided by the maximum. The standardized expression level is indicated by color intensity.

(C) Donut plots showing the percentage of transcriptionally defined (i.e., manually curated) cell populations in each of the phenotypically defined stem and

progenitor populations. The colors correspond to the identified cell types.

(D) UMAP visualization of hematopoietic cells from liver and bonemarrow, colored by cell type. HSCs/MPPs-Cycle, cycling hematopoietic stem cells/multipotent

progenitors; MEMPs, MK-Ery-mast progenitors; MEMPs-Cycle, cycling MEMPs; GPs, granulocytic progenitors; LMPs, Ly-My progenitors; pDCs, plasmacytoid

dendritic cells; pDCs-Cycle, cycling pDCs.
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identity of cell populations (as defined by CD markers) matched

their transcriptional state (i.e., our manually curated clusters)

and, thus, to critically examine use of CD markers in the context

of fetal bone marrow hematopoiesis.
474 Cell Stem Cell 28, 472–487, March 4, 2021
Single-cell analysis revealed substantial transcriptional het-

erogeneity within all immunophenotypically defined stem and

progenitor populations, with some phenotypic progenitor popu-

lations (such as HSCs, MPPs, CMPs, GMPs, MEPs, and CLPs)
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being comprised of more than 10 different transcriptionally

defined populations. (Figure 1C; Figure S4B). This observation

is in agreement with recent research showing a high level of het-

erogeneity of the progenitor compartment of human cord blood

(Knapp et al., 2018). Our comparative analysis shows that

currently used cell-surface markers are a poor predictor of the

transcriptional state of human fetal hematopoietic progenitors.

Inference of Differentiation Trajectories during Fetal
Hematopoiesis
Next we used a force-directed graph drawing algorithm, Force-

Atlas2, to infer the differentiation trajectory of hematopoietic

cells during human fetal development (Jacomy et al., 2014).

We initialized a ForceAtlas2 layout with partition-based approx-

imate graph abstraction (PAGA) coordinates from our annotated

cell types (Wolf et al., 2019). This initialization generated inter-

pretable single-cell embedding that is faithful to the global topol-

ogy. The obtained global topology revealed HSCs/MPPs at the

tip of the trajectory (Figures 2A and 2B; Figure S3). HSCs/

MPPs showed high expression of MLLT3, a crucial regulator of

human HSC maintenance (Calvanese et al., 2019); HLF, a TF

involved in preserving quiescence in HSCs (Komorowska et al.,

2017); and MEIS1, a TF involved in limiting oxidative stress in

HSCs, which is necessary for quiescence (Unnisa et al., 2012;

Wang et al., 2018). Cells in this cluster also expressed high levels

of surface markers of HSPCs, such as CD34 (Morisot et al.,

2006), SELL (Ivanovs et al., 2017), and PROM1 (de Wynter

et al., 1998; Saha et al., 2020; Figures 1B and 2C). Downstream

of HSCs/MPPs, we identified three distinct, highly proliferative,

oligopotent progenitor populations. We used Scanpy’s dpt func-

tion to infer progression of the cells through geodesic distance

along the graph. Then we used Scanpy’s paga_path function

to show how the gene expression and annotation changes along

the three main paths (MEMPs, GPs, and LMPs) present in the

abstracted graph (Figure 2C).

MEMPs connected HSCs/MPPs with MKs, erythroid, and

mast cells. In line with this, differentially regulated genes in the

HSC/MPP transition to MEMPs included MK/erythroid/mast

cell lineage-specific genes such as GATA1, ITGA2B, PLEK,

KLF1, HDC, and MS4A3 (Figures 1B and 2C; Figure S5B). The

presence of MEMPs in our dataset is consistent with studies in

mouse models proposing a common trajectory between

erythroid, megakaryocytic, and mast cell lineages (Franco

et al., 2010). This concept was more recently supported by a

study in human fetal liver showing a shared progenitor of MKs,

erythroid cells, and mast cells (Popescu et al., 2019). In addition,

we identified a proliferative population of MEMPs-Cycle of which

�92% were in G2M/S phase compared with 65% of MEMPs

(Figure 2E). The MEMPs-Cycle population further upregulated

erythroid-specific genes such as KLF1, BLVRB, and TFRC

compared with MEMPs, suggesting their gradual commitment

toward the erythroid lineage (Figure S5C).

GPs connected the HSC/MPP cluster with granulocyte clus-

ters. Cells in this cluster differentially expressed myeloid line-

age-specific genes (e.g., AZU1, LYZ, and MPO) compared with

HSCs/MMPs (Figure 2C; Figure S5D) and were highly cycling,

with 73% of cells in G2M/S phase (Figure 2E). Finally, our data

pointed toward the existence of a common progenitor popula-

tion for B cells, monocytes, pDCs, and NK cells, here annotated
as LMPs. Cells in this cluster expressed genes specific to those

lineages, including IGLL1, HMGB2, and CD79B (lymphoid) (Fig-

ure 2C; Figure S3), and upregulated lymphoid genes such as

CD81, IGLL1, and HMGN2 compared with the HSC/MPP cluster

(Figure S5E). Again, this was a highly proliferative population of

cells with �89% of cells in G2M/S phase (Figure 2E).

Our findings support previous studies of early lymphoid

commitment in human cord blood in vitro and in vivo that identi-

fied a shared lineage progenitor between lymphoid, NK, B, and

T cells; monocytes; and dendritic cells (Doulatov et al., 2010;

Collin et al., 2011). Interestingly, the LMP cluster had higher

expression of MPP-related genes such as SPINK2, CD52, and

SELL compared with MEMPs, suggesting that these progenitors

represent a more immature population compared with MEMPs

(Figure S5F).

Next we used the Python implementation of single-cell regu-

latory network inference and clustering (SCENIC) (Aibar et al.,

2017; Van de Sande et al., 2020) to identify master regulators

and gene-regulatory networks (GRNs) in HSPCs and mature

blood cells across differentiation trajectories. We found 162

regulons, some of which some were enriched across many

different cell types, often as a part of the particular differentia-

tion branch, and some were cell type specific (Figure 2D). We

identified HLF and HOXA9 as main regulons in HSCs/MPPs,

whereas GATA1, GATA2, and TAL1 were identified in the

MEMP branch of the hematopoietic tree (Figure 2D). FOXO3

was highly specific for erythroid cells and EOMES, OLIG2,

and IRF8 for NK cells, monocytes, and pDCs, respectively.

Importantly, the regulons confirmed the inferred differentiation

trajectory.

To further explore heterogeneity within the HSC/MPP popula-

tion, we examined whether HSCs/MPPs simultaneously primed

several different lineage-affiliated programs of gene activity.

Although HSCs/MPPs sporadically expressed lymphoid,

myeloid, or MK-erythroid differentiation genes, we did not

observe consistent expression of antagonistic lineage-affiliated

genes in individual cells. In addition, after further sub-clustering

the HSCs/MPPs, there was no evident consolidation of lineage-

affiliated transcriptional programs in any of the sub-populations

(Figure S6). Our scRNA-seq data thus do not support recently re-

ported transcriptional lineage priming in the fetal HSC/MPP

compartment (Popescu et al., 2019) and suggest that, transcrip-

tionally, our HSC/MPP cluster represents a highly immature pop-

ulation of cells.

DE analysis between HSCs/MPPs-Cycle and HSCs/MPPs re-

vealed upregulation of genes involved in cell cycle regulation

(FOS, PTP4A1, MCL1, and PKN2) in HSCs/MPPs-Cycle (Fig-

ure S5A), confirming that they are indeed a population of cycling

stem and multipotent cells. In line with this, cell cycle analysis

confirmed that �36% of HSCs/MPPs were cycling compared

with �53% of HSCs/MPPs-Cycle (Figure 2E). HSCs/MPPs-

Cycle had increased expression of genes involved in glycolysis,

a feature commonly found in proliferating cells (Ito and Suda,

2014; Figure S5G). However, there were no other transcriptional

differences between HSCs/MPPs and HSCs/MPPs-Cycle,

excluding the presence of transcriptional priming in the HSCs/

MPPs-Cycle cluster.

Previous research showed that, contrary to adult blood progen-

itors thataremainlyunilineage, fetal liverbloodprogenitorsmaintain
Cell Stem Cell 28, 472–487, March 4, 2021 475
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Figure 2. Differentiation Trajectory of Human Fetal Hematopoietic Cells

(A) Force-directed graph (FDG) visualization of the differentiation trajectory of hematopoietic cells from Figure 1D.

(B) PAGA trajectory model imposed on the FDG visualization of the differentiation trajectory. The size of the dots is proportional to the number of cells in the

clusters.

(C) Heatmap showing dynamic expression of lineage-specific genes along the three differentiation paths (MEMP, granulocyte, and LMP path). Cluster colors

match those of (A) and (B). Expression is standardized between 0 and 1, and the level is indicated by the grayscale color intensity.

(D) Heatmap of the normalized area under the curve (AUC) score of selected TFs for each cell type obtained by pySCENIC. Cluster colors match those of (A) and

(B). The AUC score is standardized between 0 and 1 and indicated by the grayscale color intensity.

(E) Donut plots showing the percentages of cells in G1, S, and G2M phase in HSCs/MPPs, HSCs/MPPs-Cycle, MEMPs, MEMPs-Cycle, LMPs, and GPs. FA2,

ForceAtlas2.
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multilineage potential (Notta et al., 2016). Our data are consistent

with this observation and point toward the existence of three oligo-

potent progenitor populations downstream of the HSC/MPP com-

partments: MEMPs giving rise to erythroid cells, MKs, and mast

cells; GPs differentiating into granulocytes; and LMPs generating

lymphoid cells, monocytes, and dendritic cells.
476 Cell Stem Cell 28, 472–487, March 4, 2021
scATAC-Seq of Fetal Non-committed Progenitors
(CD34+ CD38–)
Detection of low-abundance transcripts, such as TFs, might be

difficult in scRNA-seq data because of technical limitations of

the approach, leading to false negatives (so-called dropouts).

The activity of these TFs can be inferred, however, from
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Figure 3. Single-Cell Chromatin Accessibility Analysis of Human Fetal Hematopoiesis

(A) UMAP visualization of the scATAC-seq dataset (3,611 nuclei from CD34+ CD38– cells from the liver and bone marrow), colored by cluster.

(B) Top: bar plot showing the average accessibility of 36 selected marker genes from our scRNA-seq data considering all cells. Bottom: dot plot of the stan-

dardized accessibility of the marker genes (gene body ± 3 kb) in each of the seven clusters. For each gene, the minimum value of its accessibility is subtracted,

and the result is divided by the maximum value of its accessibility. The dot size indicates the percentage of cells in each cluster in which the gene of interest is

accessible. The standardized accessibility level is indicated by color intensity.

(C) FDG visualization of the differentiation trajectory of hematopoietic cells from (A).

(D) PAGA trajectory model imposed on the FDG visualization of the differentiation trajectory of hematopoietic cells from (A). The size of the dots is proportional to

the number of cells in the clusters.

(E) Violin plots showing the chromatin accessibility in different clusters. p1,2 < 2 3 10�16, p2,3 < 2 3 10�16, p3,4 < 2 3 10�16, p4,5 < 2 3 10�16, p4,6 = 1.4E�07,

p4,7 = 0.00235. ***p < 0.001; 0.001 < **p < 0.01; 0.01 < *p < 0.05; ns, not significant; p R 0.05.

(F–H) Heatmap showing the activity of lineage-specific TFs along differentiation trajectories.

(legend continued on next page)
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chromatin accessibility, emphasizing the importance of ap-

proaches integrating scRNA-seq and scATAC-seq data. In addi-

tion, chromatin accessibility at regulatory regions might precede

gene activity and, thus, have predictive value for future transcrip-

tion of a gene. Therefore, to further investigate the regulatory

events in very immature cell populations, we examined the sin-

gle-cell chromatin accessibility landscape (using scATAC-seq)

of human fetal Lin� CD34+ CD38� cells (STAR Methods). We

sequenced 4,001 cells from liver and femur of three fetuses,

18, 20, and 21 pcw (STAR Methods). Based on our scRNA-seq

data, we expected that 90% of captured cells would be associ-

ated with one of the six populations: HSCs/MPPs, HSCs/MPPs-

Cycle, MEMPs, MEMPs-Cycle, GPs, and LMPs, with HSCs/

MPPs(Cycle) constituting the majority (Figure S4B).

To capture peaks that are present in less abundant cell types,

such as MEMPs, MEMPs-Cycle, GPs, and LMPs, we employed

an iterative peak-calling approach. We first defined open chro-

matin regions by pooling all data and calling peaks in the pooled

samples. Following dimensionality reduction with diffusionmaps

(Haghverdi et al., 2015) and clustering using the Louvain commu-

nity detection algorithm (Blondel et al., 2008), we performed a

second round of peak calling in clusters with more than 50 cells.

Of the initial �474,000 reads, after preprocessing steps (Figures

S2D–S2F), on average, we detected�32,400 fragments per cell,

and 56% of those mapped to peaks (Figures S2G, S2H, and

S2M). Following filtering steps (Figures S2I, S2J, and S2N),

3,611 cells passed QC with 152,282 distinct peaks.
Motif Accessibility Dynamics along the Inferred
Differentiation Trajectories
To merge samples and remove the batch effects, we applied

Harmony (Korsunsky et al., 2019; Luecken et al., 2020) to the first

50 latent semantic indexing (LSI) components, excluding the first

one because it was highly correlatedwith sequencing depth (Fig-

ures S2P and S2Q). By using a shared nearest neighbor (SNN)

modularity optimization-based clustering algorithm, we ob-

tained seven distinct clusters of differentially accessible peaks

(Figure 3A).

To explore the chromatin accessibility profiles across the

seven clusters, we examined the accessibility of selectedmarker

genes from our scRNA-seq data (Figure 3B).We observed higher

accessibility of marker genes associated with stem cells (e.g.,

MLLT3, PROM1, FLI1, and GATA2) and lower accessibility of

genes associated with distinct lineages (e.g., MPO, ALAS2,

MPEG1, and CD19), keeping in line with the undifferentiated na-

ture of sorted cells (Figure 3B). Interestingly, we observed clear

separation of clusters in terms of their overall accessibility of

marker genes, with clusters 1, 2, 4, and 7 being more accessible

and clusters 3 and 5 being less accessible. Cluster 6 had amixed

signature (Figure 3B).
(F) Clusters 1, 2, and 3.

(G) Clusters 1–6.

(H) Clusters 1, 4, 5, and 6.

(I–K) FDG visualization of min-max normalized TF motif accessibility along the di

(I) NF-kB2.

(J) REL.

(K) RELB. The standardized accessibility level is indicated by color intensity.
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Extensively open chromatin in multipotent cells has been

associated previously with a permissive state to which multiple

programs of gene regulation may be applied upon differentiation

and is considered important for maintenance of pluripotency

(Gaspar-Maia et al., 2011). To further investigate whether there

were global dynamic changes in accessibility patterns associ-

ated with differentiation of fetal HSCs/MPPs, we inferred differ-

entiation pseudotime from our scATAC-seq data using the

same approach as with scRNA-seq described above. Briefly,

we built a force-directed graph from our seven scATAC-seq

clusters by initializing a ForceAtlas2 layout with PAGA coordi-

nates (Figures 3C and 3D). The generated trajectory revealed

two branches with a clear trend between chromatin accessibility

and differentiation in each branch (Figures 3D and 3E). We

observed the highest accessibility in clusters 1, 2, and 4, which

decreased gradually toward the tips of the two branches (i.e.,

clusters 1, 2, and 3 on one side and 1, 4, 5, and 6 and 1 and 6

on the other; Figure 3E). This result is compatible with the notion

that clusters 1, 2, and 4 represent an HSC/MPP population.

Control of gene expression is a dynamic process that involves

cell-type-specific expression of TFs and establishment of an

accessible chromatin state that permits binding of TFs to a

defined motif. Thus, to assess regulatory programs that are

active in HSPCs, we used chromVAR (Schep et al., 2017) to

calculate the most variable accessible TF sequence motifs in

different clusters and examine their activity along the differentia-

tion trajectory. Along the two branches identified by the trajec-

tory inference, we observed dynamic changes in the accessi-

bility of lineage-specific hematopoietic TF motifs such as

GATA1, TAL1, KLF1, HTF4, ID4, IRF8, and TFE2 (Figures 3F–3H).

GATA1 activity (Figures 3G and 3H) and gene body accessi-

bility (Figure 3B) were enriched in cluster 6. GATA1 is known to

be an important regulator of erythroid, megakaryocytic, and

mast cells differentiation (Katsumura et al., 2017) and was ex-

pressed exclusively in the MEMP cluster in our scRNA-seq data-

set. Thus, the identified trajectories between clusters 1 and 6 and

clusters 1, 4, 5, and 6 most likely represent the MEMP differen-

tiation paths (Figure 3D). Interestingly, in cluster 6, compared

with clusters 2 and 3, we detected opposing patterns of motif

accessibility for the two different TAL1 binding sites (TAL1.0.A

and TAL1.1.A, respectively) (Figures 3F–3H). Substantial

changes in occupancy by TAL1 during differentiation have

been observed that are dependent on its binding partners (Wu

et al., 2014). It has been reported previously that TAL1.0.A is

co-occupied by TAL1 and GATA1 (Kassouf et al., 2010) and

TAL1.1.A by TAL1 and TCF3 (Hsu et al., 1994). Our analysis re-

vealed that the two different TAL1 binding motifs are active in

distinct hematopoietic progenitor populations during fetal hema-

topoiesis (Figures 3F–3H).

Clusters 2 and 3 also showed increased activity of CEBPD and

IRF8, crucial for myeloid and dendritic cell differentiation, and of
fferentiation trajectory.
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ID4 and HTF4, involved in establishment of the lymphoid lineage

(Miyazaki et al., 2017; Figures 3F–3H). This points toward clus-

ters 1, 2, and 3 forming a common initial trajectory between

the myeloid and lymphoid fate, consistent with our observations

in scRNA-seq data. Clusters 1 and 4 were characterized by a

high level of activity of TFs of the nuclear factor kB (NF-kB)

pathway (i.e., NF-kB2, REL, and RELB) (Figures 3I–3K), known

to be involved in regulation of HSC maintenance and self-

renewal (Zhao et al., 2012; Espı́n-Palazón and Traver, 2016).

Integrating scRNA-Seq and scATAC-Seq Data
Next we wanted to map the cells from our scATAC-seq data to

specific cell types. Because currently no chromatin accessibility

maps are available for human fetal HSPCs, we chose a strategy

to integrate our scRNA-seq and scATAC-seq by mapping cells

based on their gene body accessibility. We used a recently

developed method that identifies pairwise correspondences

(called ‘‘anchors’’) between single cells across two different

types of datasets and their transformation into the shared space

(Stuart et al., 2019). This approach allowed us to transfer scRNA-

seq-derived annotations, learned by a classifier, onto scATAC-

seq data (STAR Methods).

We trained the classifier on CD34+ CD38� cells from the

scRNA-seq experiment using the six most abundant cell types

(STAR Methods). Overall, �57% of scATAC-seq cells were as-

signed to the HSC/MPP cluster, �18% to HSCs/MPPs-Cycle,

�5% to MEMPs, �7% to MEMPs-Cycle, �7% to GPs, and

�3% to LMPs. Cells with a prediction score lower than 40%

were labeled as unclassified (�5%) (Figure 4A).

The frequencies of assigned cell types in the scATAC-seq da-

taset were highly concordant with the ones from scRNA-seq

data (Figure S4B), suggesting that, overall, the two modalities

(i.e., chromatin accessibility and transcriptome) are correlated.

To validate the cell type assignment of scATAC-seq cells, we

examined the accessibility of selected lineage-specific TFmotifs

in each of the annotated cell types (Figure 4B). In line with the

predicted annotations, the GATA1 motif showed the highest

accessibility in MEMPs and MEMPs-Cycle, whereas TEF2

(known to play a role in myeloid and lymphoid differentiation;

Miyamoto et al., 2002) was most active in GPs and LMPs. Con-

firming our earlier observation, two distinct TAL1motifs had anti-

correlated accessibility. TAL1.0.A was preferentially active in

MEMPs and MEMPs-Cycle and TAL1.1.A in GPs and LMPs

(Figure 4B).

The Force Atlas representation of the classified scATAC-seq

cells revealed, however, considerable intermixing of different

cell types across the trajectory, with enrichment of MEMPs/

MEMPs-Cycle in cluster 6 and, to a lesser extent, of GPs and

LMPs in clusters 2 and 3 (Figure 4C). HSCs/MPPs(-Cycle) were

distributed across all seven clusters. This wide distribution of

HSCs/MPPs(-Cycle) across multiple clusters within scATAC-

seq data suggested that, even though chromatin accessibility

and the transcriptional state of fetal HSCs/MPPs are correlated,

there is extensive chromatin priming in the HSC/MPP population

that results in their heterogeneity.

Next, we compared the accessibility of selected lineage-spe-

cific TF motifs in HSCs/MPPs across the seven clusters (Figures

4D–4G).We observed a low level of activity of all examined TFs in

cluster 1, followed by a statistically significant increase of HTF4,
ID4, and TFE2 and decrease of GATA1 in HSCs/MPPs in clusters

2 and 3. GATA1 activity, however, increased in HSCs/MPPs in

cluster 6. Our data suggest that, within the transcriptionally ho-

mogeneous population of HSCs/MPPs, there are significant dif-

ferences in the activity of specific TFs that may precede gene

expression and mark initial priming of HSCs/MPPs prior to their

commitment to the specific lineage. To further explore this ‘‘time

lag’’ between chromatin accessibility and gene expression dur-

ing differentiation, we examined scRNA-seq and scATAC-seq

data for the top GATA1-regulon target genes (ranked based on

the AUCell score) identified by pySCENIC (Figure 5). We looked

at the accessibility of both gene promoters (±3 kb from the tran-

scriptional start site [TSS]) and distal regulatory regions (±50 kb

from the TSS) as well as the expression levels of the selected

target genes along the MEMP differentiation trajectory (Fig-

ure 5A). We observed that promoters of GATA1-regulon target

genes were often open in HSCs/MPPs prior to any noticeable

gene expression (Figure 5A). Thus, in line with our previous

observation, chromatin accessibility in HSCs/MPPs preceded

transcriptional changes that were only present in more differen-

tiated cells. Interestingly, promoter accessibility of GATA1 target

genes was overall lower in cluster 6 (MEMPs) compared with

cluster 1 (HSCs/MPPs) (Figures 5B, 5D, and 5E) and coincided

with lower promoter co-accessibility of the antagonistic genes

(i.e., genes that are specific for distinct lineages) (Figure 5F). In

contrast, the accessibility of distal regulatory elements/en-

hancers was higher in cluster 6 compared with cluster 1 (Fig-

ure 5C). This may indicate that GATA-regulon genes may be

primed at promoters, whereas the enhancers contribute cell-

type-specific expression.

Validation of HSC/MPP Identity and Their Differentiation
Capacity
Given the observed limitation of commonly used sorting markers

to isolate pure progenitor populations, we devised a new fluores-

cence-activated cell sorting (FACS) strategy for HSCs/MPPs

based on cell surface markers selected from the top 20 marker

genes for this cluster in our scRNA-seq dataset. The refined

panel for HSCs/MPPs included Lin� CD34+ CD38� CD52+

CD62L+ CD133+ (hereafter called CD-REF; Figure 6A).

We sorted cells by FACS from femur BM using the CD-REF

panel and profiled them again by scRNA-seq and single-cell

in vitro differentiation assays. CD-REF cells, on average, ac-

counted for 40% (±13%, n = 4) of Lin� CD34+ CD38� cells in

the femur, based on FACS analysis. The scRNA-seq analysis

of cells sorted with the refined panel showed that �88% of

CD-REF cells labeled HSCs/MPPs and HSCs/MPPs-Cycle clus-

ters combined (Figure 6B) compared with commonly used CD

panels for HSCs (Lin� CD34+ CD38� CD45RA� CD90+

CD49f+) and MPPs (Lin� CD34+ CD38� CD90� CD45RA�
CD49f� CD10� CD7�), where �59% and �73%, respectively,

of sorted cells had a transcriptional signature of our most imma-

ture cell population (Figure 1C; Figure S4B).

To assess the differentiation potential and robustness of the

lineage output of CD-REF cells, we sorted individual cells from

three fetuses on a mouse MS5 feeder layer or on more physio-

logically relevant, primary human fetal mesenchymal stem cells

(fMSCs) (Figure 6C; STARMethods). After 2 weeks, 80% of cells

sorted on MS5 and 85% of cells sorted on human fMSCs
Cell Stem Cell 28, 472–487, March 4, 2021 479



Figure 4. Integration of scRNA-Seq and scATAC-Seq Data

(A) Donut plot showing the percentage of scATAC-seq cells automatically assigned to different cell types.

(B) Boxplot showing the accessibility of GATA1, TFE2, TAL1.0.A, and TAL1.1.A motifs in the annotated cell types. On the top right of each boxplot, the TF

sequence logos from the JASPAR database similar to the analyzed motifs are shown. Cluster colors match those of (A).

(C) Barplot showing the percentage of cells within each cluster assigned to the annotated cell types. Cluster colors match those in (A).

(D–G) Boxplots showing the accessibility of lineage-specific TF motifs in HSCs/MPPs across the seven clusters.

(D) HTF4 (p1,2 < 2 3 10�16, p1,3 < 2 3 10�16).

(E) ID4 (p1,2 < 2 3 10�16, p1,3 = 10�13).

(F) TFE2 (p1,2 < 2 3 10�16, p1,3 < 2 3 10�16).

(G) GATA1 (p1,2 < 2 3 10�16, p1,3 < 2 3 10�16, p1,6 = 0.0071). ***p < 0.001; 0.001 < **p < 0.01; 0.01 < *p < 0.05; ns, p R 0.05.
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generated colonies. In total, we analyzed 201 colonies for their

size and lineage output (erythroid [Ery], myeloid [My], MK, and

lymphoid [Ly]) using FACS (STAR Methods; Figure S7A). Our

FACS analysis revealed that 7% of colonies on MS5 and 8%

on fMSCs were quadri-lineage, 43% and 31% were tri-lineage,

29% and 25% were bilineage, 20% and 28% were unilineage,

and 1% and 8% were undifferentiated colonies (Figure 6D).
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Next we sorted individual CD-REFs and immunophenotypic

HSCs (CD34+CD34�CD90+CD45RA�CD49f+/�) from the

bonemarrow and liver of the same fetus (n = 2) on anMS5 feeder

layer and assessed 324 cells in total for their lineage output. Our

analysis showed that liver- and femur-derived CD-REF cells had

comparable efficacy of colony formation and lineage output,

suggesting that CD-REF enriches for the population of cells
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Figure 5. Chromatin Accessibility and Expression Dynamics of GATA1-Regulon Target Genes

(A) Heatmap showing the chromatin accessibility changes for promoters (left) and related distal regulatory elements (right) as well as RNA expression (center) for the

target genes of GATA1-regulon obtained frompySCENIC.Only target geneswith importance higher than 4were considered.We normalized the expression of the set

ofGATA1 target genes into the range [0, 1]. For the promoters, the reads that overlapped the TSS regions± 3 kbwere extracted, normalized, and scaled into the range

[0, 1] for each cell. To identify the enhancers for each gene, we took peaks around TSS± 50 kb (excluding a ± 3 kb region), which have predictedGATA1 binding sites

within them.We usednormalized values for such peaks and scaled values from0 to 1. The resulting valueswere summarized usingmean per cluster. For visualization

purposes, we pooled all data and clustered with 5 centroids using k-means. The standardized value levels are indicated by color intensity.

(B and C) Boxplot showing the difference in chromatin accessibility for GATA1-regulon genes for all identified scATAC-seq clusters. Values were obtained

following similar criteria as described in (A).

(B) Promoters. Significant p values: p1,3 = 7.7 3 10�5, p1,4 = 0.005, p1,5 = 3 3 10�9, p1,6 = 0.026, p2,3 = 0.001, p2,4 = 0.047, p2,5 = 1.8 3 10�7, p3,5 = 0.023,

p3,6 = 0.034, p3,7 = 0.018, p4,5 = 3.4 3 10�4, p5,6 = 8.7 3 10�6, p5,7 = 5.5 3 10�6.

(C) Enhancers. Significant p values: p1,6 = 0.017, p3,6 = 0.006, p3,6 = 2.9 3 10�4, p4,6 = 9.1 3 10�4, p5,6 = 1.3 3 10�4, p6,7 = 0.004.

(D and E) Heatmaps of the binarized chromatin accessibility in cluster 1 (D) and cluster 6 (E) for the promoters (±3 kb from TSS) of the selected marker genes of

megakaryocytes (MKs), erythrocytes (Erys), and mast cells. Barplots on the left side of the heatmaps show the mean accessibility of the gene promoter for each

cluster.

(F) Barplots showing the co-accessibility of promoters of lineage-specific marker genes. Fisher’s exact test was used to check whether binarized accessibilities

of promoters from different marker genes are associated with each other. Odds ratios of Fisher’s exact tests are reported on the y axes. p (mast-Ery:

cluster 1) = 0.03149, p (mast-Ery: cluster 6) = 0.6379; p (MK-Ery: cluster 1) = 0.01026; p (MK-Ery: cluster 6) = 0.1734; p (MK-mast: cluster 1) = 0.3007; p (MK-mast:

cluster 6) = 0.005428.
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Figure 6. Refining the Sorting Strategy to Isolate Fetal HSCs/MPPs

(A) Novel FACS panel (CD-REF panel) designed to increase the purity of the sorted HSC/MPP population. After excluding debris, doublets, and Lin+ cells, CD34+

CD38� CD52+ CD62L+ CD133+ were sorted.

(B) Donut plots showing the percentage of transcriptionally defined (i.e., manually curated) cell populations in the phenotypically defined CD-REF population. The

colors correspond to the identified cell types.

(C) Schematic overview of the single-cell in vitro differentiation assay. Single CD-REF cells were sorted in liquid culture with a mouse stromal cell line (MS5) or a

human fetal primary feeder layer (fMSCs). After 15 days of culture, lineage output was assessed by expression of the lineage markers CD41a (MK), CD235a (Ery),

CD3/CD56 (Ly), and CD11b (My) by flow cytometry.

(D) Percentage of colonies derived from single CD-REF cells characterized by quadrilineage, trilineage, bilineage, unilineage, and undifferentiated lineage output

on two different feeder layers (n = 201 colonies, n = 2 fetuses per feeder layer).

(E–G) Representative flow cytometry images of cell cycle analysis by Mki67/DAPI co-staining of CD34+CD38� (E), CD34+CD38+ (F), and CD34+CD38�CD133+

(G) in matched fetal liver and femur.
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with multilineage output in fetal liver and bone marrow. Similarly,

the lineage output of CD-REF cells and immunophenotypic

HSCs was comparable; however, the efficacy of colony forma-

tion appeared to be higher in CD-REF versus phenotypic HSCs

isolated from the femur (Figure S7). Our finding that CD-REF cells

indeed have multipotent potential and lineage output compara-

ble with phenotypic HSCs is in line with our observation that

these cells sit at the tip of the differentiation trajectories. We
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computationally and functionally confirmed that CD-REF repre-

sents a highly enriched population of HSC/MPPs.

Comparative Analysis of HSCs/MPPs from Different
Hematopoietic Organs
Cells in the HSC/MPP cluster originated from the liver, femur,

and hip. This provided a unique opportunity to assess potential

qualitative and quantitative differences in the HSC/MPP
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Figure 7. Statistically Significant Differences between Femur and Liver Cells across Cell Types

(A) Heatmap showing the confidence interval of Fisher’s exact test on the normalized number of different hematopoietic cell types sorted from the liver and femur

in G2M/S phase compared with G1 phase. The confidence interval is divided in four distinct levels, and each color identifies a statistical difference level.

(B) Donut plots displaying the percentage of cells in G1, G2M, and S phase in HSCs/MPPs sorted from femur or liver.

(C) Bar plot representing the proportion of CD34+ CD38� and CD34+ CD38+ cells of total live cells present in the liver and bone marrow (femur and hip); n = 15.

(D) Bar plot of the normalized distributions of the number of cells in each cell type sorted from liver or femur.

(E) Heatmap showing the confidence interval of Fisher’s exact test on the normalized number of cells in each cell type collected from liver or femur. The con-

fidence interval is divided in four distinct levels, and each color identifies a statistical difference level.

(F) Heatmaps depicting the confidence interval of the KS (left) and MWW (right) test on the number of expressed genes in each cell type collected from femur or

liver cells. All confidence intervals are split into 4 subintervals (i.e., [0, 0.01], strong statistically significant difference; (0.01, 0.05], statistically significant difference;

(0.05, 0.1], marginal statistically significant difference; (0.1, 1], no statistically significant difference).

(G) Violin plot of the number of expressed genes in HSCs/MPPs collected from the femur (blue) or liver (orange).

(H) Volcano plot showing differentially expressed genes (DEGs) in HSCs/MPPs collected from femur or liver cells. The x axis shows the log2 fold change

(magnitude of change), whereas the y axis shows the �log10-adjusted p value (statistical significance). We used the Wilcoxon rank-sum test with Benjamini-

Hochberg correction. Colors represent the significance of the genes in terms of p value and log2 fold change.

(legend continued on next page)
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population that originated from fetal liver or bone marrow. We

first applied Fisher’s exact test to the number of liver and femur

cells in the different cell cycle states to determine whether there

are non-random associations between the cycle state and the

organ of origin (see STAR Methods for further details). Interest-

ingly, there was a statistically significant difference (p = 4.25 3

10�9) in the cell cycle state of cells in the HSC/MPP cluster be-

tween femur and liver (Figure 7A). Cells in the femur were pre-

dominantly in G1 (�70% of cells) compared with the same pop-

ulation in the liver (�52%) (Figure 7B). These data suggest that

HSCs/MPPs become more quiescent as they migrate from the

liver to the bone marrow during the second trimester of human

development. In line with this, HSCs/MPPs were significantly

less frequent in the femur compared with the liver (Figure 7D),

as confirmed by Fisher’s exact test on the total number of liver

and femur cells (Figure 7E). This is in agreement with the

increased proportion of phenotypic non-committed progenitors

(CD34+ CD38�) found in the liver compared with the bone

marrow (Figure 7C). Using Mki67 and DAPI staining, we quanti-

fied the proportion of cells in different stages of the cell cy-

cle—G0 (Mki67�DAPI�), G1 (Mki67+DAPI�), and S-G2-M

(Mki67+DAPI+)—as described previously (Kim and Sederstrom,

2015). Our analysis showed that the CD34+CD38� population is

less cycling in the fetal liver and femur compared with the

CD34+CD38+ population (Figures 6E and 6F). We further

showed that the vast majority of CD-REF cells are in G0/G1 in

the femur and liver but that nearly twice as many cells are in

S-G2-M in the liver compared with the femur (Figure 6G).

To evaluate whether there is a statistically significant differ-

ence in the number of expressed genes between HSCs/MPPs

collected from the liver and femur, we used the Kolmogorov-

Smirnov (KS) and Mann-Whitney-Wilcoxon (MWW) test. We

applied a subsampling strategy to downsample the cluster

with more cells and balance the two distributions (STAR

Methods). KS and MWW tests revealed a statistically significant

decrease in the number of expressed genes in HSCs/MPPs in

the femur compared with the liver (Figures 7F and 7G). Gene

set enrichment analysis, using pathway databases, of differen-

tially expressed genes between the liver and femur revealed

that HSCs/MPPs in the femur upregulate genes involved in

nucleosome assembly, chromatin assembly, and DNA pack-

aging, such as HIST1H1E and HIST1H2BN, possibly marking

their entry into quiescence (Figure 7H). Interestingly, DE analysis

of genes that encode membrane proteins revealed statistically

significant upregulation of genes related to actin cytoskeleton re-

modeling, cell adhesion, and migration (e.g., JAML, SELPLG,

LCP1, MSN, and RHOA) in HSCs/MPPs in the liver compared

with the femur (Figure 7I). This would be in line with the higher

propensity of liver HSCs/MPPs to migrate to other tissues,

such as bone marrow. In addition, we detected higher expres-

sion of interferon-induced gene IFITM1 in fetal liver, known to

play a role in transduction of antiproliferative and adhesion sig-
(I) Bubble plots showing the top Gene Ontology (GO) terms (MF, molecular func

Genes and Genomes, and Reactome, calculated by using the DEGs in HSCs/MP

(J) Volcano plot showing DEGs in HSCs/MPPs collected from femur or liver cells

shows the log2 fold change (magnitude of change), whereas the y axis shows the

sum test with Benjamini-Hochberg correction. Colors represent the significance
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nals (Figure 7J). This shift of HSCs/MPPs from highly proliferative

to quiescent as well as downregulation of genes involved in actin

cytoskeleton remodeling as they migrate from fetal liver to bone

marrow signifies the role of the niche in modulation of HSC/MPP

behavior.

DISCUSSION

Here we present an integrative analysis of the single-cell tran-

scriptome and chromatin accessibility of human fetal HSPCs.

Our strategy involved plate-based sorting of well-defined immu-

nophenotypic HSPCs frommatched fetal liver and bonemarrow.

This approach enabled us to go beyond cataloging heterogene-

ity of cellular states during fetal hematopoiesis and to(1) examine

the extent to which phenotypic markers used over the last

decade coincided with the true nature of the sorted fetal blood

populations, (2) refine the sorting strategy for HSCs/MPPs, (3)

identify cell cycle and gene expression differences between

HSCs/MPPs from fetal liver and bone marrow, (4) infer the

HSPC differentiation trajectory, and (5) explore lineage priming

within the HCS/MPP population.

In doing so, we observed a striking level of heterogeneity in all

immunophenotypic HSPCs, with more than 10 transcriptionally

defined cell populations identified in each of the progenitor pop-

ulations. Although this is consistent with previous studies of hu-

man adult and cord blood hematopoiesis (Knapp et al., 2018), it

further emphasized the need for refining the sorting strategy for

human fetal HSPCs. Our CD-REF panel achieved nearly 90%

enrichment of HSCs/MPPs, which we validated using single-

cell in vitro differentiation assays and scRNA-seq. CD-REF cells

comprised 40% of all CD34+ CD38� cells in the fetal bone

marrow, with the majority of HSCs/MPPs not cycling. The shift

from a highly proliferative state to quiescence coincided with

the migration of HSCs/MPPs from the fetal liver to bone marrow,

suggesting an important role of the niche in modulation of HSC/

MPP behavior. This is remarkably different from previous studies

in mice, where extensive proliferation of HSPCs in the bone

marrow continued up to 3 weeks after birth (Bowie et al., 2006).

Downstream of HSCs/MPPs, we identified three highly prolif-

erative oligopotent progenitor populations (MEMPs, LMPs, and

GPs). Integrative scRNA-seq and scATAC-seq analysis of

HSCs/MPPs and all main progenitor populations revealed a cor-

relation between chromatin accessibility and gene expression

but also pointed out that, within transcriptionally homogeneous

HSCs/MPPs, there aremultiple subpopulations that differ in their

overall chromatin accessibility as well as lineage-specific TF ac-

tivity. This indicates that, within the HSC/MPP population, regu-

latory programs permissive for different fates are being primed

on the chromatin level, prior to their commitment to a specific

lineage. The higher coordination of transcription and chromatin

accessibility only occurred along commitment of HSCs/MPPs

toward MEMPs, implying a hierarchy of different levels of
tion; CC, cellular component; BP, biological process), Kyoto Encyclopedia of

Ps collected from liver (top) versus femur (bottom) cells.

by considering only genes that encode plasma membrane proteins. The x axis

�log10-adjusted p value (statistical significance). We used the Wilcoxon rank-

of the genes in terms of p value and log2 fold change.
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commitment in the fetal progenitor compartment, with the

MEMP population being the most committed (compared with

LMPs and GPs).

Our study provides a high-resolution transcriptional and chro-

matin accessibility map of fetal HSPCs from the liver and bone

marrow that will be essential for further exploration of HSCs/

MPPs in the context of blood pathologies and for the purpose

of regenerative medicine.

Limitations of Study
In this study, we characterized human fetal liver and bone

marrow hematopoiesis using a combination of single-cell tran-

scriptomics/epigenetics and in vitro single-cell differentiation

assays. To avoid perturbations caused by freezing and thaw-

ing cycles, all experiments were performed on freshly isolated

tissues. This experimental design and the nature of analyzed

tissues come with a few limitations: (1) samples are rare,

and (2) the cellularity varies significantly between different

stages of development and individual fetuses, especially in

the bone marrow. As a result, the number of cells available

for analysis was limited. For this reason, we were not able to

obtain enough cells to perform xenotransplantation experi-

ments to confirm the stem cell identity and self-renewing po-

tential of our CD-REF cells collected from bone marrow.

Instead, we used single-cell in vitro assays as an alternative

but not optimal readout of the multilineage potential of a

cell. In addition, we could only collect a limited number of

distinct phenotypically defined populations from individual

fetuses; therefore, for any given population, the number of

analyzed samples was relatively low.
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All scripts, functions, and Jupyter Notebook developed for this study are freely available on GitLab: https://gitlab.com/

cvejic-group/integrative-scrna-scatac-human-foetal. The repository also contains the gene expression and fragment

matrices.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics and Tissue acquisition
Human fetal bone and liver sampleswere obtained from 33 fetuses aged 17-22 pcw, following termination of pregnancy and informed

written consent. The human fetal material was provided by the Joint MRC/Wellcome Trust (Grant MR/R006237/1) Human Develop-

mental Biology Resource (https://www.hdbr.org/), in accordance with ethical approval by the NHS Research Health Authority, REC

Ref: 18/LO/0822.

METHOD DETAILS

Tissue processing
Tissues were kept in cold DMEMmedium (Invitrogen) until dissection and processed on the same day of collection. Single-cell sus-

pensions were generated from matched fetal liver and bone tissues after rinsing them with cold PBS (GIBCO). Liver samples were

passed through a 70 mm strain into a falcon tube prefilled with cold PBS. Bone marrow from long bones was isolated by flushing cold

PBS into the diaphysis and collected into a falcon tube. Bone marrow from hip bone was collected by dissecting the bone with a

sterile scalpel and flushing cold PBS in themarrow cavity into a falcon tube. The suspension obtained from long bones and hip bones

was then passed through a 70 mm strain into a new falcon tube. Cells were then centrifuged for 5 minutes at 300 g, 4�C and the pellet

was resuspended into the RBC lysis buffer (eBioscience) for 2 minutes at room temperature, after which 20 mL of cold PBS were

added to stop the lysis reaction. RBC step was not performed when sorting erythroid cells. Live cell enrichment was performed using

MACS columns (Miltenyi Biotec - 130-090-101) following the manufacturer’s instructions. When sorting CD34+ or CD45+ cells, col-

umn enrichment was performed using MACS columns (Miltenyi Biotec - 130-046-702 and 130-045-801 respectively for CD34+ and

CD45+ cells), following the manufacturer’s instructions.

Fluorescence-activated cell sorting
Cells were stained with antibody cocktails in a total volume of 100 ml 5% FBS (GIBCO) in PBS for 30 minutes at 4�C, centrifuged for

5minutes at 300 g, 4�C, resuspended in a final volume of 500 ml of 5%FBS in PBS and subsequently filtered into polypropylene FACS

tubes (ThermoFisher). For scRNA-Seq experiments, single cells were index sorted using a BD Influx Sorter into wells of 96-well plates

(4titude) prefilled with 2 ml of lysis buffer consisting of 0.2% Triton X-100 (Sigma) and 1 U/ml RNase inhibitor (Life Technologies) in

nuclease-free water (Invitrogen). For scATAC-Seq experiments, 5,000 - 20,000 cells were sorted using a BD Influx machine into

1.5 mL tubes (Eppendorf). Following bulk tagmentation with Tn5 (Chen et al., 2018), single nuclei were index sorted in wells of

384-well plates (Eppendorf) prefilled with 2 ml of lysis buffer consisting of 0.2% SDS, 20 mg/ml proteinase K (Ambion), 50 mM

Tris-HCl (GIBCO) and 50mM NaCl (Sigma) in nuclease-free water.

Library preparation
The Smart-Seq2 method (Picelli et al., 2014) was used for library preparation for the scRNA-Seq experiments, with some modifica-

tions as described in Macaulay et al. (2016). The quality of libraries was evaluated with Bioanalyzer (Agilent). Good-quality libraries

were subsequently quantified with KAPA Library Quantification Kit (Roche) and submitted for sequencing. Library preparation for the

scATAC-Seq experiments was performed using a recently describedmethod (Chen et al., 2018). Library traces were evaluated using

Bioanalyzer.

Sequencing
Libraries for scRNA-Seq experiments were multiplexed using Nextera Index sets A, B, C, and D (v.2, Illumina) and sequenced on

HiSeq4000 and NovaSeq6000 (Illumina) in pair-end mode, with an interquartile range (IQR) of 697,427 uniquely mapped reads

(average: 666,632; standard deviation: 557,274). Libraries for scATAC-Seq experiments were sequenced on HiSeq4000 in pair-

end mode, with a mean read count of 473,886 and IQR 341,210.

Upstream analysis of scRNA-Seq data
Smart-Seq2sampledemultiplex fastqfileswerequalitychecked,alignedandquantifiedbyusing thescRNA-Seqpipeline.Thispipeline is

based on STARwith default parameters (v.2.5.4a) (Dobin et al., 2013) index and annotation from the Ensembl release 91 of the GRCh38

human reference genome. Transcript and gene counts were quantified using the option quantMode GeneCounts provided by STAR.

Since we used different sets of well-defined antibodies to isolate different cell types, we applied specific thresholds for each sample

to filter out both the cells and genes (Table S3). We detected on average 3,642 genes per cell (IQR: 2,239; standard deviation: 1,621).
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Downstream analysis of scRNA-Seq data
In what follows, for each function that we applied, we only report the parameter settings we modified. All other parameter settings

of the functions are the default ones provided by the used computational libraries.We performed the downstream analysis of

scRNA-Seq using the Python (v.3.6.9) package SCANPY (v.1.4.5.1) (Wolf et al., 2018). Our pipeline included: 1) a QC step (number

of identified counts and number of expressed genes using the filter_cells function, and the fraction of mitochondrial genes).

We obtained the 4,504 cells that were used in the next steps (Table S2), 2) removing the genes expressed in less than 10 cells

(filter_genes function), 3) data normalization (normalize_per_cell function with scaling factor 10,000 and log1p function), 4) detection

of the top 1,000 highly variable genes (HVGs) (highly_variable_genes function, in which the HVGs were selected separately within

each batch and then merged, where each batch corresponds to a specific sample), 5) scaling of the features to unit variance and

zero mean (scale function with max_value equal to 10), 6) application of scAEspy on the HVG space by considering the raw expres-

sion (i.e., counts) (Tangherloni et al., 2019), 7) batch correction by sample applying BBKNN algorithm (v.1.3.6, bbkkn function with

use_faiss equal to false, approx equal to false and the Euclidean distance) to the latent space (16 components) generated by the

used AE, 8) Leiden algorithm (leiden function with resolution equal to 2.2) applied to the neighborhood graph generated by BBKNN.

The 27 obtained clusters were manually annotated by considering the merged data using well-known cell-type specific genes and

the Differentially Expressed Genes (DEGs). DEGs were computed by using rank_genes_groups function (Wilcoxon rank-sum with

adjusted p values for multiple testing with the Bonferroni correction), which compares each cluster to the union of the rest of the

clusters. The clusters that either did not express specific cell type genes or expressed marker genes of different cell types had been

iteratively subclustered. Specifically, we applied the Leiden algorithm (leiden function with resolution equal to 0.5) to subcluster

Endothelial cells, obtaining four distinct clusters: the first two clusters have been annotated as Monocytes 2, the third as NK cells

and the fourth as Endothelial cells. Finally, we used the Leiden algorithm (leiden function with resolution equal to 0.5) to cluster the

Unspecified cluster getting four clusters. We merged three clusters with the HSC/MPP cluster while one was annotated as

Unspecified.

Dimensionality reduction of scRNA-Seq data
After the detection of the first 1,000 HVGs, we applied scAEspy to HVG space by setting alpha and lambda equal to 0 and 2, respec-

tively, in order to obtain the Gaussian Mixture Maximum Mean Discrepancy Variational AE (GMMMDVAE) (Tangherloni et al., 2019).

We run GMMMDVAE for 100 epochs with a batch size equal to 100, one hidden layer of 64 neurons, a latent space of 16 neurons, 15

Gaussian distributions, learnable prior distribution, constrained Poisson loss function, and sigmoid activation function. Then, we

applied BBKNN to the latent space (16 components) to generate the neighborhood graph by identifying top neighbors of each

cell in each batch separately. We applied UMAP (v.0.3.10, SCANPY umap function with random_state equal to 8 and n_components

equal to 3) to the obtained neighborhood graph.

Trajectory analysis of scRNA-Seq data
In order to perform a detailed comparison among different trajectory modeling tools, the Dynverse tool (Saelens et al., 2019) was

used. Based on the scoring system provided by Dynverse and following a careful inspection of the generated trajectories, we applied

PAGA and Force-Directed Graph (FDG) to infer the development trajectories. We removed the endothelial cells and recalculated the

neighborhood graph (neighbors function with n_neighbors equal to 30) on the latent space (16 components) to exploit the data before

batch correction (Luecken and Theis, 2019). We computed the PAGA graph (paga function with model equal to v1.2) and the Force-

Atlas2 (FA2) using PAGA-initialization (draw_graph function, which exploits the FA2 class from fa2 (v.0.3.5) Python package, using the

HSC/MPP cluster as root and maxiter equal to 1,000).

Differential expression analysis
Following cluster annotation, we performed biologically-relevant pairwise DE tests between pairs of clusters to identify DEGs and

to examine the quantitative changes in the expression levels between the clusters. Specifically, we tested MPPs against MPPs-

Cycle, MEMPs against MEMPs-Cycle, MPPs against MEMPs, MPPs against LMPs, MPPs against GPs, and MEMPs against

LMPs. In order to cope with the unbalanced distributions between two groups of cells, due to the different number of cells in

each cluster, we used the following subsampling strategy. Given two groups of cells, the biggest group was randomly subsampled

taking a number of cells equal to the number of cells composing the smallest group. For each gene, a two-sided t test for the means

of two independent samples (i.e., biggest group and subsampled one) was applied. We used the ttest_ind function (equal_var equal

to false) provided by the Python SciPy (Virtanen et al., 2020) package (v.1.4.1). Since we did not assume that the two groups have

identical variances, the Welch’s t test was automatically applied. Then, we calculated the median of the p values of these t tests.

We applied this subsampling strategy 1001 times and calculated the median of the medians to select the subset of the biggest

group to run the DE analysis.

For a given subset of cells from the biggest group and the smallest one, we calculated the DEGs by applying the rank_ge-

nes_groups function (Wilcoxon rank-sum with adjusted p values for multiple testing with the Benjamini-Hochberg correction).

Then, we filtered out the obtained DEGs by using the filter_rank_genes_groups function (min_in_group_fraction equal to 0.3 and

max_out_group_fraction equal to 1, so that a gene is expressed in at least 30% of the cells in one of the two tested groups; min_-
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fold_change equal to 0). Following the aforementioned workflow, we compared cells from the liver and femur from the same cluster.

Finally, we analyzed HSC/MPPs and HSC/MPPs-Cycle to see which genes contributed to the observed difference between cells

from femur and liver.

We also carried out a DE test to compare the expression of cell surface proteins in HSC/MPPs from femur and liver cells. As a first

step, we selected 1) genes that encode CD molecules, 2) transmembrane genes available in CellPhoneDB (Efremova et al., 2020),

and 3) genes that encode plasma membrane proteins from Uniprot (key KW-1003). Then, we applied the subsampling strategy

comparing HSC/MPPs from femur and liver cells. Finally, we calculated the DEGs by considering only the genes that are expressed

in at least 30% of the cells in one of the two tested groups.

Differentiation pathway analysis
We performed a gene-set enrichment analysis, using pathway databases, comparing liver and femur HSC/MPP cells. First, we

calculated DEGs by comparing liver and femur applying the strategy described above. Then, we used g:Profiler (Raudvere

et al., 2019) focusing on Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome.

Specifically, we applied the profile function provided by the Python GProfiler package for both liver and femur cells. As a query

set, we used the liver (or femur) DEGs while as background we used the genes that are expressed in at least 30% of liver (or

femur) cells. We also set the following parameters required by the profile function: organism equal to Homo sapiens; sources

equal GO terms, KEGG, and Reactome; domain_scope equal to custom_annotated; significance_threshold_method (i.e., the

correction method for the p values) equal to bonferroni; user_threshold (i.e., the threshold for the corrected p values) equal

to 0.01.

Cell type classification
We trained both a Random Forest classifier (Pedregosa et al., 2011) and a DNN to predict the cell types by considering the top 5, 10,

20, 30, 50, and 100 marker genes for each cluster using the log-normalized expression. Since somemarker genes are shared among

the clusters, we considered them only once to avoid duplicated columns in the feature matrices. We merged the following clusters:

HSC/MPPs and HSC/MPPs-Cycle as HSC/MPPs, MEMPs and MEMPs-Cycle as MEMPs, Granulocytes 1, Granulocytes 2, and

Granulocytes 3 asGranulocytes; pDCs and pDCs-Cycle as pDCs; CD4+Monocytes, Monocytes, andMonocyte Prog asMonocytes;

Pre-B cells, Pro-B cells, and Mature B cells as B cells. Thus, we obtained 14 distinct clusters.

We used the RandomForestClassifier (n_estimators equal to 100 and Gini criterion) provided by Scikit-learn (Pedregosa et al.,

2011) (v.0.21.2). We developed the DNN by using Keras (v.2.2.4; https://keras.io) with Tensorflow (Abadi et al., 2016) (v.1.12.0) as

backend. The network is composed of 2 dense hidden layers of 64 and 32 neurons, respectively. We added a dropout (50%) layer

before the first layer as well as a dropout (30%) layer before the second layer. We trained the DNN for 1,000 epochs using the Adam

optimizer (Kingma and Ba, 2014) by minimizing the categorical cross-entropy loss function. We also set an early stopping with 100

epochs as patience to avoid overfitting.

We applied a stratified 10-fold cross-validation (Scikit-learn StratifiedKFold function) resampling procedure to evaluate both the

Random Forest and DNN. The Random Forest achieved the best result when the top 30 marker genes per cluster were used

(mean accuracy equal to 88.54% and standard deviation equal to 1.03%), while the DNN considering the top 30 (mean accuracy

equal to 90.40% standard deviation equal to 1.31%) and 50 marker genes per cluster (90.25% and standard deviation equal

to 0.98%).

As a further test, we evaluated the ability of our DNN to generalize on unseen data. We split the dataset into a train set (80%) and a

test set (20%) (Scikit-learn train_test_split functionwith test_size equal to 0.2).We then divided the train set into a train set (85%) and a

validation set (15%, (train_test_split function with test_size equal to 0.15). We trained our DNNwith the train set, validating it using the

validation set. When we took into account the top 30 marker genes, we achieved an accuracy equal to 91.50% on the validation set.

When considering the top 50 marker genes the accuracy was 91.68%. Finally, we predicted the labels of the test set by obtaining an

accuracy equal to 90.46% (30 marker genes) and 90.23% (50 marker genes).

Upstream analysis of scATAC-Seq data
Weperformed the upstream analysis using the samtools (Li et al., 2009) (v1.9), bedtools (Quinlan, 2014) (v2.27.1), Picard tools (v2.9.0;

http://broadinstitute.github.io/picard/) and BWA (Li and Durbin, 2009) (v0.7.17). First, we aligned fastq files to the GRCh38 reference

genome (average 473,886 reads per cell), followed by marking duplicates with MarkDuplicates function from Picard tools and

removing duplicates using samtools view with -F 1804 parameter per each cell. Overall with average duplicates rate 77% we ob-

tained 91,554 reads per cell after removing duplicates. Next, we transformed bam files to bed files using bamtobed bedtools function

in bedpe mode and kept only fragments that are no bigger than 1000 bp using a custom script. We called peaks (for the clusters with

more than 50 cells) using the SnapATAC approach (Fang et al., 2019) with macs2 (Zhang et al., 2008) parameters ‘‘–nomodel–shift

100–ext 200–qval 5e-2 -B’’ and obtained 152,283 peaks. Importantly, for the downstream analysis in R, we binarized counts per cell

using Signac (Stuart et al., 2019; https://github.com/timoast/signac/) BinarizeCounts function, resulting in 32,217 fragments per cell

on average.
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Downstream analysis of scATAC-Seq data
The downstream analysis was done in R 3.6.1 applying Seurat (Butler et al., 2018; Stuart et al., 2019) (v3.1.4), Signac (v0.2.4), chrom-

VAR (Schep et al., 2017) (v.1.8) and Harmony (Korsunsky et al., 2019) (v1.0). The pipeline included a QC step (duplicates removal,

number of fragments, fragments per peak, fraction of readsmapping to blacklist regions, nucleosome signal, and transcriptional start

site (TSS) enrichment), application of LSI dimensionality reduction to the three samples independently (RunTFIDF function with

method equal to 2, FindTopFeatures function setting min.cutoff to q0, andRunSVD function using the peaks as assay), batch correc-

tion by sample, lane, and organ applying Harmony on the first 50 LSI components, excluding the first one, (RunHarmony function

setting assay.use to peaks, max.iter.harmony to 20, max.iter.cluster to 200, sigma to 0.25, and theta to 2, 4, 4 in order to weight

more the batch related to samples). TF activities on the ATAC-seq data were calculated using the Signac implementation

of chromVAR using the RunChromVAR function taking as tested motifs dataset from HOCOMOCO (Kulakovskiy et al., 2018) v11 hu-

man TF binding models database (769 TFs).

Dimensionality reduction of scATAC-Seq data
We applied the UMAP algorithm to the first 50 LSI components corrected by Harmony (RunUMAP function with umap.method equal

to uwot and n.neighbors equal to 10, FindNeighbors function setting annoy.metric to cosine). We identified seven distinct clusters by

using the Seurat function FindClusters (resolution equal to 0.5).

Trajectory analysis of scATAC-Seq data
We inferred the development trajectories by applying PAGA and FDG. We recalculated the neighborhood graph using the SCANPY

neighbors functions (n_neighbors equal to 30) on the 50 LSI components corrected by Harmony. We computed the PAGA graph

(SCANPY paga function withmodel equal to v1.0) and used it to initialise the FA2 algorithm (SCANPY draw_graph function using clus-

ter 1 as root and maxiter equal to 1,000).

Integration of scRNA-Seq and scATAC-Seq data
We integrated scRNA-Seq and scATAC-Seq data using a recently developed method by Stuart et al. (2019). Namely, we used our

scRNA-Seq data as reference dataset to train the classifier and automatically assign a cell type to each scATAC-Seq cell. The training

of the classifier was performed using 511 CD34+ CD38- cells from our scRNA-Seq experiment. In order to have a suitable number of

cells for each cell type to train the classifier, we considered scRNA-Seq clusters with at least 20 cells (i.e., HSC/MPPs, HSC/MPPs-

Cycle, MEMPs,MEMPs-Cycle, GPs, and LMPs).We generated a gene expressionmatrix from our scATAC-Seq dataset by assigning

each peak to the gene by considering the genome coordinates of the gene body ± 3 kb. We applied the Seurat function FindTrans-

ferAnchors (query.assay equal to RNA_promoter, features equal to the counts of the RNA_promoter, and k.anchor equal to 6) on the

Canonical Correlation Analysis (CCA) space because it was more suitable, compared to the LSI space, for capturing the shared

feature correlation structure between scRNA-Seq and scATAC-Seq data. We assigned the cell types to the scATAC-Seq cells by

applying the Seurat TransferData on the first 50 LSI components corrected by Harmony considering the calculated anchors (refdata

equal to the six scRNA-Seq clusters). In order to avoid assignments based on a low score, all cells with the prediction score lower

than 40% (the value of a uniform distribution of six clusters is 16,67%) were labeled as unknown.

Transcription factor regulons prediction
To run SCENICworkflow on our raw scRNA-Seq data, we used an in-house constructed Snakemake pipeline via combining Arboreto

package GRNBoost2 and SCENIC algorithms with default parameters. To predict transcription factor regulons, we used human v9

motif collection, as well as both hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather and hg38__refseq-r80__500bp_u-

p_and_100bp_down_tss.mc9nr.feather databases from the cisTarget (https://resources.aertslab.org/cistarget/). The resulting

AUC scores per each cell and adjacency matrix were used for downstream analysis and visualization.

Isolation of human fetal MSCs
Human primary fMSCs were isolated from the femur of a 19 pcw sample following an established protocol used for mouse bones

(Perpétuo et al., 2019). Briefly, the bone was rinsed in PBS and the bone epiphyses cut with a scalpel. The bone marrow was flushed

with 50mLPBS, centrifuged at 300 g for 5minutes, resuspended in alphaMEMmedium (Thermo Fisher Scientific) supplementedwith

2mML-glutamine (Thermo Fisher Scientific), 100 U/ml penicillin/streptomycin (Thermo Fisher Scientific) and 10% fetal bovine serum

(Sigma) at a concentration of 5x106 cells/ml and cultured at 37�C at 5%CO2. After 24 hours, floating cells were removed by washing

twice with PBS and medium was changed twice a week until the culture was 70% confluent. Cells were cryopreserved until use.

Single-cell in vitro culture
Single Lin- CD34+ CD38- CD62L+ CD52+ CD133+ cells, isolated from the fetal bone marrow of three different fetuses (20-22 pcw),

were index-sorted into 96-well plates seeded with fMSCs or MS5 (obtained by DSMZ) and supplemented with cytokines as previ-

ously described (Velten et al., 2017). Cells were cultured for 15 days at 37�C at 5% CO2. At the end of the culture, colonies were

filtered to exclude feeder layer cells, and their lineage output was assessed by the expression of CD41a (megakaryocytic-Mk),

CD235a (erythroid-Ery), CD3/CD56 (lymphoid-Ly), and CD11b (myeloid-My) by flow cytometry using a BD LSR-Fortessa analyzer.

Colonies were considered positive for a lineage if R 30 cells were detected in the relative gate.
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Cell cycle analysis
Cells from the fetal liver and the bonemarrowwere stainedwith cell-surface antibodies, fixed and permeabilised for 20minutes at 4�C
using the Cytofix/cytoperm kit (BD Biosciences). Cells were then stained with FITC-MKi67 antibody (BD Biosciences) overnight at

4�C and finally with DAPI prior to flow cytometry acquisition. Cell cycle phases were defined as follows: G0 (Mki67-DAPI-), G1

(Mki67+DAPI-), S-G2-M (Mki67+DAPI+).

QUANTIFICATION AND STATISTICAL ANALYSIS

Differences across cell types
In order to assess qualitative and quantitative differences between the hematopoietic cells collected from the liver and femur, we

implemented different statistical tests. For each cluster, we calculated if there is a statistically significant difference in the number

of cells (Test 1), the number of expressed genes per cell (Test 2), and the cell cycle state of blood cells collected from liver and femur

(Test 3).

Test 1.Sincewe used different gates to sort cells andwe sorted a different number of cells in each experiment, we first normalized

the number of cells from liver and femur. We selected only the matched gates (i.e., the gates where we sorted hematopoietic cells

from both liver and femur). Then, we selected cells from the liver (or femur) from each gate in each of the clusters. For each cluster,

we normalized the number of cells inside the cluster in the range [0, 100] by dividing the number of cells for the total number of cells

of the gate in order to obtain a number of cells equal to 100. Next, for each cluster, we calculated themedian of the cells in the liver

(or femur) among the different gates. In order to evaluate if there is a statistically significant difference between the number of cells

in the liver and femur considering all the clusters, we applied the ChiSq test by normalizing the distributions (i.e, the median of the

gates of each cluster) of the cells from liver and femur among the clusters. We applied the chi2_contingency function provided by

the Python SciPy. Since the obtained p value is equal to 1.023 10�4, we applied Fisher’s exact test (SciPy fisher_exact function) to

each cluster to find which clusters contributed to the difference.

Test 2. In this test, we evaluated the number of expressed genes between cells collected from femur and liver. In order to remove

possible technical effects for each cell, we divided the number of expressed genes by the number of reads uniquely mapped

against the reference genome. For each cluster, we applied both the KS test (SciPy ks_2samp function) and the MWW test (SciPy

mannwhitneyu function). Since the number of cells from femur and liver is very different in any given cluster (giving rise to unbal-

anced distributions) we used a subsampling strategy similar to that used for the DE analysis. We randomly subsampled the

biggest group 1,001 times taking a number of cells equal to the number of cells composing the smallest group. We applied

the KS (and MWW) test comparing the smallest group to the subsampled ones obtaining a distribution of p values. Finally, we

calculated the median of this distribution of p values to evaluate if there is a statistically significant difference between the number

of expressed genes in the cells from the liver and femur. Note that we excluded the clusters where the number of the cells from

femur or liver was lower than 20.

Test 3. For each cluster, we comparedG2M/S andG1 states by normalizing the number of cells from the liver and femur in the two

states. We applied Fisher’s exact test (SciPy fisher_exact function) to each cluster to find a possible statistically significant differ-

ence between the number of cells in G2M/S and G1 states in the liver and femur.
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