
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3133486, IEEE
Transactions on Automatic Control

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL, FEBRUARY 2021 1

Distributed Model Predictive Control for Tracking:
A Coalitional Clustering Approach
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Abstract—A coalitional robust model predictive controller for
tracking target sets is presented. The overall system is controlled
by a set of local control agents that dynamically merge into
cooperative coalitions or clusters so as to attain an efficient
trade-off between cooperation burden and global performance
optimality. Within each cluster, the agents coordinate their inputs
to maximize their collective performance, while considering the
coupling effect with external subsystems as uncertainty. By using
a tube-based approach, the overall system state is driven to the
target sets while satisfying state and input constraints despite the
changes in the controllers clustering. Likewise, feasibility and
stability of the closed-loop system are guaranteed by tracking
techniques. The applicability of the proposed approach is illus-
trated by an academic example.

Index Terms—Coalitional model predictive control, control by
clustering, tracking, robust control.

I. INTRODUCTION

IN the last decades, distributed control schemes have gained
attention due to the increasing size, complexity, and mod-

ularity requirements of many systems [1]. In essence, the
overall control problem is divided into smaller pieces that are
assigned to local controllers, also known as agents. Conversely
to decentralized control, where no inter-controller commu-
nication is used, in distributed approaches the agents share
information through a network to coordinate their control
actions. In this context, the classical assumption is to consider
a fixed communication network with static neighborhoods. By
contrast, some recent works explore dynamic neighbourhoods
by considering switching communication topologies [2], [3],
time-varying partitioning [4], plug and play schemes [5],
[6], and clustering [7]. In this work, we will focus on
coalitional control [8], a clustering approach where the use
of the communication resources is penalized to deter the
control scheme from exchanging unnecessary information,
leading to a time-varying degree of coordination. In this
context, the local agents dynamically merge into disjoint
clusters or coalitions whose members coordinate their control
actions. The underlying goal of these schemes is to enable
communication only among highly coupled agents so as to
obtain a performance close to a fully coordinated system,
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but reducing the complexity of the control problem and the
cooperation efforts, thus improving the scalability. This idea
has interesting connections with cooperative game theory [9],
[10] and has been extended to the well-known framework of
model predictive control (MPC) [11], considering applications
where the coupling varies in time and space, such as irrigation
canals [12] and traffic freeways [13]. Similar approaches have
also been recently proposed for dealing with large-scale power
systems, e.g., in [14], a distribution network is split into control
areas to solve a voltage regulation problem in an admissible
time; in [2], the communication topology switches according
to the oscillation modes; and in [15], a wind farm is split up
into subsets of wind turbines according to the wake coupling
effect.

Undoubtedly, MPC has become the accepted standard for
complex control problems in the processes industry [16]. One
of its most appealing features is the ability to drive the system
state to a pre-fixed target fulfilling constraints. Nevertheless,
if the desired setpoint changes, then the feasibility of the
controller may be lost and the controller can fail to track the
reference [17]. Several solutions are proposed in the literature
to deal with this tracking problem [18], based on switching
strategies [19], reference governors [20]–[22], or treating the
target change as a disturbance to be rejected [17], [23]. In
this article, we focus on the methodology presented in [24]–
[26], which guarantees recursive feasibility and convergence to
the admissible setpoints while providing an enlarged domain
of attraction. In particular, the distributed strategies in [27],
[28] are enhanced here in a coalitional framework. The main
goal is to design a robust coalitional MPC for tracking, where
both coupling and external disturbances are uncertain from
a local standpoint. To this end, the robust MPC in [29] is
employed. In this regard, the uncertain dynamics are addressed
with a tube-based approach [30], [31], hence maintaining the
real system in the neighborhood of the nominal predictions,
and also allowing an independent control law computation for
each cluster. See also [32], [33] for some fairly recent results
on coalitional MPC tube-based schemes. The global system
state is driven to a given target set, while satisfying the states
and inputs constraints, and assuring recursive feasibility and
stability despite the dynamic formation of coalitions. In the
line of [8], a double sample rate strategy is used, where the
clusters composition may be periodically changed.

The paper is organized as follows. In Section II, the problem
setting is introduced. In Section III, the MPC for tracking sets
approach is implemented in a coalitional fashion. The control
scheme that assures feasibility and stability is presented in
Section IV. Finally, simulation results and concluding remarks
are respectively described in Sections V and VI.
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II. PROBLEM FORMULATION

In this section, we present the model used to describe
the system dynamics and the communication infrastructure.
Additionally, the control objective we address is introduced.

A. System dynamics

Consider a class of linear systems that can be partitioned
into a set N = {1, 2, . . . , N} of coupled subsystems, whose
dynamics are modeled as1

x+i = Aiixi +Biiui + wi,

wi =
∑
j∈Ni

[Aijxj +Bijuj ] + di, (1)

where xi ∈ Rnxi and ui ∈ Rnui are respectively the state
and input vectors of subsystem i ∈ N , x+i ∈ Rnxi is
its successor state, and wi ∈ Rnxi aggregates the coupling
among the state of agent i and its set of neighbors, defined
as Ni = {j ∈ N \ {i} | [Aij , Bij ] ̸= 0}, and external
disturbances di ∈ Rnxi . Matrices Aij and Bij are, respec-
tively, the state transition and the input-to-state matrices for all
i, j ∈ N , and 0 represents a null matrix of the corresponding
size. Accordingly, the global behavior can be modeled by
matrices AN = (Aij)i,j∈N and BN = (Bij)i,j∈N , which
aggregate (1) for the N subsystems, i.e.,

x+N = ANxN +BNuN + wN , (2)

where xN = [xi]i∈N and uN = [ui]i∈N are the global state
and input vectors, respectively. Additionally, wN = [di]i∈N
is the overall disturbance vector, which contains only external
disturbances because all subsystems interactions are accounted
for in matrices AN and BN .

B. Network structure

The N subsystems are individually governed by a set of
local agents interconnected through a configurable commu-
nication network, i.e., the connections between agents can
be dynamically either enabled or disabled. Let G = (N ,L)
be the graph describing the network, where the nodes in N
represent the local agents, and set L contains the links, i.e.,
L ⊆ LN = {{i, j} | {i, j} ⊆ N , i ̸= j}. Also, let |L| be the
cardinality of L, then we can derive a set T composed of 2|L|

communication topologies Λ ⊆ L, which are defined by the
sets of enabled links, i.e.,

T = {
Λdec︷︸︸︷
Λ0 ,Λ1, . . . ,

Λcen︷ ︸︸ ︷
Λ2|L|−1}, (3)

where Λdec and Λcen respectively refer to the decentralized
and centralized configurations, i.e., Λdec = ∅ and Λcen = L.
In this respect, the term decentralized denotes the case in
which the agents do not share any data, hence their knowledge
is limited to local information, while centralized refers to
communication using all available resources.

1For simplicity, the dependence with time step has been omitted along the
full manuscript. Throughout this paper, superscript ‘+’ is used for variables
associated to time instant k + 1 and no superscript refers to time k.

Fig. 1: Examples of topologies and coalitions for a network with 4
agents and 4 links. Letters C and D denote coalitions of agents, i.e.,
C,D ∈ N/Λ with C ∩ D = ∅. Note that in the left figure all agents
can communicate (see Remark 1).

Each Λ ∈ T arranges the N subsystems into clusters or
coalitions C, i.e., agents connected by a path of enabled links.
In this regard, the partition induced by Λ over N is denoted
as N/Λ. Note that the number of clusters in N/Λ ranges from
one, when all agents are connected (N/Λcen = N ), to N ,
corresponding to a fully decentralized system (N/Λdec =
{{1}, {2}, . . . , {N}}). An easy example with three different
topologies following this notation is depicted in Fig. 1.

Remark 1: Hereafter, we consider that the communication
links are bidirectional and assume indirect connectivity, i.e.,
any agent i can send/receive data to/from agent j if there exists
a path of enabled links between i and j. □

1) Coalitional model: Dynamically, any coalition C ∈
N/Λ can be considered as a single system modeled by

x+C = ACCxC +BCCuC + wC ,

wC =
∑

D∈NC

[ACDxD +BCDuD] + dC , (4)

where xC = [xi]i∈C ∈ RnxC and uC = [ui]i∈C ∈ RnuC are
respectively the aggregates of the states and inputs of sub-
systems i ∈ C, and matrices ACC and BCC map the current
coalition members states and inputs to their successor state.
Similarly, wC models the effect of neighboring coalitions D ∈
NC and the external disturbances on subsystems i ∈ C.
Matrices ACD, BCD and set NC are defined analogously to
the case of interacting subsystems.

C. Objective statement and assumptions

From now on, we consider the assumptions described below:
(i) The agents in N should drive the global system state to a

target set ΓN while satisfying state and input constraints.
(ii) The agents can dynamically merge into disjoint clusters C

to compute their control inputs.
(iii) Each cluster C can measure xC and has full knowledge

of matrices ACC and BCC , whereas the inter-coalitions
coupling and external disturbances are uncertain.

Also, the following considerations are explicitly assumed:

Assumption 1: For any coalition C:
• Pair (ACC , BCC) is stabilizable and state xC is measur-

able.
• The state and input are constrained by

xC ∈ XC =
⊗
i∈C

Xi, uC ∈ UC =
⊗
i∈C

Ui, (5)
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where XC and UC are polytopic sets containing the origin
in their interior, and Xi and Ui represent the constraint
sets of the subsystems inside the coalition.

• Disturbances wC are bounded by a convex compact
polytope WC containing the origin in its interior, i.e.,

wC ∈ WC =
⊕

D∈NC

[ACDXD +BCDUD]⊕ EC , (6)

where EC=
⊗

i∈C Ei, being Ei a set containing all possible
realizations of the external disturbances on subsystem i.

• There exist a feedback gain Ke
C such that matrix (ACC +

BCCK
e
C) is Schur [34], and a robust positively invariant

set RC that satisfies

(ACC +BCCK
e
C)RC ⊕WC ⊆ RC ,

RC ⊂ int(XC),

Ke
CRC ⊂ int(UC).

(7)

□

Assumption 2: The global target set is defined as ΓN =⊗
i∈N Γi, where Γi are convex polytopic sets defining the

target region for the state of subsystem i, that is,

Γi = {xi ∈ Rnxi | GΓixi ≤ gΓi}, (8)

with GΓi and gΓi providing the H-representation of Γi.
Accordingly, ΓC =

⊗
i∈C Γi is the target set of coalition C. □

Assumption 3: For any coalition C, sets RC and ΓC are such
that ΓC ⊖RC ̸= ∅. □

III. TRACKING SETS IN A COALITIONAL FRAMEWORK

The robust tube-based MPC for tracking [29] is character-
ized by:
(i) The introduction of an artificial steady state and input as

optimization variables in an MPC problem based on the
nominal dynamics, which allows for an extension of the
domain of attraction of the MPC controller [24].

(ii) The use of an offset cost function that penalizes the
deviation between the artificial and the real setpoints.

(iii) The use of a control law comprising an optimal input gov-
erning the nominal dynamics and an ancillary feedback
controller to keep the real system in the neighborhood of
the nominal predictions [30], [31], [35].

A. Nominal steady state and input
The nominal model of each cluster is derived from (4) by

neglecting the effect of wC , that is,

x+C = ACCxC +BCCuC , (9)

where xC and uC represent respectively the nominal state and
input of C. Accordingly, the set of possible nominal steady
states and inputs for a certain cluster C can be derived from[

ACC − InxC
BCC

] [ xsC
usC

]
= 0nxC×1, (10)

where InxC
and 0nxC×1 represent respectively the identity

matrix of dimensions nxC × nxC and the null matrix of
dimensions nxC × 1. Therefore, the null space of matrix[
ACC − InxC

BCC
]

allows a parametrization of the set of
steady states in terms of a single variable in RnuC×1 (see [24]).

B. Invariant set for tracking
Consider that the nominal coalitional dynamics (9) are

controlled by a linear feedback control law, defined as

uC = usC +KC (xC − xsC) , (11)

where KC is a constant matrix that yields closed-loop stability
of system (9) and satisfies

P C−(ACC+BCCKC)
TP C(ACC+BCCKC)=QC+K

T

CRCKC , (12)

being P C a positive definite matrix. Also, let us introduce the
augmented system xC

xsC
usC

+

=

ACC +BCCKC −BCCKC BCC
0nxC

InxC
0nuC

0nxC
0nxC

InuC

 xC
xsC
usC

, (13)

whose state is formed by the nominal coalitional state and
its steady state and input. Considering this, in the tracking
optimization problem the terminal set is defined as an invariant
set Ω

a

C of augmented system (13), i.e., the terminal set is an
invariant set for any possible nominal equilibrium point, and
contains all nominal initial states (and steady states) that can
be stabilized by (11) while satisfying constraints (5) (see [24]).

Remark 2: The global invariant set for the nominal dynamics
of each topology Λ can be computed as Ω

a

Λ =
⊗

C∈N/Λ Ω
a

C .
Also, notice that the nominal state of any coalition C lies in
the projection of Ω

a

C onto the axis corresponding to xC . The
equivalent conclusion holds for xN and Ω

a

Λ. □

C. Objective function
The objective function used in the computation of u∗C

and x∗C is:

VC(xC(0),uC , x
s
C , u

s
C , x

t
C)=

Np−1∑
n=0

(
∥xC(n)−xsC∥2QC

+∥uC(n)−usC∥2RC

)
+ ∥xC(Np)− xsC∥2PC

+ V C
O (xsC , x

t
C),

(14)
where the time index between brackets indicates the step time
of the prediction horizon, QC = (Qi)i∈C ≥ 0 and RC =
(Ri)i∈C > 0 are weighting matrices, with Qi and Ri being
the weighting matrices of agent i, uC = [uC(n)]

Np−1
n=0 is the

nominal sequence of inputs for a prediction horizon of Np

time steps, and (xsC , u
s
C) is the setpoint, which becomes a

variable that will be optimized each time instant. Note that
this artificial setpoint remains constant during the prediction
horizon. Additionally, ∥xC(Np)− xsC∥2PC

is the terminal cost,
being P C a properly chosen matrix, and V C

O (·) is the offset
cost function, which penalizes the deviation of xsC from the
coalitional target set ΓC . In particular, we use

V C
O (xsC , x

t
C) = α

∑
i∈C

∥xsi − xti∥∞, (15)

where α > 0 is a weighting parameter, and xtC = [xti]i∈C is any
point contained in the robust target set, i.e., ψC = ΓC ⊖RC .

Accordingly, the global objective function for any topol-
ogy Λ is defined by adding (14) for all C ∈ N/Λ, i.e.,

VN (xN (0),uN , x
s
N , u

s
N , x

t
N ,Λ)=

∑
C∈N/Λ

VC(xC(0),uC , x
s
C , u

s
C , x

t
C),

(16)
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where uN = [uC ]C∈N/Λ, xsN = [xsC ]C∈N/Λ, usN = [usC ]C∈N/Λ

and xtN = [xtC ]C∈N/Λ. Note that VN (·) depends on Λ, i.e., the
overall objective function changes with the topology.

Remark 3: The offset cost function (15) will be zero for
all xsC contained in ψC . As a consequence, any artificial steady
state placed on the border of ψC cancels the offset cost. □

D. Optimization problem

Every coalition solves the following problem at each time
step:

min
uC,xC(0),xs

C,u
s
C,x

t
C

VC(xC(0),uC , x
s
C , u

s
C , x

t
C)

s.t. xC(0) ∈ xC ⊕ (−RC),

xC(n+ 1) = ACCxC(n) +BCCuC(n),

uC(n) ∈ UC = UC ⊖Ke
CRC ,

xC(n) ∈ X C = XC ⊖RC ,

xtC ∈ ψC ,

(xC(Np), x
s
C , u

s
C) ∈ Ω

a

C ,

∀n = 0, ..., Np − 1,

(17)

where the state and input constraints are shrunk to account for
the possible future realizations of the disturbances. The min-
imizer of (17) is formed by the optimal coalitional sequence
of inputs u∗

C and initial state x∗C(0), together with the optimal
artificial states and inputs (xs∗C , u

s∗
C ), and a certain xt∗C . Note

that if Λdec is imposed, then each agent considers only its local
objective and variables, thus minimizing the communication
burden and the local problems complexity. Conversely, if Λcen

is used, then all agents jointly optimize the overall objective,
thus maximizing the global performance.

Remark 4: Let the system be controlled using a static
topology Λ and let uC = u∗C+K

e
C (xC − x∗C) be the control law

of any cluster C ∈ N/Λ, where u∗C , and x∗C are respectively the
first component of u∗

C and the initial state obtained from (17).
Then, the global state trajectory will evolve in the tube defined
by RΛ = ⊗C∈N/ΛRC [31, Proposition 1], i.e., the deviation
between the predicted and real trajectories is bounded. □

E. Topology Switching Features

We consider a double sample rate strategy where every Ttop
steps a network topology is selected through a comparative
assessment of different configurations.

1) Topologies evaluation: The following index is used as a
surrogate to evaluate all Λ ∈ T [8]:

r(Λ, xN ) = (xN − xΓ)
T
PΛ (xN − xΓ) + c|Λ|, (18)

where xΓ is the Chebyshev center of the target set, c > 0
is the cost of enabling a link and |Λ| is the number of
enabled links in Λ. The first term of index (18) provides an
upper bound estimate of the unconstrained performance costs
associated with topology Λ, while the second term weights the
coordination costs and promotes the use of sparse topologies.
The procedure to obtain PΛ is detailed in [8].

2) Condition on the switchings: A change of topology
entails a switching of both the nominal control model and
the state and input constraints in (17). In particular, notice
that splitting any coalition increases the uncertainty of the
corresponding subsystems, leading to greater reductions of the
constraints sets in (17). For stability and feasibility purposes,
we impose two conditions on the switchings:
(i) A transition to Λ+ takes place iff the system state

at the switching instant fulfills xN ∈ ProjxΩ
a

Λ+ ,
where ProjxΩ

a

Λ+ is the projection of the augmented
invariant set of topology Λ+ onto xN .

(ii) The topologies remain active for a period that guarantees
a decreasing evolution of nominal costs (16).

Note that if sets ProjxΩ
a

Λ+ are computed offline for all
possible Λ+, then (i) translates into checking if a matrix
inequality is satisfied. Alternatively, it can be checked if there
exists some (xsN , u

s
N ) such that (xN , x

s
N , u

s
N ) ∈ Ω

a

Λ+ . The
latter can be formulated as a simple optimization that would be
solved every Ttop instants with minimum computation burden.

IV. CONTROL SCHEME

The robust coalitional control scheme for tracking target
sets introduced in this work is presented next:

Control Scheme 1: Let us consider that the communication
topologies may be switched every Ttop time instants with the
set K = {pTtop : p ∈ N>0} containing the switching instants.
Also, set the topology Λ to an initial configuration, say Λini,
and the initial value of V to infinity. Then, at each sample
time k proceed as follows:

1: if k ∈ K then
2: Coalitions share their state and current costs.
3: if V ∗

N < V then
4: Topology Λ+ ∈ T that minimizes (18) is selected.
5: If xN ∈ProjxΩ

a

Λ+ , update V =V ∗
N and set Λ = Λ+.

6: end if
7: end if
8: Each cluster C∈N/Λ computes u∗

C and x∗C through (17).
9: Each cluster C ∈ N/Λ implements tube-based control

law uC = u∗C + Ke
C (xC − x∗C), where u∗C , and x∗C are

obtained from (17).
Note that Control Scheme 1 uses the same tracking method-

ology as the distributed MPC in [27], which is also extended
in [28] by exploiting the subsystems interactions to reduce the
communication overhead. However, there are notable differ-
ences, among which are the following: in [27], [28], all agents
are cooperative and all (interactive) subsystems communicate
to optimize a plant-wide objective, while here each cluster
optimizes the aggregate benefit of its members and there
is no inter-coalition communication; [27], [28] guarantees
convergence to the centralized optimum, while the coalitional
controller balances the coordination effort and system perfor-
mance; also, [27] is based on a warm-start initialization that
is not used in this article.

Remark 5: Set T in Control Scheme 1 may not contain
all possible topologies and may be adapted in real time using
a reasonably-sized subset of candidate topologies [12]. Also,
notice that the minimum and maximum topologies in T are
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not necessarily Λdec and Λcen. Hence, Λcen may be replaced
by some other configuration involving smaller clusters, thus
simplifying the computations at expense of a certain loss of
performance. Similarly, if the coupling conditions are such that
Assumptions 1 or 3 do not hold for Λdec, then other topology
can be used as sparsest viable configuration. Finally, note that
it is possible to check offline if some topology involves clusters
that do not satisfy these assumptions, and hence to remove it
from the set of configurations that may be chosen. □

Remark 6: By using homothetic, elastic and polytopic
tube-based approaches [36]–[38], conservatism in Control
Scheme 1 can be reduced. Another possibility is introduced
in [39], where the worst-case constraint tightening, as used
in (17), is replaced by an optimization-based strategy where
these constraints reduction depends on decision variables. Sim-
ilarly, [40] proposes a tube-based DMPC where agents share
data so as to reduce the size of the coupling uncertainty. □

Let SNp
be the domain of attraction of the initial topol-

ogy Λini. Then, the following two theorems hold:
Theorem 1 (Recursive feasibility): For any initial state xN ∈

SNp , feasibility is guaranteed along the closed-loop trajectory
of the system. □

Proof 1: Let us first consider that the topology remains
fixed. In this case, recursive feasibility is proven below follow-
ing [29]. In particular, consider instant k, let Λ be the topology,
and let (x∗C(0),u

∗
C , x

s∗
C , u

s∗
C , x

t∗
C ) be the solution of (17) for

cluster C ∈ N/Λ, with x∗
C = [x∗C(n)]

Np−1
n=0 being the corre-

sponding sequence of predicted states. Additionally, take

ũ+
C =


ũ+
C (0)

...
ũ+
C (Np − 2)

ũ+
C (Np − 1)

 =


u∗
C(1)

...
u∗
C(Np − 1)

us∗
C +KC(x

∗
C(Np)− xs∗

C )

,
x̃+
C (0) = x∗

C(1), x̃s+
C = xs∗

C , ũs+
C = us∗

C , x̃t+
C = xt∗

C ,

(19)

as a candidate solution for instant k+1. Then, the follow-
ing holds:
(i) From the notion of tubes [31], the coalition state at k+1 is

such that x+C ∈ x∗C(1)⊕RC , and hence x+C ∈ x̃+C (0)⊕RC .
(ii) Admissibility of u∗

C implies that inputs ũ+C (0 : Np−2) =
u∗C(1 : Np − 1) are admissible.

(iii) Variable x̃+C (Np − 1), i.e., the predicted nominal state at
k + 1 for instant k +Np, is given by x∗C(Np), hence,

(x̃+C (Np − 1), x̃s+C , ũs+C ) ∈ Ω
a

C , (20)

and, therefore, ũ+C (Np−1) = us∗C +KC(x̃
+
C (Np−1)−xs∗C )

is also admissible.
(iv) Finally, the invariance of Ω

a

C entails

(x̃+C (Np), x̃
s+
C , ũs+C ) ∈ Ω

a

C . (21)

Therefore, for all C ∈ N/Λ, (x̃+C (0), ũ
+
C , x̃

s+
C , ũs+C , x̃t+C ) con-

stitutes a feasible solution of (17) for instant k+1. Recursive
feasibility for any static Λ follows by induction.

On the other hand, the condition imposed on the switchings
prevents unfeasibility problems when the clusters are changed.
The latter is the only condition that needs to be checked online
to guarantee feasibility. In particular, a transition to a new
topology Λ+ takes place iff the overall system state xN is such

that xN ∈ ProjxΩ
a

Λ+ , i.e., xC ∈ ProjxΩ
a

C , for all C ∈ N/Λ+.
Hence, there exists at least one feasible artificial steady state
and input (x̂s+C , ûs+C ) such that

(xC , x̂
s+
C , ûs+C ) ∈ Ω

a

C , ∀C ∈ N/Λ+. (22)

Additionally, feasible inputs can be derived from (11), i.e.,

û+
C =

[
û+C (n)

]Np−1

n=0
=
[
ûs+C +KC

(
xC(n)− x̂s+C

)]Np−1

n=0
, (23)

where xC(n + 1) = ACCxC(n) + BCCûC(n) and xC(0) =
xC . Therefore, the existence of a feasible initial state,
a feasible sequence of inputs, and a feasible equilibrium
point (xC , û+

C , x̂
s+
C , ûs+C ) is guaranteed. Finally, note that vari-

able xtC cannot itself make problem (17) unfeasible.
Considering the above and that the initial topology

is Λini, recursive feasibility is guaranteed for all initial states
within SNp

. ■

Theorem 2 (Stability): For any initial state xN ∈ SNp ,
asymptotic stability is guaranteed. □

Proof 2: Firstly, we will prove that function (16) is a
decreasing function when the network topology is static. Sim-
ilarly, consider time instant k, let Λ be the network topology,
and let (x∗C(0),u

∗
C , x

s∗
C , u

s∗
C , x

t∗
C ) be the minimizer of (17) for

cluster C ∈ N/Λ. Then,

V ∗
C = VC(x

∗
C(0),u

∗
C , x

s∗
C , u

s∗
C , x

t∗
C ), (24)

is its optimal (nominal) performance cost attained at k. Let us
move one step forward and consider candidate solution (19).
By optimality, Ṽ +

C = VC(x̃
+
C (0), ũ

+
C , x̃

s+
C , ũs+C , x̃t+C ) provides

an upper bound on the optimal cost at time instant k + 1. In
particular, we can write:

Ṽ +
C = V ∗

C − ∥xC − xs∗C ∥2QC
− ∥u∗C(0)− us∗C ∥2RC

+ ∥x̃+C (Np − 1)− x̃s+C ∥2QC
+ ∥ũ+C (Np − 1)− ũs+C ∥2RC

− ∥x∗C(Np)− xs∗C ∥2
PC

+ ∥x̃+C (Np)− x̃s+C ∥2
PC
,

(25)

where we have considered that the offset cost remains constant
since xs∗C = x̃s+C and xt∗C = x̃t+C . Also, the terminal cost
satisfies

∥x̃+C (Np − 1)− x̃s+C ∥2QC
+ ∥ũ+C (Np − 1)− ũs+C ∥2RC

−∥x∗C(Np)− xs∗C ∥2
PC

+ ∥x̃+C (Np)− x̃s+C ∥2
PC

≤ 0.
(26)

Then, Ṽ +
C −V ∗

C ≤ −∥xC−xs∗C ∥2QC
−∥u∗C(0)−us∗C ∥2RC

, and, hence,

V ∗+
C − V ∗

C ≤ −∥xC − xs∗C ∥2QC
. (27)

Since (27) holds for all clusters C ∈ N/Λ, the overall optimal
(nominal) costs, i.e., V ∗

N =
∑

C∈N/Λ V
∗
C , satisfy

V ∗+
N − V ∗

N ≤ −∥xN − xs∗N ∥2QN
. (28)

From (28), we have that the overall nominal state tends to the
artificial steady state as time goes to infinity, and following
similar arguments to Lemma 1 in [29], it can be proven that
the artificial steady state converges to a fixed point, for any
static network topology. On the other hand, the switchings of
topologies, and hence the clusters modifications, may cause
temporary increases of the optimal nominal costs. That is,
condition (28) does not hold generally for all time steps. How-
ever, Control Scheme 1 guarantees that function V ∗

N sampled
at the instants prior to the switchings always decreases with
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time, which assures asymptotic stability of the overall nominal
switching system. ■

From the theorems above, we can deduce that as time goes
to infinity, function V ∗

N tends to a constant. Since the topology
switchings are subject to a decrease of V ∗

N , from a certain
time instant the network configuration will remain static with
some Λ∞. In this regard, given (28), the nominal system
state at infinity, say xN ,∞, converges to steady state xs∗N ,∞.
Additionally, from the notion of tubes, it is guaranteed that the
real state converges to a neighbourhood of the nominal system
defined by RΛ∞ , i.e., xN ,∞ ∈ xs∗N ,∞⊕RΛ∞ . Previous works
on MPC for tracking [26], [29] prove that this final operating
point xs∗N ,∞ is defined as a minimizer of the offset cost
function subject to the constraints in (17). In particular, let us
define X s

C = {xsC : (xsC , x
s
C , u

s
C) ∈ Ω

a

C} as the set of admissible
steady states consistent with the invariant set for tracking of
cluster C. Under the assumption that ψC ∩ X s

C ̸= ∅ for all
C ∈ N/Λ∞, it is verified that xs∗C,∞ ∈ ψC for all C ∈ N/Λ∞.
Hence, from a global viewpoint, the following holds:

xN ,∞ ∈ xs∗N ,∞ +RΛ∞ ⊆ ψN ⊕RΛ∞ ⊆ ΓN , (29)

where ψN = ⊗C∈N/Λ∞ψC .

V. SIMULATION RESULTS

In this section, we apply the coalitional scheme to a mod-
ified version of the system proposed in [40], [41]. It consists
of a set N = {1, 2, ..., 12} of trucks coupled via springs and
dampers as shown in Fig. 2, with dynamics modeled by[

ṡi
v̇i

]
= Aii

[
si
vi

]
+Biiui +

∑
j∈Ni

Aij

[
sj
vj

]
+ di, (30)

where

Aii =

 0 1

− 1

mi

∑
j∈Ni

kij − 1

mi

∑
j∈Ni

hij

, Bii =

[
0
50

]
,

Aij =

 0 0
1

mi

∑
j∈Ni

kij
1

mi

∑
j∈Ni

hij

, i ̸= j.

(31)

The state xi of each subsystem is formed by its displace-
ment si from the equilibrium point and its instantaneous
velocity vi. Additionally, the agents can apply a longitudinal

Fig. 2: 12-truck system and related communication network.

TABLE I: Parameters used in the simulation
Spring stiffnesses [N/m] and damping factors [N/(m×s)]

k12, k45,
k78, k1011

0.4 k23, k56,
k89, k1112

0.8 k34, k67,
k910

0.9

h12, h67,
h910

0.2 h23, h45,
h78, h1011

0.1 h34, h56,
h89, h1112

0.15

Masses [kg]
m1,m6,m8,m12 3
m2,m4,m7,m10 4
m3,m5,m9,m11 5

Other parameters
Np 0.5 s Ttop 0.8 s
α 25 c 0.25

-1

0

1

-1

0

1

-4 -2 0 2 4
-1

0

1

-4 -2 0 2 4

Fig. 3: Evolution of the system to two target sets. The subsystems
states at the switching instants are indicated by star marks, and the
initial and final states are marked respectively with a circle and a
diamond. The light blue and red regions represent the first target sets
for the corresponding subsystems, and green and orange regions the
second ones.

Fig. 4: Topology evolution over time. It can be seen how the links
are progressively disabled as the trucks approach the target sets.

force Fi = 50ui N, where ui is the control action. The
parameters that characterize the system are given in Table I.
The continuous-time dynamics are discretized using zero-order
hold and a sampling time of 0.1s. The goal is to regulate the
four trucks towards a target set while allowing switchings on
the network topology and satisfying |si| ≤ 4 and |ui| ≤ 1.
In this regard, the agents are connected by a network of 11
links as shown in Fig. 2. In addition, we have considered an
external disturbance, which is defined as a bounded white
noise as [−0.003,−0.03]T ≤ di ≤ [0.003,−0.03]T, for
all i ∈ N . Finally, the stage cost is defined by weighting
matrices Qi = [1 0; 0 1.2] and Ri = 100, for all i ∈ N .

For the design of gains Ke
C and matrices PΛ we have

followed [29] and [8], respectively. To this end, we have used
the Matlab® LMI Control Toolbox [42] and specifically
the solver mincx, in a 1.8 GHz quad-core Intel® CoreTM

i7/8 GB RAM computer. On the other hand, feedback gains
KC and matrices P C have been calculated using function
dlqr from Matlab®. Sets RΛ are designed following [43],
where a one-step approach based on a linear program is
proposed for computing minimal robust positively invariant
sets. Finally, the augmented invariant sets for tracking have
been computed using the Multi-Parametric Toolbox
3.0 [44], where for converge reasons a factor λ = 0.97 has
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been used (see [24]). Due to the high computational burden
of operating with high-dimensional sets, we have limited the
coalitions size to |C| ≤ 4. The latter pre-selects a subset
of 1450 topologies among the 211 = 2048 combinations of
enabled and disabled links, and allows to manage the system
without requiring great efforts to compute the constraints sets
of (17) for any coalition, at expense of limiting the maximum
degree of coordination that can be attained. Nevertheless,
notice that using a zonotope representation of the polytopes
involved in (17) can facilitate the constraints sets computation
for larger clusters. Likewise, the methodology in [29], which
scales poorly for high dimensional disturbance sets, can be
replaced by any other method providing matrices Ke

C satisfy-
ing Assumption 1. The results obtained from the simulation
of Control Scheme 1 with the parameters in Table I and
using as initial topology Λini the one shown in Fig. 4 are
summarized below.

Fig. 3 illustrates the subsystems’ state trajectories on
planes (si, vi) with the coalitional controller, and Fig. 4 shows
the network topologies used over time. The simulation lasts
for 18s, with a change of target set at 9s. When the target
is changed, topology Λini is imposed and V is set to ∞. As
shown in Fig. 4, when the system is in the vicinity of the
target, a decentralized control suffices to drive and maintain
the overall state within this region. The use of topologies with
one or more enabled links reduces the coupling uncertainty
of the merged agents in comparison to a static decentralized
configuration, which leads to less restrictive constraints during
part of the simulation (see the projections of sets XΛdec

and
XΛini

onto plane (s9, v9) in Fig. 5). Note that the decentralized
controller refers to the case in which Λdec is permanently
imposed, that is, each local agent performs as the robust
MPC for tracking introduced in [29], but considering that
the disturbances account for both coupling effect and external
perturbations. For the sake of comparison, we show the
results obtained with the centralized MPC in [26] with perfect
external disturbances forecast and without shrinking constraint
sets XN and UN . Note that the latter provides a lower bound
on the performance costs that can be attained and uses the
centralized model (2) derived from (30) as prediction model.

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5: Trajectory of truck 9 on plane (s9, v9) when using the decen-
tralized, coalitional and centralized controllers. The figure also shows
how the coupling uncertainty reduces the decentralized topology
constraint set XΛdec in comparison with XΛini . Additionally, it shows
that the projection of the augmented invariant set for tracking Ω

a
Λdec

contains practically all points in XΛdec .

0 5 10 15

Time (s)

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
u

m
u

la
ti
v
e

 p
e

rf
o

rm
a

n
e

 c
o

s
t

Decentralized

Coalitional

Centralized (disturb. perfectly estim.)

0 5 10 15

Time (s)

0

200

400

600

O
ff
s
e
t 
c
o
s
t

(a) Performance cost.

0 5 10 15

Time (s)

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 c

o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

Decentralized

Coalitional

All links enabled

(b) Communication costs.

Fig. 6: Comparison between the centralized, coalitional and decen-
tralized cumulative costs. In (a), the evolution of the offset cost is
also shown, i.e., the value of α

∑
i∈N ∥xs

i − xt
i∥∞ attained each

time instant.
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Fig. 7: Invariant tube, nominal initial states, and real evolution of
subsystem 9 when using the decentralized topology. For the sake of
clarity, the tube is just plotted every eight time steps.

A comparison of the overall performance and communi-
cation cumulative costs is provided in Fig. 6. In particular,
the cumulative performance costs are measured through the
following stage index:∑

i∈N

(
∥xi − xsi∥2Qi

+ ∥ui − usi∥2Ri
+ α∥xsi − xti∥∞

)
, (32)

while for the communication costs we use c|Λ|, being Λ the
active topology each time step. Finally, Fig. 7 shows the
invariant tube that characterizes the coupling uncertainty of
subsystem 9 when the decentralized topology is imposed.

VI. CONCLUSIONS

A robust tube-based MPC strategy for tracking target sets
has been introduced in a coalitional MPC framework. In
this context, the overall system is controlled through a set
of local agents that dynamically merge into clusters to take
coordinated decisions. The proposed formulation drives the
global system state to the target set in an admissible way,
while assuring recursive feasibility and stability regardless the
topology switching.

The use of the tracking strategy in conjunction with the
coalitional approach allows enlarging the MPC controller
domain of attraction without renouncing to the use of decen-
tralized or sparse structures when they suffice for reaching
the goals. This fact may be interesting for applications where
communications between controllers can fail. In this regard,
the dynamic formation of disconnected coalitions limits the
information available to the local agents to compute the control
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inputs. To robustify the controller against these uncertainties,
the coalitions’ constraints set can be restricted. However, it
leads to smaller terminal sets and, consequently, reduces the
domain of attraction of all noncentralized topologies.

Future research should include the implementation of the
proposed approach in more complex multi-agents systems and
the use of game-theoretic tools to measure the benefits brought
by the agents involved in each coalition.
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