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HOLOMORPHIC FUNCTION SPACES ON THE HARTOGS TRIANGLE

ALESSANDRO MONGUZZI

ABSTRACT. The definition of classical holomorphic function spaces such as the Hardy space or the
Dirichlet space on the Hartogs triangle is not canonical. In this paper we introduce a natural family
of holomorphic function spaces on the Hartogs triangle which includes some weighted Bergman
spaces, a candidate Hardy space and a candidate Dirichlet space. For the weighted Bergman
spaces and the Hardy space we study the L? mapping properties of Bergman and Szegd projection
respectively, whereas for the Dirichlet space we prove it is isometric to the Dirichlet space on the
bidisc.

The Hartogs triangle
H = {(21,22) € C?: |21| < |22| < 1}

is a peculiar domain which is a source of many pathological facts in complex analysis ([Shal5]). For
instance, it is not hard to prove that H is a domain of holomorphy which does not admit a Stein
neighborhood basis, that is, it is not true that H = N, where each Q, is a pseudoconvex domain
containing H. The domain H is biholomorphically equivalent to the product domain D x D*  where
D denotes the unit disc in the complex plane and D* denotes the punctured disc, by means of the
map ®:DxD* — H, (’wl,ZUg) —> (wlwg,wg).

Recently, several mathematicians careful studied the mapping properties of the Bergman pro-
jection and related problems both for the Hartogs triangle and for certain its generalizations. In
[CZ16al the LP mapping properties for the classical Hartogs triangle are completely characterized;
in [HW19al, HW19b] the authors exploit techniques of dyadic harmonic analysis to investigate the
mapping properties of the Bergman projection on weighted LP spaces and they also prove some
endpoint estimates; in [EM16] [Edh16a, [Edh16D, [EMI7, [CEMI9, [EM20] the authors introduce some
generalizations of the Hartogs triangle, called thin or fat Hartogs triangles, and they study several
problems such as the LP and Sobolev mapping properties of the Bergman projection and the zeros
of the Bergman kernel; in [KLT19] Bergman-Toeplitz operators on the fat Hartogs triangle are
studied. In [ChelTal, [Chel7hl [Chel7cl [CKY20, [CZ16bh] some other generalizations of the Hartogs
triangle and associated weighted Bergman projections are investigated.

In most of the cited papers the peculiar geometry of the Hartogs triangle, or of its generalizations,
forces the Bergman projection to be unbounded on some LP spaces. However, the exact relationship
between the geometry of the domain and the regularity of the Bergman projection is not fully
understood in generality. A similar phenomenon, where the geometry of the domain forces an
irregular behavior of the Bergman projection, were already observed in the setting of the worm

and model worm domains [Bar92, [KP07, [KP0S, [BEP15], [KPST16]. Analogous results for the
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Szegb projection, were discussed and proved in the setting of model worm domains in [MonI6bl
Mon16cl MonT6al, MP17al [MP17hl, [LST9] and in other setting in [BB95| [LS04, MZT5].

It would be interesting to study on H and its generalizations other classical function spaces besides
the Bergman and weighted Bergman spaces. Unfortunately, because of the peculiar geometry, the
definition of classical spaces such the Hardy space or the Dirichlet space is not canonical on H. The
main novelty in this paper is the introduction of a family of holomorphic function spaces which
includes a candidate Hardy space and a candidate Dirichlet space. Our spaces depend on a real
parameter v € [—2, +0); for v > —1 we deal with some weighted Bergman spaces A2(H), the case
v = —1 identifies our candidate Hardy space H?(H), we have some weighted Dirichlet spaces D,
for —2 < v < —1 and we have our candidate Dirichlet space D(H) for v = —2.

Briefly, for v > —1 and 1 < p < o0, the weighted Bergman spaces AL (H) are defined as

AP(H) = LP(H) ~ Hol(H)

where LL(H) denotes the weighted LP spaces endowed with the norm
117 = Cy jH |f (21, 22) [Pl (1 — |21/ 22*) (1 = [22[*)" d=. (1)

Here dz is the Lebesgue measure in C? and C,, is a normalization constant. We refer the reader
to Section [ for more comments and motivations about the definition of the spaces A2(H). The
weighted Bergman projection P, is the orthogonal projection from L2(H) onto A2(H). Let |z| be
the floor function. We prove the following result.

Theorem 1. Let v > —1 and let P, be the weighted Bergman projection densely defined on L2 (H)
LY(H) for pe (1,400). Then, we have the following:
(i) if v > 0 and v # 2n,n € N, the weighted Bergman projection P, extends to a bounded operator

P, : LY(H) — LY(H) if and only if pe (2 — 2:/27%{?% 2 + szlgj/;ﬁ);

(ii) if v = 2n,n € Ny, the weighted Bergman projection P, extends to a bounded operator P, :

LY(H) — LY(H) if and only if p € <2 — 3+Lm2 + 1%1)}

(iii) if —1 < v < 0, the weighted Bergman projection P, extends to a bounded operator P, :

LY(H) — LY(H) if and only if p € <2 - ?,’j:—ZA + 1/).

A comparison between Theorem [Il and the results in [Chel7b] is needed. In [Chel7bl Theorem
1] the LP mapping properties of the weighted Bergman projection B, associated to the weighted
Bergman spaces defined with respect to the measure |22|” dz,v € R, are completely characterized.
If we restrict to the case v > —1, the projections ]3,, and P, share the same LP mapping properties.
The extra factor (1 — |z1/22/)?(1 — |22/?)” in the measure we use to define the spaces A2(H) does
not influence the mapping properties of the weighted Bergman projection. However, the weighted
Bergman spaces studied in [Chel7Dh] are meaningful for any v € R, whereas our weighted Bergman
spaces turn out to be trivial for v < —1 (Remark [L.T]). Hence, we introduce the weighted Dirichlet
spaces.

We refer the reader to Section B for a precise definition of the Hardy space H?(H) and for some
motivation on why it corresponds to the case v = —1. Here we only say that H?(H) can be
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described as the space of functions of the form

400 400 ‘
flzr2) = >0 D) apzlz
j=0k=—j—1
endowed with the norm
+0 4+
2 2
1 =D D, lagel®
j=0k=—j—1

The space H?(H) can be identified with a closed subspace H?(dy(H)) of L?(dy(H)), the space of
square-integrable functions on the distinguished boundary dy(H) of the Hartogs triangle H. The
boundary dp(H) coincides with dD x ¢, where D is the unit disc and D its topological boundary
(see, for instance, [Chel(, Theorem 1.9]). The Szegd projection associated to H?(H) is the Hilbert
space projection operator S : L?(dy(H)) — H?(dy(H)). We obtain the following result.

Theorem 2. The Szegd projection S densely defined on L?(dy(H)) N LP(dy(H)) extends to a bounded
operator S : LP(dy(H)) — LP(dy(H)) for any p € (1,40).

In light of Theorem [l this result about the Szegd projection is surprising and unexpected. As
we will see in detail in Section B the space H?(H) is, in a suitable sense, the limit space of the
weighted Bergman spaces A2(H) for v — —1. The space H?(H) turns out to be modeled only on
the distinguished boundary dy(H) of H and not on the whole topological boundary. Therefore, we
loose sight of the origin (0, 0), which is the most pathological point of the topological boundary of
H.

Finally, the Dirichlet space D(H) can be described in short as the space of functions of the form

+00 400

flzr,20) = D0 D, a2
=0 k=—j
endowed with the norm
+00 +0
2 . ‘ 2
113 =D >0 G+ D)+ k+ Dlagl*
J=0k=—j
In Section [B] we motivate the definition of this space and we see why it corresponds to the value
v = —2 in our family of spaces. The following theorem provide a motivation of why the space D is

a candidate Dirichlet space on H.

Theorem 3. There ezists a surjective isometry from D(H) onto D(D x D), the Dirichlet space on
the bidisc.

All the function spaces we consider are reproducing kernel Hilbert spaces with kernel K, which
satisfies the estimate

1K (21, 22), (w1, w2))| < e 202 7 12V1 = (29701) /(2272) |~ T2 |1 — 207w, ~ 2 (2)

for any v > —2 and ((21, 22), (w1, w2)) € H x H and for some positive constant ¢,. Here [-] denotes
the ceiling function. Because of this estimate we say that our family of spaces can be considered an
analogue of a classical family of function spaces on the unit disc (or the unit ball). If we consider
the case of the unit disc, a well-known family of function spaces is the family of reproducing kernel
Hilbert spaces associated to the family of kernels

1

bole ) =

(3)



4 A. MONGUZZI

where v > —2. This family of spaces is known in the literature with several names, such as Besov-
Sobolev spaces or Dirichlet type spaces. We point out that for v > —1, the kernels k,’s identify the
classical weighted Bergman spaces on the unit disc, the case v = —1 is the case of the Hardy space,
the case —2 < v < —1 identifies the weighted Dirichlet spaces, whereas the case v — —2 identifies
the Dirichlet space and a logarithmic singularity arises in (3]). For more about these spaces we refer

the reader to [Wu99, [Zhu05, [ARSWT11].

The paper is organized as follows. In Section [lwe introduce the weighted Bergman spaces A2 (H)
and we prove Theorem [Il In Section Bl we deal with the space H?(H) and we prove Theorem 2l In
Section Bl we introduce the spaces D, (H) and D(H) and we prove Theorem Bl We conclude with
some final remarks in Section @l

Given two positive quantities X,Y we write X &~ Y meaning that there exist two positive
constants ¢, C such that ¢cX <Y < CX, whereas we write X <Y if there exists a positive constant
C such that X < CY.

1. WEIGHTED BERGMAN SPACES

Let D denote the unit disc in the complex plane and let H?(D) be the classical Hardy space,
that is, the space of holomorphic functions on D such that
1 21 )
HfH%p(D) 1= sup o |f(re®)?df < +o0.
O<r<1 47T Jo

Given a function f e H?(D) it is well-known (see, for instance, [Zhu04]) that
By =l 1o @)

where A2(D) denotes the weighted Bergman space on D with norm
ey = 0+ D [ 1FGP0 = 1P) d- o)

Given Kp(z,w) = (1 —Zw) 2, the reproducing kernel of the unweighted Bergman space A%(H),
notice that the weight in (Bl satisfies

v

(1= [2*)" = Kp > (2,2) ~ 8" (2),
where 0(z) is the distance of z € D from the topological boundary JD.
In light of the above, for v > —1 we define A2(H) as the space of holomorphic functions on H
such that

1712 g = Co fH FEPRPE 5 (2,2) dz < +on, (6)

where z = (z1,22), K(z,w) is the reproducing kernel of the unweighted Bergman space A%(H),
dz denotes the Lebesgue measure of C? and C,, is a normalization constant to be determined. In
Section 2] we will define the Hardy space H?(H) as the limit of the A2(H) spaces as v — —1 in the
sense of ().

The unweighted Bergman space A?(H) corresponds to the case v = 0 but we drop the subscript
in the notation A3(H). In this case we set

2
2 2
oy = 5 |, 1£ 1,20
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that is, we fix the constant C, = Cp in (@) to be 2/72. With such a normalization it is easily
verified that {zl 25:5>0,7+k+ 1> 0} is an orthogonal basis for A?(H) and that
; 2
AT .
We recall that if H denotes a reproducing kernel Hilbert space and {¢,}, is an orthonormal

basis for H, then the reproducing kernel Ky is given by the sum Ky = >, ¢,5,. Therefore, the
Bergman kernel of H is given by

+00  +00

1
K(z,w) = G+ D (k+7+2)(z1w1) (Zg’u)g)k = — =
jZOk—Zy 1 222w2(1 - ;@; )2(1 - 22w2)2
In the general case v > —1 we set
duy(2) := C, K72 (z2,2)dz = C,2% | 2|V (1 — |21/22|?)Y (1 — |2]?)" dz (7)

where
 (w+DrEr+3)
25720 (v + )4 +2)

Notice that,
ng(z,z)dz—ng 2P (1 = [21/20]2) (1 — |2 [2)" dz
H
— 2%4r? f f rp UL = (r/p)) (1 = p2)” drdp
=otar? [ o= o0 - 2 g

v 5 v+ 1I'(5 +2)
(v+1)L(3v+3)’

where the last equality follows from from the identity

fl(l oy d = I'(a+ Db+ 1)

0 - T(a+b+2)
whenever Rea, Reb > —1. Thus, we deduce from (7)) and (&) that

JH dpy(2) =1

for all v > —1. In conclusion, the spaces A2(H) are defined as

AZ(H) = {f € Hol(ED) : | | = fH £ (1 22) P dan (2) < 0.

Remark 1.1. If v < —1 we have §;du,(z) = +o0 and the space AZ(H) is empty. In fact,

||z{z§|| 42 = +oo for any non-negative integer j and any integer k. Hence, exploiting the uniform

convergence of the Laurent expansion f = (z1,29) = +°O ,:rfo_oo a]kz1z2 of any function f €

Hol(H), we conclude that f does not belong to any A2 (H ) Hence, AZ(H) = &.
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We now recall the following proposition, proved in [Edh16a], about the diagonal behavior of the
kernel K.

Proposition 1.2 ([Edhi6al). The following facts hold true.
(1) Let 6(z) be the distance of z to JH, the topological boundary of H. Then,

K(z,2) ~ §(z) 72
as z tends to the origin.

(13) Let p be any point in the distinguished boundary dy(H). For any number B € (2,4] there
exists a path v : [1/2,1] — H such that v(1) = p and for all u € [1/2,1),

K (y(u), () ~ 6(y(u)) 7.
Proof. We refer the reader to Theorems 3.1.4 and 3.1.5 in [Edh16a]. O

We want to prove that the spaces A2(H) are reproducing kernel Hilbert spaces and study the
regularity of the associated weighted Bergman projection. We need the following elementary lemma.

Lemma 1.3. Let v > —1. Then, the monomial z{zé belongs to A2 if and only if
i>0 and j+k+g+2>0.

Proof. From ([0), integrating in polar coordinates, we obtain

125 1%, = 2%@] 211722 22" (1 = [21/z2%)" (1 |22[*)” d2
H
v 1 p ;
— 25+27T2CVJ J 7’2J+1p2k+y+1(1 _ (T/p)2)u<1 _ p2)u dep
0 JO

1 pl
= 2%+27T2Cuj J T2j+1p2(j+k)+u+3<1 - T2)1/(1 . p2)y drdp
0 JO

v+ DL+ 1)IEv+3) THE+IG+k+5+2)
I'(z +2) TG +v+2)0(+k+3v+3)
where the last equality holds true if and only if

j>0 and j+k+g+2>0
as we wished to show. O
From the previous lemma we conclude that any function f € A%(H) is of the form
f(z1,29) Z Z ajkz{zg (9)
J=0k>—j—% -2
and
(1/+1)F(1/+1 (3v+3) Z Z PG+ +k+35+2)

2
. o
1z r(%+ I‘(j~|—u+2)F(j~l—k‘+%u~l—3)‘ i#] (10)

J=0k>—7— g -2
Moreover, we have the following proposition.

Proposition 1.4. Let v > —1. The following properties hold.
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(i) The space A2(H) is a reproducing kernel Hilbert space.

(ii) An orthonormal basis for A%2(H) is given by {2{25/\\2{25\\Ag}(j’k)elu, where I, = {(j, k) : j =
0,j+k+%+2>0}.

(iii) The reproducing kernel K, of A%(H) is given by

CT3+2) (ww)? & Th+3v+1),
Ky(Z,w) = F(%2y n 3) (1 — j gQ),/+2 k>2—" F(k’i— %) (Z2W2)k.

Proof. Let I, = {(j,k) : 7> 0,j + k+ % +2> 0} and set

FrG+0r'G+k+35+2)
L(j+v+2)0 (g+k+2u+3)’

Vi =

so that, from (I0), we have
12~ D) vislagl®.
(J,k)ely
Then, for any z = (21, 29) € H,

1

l .
Fenzl < Y lapllablalf < (X laplu)* (X 18y

(jvk)ell’ (j7k)EIV (j7k)EIV

Since (21, z2) is a fixed point in H the latter factor in the above estimate is finite, whereas the first
factor is comparable to the A%(H) norm of the function f. Therefore, if ¢y,» denotes a positive
constant depending on v and z = (z1, 2z2) € H, we obtain

|f(z1,29)] <

that is, the point-evaluation functionals are bounded on AZ(H). Hence, the space A2(H) is a
reproducing kernel Hilbert space. This concludes the proof of (i). The proof of (ii) follows at once
from Lemma and ([@). Consequently, we obtain that the reproducing kernel K, of A2(H) is
given by

K,(z,w) = K,((21, 22), (w1, w3))
(% +2) PG+v+2TG+k+3v+3), .

UESNOE 1)F(g +3) 54, TG+ DTG +k+5+2) (z11) (20T02) "
CT(E+2)  (zw & k —|— Su+1),
a FEv+3)(1- 2 g yr+2 Z ) — i (222)"

as we wished to show. The last equality follows from the identity

1 1 ir(nJrA)n

n!

(1-2*  T())

9

n=0

which holds for Re A > 0 and |z| < 1. This concludes the proof of (ii7) and of the proposition. [J
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Remark 1.5. A closed formula for the kernel K, is immediately deduced. Given «, 3 and -,
real or complex parameters where v is not a non-positive integer, the Hypergeometric Function is
defined as

r() *Z"O L(k+a)T(k +5) 4
T(a)T(B) = L(k + v)k!
It is easily seen that the radius of convergence of this series is 1. For more properties of the
Hypergeometric Function we refer the reader, for instance, to [Leb72]. From (Il we get that

F(o, By7v:2) =

B (Zgwg)flf[%] 3 v v v o
KV<Z,'IU) = GVWF<§V - [5] + 2, 1, 5 - [5] + 1,22w2> (12)
where a, = F(%+2)F(%W[%H2). Notice that when v = 2n,n € N it holds
v T TEu+a)(5—[4]+1) ’

3
F<§V - [g] +2, 1 g - [g] + 1;2'2@2) = (1 — z0wp) "2

Given the weighted Bergman spaces A2 (H) it is a natural question to investigate the LP mapping
properties of the associated weighted Bergman projection, that is, the operator

P, f(z1,2) := fH J(wy, w2) Ky ((wr, wa), (21, 22)) dp, (w),

where dyu, is the measure defined in (7). We recall that P, is the orthogonal projection of L2 (H)
onto A2(H), where L2(H) is the space of square-integrable functions with respect to the measure
dy,.

We now prove the necessary part of Theorem [I1
Necessary condition of Theorem [l Let us consider the function f(z1,22) = 2;”5]
to LY for any p € (1,00). From the Laurent series of the kernel (1) we deduce

Puf<zla 22) = duzgl_[u/z]

for some positive constant d,,. Now,

HPl/f”ig A JH |z2|u*(1+[u/21)p(1 /21 = |2f?) dz

1,1
~ J J rpuf(1+[u/2])p+3(1 _ ,r,2)1/(1 _ p2)1/ drdp,
and this last integral diverges if p > 1f[u o = 2+ % Therefore, P, cannot extend to a

bounded operator if p > 2 + % By a standard duality argument we also obtain that P,

v—2[v/2]+2
2 - v—|v/2]+3 °

which belongs

cannot be bounded if 1 < p < Indeed, if 1/p + 1/p’ = 1, since P, is self-adjoint, we

get

1Pofll = sup [(Bofig)| = sap [{fiPug)| < sup [Poglrzlfl -
Y lglp=1 lgllzp,=1 lgllLp=1
Therefore, the LY-boundedness of P, would imply the Lgl-boundedness. Hence, P, cannot be
bounded if p ¢ <2 - 2[[ ]]:32,2 + ”ﬁﬁjf) Using the identity |§] = [§] — 1 it is easy to see that
2

this condition coincides with the conditions (i), (ii) and (7ii) as v varies. The proof is concluded. O
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The sufficient condition in Theorem [ will be proved by means of the classical Schur’s lemma,
which we now recall. For a proof of this result we refer the reader, for instance, to [Gral4bl
Appendix A].

Lemma 1.6 (Schur’s lemma). Let (X,dpx),(Y,duy) be two o-finite measure spaces. Let T the
integral operator given by

ijy y) duy (),

where K is a measurable positive kernel on X x Y. Let 1 < p,p’ < +o0 be such that 1/p+1/p’ = 1.
Suppose there exist positive functions 1 : Y — (0,40), ¢ : X — (0,+00) such that

(i) Sy K (z,9)0" dpy(y) < Co()?;
(i) §x K (2,9)@" (z) dpx () < CP(y)P.
Then, T : LP(Y) — LP(X) is bounded.

We also need the following lemmas. The first two lemmas are elementary estimates of which we
omit the proofs.

Lemma 1.7. Let 7 € (0,+) and let p€ (0,1). Then,
f Tl e p)T
o 1= pedir @ p) -
Lemma 1.8. Lety> —1, § € (0,4) and z € D. Then,

(L~ Jw?) 25
fmwdwﬂl—lﬂ) -

Lemma 1.9. Let v > —1 and let z € D. Then,
3 v v v
D = . < _ = (w+2)
’F(zu [21+2,1,2 [2]+1,2>’~\1 z| )

Proof. The proof follows from elementary properties of the Hypergeometric function. From [Leb72]
Chapter 9.5] we get

L A S L )
< |1 o Z|f(u+2)

where the last bound follows from estimates of |F(«, 8;7;2)| when Re(y — a — 8) > 0 ([Leb72l
Chapter 9.3]). O

Remark 1.10. From the previous lemma and equation ([I2]) we deduce that the kernel K, satisfies
the main estimate (2)) for any v > —1.

We are now ready to prove the sufficient condition in Theorem [II

Sufficient condition of Theorem[1. We want to apply Schur’s lemma to the positive kernel |K,|
since the boundedness of the operator with such kernel would imply the boundedness of P,. We
choose

flz,22) = (1= |21/2*) (1 — |22]?) P20 ™
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as test function, where «, 3,7y are positive real parameters to be chosen later. Let (z,w) =
((z1,22), (w1,w2)). Then, from Lemma and the change of variables (w;/wa,ws) — (21, 22)
we get

f K (2 w)| £ (w1, w2) day (w f K (2, 0)] w77 (1 = |y fua[2)" =P (1 = Jwa[2)"~PPduo

- |Z2|1[%]f g 1511 (1 — [y /wa?)" 7O (1 — Jwp )PP
~ |1 _ 2%; |2+u‘1 _ 22w2‘2+u (13)

< |Z2|717[%] j ( |w |2)u—ap dion j |w2|u “/erl( _ |w2|2)u—ﬁp dw,
~ D |1_— 21|2+y D* |1—z2E2|2+” .
Now, we require v — ap > —1 and we apply Lemma [[.8 with v = v — ap and § = ap to the first
integral obtaining
(1= gy )
<J]D> |1 — @ 2L dwi ) < (1= |z1/22[)"*

For the second integral, applying Lemmall.7with 7 = 1+ and requiring the conditions v—8p > —1
and v — [v/2] —yp +2 > —1, we have

_ 2\v—0 1 o -3
j |w2|l/ % ’*/PJrl (1 |w2| )V pdw2 sj Vf[%‘lfﬁ/p+2 (1 p)V P dp

p

|1 — 29> 0 (1 = [22]p)t*
+o0 1
I(k+1+ V) k k+v—[%]—yp+2 v—pp
_Zry+1 ]Hl)l@lfop 2 (L—p)"""Pdp
+00
:Zr(k+1+u) (k+v—[5]—v+ 3 5p+1)| L
= P+ DIk + DI +2v = [§] —9p— Bp +4)
o0 P(k + Bp) |Z2|k
= Tk+1)

S (1= [ze)™

In conclusion, from (I3)) we get
f K (2, )| P (wr, wa) dp (w) < (1= |21/22]?) P (L= |22]*) 7P|z 77
H

if the conditions
v—ap>—1
- ~1
v 539 > (14)
v—[5]—mw+2> -1
1+ [5] =<0
are satisfied. We obtain the same estimate using the same test function f and p’ instead of p.
Therefore, we can apply Schur’s lemma if the conditions (I4]) are satisfied simultaneously for p and
p’. This happens if
ae(0,(w+1)/p)n(0,(v+1)/p),  Be(0,(v+1)/p) n(0,v+1/p'),

ve ((L+[v/2))/p, B +v—[v/2])/p) o (L +[v/2D)/0), 3 + v —[v/2])/r).
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The parameters a and 8 always vary in a non-trivial range, whereas, in order to have a non-trivial
[51+2 o  vo2ly]+2
Z1+37 1+[5]

range for v, we need that p € (2 - ';;2[ ) and the conclusion follows.

O

Remark 1.11. Let @ : D x D* — H be the biholomorphism (w;,wsy) — (wiwa,ws). We observe
that the pull-back of A2(H) via ®, which we denote by A2(D x D*), is the space of holomorphic
functions on D x D* endowed with the norm

1£12 @y = € f )Pl (1 = ) (L= ) < oo,
X

(v+1)I(2v+3)
2T+ (5+2)
isometry from A2(H) onto A%(DxD*). We point out that for v € (-1, 0] the functions in A%(Dx D*)
are actually holomorphic on D x D.

If p # 2 we consider the weighted space AD(D x D*, |wa|?), the space of holomorphic functions
on D x D* with norm

HfHAE(IDJx]D)*,\wQP) =Cy J;D - ‘f(w17w2)|p‘w2‘u+2(1 — |w1‘2)u(1 — |w2|2)1/ dw < 400.
x

where ¢, = Clearly, the map f +— @' - f o ®, where ®' = Jacc(®), is a surjective

Then, f — f o ® is a surjective isometry from AL(H) onto AD(D x D*, |wo|?).

2. A HARDY SPACE ON THE HARTOGS TRIANGLE

In this section we introduce a candidate Hardy space on the Hartogs triangle. If Q = {z: p(z) <
0} is a smoothly bounded domain in C", the Hardy space H?(Q) is defined as

H*(Q) = {f € Hol(Q) :supf |f|?do. < 0},
e>0 JoQ.

where Q. = {z : p(z) < —¢} and do. is the induced surface measure on 052, the topological
boundary of Q.. Then, H?(Q)) can be identified with a closed subspace of L?(0Q,do) that we
denote by H?(0Q2). The Szegd projection is the orthogonal projection

Sq : L?(09Q, do) — H?*(09);

see [SteT2]. Such a definition of Hardy space is not suitable for the Hartogs triangle. Having in
mind (@), we introduce in this section a Hardy space H?(H) as limit of the weighted Bergman
spaces A2(H) as follows. From (I2)) we get

1
2oW9 — 21@1)(1 — 22@2) '

K_l((zl,zg), (wl,wg)) = Vlin—ll KV((Zl,Zg), (wl,wg)) = (

We want H?(H) to be the reproducing kernel Hilbert space associated to the kernel K_j.
For (s,t) € (0,1) x (0,1) we set

H,, = {<zl,22) €C2: |z|/s < |22| < t} CH
and we define the Hardy space H?(H) as

H%*(H) = { f € Hol(H) : sup !

2 |f1? dos < +OO},
(5,6)e(0,1)x (0,1) *T° Jdy (Hst)
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where dog; denotes the induced surface measure on dy(Hs;), the distinguished boundary of Hy,. We
endow H?(H) with the norm
2 1 2 o 27T 6 Y\|2 42
1 fll52 = sup — |f|“doss = sup f(ste™ te")|*st*dbdr.
(s:)e(0,1)x(0,1) 47 Ja, (Br.) (s,t)€(0,1)x(0,1) 47T

Remark 2.1. Unlike the classical setting, we point out that a boundary point, the origin, belongs
to all the approximating domains Hy;. Also, our definition of H?(H) is based on the approximating
domain Hy;, which depends on two parameters s,t, but we could have also used the approximating
domain H; defined as

H, = {<zl,22) e C2: ||/t < |z < t}.
The resulting space would be different from the one we considered. Hence, several different ap-
proaches are available to define a Hardy space on H. A further investigation on this matter would
be surely interesting. At the moment our goal is to characterize a reproducing kernel Hilbert space
with a prescribed kernel that fits in a one-parameter family of reproducing kernels. As we now see,
our space H?(H) has this property.
Proposition 2.2. The Hardy space H?(H) is a reproducing kernel Hilbert space with reproducing

kernel
1

(2’2@2 — lel)(l — 2’2@2)

Proof. We first notice that z{ 2% € H?(H) if and only if j = 0 and j + k + 1 > 0. In fact,

2 27
J j |ste® [2|te? |* st2 ddry

K_1((21, 22), (w1, w2)) =

|53 = sup
I oo 47
_ sup |S2j+l‘|t2(]+k+l)‘ - 1.
(s,t)€(0,1)x(0,1)
Therefore, setting I = {(j,k) : j = 0Aj+k+1 >0}, {z{zé“}(j7k)el is an orthonormal basis for
H?(H) . Hence, any function f € H?(H) is of the form

+oo 400

f(z1,22) Z Z a]kz1z2 (15)
j=0k=—j5—1

and
+oO  +o0
2 2

1 ey =D D) lal

j=0k=—j—1

For any z = (21, 22) € H it holds

+0 40 +0 4o +o0 4o
21, 2k
A=Y N wdd< (X X ) (X 2 1P ) < el fle
7=0j=—k—1 7=0j=—k—1 7=0j=—k—1
where ¢, is a positive constant depending on the point z. It follows that point-evaluations are
bounded functionals on H?(H), that is, H?(H) is a reproducing kernel Hilbert space with kernel
given by
+0 40 1

k
= =K_
JZ;Jk—Z; 1 () Z2w2) (202 — 211 )(1 — 2002) ((z1,22), (w1, w2)
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as we wished to show.
O

Proposition 2.3. Let f be in H*(H). Then, f € A2 for all v > —1 and | f||32 = lim,—_1 | f]%.-

Proof. For any v > —1 we have

1£1%2 = C22 f £ (215 22)Plaal” (1 = |21/22[*)" (1 = [22[*)” d=

¢ 22] |f(z129, 20) 22T (1 — |21 ?)" (1 — |22)*)" d
DxD*

2m 2w
f f f f f(ste® te)?(1 — s?)7 (1 — t2) st 3 dfdrydsdt
LM+ DI+ DIy + 1)
T+ HT(Ev +2) '
Taking the limits on both sides and recalling () we obtain that
7B > tim 712 (16)

Viceversa, given v € (—1,0) and € > 0 there exist 41,2 > 0 such that

1£%e = Cu2% J |f (21, 22) Pl2af (1 = [21/22*)" (1 = | 22)” dz

H
M\‘:

< m22C, | fl 7

—cﬁf (12 22)Plea (1 — [P (1 — |z d

2w 27
J j J j f(ste® te)2(1 — s2)7 (1 — t2) st 3 dOdrydsdt
61 Jo2

T 22C (1 52)u+1< 52)u+1
e 512 ) 1<V+1) -

Taking the limit as v — —1 we get
T (71 = (11 o)

Since € is arbitrary and (I8]) holds, we get that | f||3, lim,—_1 | f[%. and the conclusion follows. [

Mlt

=

Notice that to any function f € H2(H) we can associate a boundary value function f € L2(d,(H))
defined as

o0+
e e = Z Z a;re e, (17)
j=0k=—j—1

The function f is a boundary value function for f since, setting
fst(ewv eiﬁ{) = f(Stew’teiﬁ{)a

we have
+00 400

lim Hf_ fStH%2(db(H)) hm Z Z |a]k| Sjtj+k)2 -0

(s,t)—(1,1) LS LD e S
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by the dominated convergence theorem. Viceversa, any function g € L?(dy(H))) of the form (7))
automatically extends to a function in H?(H). Therefore, we can identify the space H?(H) with
the closed space H?(dy(H)) < L*(dy(H)) defined as

+o0  +o0
H?(dy(H)) := { FE e =" > ape?e™ | {aj}]e < +oo}.
j=0k=—j—1
From now on, we call Hardy space both the spaces H?(H) and H?((d,(H))) and we denote by f
both the function in H?(H) and its boundary value in H?(dy(H)). This should cause no confusion
and it will be clear from the context if we are working inside the domain H or on the distinguished
boundary dy(H). Wherever needed we will be more specific about notation and terminology.

We now consider the Szeg6 projection associated to our Hardy space, that is, the Hilbert space
projection operator S : L?(dy(H)) — H?(dy(H)) defined by

+00 400
f(eze’em) _ Z ajkezyeezk'y . Sf(ew,e”) — Z Z ajkeljeezk'y‘
J,keZ j=0k=—j—-1

If suitable interpreted, the Szegd projection admits also the integral representation

£S5 = 1 [ FE MR ((G11 G, e) doiy
Am= Ja, (en)
where ((1,(2) is any point in d,(H). However, for our purposes it is enough to consider the Fourier
series representation of S f and we no longer discuss its integral representation.

Since dp(H) can be identified with the 2-dimensional torus, from the classical theory of Fourier
series on the torus the boundedness of S will follow from the boundedness of the Fourier multiplier
operator associated to the multiplier

. 1+sgn(j) 1+sgn(j+k+1)

We recall that a Fourier multiplier operator on the 2-dimensional torus is an operator of the form

f > m k), k)e e

(J:k)eZ?

(18)

~

where f(j, k) denotes the (j, k)-Fourier coefficient of the function f and {m(j, k)}; x)ez> is a bounded
sequence. We now prove Theorem 21

Proof of Theorem[2. The proof follows from classical results in harmonic analysis. Indeed, let us
consider on L?(R?) the Fourier multiplier operator associated to the multiplier

(e n) = 1 ~|—52gn(£) 1 ~|—sgn(§2~|—77~|— 1)7

that is, the operator T'f := F~1(mF f), where F and F~! denote the Fourier transform on R? and
its inverse respectively. This operator is well-defined on the class of smooth compactly supported
functions and extends to a bounded operator T' : LP(R?) — LP(R?) for any p € (1,+w) by
standard results on the Hilbert transform. By transference, see [Gralda], we obtain that the
Fourier multiplier operator associated to m/|zz, that is, the Fourier multiplier operators associated
to the multiplier defined in (I§]), extends to a bounded operator LP(dD x dD) — LP(éD x D) for
any p € (1,+00). Therefore, the Szeg6 projection extends to a bounded operator S : LP(dy(H)) —
LP(dy(H)) for any p € (1,+00) as we wished to show. O
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We conclude the section observing that there exists a surjective isometry from H?(H) and H?(D x
D), the Hardy space on the bidisc. This latter space can be described as the space of functions

feHol(D x D), f(21,22) = 2; k>0 ajkz{zé such that

I M+

ajk|2 < 400,

+
| £y = Z

Proposition 2.4. Let ® : D x D* — H be the biholomorphic map (w1, wy) — (wiwse, ws) and set
@' = Jacc(P). Then, the map

fod fod
is a surjective isometry from H?(H) onto H?(D x D).

Proof. Given f e H?(H), from (IF) we get

+00  +00 +00 +00

/ i kti+l ~ gk

Q- f o ®(wy,we) Z Z ajpwiws 7 Z Z ajpwiws,
j=0k=—j—1 j=0k=0

where @1, = a;(—j—1). Hence, @ - f o ® € Hol(D x D) and

+00 00 1o +©
19 f o @ty = 23 2 1l =25 X0 gl = /)
j=0k=0 J=0k=—j—-1

Therefore, the map f +— @ - f o ® is an isometry. The map is clearly surjective and the inverse is
given by (@71 - fo®~1 O

Remark 2.5. We point out that the surjective isometry f +— @' - f o ® does not coincide with
the expected result. In fact, let Q1,09 < C be bounded domains with C* boundaries and let
¢ : Q1 — Qs be a biholomorphic mappings. Then, then map f +— /¢’ - f o ¢ is an isometric
isomorphism between the Hardy spaces H%(Q;) and H?(Q) ([Bel92, Chapter 12]). In order to
prove this result one has to prove that /¢’ is a well-defined holomorphic function on ;. Moreover,
since €)1 and €29 are smooth bounded domains, there is no ambiguity in defining the Hardy spaces
on these domains. In our setting we would expect the isomorphism to be of the form f — v/®'- fo®d
where ®, ®’ are defined as in Proposition 24l However, this is not the case. The culprit may be the
fact that there is no standard definition for the Hardy space on H, whereas there is for the Hardy
space on D x . With our definition of H?(H) the expected isomorphism fails. Moreover, notice
that (®71)(21,22) = 2, ', thus the factor 4/(®~1)’ in the expected isomorphism between H?(H)
and H%(D x D) is not even well-defined.

3. WEIGHTED DIRICHLET AND DIRICHLET SPACES

In this section we enlarge our family of function spaces defining some weighted Dirichlet spaces
D,, for v € (—2,—1) and a candidate Dirichlet space D for v = —2.
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Given f(z1,22) = ;ro% R a]kz1z2 € Hol(H), we define the functions
1(21, 22) Z Z Jjg+k a]kzlzéC 1;
j=1k#—j
fa(z1,22) i= >, kagpzh!;
keZ\{O}

f3(21, 22) 1= Z]a e

and define the operator

Tf(21,22) i= |22](1 — |21/22*) (1 — |22|*) f (21, 22). (19)

Then, we prove the following result. An analogous result in the setting of the polydisc was
proved in [Zhu88, Theorem BJ.

Theorem 3.1. Let v > —1. A function f belongs to A2(H) if and only if Tf;,j = 1,2,3, belong
to L2 (H).

Proof. We first recall (@) and (I0), that is, a function f € A2(H) if and only if

J k
Zl, 22 Z Z ajkzle

7=0Fk>— j—5—2

and
Hf||2 _ (v+DI(v + l/+3 J'_ZOO Z F(j+1)r(j+k+%+2) |a-k|2
Az : .
7 P(‘ J=0k>—j—%—2 FG+v+2)L(G+k+ %V +3) J
Then,
25 2
T, = 2% || ST S 5+ By [ = e — el

j=lk#—j

_ 471' 220 Z Z ] _I_k, |a]k|2f f 2j+1 2k+u+1( _ (T‘/p)2)2+u(1 _p2)2+1/ drd,o

]lk?ﬁ]

= 72220, Z Z (j+Fk) |a]/.c|2f1

1
T‘j(l o 7,)24—1/ drf p]+k+§+1(1 . p)2+u dp
J=1k#—j 0 0

< 4+
if and only if v > =3 and j + £+ 5 + 1 > —1. In particular,
. FrG+1)TG+k+5+2)
T ~ 2(j + k) 2 a;xl*. 20
[ f1HL2 321 Z] 370 ) F(j~|—1/~|—4)r(j+k‘~l—%u+5)| ikl (20)

k>—j—5—2
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Similarly, for T fs we get

ITfal2; = 47225C, S K Jagyl? f j FPPRHEL L () p) 2P (L — )P drdp
keZ\ {0}

1 1
_ 7T20,, Z k2|a0k|2j (1 _ T‘)2+V drf pk+%+1(1 . p)2+zx dp
keZ)\{0} 0 0

< 400

if and only if v > =3 and k + § + 1 > —1. In particular,

I'k+%5+42)
ITfl72 ~ g |aok|*- (21)
L keZZ\:{O} T(k+3v+5)
k>—%-2

At last,

HTf?,HLz = 47T222C Z] ‘CL]( —) ‘2f f 2j+1 —2]+I/+1( _ (T/p)2)2+l/(1 —p2)2+Vd7’d,0
j=1

1
- 7T222C ZJ \a]( —J) ‘2f T]( )2+VdTL P§+1(1 _P)2+Vdp
7j=1
< +0

if and only if » > —3 and 4§ + 2 > —1. Hence,

+1)
T 52 2 _TU NG 99
IT 375 ~ Zl R 22)
The conclusion follows comparing ([@) and ([I0) with 20),(2I) and 22). O

From the previous proposition we deduce that we can we can endow A2 with the equivalent norm

1 flaz = laool + 1T f1]z2 + T f2| 2 + I T f3] 22

Moreover, we can use this norm to define some new spaces for —2 < v < —1, namely, we define the
weighted Dirichlet space D, as

D, = {f € Hol(H) : | f]« < +o0},

where
[ £l := lacol + | T frllz + 1T fallez + 1T f3] Lz (23)
We have the following result.
Theorem 3.2. There exists an inner product (-,-)p, —on D, such that (D,, | -|p,) is a reproducing
kernel Hilbert space with kernel
(2’2@2)71 3 v _
KV(Z,U)) = CVWF<§V + 2, 1, 5 + 1,2’2’[1)2).

(5+1)
where ¢, = ~2—=.
v (5v+2)
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Proof. From ([I9) and ([23]) we get that any function f € D, is of the form
+o0 ‘
flaz) =D D0 apalss.
J=0k>—j—5-2

Moreover, notice that the formula for the A2(H) norm in terms of the Laurent series coefficients,
that is, formula ([0l), is meaningful for —2 < v < —1 as well. Therefore, we endow D, with the
inner product

(g (v+ (v + DI (3v + 3) +Z°:O PG+ +k+5%+2) —
g » = - - a;ipbir
D I'(¥+2) j:0k>_j_%_2f(j—I—I/—I—Z)I‘(j+k‘—l—%l/+3) I

where
+00 )
g(z1,29) := Z bjkz{zg.
J=0k>—j—5-2

From the properties of the Gamma function we deduce that the norm induced by this inner product
is equivalent to the norm (23]). By means of the Cauchy-Schwartz inequality, similarly to the proof
of Proposition [[.4] we obtain that D, is a reproducing kernel Hilbert space and the reproducing
kernel K, is given by

Y41 wy)
(2 ) (22 2 F(%,/_;_Q,l; g + 1,,22@2).

K, ((z1,22), (wi,ws)) = 2

Gv+2) (- 287

2oW2

as we wished to show. O

Finally we define our candidate Dirichlet space D, which corresponds to the case v = —2, as
D= {feHol(H): |f[; < +w}

where
1715 = laool + ITfillz2, + T ol + T fal g2, (24)
We recall that the space L?,(H) is endowed with the norm (), that is,

712, > [ 1 Gr)Plaal (0 = foaf2) 20 = )
and we observe that the measure
(1 —J21/22/*) 72 (1 — |22*) P|22| 2 dz = K(z,2) dz

is invariant for Aut(H). The automorphisms of the Hartogs triangle are completely characterized
and are described in the following proposition. We refer the reader to [Lan89, [CX01] [Kod16bl

Kod16al.
Proposition 3.3. A function ¥ € Aut(H) if and only if U(z1,29) = (21, Z2) where
A=ae(2), peAu(D)
29
Zo = C29, ceC,lc =1.

The following proposition holds.
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Proposition 3.4. Let dr be the measure

dr := K(z,2)dz = |22‘_2(1 - |21/Z2|2)_2(1 - |Z2‘2)_2 dz.

fodT—fH(fo\I/)dT

Proof of Proposition [3.4] It suffices to show that
[K(0(2), ©(2))|[9'(2)* dz = K(2,2)dz
for all ¥ € Aut(H). This equality holds if and only if

<1 — ‘@(21/22)‘)72’@/(21/2’2)’2d2’ = (1 — ‘21/22‘)72 dz

for all ¢ € Aut(D). The conclusion now follows from the invariance of the measure (1 — |n|?)~2dn
with respect to ¢ on the unit disc. O

Then,

for all ¥ e Aut(H).

From (I9) and (24]) we get that any function f € D is of the form

21,22 Z Z ajkzle

Jj=0k=—j
We have the following result.
Theorem 3.5. There exists an inner product (-,-,)p on D such that (D, | - |p) is a a reproducing
kernel Hilbert space with kernel
Kp((z1, 22), (w1, ws)) = 1_ 10g< _1 — )log< ! — >

21W1 1 — (z1w1)/(22W2) 1 — 29wy
Proof. We endow D with the inner product

+o0 +00

(f.9)p =D D) G+ D +k+ Dajrbj.
J=0k=—j

From the property of the Gamma function we get that the norm induced by this inner product
is equivalent to the norm | - [;. Similarly to the proof of Proposition [[L4] we prove that D is a
reproducing kernel Hilbert space by means of the Cauchy—Schwartz inequality and the reproducing
kernel of D with respect to (-,-)p is given by

+00 400

k
(z101)? (z2W2)

Kp((z1, 22), (w1, w

ol () = 33 3, G

= zllwl tog (= (zlwi)/(zm)) tog (= im)

as we wished to show. O
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Finally, we prove that there exists a surjective isometry from D onto D(D?), the Dirichlet
space on the bidisc. Following [AMPSIS]|, we recall that a holomorphic function f(wq,ws) =

+OO Jjo% a]kw{ub is in D(]D2) if and only if

+00 +00

Hf”%(]l)ﬂ Z Z lajk?(G + 1) (k + 1) < +oo.

Proof of Theorem[3 Let f(z1,22) = Z;;O% Z;io,j ajkz{zg € D and consider the map f — f := fo®
where ® (w1, wy) = (wyws, ws) is the biholomorphic map ® : D x D* — H, (wy,ws) — (wiws, ws).
Then,

+00 +0 +00 +00 +00 +00
’LU1,ZU2 Z Z a]k ’LU1U)2 Z Z i(k—7) w1w2 = Z Z a]kw1w2,
J=0k=—j j=0k= 7=0k=0
where we set djx = a;(;—;—1). Therefore, fe Hol(D?) and
N +00 +00
1 1mey = D) D a6 + D)k +1)
j=0k=0
+00 +00
= > D ajupPG + Dk +1)
j=0k=0
+00 +0
= > > el + DG +E+1)
j=0k=—j
= I£1%
as we wished to show. The map f — f is clearly surjective and the inverse map is given by
g+ go® ! where g € D(D?). O

4. CONCLUDING REMARKS

We think that the family of holomorphic functions spaces we introduced is interesting and worth
investigating. The results we prove in this paper are just a first step for this investigation and the
techniques we use are classical and not excessively complicated. The major contribution of the
paper is the very definition of the family of spaces itself. A few comments are needed.

Our proofs heavily rely on the Hilbert space setting and on the Laurent expansion of the functions
involved. If we want to develop our spaces in a LP setting, p # 2, we need a different approach,
especially for the definition of the weighted Dirichlet and Dirichlet spaces. Let v € (—2,—1) and
consider the weighted Dirichlet space on the disc D, (D), that is, the space of holomorphic functions
on D endowed with the norm

12 FG+1)I'v+2),
1712 = 3 a2’| = . a2
v j; 7l ];) rGj+v+2) 7

Then, D, (D) is a reproducing kernel Hilbert space with kernel K, (z,w) = (1—2w)"*~2. It is easily
seen that ||f|, < +oo if and only if

fD (1= RYRFPA — [22) dz < +o0,
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where R is the radial derivative, that is, Rf(z) = ;;Oﬁ jajzj . Therefore, we would like to define
the spaces D, (H) in terms of a natural differential operator on H which plays the role of the
radial derivative in the unit disc. This approach would be better suited for an investigation in a
non-Hilbert setting.

Another point worth of further investigation is the definition of the Hardy space H2(H). As
we have seen, our Hardy space arise in a very natural way, but other approaches are available.
Moreover, our space H?(H) does not see the pathological geometry of the Hartogs triangle. It
would be interesting to define a different, but still natural, Hardy space which keeps track of the
origin and compare it with our space.

Finally, it would be interesting to use our approach to define some new function spaces on
generalizations of the Hartogs triangle, such as, for instance, the fat or thin Hartogs triangles.

Acknowledgments. We warmly thank the anonymous referees for useful comments and remarks
that improved the presentation of this paper.
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