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Abstract: Photocatalytic processes are being studied extensively as potential advanced wastewater
treatments for the removal of pharmaceuticals, pesticides and other recalcitrant micropollutants
from the effluents of conventional wastewater treatment plants (WWTPs). Oxytetracycline (OTC)
is a widespread antibiotic which is frequently detected in surface water bodies as a recalcitrant
and persistent micropollutant. This review provides an update on advances in heterogeneous
photocatalysis for the degradation of OTC in water under UV light, sunlight and visible-light
irradiation. Photocatalysts based on pure semiconducting oxides are rarely used, due to the problem
of rapid recombination of electron–hole pairs. To overcome this issue, a good strategy could be
the coupling of two different semiconducting compounds with different conduction and valence
bands. Several methods are described to enhance the performances of catalysts, such as doping of
the oxide with metal and/or non-metal elements, surface functionalization, composites and nano-
heterojunction. Furthermore, a discussion on non-oxidic photocatalysts is briefly provided, focusing
on the application of graphene-based nanocomposites for the effective treatment of OTC.

Keywords: oxytetracycline; photocatalytic wastewater treatment; advanced oxidation processes

1. Introduction

The problem of surface water pollution is of increasing concern worldwide, due to the
huge amount of chemicals (drugs, pesticides, cosmetics, food additives, plastics additives,
etc.) present in wastewater as a consequence of human activities. Contaminants may come
from a wide variety of point or non-point sources and be more or less dangerous depending
on their physiological effects on humans and animals, their abundance and their persistence
in the environment. In recent years, the problem of micropollutants, often constituted by
substances which are only partially removed by treatment plants and thus persist in traces
in water bodies, has raised increasing global concern and scientific interest and has been
challenged by a variety of advanced decontamination techniques [1]. Among persistent
micropollutants, an important role is attributed to residues of drugs (and their metabolites),
coming from human consumption as well as from agricultural activities and livestock farms.
Some of the most utilized drugs, such as antibiotics, tend to persist in water and be the
source of potential damage to humans and the environment. The occurrence of antibiotics
in the environment may have an adverse impact on the ecosystem and human health
through the development of antibiotic-resistant bacteria and pathogens [2]. Antibiotics
may also negatively affect soil microbial activity, enzyme activity, plant growth [3,4] and
aquatic organisms [5].

One of the main sources of micropollutants in Europe is the discharge from municipal
wastewater plants. About the same amount of the load comes from inputs through drainage
from agricultural land treated with pesticides and about 20% from inputs from industrial
activities. While in the European Union no regulation on upgrading of WWTPs to reduce
micropollutant loads in surface water has been approved yet, Switzerland is the only
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country to have a national strategy against micropollutants in water, which will start on
1 January 2016. The technologies that have been selected are mainly based on activated
carbon (AC) treatment technologies and/or ozonation. For example, to reduce the release of
micropollutants into the aquatic environment, two large-scale pilot treatments were tested
in parallel for over more than one year [6]. Feed water was the effluent of the municipal
WWTP of Lausanne, Switzerland. The treatments were: (i) oxidation by ozone followed
by sand filtration (SF) and (ii) powdered activated carbon (PAC) adsorption followed by
either ultrafiltration or sand filtration. Micropollutants were removed on average at a rate
of over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg L−1 or
a PAC dose between 10 and 20 mg L−1.

Depending on the chemical properties of the substances, either ozone or PAC per-
formed better. Dissociated moieties have a higher electron density and thus are more
reactive towards ozone [7]. PAC efficiency is improved for hydrophobic or positively
charged compounds [6].

A treatment with granular activated carbon (GAC) filtration has been recently consid-
ered as a potential alternative and is already applied to a full-scale WWTP in Germany [8].
The efficiency of GAC filtration in removing micropollutants depends on the compound
and the frequency of GAC regeneration/replacement [9].

Although ozonation is almost always the cheapest solution, for drinking water re-
sources it is not the best choice [10]. Toxic oxidation byproducts can form during ozonation
of wastewater, such as carcinogenic bromate, nitrosamines or formaldehyde [11]. PAC
ultrafiltration treatment is considered to be the most suitable option, enabling good removal
of most micropollutants and macropollutants without forming hazardous byproducts, the
strongest decrease in toxicity and a total disinfection of the effluent [6]. However, active
carbon must be removed from the purified water to minimize the losses of AC in the
effluent. PAC is typically a single-use product, and at the end of life is burnt, while GAC
is thermally regenerated and reused [12]. Energy consumption and the CO2 footprint are
greater than ozone.

For large-scale municipal applications, current photocatalytic water treatment systems
are less attractive because they are more time-consuming and have higher costs than other
existing advanced oxidation techniques such as UV/H2O2, O3/H2O2 and UV/O3 technolo-
gies [13,14]. However, for water treatment in select niche applications, photocatalysis still
retains substantive and unique benefits [15]. For example, photocatalysis enables not only
oxidation but also reduction, presenting relatively untapped opportunities to reductively
remove oxyanions, such as nitrate [16], chromate [17] and redox-active metal ions, such
as Ag+ [18]. The ability to reduce oxygen to form H2O2 by select photocatalysts, such as
g-C3N4, may also become a useful approach to produce AOP precursors on site [15,19].

Figure 1 shows the publication trend in the scientific literature found using “pho-
tocatal* + water treatment + antibiotic” searching terms. The trend shows an increasing
interest in photocatalytic wastewater treatment, but generally the studies are not about real
wastewater [20]. This feature limits further development of application of photocatalysis
for real wastewater treatment. We therefore considered a survey of these publications to be
of interest, focusing on one specific pollutant, namely oxytetracycline (OTC), a widespread
antibiotic, commonly used for both humans and animals and therefore frequently used as
model pollutant in the assessment of the effectiveness of treatments. OTC is a well-known
persistent organic pollutant (POP), and a number of different treatments have been pro-
posed for its removal from wastewater, ranging from classical methods, such as adsorption
or chemical oxidation, to advanced decontamination methods, such as photocatalysis.
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Figure 1. Publications trend: Web of Science results for the number of yearly publications on
photocatalytic water treatment of antibiotics from 2010 to 2021.

1.1. Method

Due to the huge number of recent papers on the subject, we decided to focus on
photocatalytic methods of removal and to only take into consideration those papers meeting
criteria that would ensure reproducibility of the results. We chose to take into consideration
only those papers where all the following data are clearly stated: (i) OTC concentration;
(ii) catalyst concentration (where applicable); (iii) required time; (iv) characteristics of the
light source; and (v) percentage of removed pollutant.

1.2. Occurrence of Oxytetracycline in Wastewater

The worldwide market of antibiotics and antimicrobials was estimated at USD 4.7 billion in
2021, and the tetracycline segment accounts for the largest market share [21]; for instance, it
was reported that approximately 248,000 tons of antibiotics are manufactured in China each
year and that approximately 52% of them are used as veterinary antibiotics. Approximately
40–90% of the antibiotics used in humans and animals are excreted in feces or urine, either in
their active form or as glycoconjugates, readily transformed back into the parent form [22,23].
In one study, 17 antibiotics were detected in 50 samples of livestock manure and compost
in 8 provinces of China [24], and among them the concentration of oxytetracycline was
the highest, reaching 416.8 µg kg−1. Consequently, due to leakage or to the use of animal
manure as fertilizer, large amounts of residual antibiotics have been detected in soil and
groundwater. In Europe, while human use of antibiotics is increasing, their use as growth
promoters in animal husbandry is decreasing due to regulations, with particular regard to
tetracyclines. Between 2010 and 2013, a 7.9% decline in antibiotics sales used in veterinary
medicine was observed in 23 European countries. A north–south gradient of veterinary
antibiotics use is observed, with the lowest consumption in northern Europe (85 mg/PCU
on average in 16 countries, where PCU, Population-Corrected Units, is defined as number
of livestock animals × estimated weight at treatment) and the highest consumption in
southern Europe (260 mg/PCU in Spain, Italy and Cyprus). The group of tetracycline
antibiotics accounts for approximately 37% of consumption in the 26 EU/EEA countries
considered [25]. In any case, their occurrence in groundwater is not detected at alarming
levels, as can be seen, e.g., in studies on wastewaters in Luxembourg [26] and Slovakia [27].

We chose to focus our attention on OTC (Figure 2), a broad-spectrum antibiotic belong-
ing to the class of tetracyclines, patented in 1949 [28], which has been widely used for the



Molecules 2022, 27, 2743 4 of 27

treatment of infections caused by strains of Gram-negative and/or Gram-positive bacteria
in both humans and animals. Presently, it is mostly used for the treatment of acne and of
infections caused by Chlamydia and Mycoplasma pathogens.
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In addition, it is used in the treatment of livestock, both as a growth promoter factor
and for the prevention of disease in cattle, poultry and fish. It is also used to control
bacterial diseases of bees and tree fruits [28].

To date, oxytetracycline is widely found in natural water systems at about 10–100 ng L−1

levels [29–31].
The occurrence of OTC in water may derive from several sources:
Effluents of sewage treatment plants: Tetracyclines are among the most frequently

detected antibiotics in wastewater. Here, OTC, which mostly comes from human consump-
tion, appears to be mostly adsorbed in the sludge [32], since tetracyclines have complexing
properties and can easily bind to calcium and similar ions, thus forming stable complexes,
which can adhere to suspended matter or sewage sludge. In addition, standard degradation
techniques sometimes fail to completely mineralize OTC in water treatment plants [33].

Cattle manure dispersed in the fields: Since only part of the administered drug is
metabolized in the body, the rest being excreted in its active form [23]; a non-negligible
amount can be found in manure. Sorption of OTC to manure is rather high, and it is
believed to be influenced by ionic binding to divalent metal ions such as Mg2+ and Ca2+ as
well as to other charged compounds in the matrix. However, the binding of oxytetracycline
to soil is stronger than its binding to manure, most likely due to the strong metal complexes
formed between soil, metal ions and OTC [32].

Aquaculture farms: Here, antibiotics are administered either in the feed or by addition
to the water. Most of the non-metabolized drugs are adsorbed by the sediments, where a
part is degraded, while the rest may be slowly released into the open water [34].

Effluents of the pharmaceutical industry: This source could release even very high
values of pollutants: one instance was cited for an OTC production plant in China with an
average concentration of 20 mg L−1 in the effluents [35]. As a result, the OTC concentration
in the receiving river, as high as 641 ± 118 µg L−1 at the discharge point, decreased to
377 ± 142 µg L−1 at the last sampling site, a distance of approximately 20 km from the
discharge point. However, this being a typical case of point source, dealing with it would
be much easier than in the case of non-point discharges. Some of the remediation methods
described below have been tested on high concentrations of OTC (e.g., [36,37]) and are
therefore appropriate for dealing with this particular aspect.

Hence, there is growing interest in the fate of OTC in the environment and in meth-
ods for its removal from wastewater treatment systems. Besides standard methods of
decontamination, advanced oxidation methods are increasingly being investigated.

2. Standard Processes of Removal/Degradation of OTC in Water

When released into the environment, antibiotics undergo a series of biological and non-
biological degradation processes. However, it is difficult to achieve complete degradation
of the antibiotics in the environment, and more often they will be degraded, over a rather
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long time, to form a series of metabolites which often show higher toxicities than the parent
compounds. The degradation pathways of OTC include non-biological degradation, mainly
consisting in photodegradation, oxidative degradation and hydrolysis and biodegradation,
mainly by plants and microbes.

Photolysis is one of the most important degradation paths for OTC in the environment
(see Section 2.4); however, it is relatively slow at low ambient temperatures. It can take
place both by direct adsorption of light by OTC (mainly at wavelengths of 250–300 and
340–380 nm) or through the action of photosensitizers, such as NO3

–, NO2
–, CO3

2–, Fe2+,
Fe3+, NaCl and TiO2, which accelerate the process. The main factors affecting OTC pho-
todegradation include pH, light conditions, moisture and metal ions, while biodegradation
is mainly affected by temperature and pH [38].

The importance of pH in all degradation pathways is related to the fact that the physico-
chemical properties of OTC in water can vary with pH, since this molecule possesses three
acidic groups and it can therefore be present in cationic, zwitterionic or anionic forms [39]
(Figure 3).
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OTC exists predominantly as a cation (OTC+) below pH 3.3, when the dimethylammo-
nium group is protonated (pKa1 = 3.57) as a zwitterion, resulting from the loss of a proton
from the phenolic diketone moiety (pKa2 = 7.49) between pH 3.3 and 7.3, as a single-charge
anion (OTC−) from the loss of protons from the tricarbonyl system between pH 7.3 and
9.2 and as a doubly charged anion (OTC2−) from the loss of a proton from the phenolic
diketone moiety, above pH 9.2 (pKa3 = 9.44) [39]. OTC is in any case very soluble in water
between pH 1 and 10, but decontamination methods as well as analytical protocols must in
all cases take into account the effect of pH, since, for instance, light adsorption and quantum
yield in photochemical treatments depend on the mainly present ionization form [40].

OTC can be removed from water and sludge by a number of different decontamination
techniques, among which adsorption on different materials, bioremediation by a wide
variety of organisms or by enzymes and treatment with oxidizing agents such as ozone,
hydrogen peroxide or persulfate, with or without catalysis, are the most studied and
applied. While adsorption methods present the problem of disposal of the spent adsorbent,
bioremediation and oxidation methods should take into account the possibility that the
ultimate fate of the contaminant may not be complete mineralization but transformation in
more or less noxious byproducts. In a very limited number of cases, the resulting products
are identified and studied [41,42], while in other cases the overall toxicity is assessed by
monitoring the effects on microorganisms [37].

https://doi.org/10.1021/es034856q
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2.1. Adsorption

Due to the complexing properties of OTC, this is a powerful medium for removal
of this drug from water. The fact that OTC can be present in wastewater and soils as a
cation, zwitterion or net negatively charged ion, depending on pH, complicates predicting
its sorption characteristics and potential bioavailability and toxicity [43]. In addition, OTC
adsorption in soils depends on the characteristics of the soil itself: soils with higher illite (a
common non-expanding clay mineral) content and permanent cation exchange capacity
have a higher OTC sorption capacity, but increase the availability of sorbed OTC, which can
be released into the aqueous phase. Reversely, soil organic matter and soils characterized
by the presence of clay, kaolinite or variable cation exchange capacity have a lower OTC
sorption capacity, but decrease the release of sorbed OTC [43].

A wide variety of organic and inorganic materials, either natural, modified or synthetic,
have been tested for OTC adsorption. Adsorption phenomena have been found to depend,
besides pH, on temperature and on the presence of ions and other contaminants.

AC is one of the more widely used adsorption media, due to its capacity to adsorb relevant
amounts of a wide variety of pollutants, and AC obtained by different sources and with different
techniques has been used in several studies for the adsorption of OTC [36,44]. Though many
waste materials from agriculture have been used as such as low-cost adsorbents, they
have also been used as starting materials for the production of AC, whose effectiveness
has been tested for the adsorption of OTC. For instance, AC was produced from cotton
linter fibers [45] and from corn stalks [46]. In the first case, the adsorption capacity was
738.5 mg g−1; in the latter, the adsorption capacity, as well as the percentage of removal,
were reported to vary widely based on temperature, pH, contact time and initial OTC
concentration, with a maximum value of 522.6 mg g−1. A biochar was obtained from
cauliflower leaves combined with natural attapulgite (a hydrated magnesium aluminum
silicate with a layer chain structure) and FeCl3 [47].

Among natural materials, wastes from agriculture have been frequently exploited as
low-cost adsorbents. Finely ground peanut shells were used as solid support for polyaniline,
a conducting and electroactive polymer used to impart surface modifications to improve
the natural material’s adsorption capacity [48]. Additionally, willow leaves, stems and
roots have been used, as such and after desugarization, as an adsorbent medium, with
promising results [49].

Some employed sorbent materials were based on carbohydrates; in one instance, OTC was
removed from water by a hydrogel film composed of β-cyclodextrin–carboxymethylcellulose
(β-CD/CMC) [50].

A wide variety of inorganic substances, such as clays, metal oxides and carbon, alone or
in composite materials, were tested for the sorption of OTC. Among them, hydroxyapatite,
both in the form of nanopowder [51] and in a mixture with silicates, proved effective at
treating highly loaded water (25–100 mg L−1 OTC) [52].

Montmorillonite is a clay with a high surface area (700–800 m2 g−1) and a high cation
exchange capacity (80–150 meq 100 g−1). Wet montmorillonite swells to five times its
original volume in the dry state. Adsorption reactions can occur to a greater degree in
montmorillonite than any other clay, so it has been used as model clay mineral for screening
clay–OTC interactions [39]. It was also modified with iron (III) [53].

Zeolites were also employed, which work at an optimal pH between 7 and 8 and can
be regenerated [54].

Graphene oxide (GO), a precursor for graphene preparation obtained through the
strong oxidation of graphite, is extremely hydrophilic due to the presence of many polar
functional groups on its surface; for this reason, it was used, among others, as an adsorbent
in an aqueous medium. [55].

Composites of graphene, graphene oxide or reduced graphene oxides were also
synthesized by various research groups and tested for OTC adsorption [56,57].
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Magnetic microspheres with a magnetic core and a bimetal oxide shell (ZnO−Co3O4)
were synthesized, which retained the functions of the magnetic nanoparticles but also
provided activity conferred by the bimetal oxide shell. [58].

Tetracycline antibiotics (TCs), including OTC, adsorb strongly to aluminum oxide
(Al2O3), and the surface interaction promotes structural transformation of TCs. [59].

2.2. Bioremediation

In the quest for greener methods of water decontamination, the bioremediation option
has been widely explored, exploiting different kind of organisms. Selected bacterial strains,
usually obtained through enrichment of activated sludge from wastewater treatment plants,
were used in model systems [60,61]. Studies on biodegradation by bacteria conducted in
model systems suffer the problem of the survival of microorganisms when introduced
to soil or manure, since the number of introduced microorganisms would often decrease
shortly after inoculation. In addition, the problem of OTC metabolites has to be addressed,
some of which could be even more noxious than the parent antibiotic.

Microalgae have been used for bioremediation [62] with a removal capacity of up to
97%. Degradation of OTC and its metabolites has also been suggested to be carried out by
earthworms [63], which also increase nitrification of the soil. In this latter case, two main
degradation products, 4-epioxytetracycline and 2-acetyl-2-decarboxamido-oxytetracycline,
were identified.

Enzymes, such as laccases or peroxidases, isolated from natural bacteria, were also
used to treat contaminated water in vitro. The enzymes may be immobilized [64] or simply
added to the water sample together with hydrogen peroxide and a hydrogen donor [65].

2.3. Oxidation

Advanced oxidation processes (AOPs) are environmentally friendly technologies for
degrading recalcitrant pollutants. They can generate in situ highly active oxidants, such
as hydroxyl radical •OH, which can unselectively degrade persistent organic pollutants.
Several oxidizing agents were used for OTC degradation, with or without catalysis; among
them, the most used are peroxides, such as H2O2 or persulfate and ozone.

Since ozone is a widely used chemical for disinfection, it was tested for OTC removal.
Ozone was proposed firstly as a technique for the partial removal of OTC from highly
loaded pharmaceutical wastewater [37]; according to these authors, ozonation should be
used to convert OTC into more biodegradable intermediates for subsequent mineralization
by cheaper biological processes. However, later the kinetics of the process was studied
in detail [66], and it was found that, by using an aqueous ozone solution in the presence
of tert-BuOH as a hydroxyl radical scavenger, 99.9% removal of OTC can be obtained at
exposures well below those used for disinfection.

In one study, ozonation was also compared to Fenton oxidation by H2O2 in an OTC
slurry obtained from extraction from manure. [67] Different concentrations of FeSO4 and
H2O2 solutions were added to the acidified manure slurry; on the other hand, the manure
slurry was ozonated in semi-batch mode with a continuous flow of the ozone and oxygen
gas mixture. Both techniques provided more than 90% OTC removal.

An electro-Fenton process has also been proposed [68], which employs a NaOH-
activated graphite felt electrode at pH 3.

Persulfate, S2O8
2−, was used alone and with different catalysts. In one study, thermo-

activated persulfate at a temperature range of 40–70 ◦C was found to degrade OTC rather
quickly, though it is reported that OTC is thermally unstable, and approximately 40%
of OTC was removed in 30 min, even in the absence of persulfate; however, further
degradation only took place in the presence of persulfate. [69] Persulfate can also be
activated by the combined action of heat and Fe2+ ions [70], with the effect of heat (up to
75 ◦C) being more important than that of Fe2+ ions. In another instance [71], the composite
catalyst Co3O4/(carbon nanotubes, CNTs), due to the synergistic effects between highly
active Co oxide and CNTs, was used for persulfate activation and OTC degradation, with
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outstanding catalytic performances in a wide range of pH from 3.0 to 9.0. The catalyst can
be reused five times and can be separated conveniently by a magnet.

2.4. Photolysis

OTC undergoes direct photolysis as the main elimination pathway in surface waters.
Photolysis increases with increasing temperature and with decreasing OTC concentration.
The efficiency of removal depends on pH, since OTC can assume four differently ionized
forms at different pHs, each with a different UV-vis absorption spectrum. [40] Photolysis
was also studied in an aqueous abiotic environment in comparison with hydrolysis [72].
While the latter accounts for 20% OTC degradation, forming 4-epioxytetracycline (1),
α-apooxytetracycline (2) and β-apooxytetracycline (3) (Figure 4) as the main hydrolysis
products, photolysis is responsible for the remaining 80% of OTC degradation.
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Photolysis seems to be the dominant degradation pathway of oxytetracycline in
shallow, transparent water [73], and it is enhanced in the presence of Ca2+ ions; however,
in real systems such as aquaculture plants, it is likely that OTC is mostly deposited in
the sludge at the bottom, thus remaining unaffected by solar irradiation [72]. The direct
photolysis parameters were studied in the open air under sunlight [73], in the absence of
oxygen [40] and in the presence and absence of aquatic plants [74], in order to clarify the
role of the different parameters influencing the process.

Direct photolysis with UV-C radiation was thoroughly examined in comparison with
AOPs where irradiation is combined with the action of an oxidizing reactant such as H2O2
or persulfate, S2O8

2−. This study [75] evidenced that OTC degradation, though slower than
in AOPs, takes place within 30 min even with simple UV irradiation at 254 nm. However,
this process leads to the formation of organic intermediates, which fail to mineralize
completely; AOPs are more effective than direct photolysis for mineralization.

Oxygen nanobubbles (gas cavities in the aqueous solution with diameters of less than
1 µm) are being considered as a useful technology for water treatment and disinfection; in
one study, they were added to a photoreaction system to improve the photodegradation
efficiency of OTC under visible-light irradiation [76]. The efficiency of photodegradation
depends on the size of the nanobubbles; hydroxyl radicals were identified as the dom-
inant active species responsible for OTC degradation. In simply aerated solutions, the
photodegradation efficiency was about 40% after 4 h of reaction, but in the presence of
oxygen nanobubbles, the photodegradation efficiency increased to 60%.

2.5. Other Processes

A few other instances are reported in the literature for OTC removal from aqueous
matrices, employing a variety of methods which do not fall within the above cited categories.
Some of these are based on the use of various types of membranes. A membrane system
including reverse osmosis and ultrafiltration was used for the pre-treatment of high load
wastewater and was reported to reduce OTC concentration from more than 1000 mg L−1 to
lower than 80 mg L−1 [77].
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A piezocatalytic active membrane, based on a mixed matrix of exfoliated multi-flaw
MoS2 nanosheets and polyvinylidene fluoride, was synthesized via an electrospinning
technique [78]. This membrane was active in degrading OTC under ultrasonic irradiation
in the dark. Mineralization of OTC was incomplete; a reaction mechanism and a series of
intermediates were proposed. The membrane can be reused five times with only a slight
decrease in efficiency.

Degradation of OTC was also obtained by a gas phase dielectric barrier discharge
plasma reactor [79]. The generation of hydroxyl radicals, H2O2 and O3, in discharge
plasma is responsible for the removal process, and strictly depends on the applied voltage.
After 20 min of discharge treatment, approximately 93.4% of OTC was removed under
the experimental conditions; however, only half of the initial OTC was mineralized or
degraded to small molecules during this time. Some possible intermediates of the reaction
are proposed.

3. Photocatalytic Degradation of Organic Pollutants

Photocatalytic oxidation is considered a promising alternative to the conventional
methods of organic pollutant degradation. Using suitable catalysts, most organic pollutants
can be completely mineralized to carbon dioxide under UV or visible-light irradiation.
In the photocatalytic process, a chemical reaction is initiated when a semiconductor (SC)
photocatalyst is irradiated by light with an energy that matches or exceeds the band gap
energy of the semiconductor, resulting in excited electron–hole pairs [80]. Electrons are
promoted from the valence band (VB) to the conduction band (CB), and holes remain in the
VB (Figure 5).
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From a thermodynamic point of view, an acceptor A can be photocatalytically reduced
by CB electrons (e−CB) if its redox potential is more positive than that of the e−CB, and a donor
D can be oxidized by VB holes (h+

VB) if its redox potential is less positive than that of the h+
VB.

Electrons and holes migrate to the catalyst surface and initiate the redox reaction that can
be applied to the degradation of an organic compound. The processes can be summarized
by the following equations:

SC + hv → e−CB + h+
VB (1)

e−CB + A → A•− (2)

h+
VB + D → D•+ (3)

The photodegradation of pharmaceuticals under photocatalytic conditions is already
carried out efficiently through the use of titanium dioxide (TiO2) and UV light. However,
in wastewater treatment plants the application of AOP systems utilizing the TiO2 photocat-
alyst is infrequent, limited by a somewhat low photonic efficiency of the technology and by
the use of energy-consuming ultraviolet (UV-A) lamps as a radiation source. To achieve a
wider application of AOPs combined with photocatalysis, an efficient catalyst should be
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used, which could be activated with visible light. A synergistic effect is demonstrated when
photocatalysis is coupled with other AOP technologies, such as ozonation, microwave or
ultrasound treatments, although in some cases cost issues might arise [81].

3.1. Photocatalytic Oxidation of OTC Using Pure TiO2

TiO2 is a semiconductor photocatalyst. It is used for the removal of water pollutants
due to its good chemical and environmental stability and the strong oxidizing power of
the holes generated in the photocatalyst under UV irradiation [82,83]. Rutile, anatase and
brookite are the three common crystalline polymorphs of TiO2. The anatase phase is the
low-temperature stable form, and it exhibits higher photocatalytic behavior for oxidation
processes as compared to the other polymorphs. TiO2 anatase, due to its wide band gap of
Eg = 3.2 eV, can only absorb UV light, which is less than 5% of solar light.

The photocatalytic performance of pure TiO2 for OTC degradation under simulated solar
irradiation is reported in few studies, as presented in Table 1. TiO2 P25 Degussa [84–86] signif-
icantly outperformed both other TiO2 powders [87] and TiO2 nanoflowers [88]. Colored
TiO2, prepared by incorporating Ti3+ and oxygen vacancies in TiO2, is capable of harvesting
visible light because of band gap narrowing. Recently, Singh et al. reported that meso-
porous dark brown TiO2 shows good sunlight-induced photodegradation activity towards
OTC-HCl molecules [89].

Table 1. OTC photodegradation over pure TiO2 photocatalyst.

Photocatalyst Light
Source

(OTC)
(mg L−1)

Catalyst
(g L−1)

Removal
(%)

Time
(min) Ref.

TiO2 P25 Degussa powder Xe 1000 W 20 0.5 95 35 [84]
TiO2 P25 Degussa powder Hg 24 W 5 1 100 180 [85]
TiO2 P25 Degussa powder UVA 6 W 5 0.4 90 30 [86]

TiO2 powder Solar UV 20 0.5 100 n.a. [87]
TiO2 nanoflowers Sunlight 0.5 1 80 60 [88]

Brown TiO2 spheres Sunlight 5 5 ≈50 80 [89]

3.2. Photocatalytic Oxidation of OTC Using Heterogeneous TiO2-Based Photocatalysts

Practical applications of pure TiO2 are limited by the requirement of UV irradiation,
which results in a low solar quantum efficiency and a high recombination rate of electron–hole
pairs [90]. Several strategies adopted to implement the performances of TiO2 catalysts
include doping TiO2 with metal and/or non-metal elements, surface functionalization,
composites and nano-heterojunction.

Metal and/or non-metal doping has shown promising results in narrowing the band
gap of doped TiO2, extending the light absorption properties of TiO2 into the visible-light
region. Moreover, the electron–hole recombination is diminished. Few studies report OTC
photodegradation by metal-doped TiO2. A nanocrystalline Co-B co-doped TiO2/SiO2 film
removed 37% of OTC in 100 min under visible-light irradiation [91] (see Table 2).

Table 2. OTC photodegradation over heterogeneous TiO2-based photocatalysts.

Photocatalyst Light
Source

(OTC)
(mg L−1)

Catalyst
(g L−1)

Removal
(%)

Time
(min) Ref.

Co-B co-doped TiO2/SiO2 Vis. light 5 film 37 100 [91]
Ag-decorated TiO2 30 W 0.5 0.5 100 60 (UV) 180 (Vis) [92]

Ag3PO4/TiO2@MoS2 Xe 800 W 5 1 90 24 [93]
Au/CuS/TiO2 Xe 35 W 5 sheet 96 60 [94]

BiOCl/TiO2 hollow tubes Xe 300 W 20 0.5 51 150 [95]
BiVO4/TiO2/RGO * Xe 1000 W 10 n.a. ≈99 120 [96]

CdS/TiO2 Xe 300 W 40 1 81 50 [97]
Co2+/F− co-doped TiO2-SiO2 W lamp 100 film 42 40 [98]
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Table 2. Cont.

Photocatalyst Light
Source

(OTC)
(mg L−1)

Catalyst
(g L−1)

Removal
(%)

Time
(min) Ref.

Co3O4/TiO2 Xe 300 W 10 0.25 76 90 [99]
Co3O4/TiO2/GO * Xe 300 W 10 0.25 91 90 [99]
Cu-porphyrin-TiO2 UV 300 W 14 0.02 ≈65 40 [100]

Fe2O3/TiO2 W 300 W 60 1 95 300 [101]
N-TiO2/graphene Hg 250 W 30 film ≈62 160 [102]

Polypyrrole TiO2@V2O5 Xe 300 W 50 0.6 85 120 [103]
POPD/TiO2/fly ash W 300 W 10 0.1 73 30 [104]

TiO2@GO * Xe 500 W 20 0.6 99.4 240 [105]
TiO2/5A zeolite UV 32 W 50 1 100 150 [106]
TiO2/5A zeolite UV 32 W 50 0.5 100 210 [107]

ZnO/TiO2 Solar light 60 1 90.3 8 [108]
ZnO/TiO2/Ag2Se Blue LED 36 W 5 film ≈55 360 [109]

* GO = graphene oxide; RGO = reduced graphene oxide. N.a.

The nanocrystalline Co-F co-doped TiO2/SiO2 film exhibited a band gap of 2.34 eV
and removed 42% of OTC in 40 min starting from an unusually high OTC concentration
(100 mg L−1) [98]. The N-TiO2/graphene film removed about 62% of OTC in 160 min [102].

Among surface nanostructures Ag, Au and Cu metal deposition on TiO2 is effective
in suppressing the recombination of photogenerated electrons and holes in TiO2 and
extending the activity into the visible-wavelength range [90,110]. As an example, Ag-
decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation
of OTC under UV–visible-light illumination compared to that of pure TiO2. The sample
containing 1.9 wt% Ag showed 100% removal of OTC under both UV (in 60 min) and
visible-light (in 180 min) irradiation [92]. Au- and CuS-decorated TiO2 [94] removed 96%
of OTC in 60 min under simulated solar irradiation.

Generally, it is possible to describe a composite as being constituted by a “matrix”,
acting as a binder, and a “filler” which is added in the form of particles, fibers, etc. Nanocom-
posite materials exhibit different physical properties than any of the components separately,
due to interfacial interactions of their phases and to the effect of the nanoparticles’ size
on the concentration in the matrix. Nanocomposite catalysts, in which a phase consists of
TiO2 anatase, have been extensively studied in recent decades with two main objectives:
(i) to improve the photocatalytic reactivity and (ii) to obtain a TiO2-based photocatalyst
which works under visible-light irradiation. A three-dimensional Ag3PO4/TiO2@MoS2
composite degrades 90% of OTC in 24 min via the following mechanism: under visible-light
irradiation, the photogenerated electrons in the CB of Ag3PO4 are transferred to the surface
of TiO2@MoS2 heterostructures, and subsequently transferred into a solution [93].

Heterojunctions between metal oxides and TiO2 offer low-cost materials for high per-
forming catalysts. TiO2-based nanocomposites, such as CdS/TiO2 [97], Co3O4/TiO2 [99],
Co3O4/TiO2 with GO as substrate [99], Fe2O3/TiO2 [101], TiO2/5A [106,107], ZnO/TiO2 [108]
and ZnO/TiO2/Ag2Se [109] have been investigated.

Poorer performing photocatalysts are: BiOCl on TiO2 hollow tubes (51% of OTC re-
moval, 150 min) [95], TiO2 cladded with graphene oxide (99% OTC removal, 240 min) [105],
TiO2@V2O5 nanobelt covered with the conjugated polymer polypyrrole (85% OTC removal,
120 min) [103] and BiVO4/TiO2/RGO (99% OTC removal, 120 min) [96]. Porphyrins are
common photosensitizers for TiO2. They lead to the generation of singlet oxygen due
to their absorption in the range of 400–450 nm and very large molar extinction coeffi-
cient [111,112]. Porphyrin-functionalized TiO2 nanomaterials appear as a species-specific
promising photocatalytic system for the removal of OTC in water [100].

3.3. Photocatalytic Oxidation of OTC Using Visible-Light Active Semiconductor Oxides

The generation of an electron–hole pair in a metal oxide semiconductor using visible
light is of major interest, given that UV light accounts for only a small part (about 5%) of
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the entire solar spectrum, while visible light has a much higher share (Figure 6). Metal
oxides with band gap energies in the range of visible light energies were therefore pursued.
These materials, in the form of nanostructured particles, nanosheets, nanorods and their
combinations, are promising for wastewater treatment.
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Metal oxides can be produced with large surface areas, different morphologies and
with a wide range of band gaps, which are suited for photocatalysis. Among semiconductor
oxides, various flavors of iron-based nanomaterials, such as magnetite (γ-Fe3O4) [113],
hematite (Fe2O3) [101], LaFeO3 [114], zinc-oxide-based semiconductors [115], copper-
oxide-based [116,117] nanoparticles and tungsten trioxide (WO3) [118], have been studied.
Bismuth-based metal oxides, such as bismuth vanadate (BiVO4) [119,120], Bi2WO6 [112],
Bi2MoO6 [121], BiYO3 [122] and combinations of the above, are gaining significant interest
due to their narrow band gaps (2.4 eV), non-toxicity and photocatalytic activity under
visible-light irradiation. A special class of materials is constituted by magnetic oxides, based
on spinel structures, that allow for easy recovery of the catalyst after use and comprise
NiFe2O4 [123,124] and MnFe2O4 [125].

A major issue with low-band-gap semiconductors is the fast recombination of the
photogenerated electron–hole pairs, which easily annihilate due to the Coulombic force
between electron and holes. When the recombination is fast, the direct oxidation/reduction
or the generation of active species (h+, •OH, O•−2 , etc.) is limited. Moreover, in a single
semiconductor photocatalyst, a small band gap, which assures a larger ability of harvesting
light, limits the oxidation/reduction ability of the photocatalyst, which correlates with the
energy difference between CB and VB.

Six different degradation pathways of OTC under visible-light active photocatalysts
were proposed: demethylation, secondary alcohol oxidation, dehydration, hydroxylation,
decarbonylation and deamination, as reported by Ye et al. [119].

3.3.1. Simple Semiconductor Oxides

When single photocatalysts or basic composites are used, low degradation efficiency
is usually reached, due to the fast recombination of electron and holes, such as in the case
reported for Fe2O3 [101] and Fe3O4 and for Bi2WO6 [113], LaFeO3 [114] bare Bi2MoO6 [126]
and MnFe2O4 [125], NiFe2O4 [123], or ZnO and ZnWO4 [115], and BiVO4 [119,127]. Mohan
et al. [128] reported a 58% degradation for bare V2O5. In all the other reports, the degra-
dation of OTC is below 50%. Nevertheless, excellent results are reported by Hernández-
Arellano et al. [122] for a Ni-doped BiYO3 with a high surface area synthesized via a Pechini
sol–gel method and calcined at 800 ◦C, which reached 97% OTC degradation in 300 min
under Xe lamp illumination; a band gap as low as 2 eV has been reported for the pure

https://www.nrel.gov/grid/solar-resource/spectra.html
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cubic compound. Additionally, BiVO4 nanosheets with a thickness of 10 nm, synthesized
by Xu et al., achieved a 95.8% degradation in 120 min [120]. He et al. [117] reported that
CuCo2O4 nanoparticles removed 91.5% of the starting OTC in 180 min with the aid of
some added H2O2 initiators. An outstanding 99% degradation was reported by Gautam
et al. for a GSC (graphene–sand composite)/MnFe2O4 composite in 120 min under solar
light [125]. It must be noted that the authors do not claim the formation of a heterojunction,
but the oxide is supported on a high-surface-area material (GSC) obtained by pyrolization
of sugar-coated sand that indeed doubles the degradation efficiency with respect to the
bare oxide. Another hint that indeed some kind of electronic interaction must take place
is the fact that the removal efficiency drops to 90% in the same conditions in bentonite
(BT)/MnFe2O4 composites [125], where the BT support material is not expected to have
any electronic activity. Promising results have been obtained by Li et al. [118] with a pho-
tochromic yellow-WO3 oxide, which exploited the photochromic interchange between the
valence state +6 and +5 of tungsten to promote the formation of ROS species in the solution.
The reported removal efficiency was 87.9% in 60 min. Beside pure oxides, S- and I-doped
ones also have attracted interest. It is worth mentioning the work by Liu et al. [129], where
iodine doping increased the removal ability of doped Bi2MoO6 microspheres up to 89.6%
compared to 57.1% of the bare oxide under the same conditions (300 min, Xe 350 W lamp).
It should be noted that the surface area also increases as a result of doping, which affects
the adsorption capacity of the compound.

In all the other reported single semiconductor photocatalysts, the removal efficiencies
lie in the range of 50 ÷ 80% degradation (see Table 3).

Table 3. OTC photodegradation over semiconductor oxides.

Photocatalyst Light
Source

(OTC)
(mg L−1)

Catalyst
(g L−1)

Removal
(%)

Time
(min) Ref.

Fe2O3/TiO2 W-Halide 300 W 60 1 ≈50 300 [101]

Fe3O4 Sunlight 1 46 0.5 42 120 [113]
Bi2WO6 Sunlight 1 46 0.5 40 120 [113]
LaFeO3 LED 40 W 40 0.5 ≈50 120 [114]

ZnO Sunlight 1 46 0.5 41 120 [115]
ZnWO4 Sunlight 1 46 0.5 46 120 [115]

CuCo2O4 Xe 500 W 20 1.0 91.5 180 [117]
yellow-WO3 Au-Halide 500 W 20 1.0 87.9 60 [118]

BiVO4 Xe 500 W 10 0.25 47.4 60 [119]
BiVO4 nanosheets Xe 500 W 20 1 95.8 120 [120]

Bi2MoO6 Xe 300 W 20 0.5 ≈80 140 [121]
BiYO3 Xe 25 W 30 0.25 59 300 [122]

BiY0.995Ni0.005O3 Xe 25 W 30 0.25 97 300 [122]
NiFe2O4 Sunlight 1 46 0.50 <30 120 [123]

GSC/NiFe2O4 * Sunlight 1 46 0.50 80 120 [123]
BT/NiFe2O4 * Sunlight 1 46 0.50 69 120 [123]

NiFe2O4 Sunlight 1 46 0.50 65 60 [124]
MnFe2O4 Sunlight 1 46 0.50 <50 120 [125]

GSC/MnFe2O4 * Sunlight 1 46 0.50 99 120 [125]
BT/MnFe2O4 * Sunlight 1 46 0.50 90 120 [125]

Bi2MoO6 nanosheets Xe 300 W 4.6 1 ≈50 120 [126]
BiVO4 Xe 1000 W 20 1 61.1 120 [127]
V2O5 Xe 150 W 50 0.5 58 60 [128]

Bi2MoO6 Xe 350 W 10 0.6 57.1 300 [129]
I-Bi2MoO6 Xe 350 W 10 0.6 89.6 300 [129]

Ag1.69Sb2.27O6.25 Xe 300 W 16 0.5 63 120 [130]
S-CoFe2O4 W-Iodine 300 W 80 1 83 300 [131]

* GSC = graphene–sand composite; BT = bentonite. 1 light intensity 35 (±1)·103 lx.
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3.3.2. Semiconductor-Oxide-Based Heterojunctions

To avoid the rapid recombination of charges that often occurs in low-band-gap oxide
semiconductors, coupling two different semiconductor compounds with staggered con-
duction and valence bands is a viable solution. In this configuration, the photoinduced
e− and h+ end up accumulating on the two semiconductors and become able to promote
oxidation and reduction of the target compounds. This can significantly enhance the energy
conversion efficiency of the photocatalyst, sometimes at the expenses of the oxidizing
ability with respect to specific species.

Heterojunctions where one of the photocatalysts is a semiconductor oxide have
been largely studied. The counterparts are sometimes other oxides, such as in Raizada
et al. [113] Fe3O4/Bi2WO6 or [115] ZnO/ZnWO4, or in Shi et al. [132], CuBi2O4/Bi2MoO6
or Liu et al. [133] β-Bi2O3@CoO, but more the use of a second (or a third) photocatalyst
composed of graphene-like materials is implied, such as multi-walled carbon nanotubes
(MWCN) [119], GO [134,135] graphitic carbon nitride (g-C3N4) [114,124], hexagonal boron
nitride (hBN) [121] and polymeric carbon nitride (pCN) [130] (see Table 4).

Table 4. OTC photodegradation over semiconductor-oxide-based heterojunctions.

Photocatalyst Light
Source

(OTC)
(mg L−1)

Catalyst
(g L−1)

Removal
(%)

Time
(min) Ref.

Fe3O4/Bi2WO6 Sunlight 1 46 0.5 71 120 [113]
GSC/Fe3O4/Bi2WO6 * Sunlight 1 46 0.5 94 120 [113]
g-C3N4/LaFeO3 (2%) * LED 40 W 40 0.5 90 120 [114]

ZnO/ZnWO4 Sunlight 1 46 0.5 70 120 [115]
AC/ZnO/ZnWO4 * Sunlight 1 46 0.5 96 120 [115]

Cu2O/α-Fe2O3
2 Xe 300 W 10 n.a.2 73.3 60 [116]

MWCN/BiVO4 * Xe 500 W 10 0.25 88.7 60 [119]
hBN/Bi2MoO6 * Xe 300 W 20 0.5 95.3 140 [121]

g-C3N4/NiFe2O4 * Sunlight 1 46 10 97 60 [124]
Ag/AgCl/BiVO4 Xe 1000 W 20 1 97.6 120 [127]

AgCl/BiVO4 Xe 1000 W 20 1 76.5 120 [127]
20%RGO/V2O5 * Xe 150 W 50 0.5 85 60 [128]

pCN/Ag1.69Sb2.27O6.25 * Xe 300 W 16 0.5 94 120 [130]
CuBi2O4/Bi2MoO6 Xe 300 W 20 0.30 74 60 [132]

β-Bi2O3/CoO Xe 300 W 10 0.40 86 120 [133]
GO/CeO2/Fe3O4 * Xe 220 W 30 0.8 60 120 [134]
GO/Fe3-xCexO4 * Xe 220 W 30 0.8 88 120 [134]

N-ZnO/CdS/GO * Xe 300 W 20 0.5 50 60 [135]
Bi2S3/BiVO4 Xe 500 W 200 1 67 960 [136]

30% SnO2/BiOI Xe 300 W 10 1 94 90 [137]
GSC/Bi2O3/BiOCl * Sunlight 1 46 0.5 86 120 [138]
CT/Bi2O3/BiOCl * Sunlight 1 46 0.5 90 120 [138]
22% SrTiO3/BiOI Xe 300 W 20 1 85.3 90 [139]
Ag/Ag2S/BiVO4 Xe 500 W 20 0.4 99.8 150 [140]

20%RGO/V2O5/Pt(1%) * Xe 150 W 50 0.5 99 40 [141]
Ag/AgCl/CdSnO3 Xe 300 W 10 1 90 60 [142]

* MWCN = multi-walled carbon nanotubes; GSC = graphene–sand composite; BT = bentonite; AC = activated
carbon; GO = graphene oxide; g-C3N4 = graphitic carbon nitride; hBN = hexagonal boron nitride; pCN = polymeric
carbon nitride; CT = chitosan. 1 light intensity 35 (±1)·103 lx. 2 electrode for electro-photocatalysis: 0.5 V
bias applied.

Bismuth-based oxides are the most used in this context. For example, BiVO4 oxide,
which by itself has a poor performance as a photocatalyst against OTC (degradation from
47.4% [119] to 61.1% [127] as reported in Table 3, depending on the reports), has been
used to prepare heterojunction photocatalysts by coupling it with MWCN [119], Bi2S3 [136],
Ag2S [140], Ag/AgCl [127], nitrogen-doped graphene quantum dots (N-GQD)/g-C3N4 [143]
and AgI [144].
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Ye et al. [119] prepared a BiVO4/MWCN catalyst that degraded nearly 90% of OTC
within 60 min and withstood several 120 min cycles, degrading nearly 95% of OTC in each
cycle. When used to make heterojunctions with Bi2S3, [136], the results are not as good: only
67% of OTC was removed from the solution after 16 h of illumination. As a counterpart, the
same photocatalyst completely degraded Rhodamine B in 480 min (that is to illustrate that
heterojunction photocatalysts sometimes fail to activate some specific catalytic reaction).
More successful was the strategy of Dai et al. [127] in constructing a ternary heterojunction
Ag/AgCl/BiVO4 photocatalyst prepared by in situ precipitation and photoreduction. They
obtained a 97.6% degradation after 120 min of illumination with visible light (it must be
pointed out that they used a 1000 W Xe lamp, far more powerful than in any other report
in this review). The catalyst efficiency was ascribed to the presence of Ag nanoparticles on
the surface, promoting a surface plasmon resonance effect. Interestingly, the photocatalyst
showed only a slight decrease in efficiency in a wide pH range and was robust to the
presence of nitrates and copper ions in the solution. Additionally, the mechanism was
studied, and possible intermediate products were identified.

BiVO4 heterojunction with Ag2S was prepared by Wei et al. [140] following a somewhat
similar strategy; Ag/Ag2S coupled with BiVO4 with 5% Ag enhanced both absorbance in
the visible region of BiVO4, sped up the charge transfer and slowed down the recombination
of electron–hole pairs. As a result, 99.8% of the initial OTC was removed in 150 min of
visible-light irradiation. The investigation of the active species in the oxidation of OTH
revealed that the main role was played by the generated h+.

Guan et al. [144] decorated BiVO4 with silver iodide (AgI). The optimized catalyst with
about 9% of AgI could remove 80% of the initial OTC, greatly enhancing the performance
of bare BiVO4. The authors claim that a Z-scheme electron–hole transfer was at play, and it
was responsible for the enhancement of the photocatalytic activity.

Last, a complex system Z-scheme heterojunction was proposed by Yan et al. [143],
where BiVO4 was coupled with nitrogen-doped graphene quantum dots and g-C3N4.
Despite the complexity, only 67% OTC was degraded after 120 min of visible-light exposure
by a 250W Xe lamp. Nevertheless, ESR and trapping experiments elucidated the mechanism
of the heterojunction, and the active species were identified in O•−2 and •OH radicals.

A Z-scheme heterojunction photocatalyst composed of β-Bi2O3@CoO was reported by
Liu et al. [133], in which the bismuth oxide was prepared by a solvothermal method and
CoO was grown in situ on the flower-like microstructured support. A degradation of 86%
OTC after 120 min was obtained.

Other bismuth-based oxides have been reported. Bi2WO6 heterojunction with Fe3O4
was reported by Raizada et al. [113] to remove 71% OTC under 120 min of solar light
illumination; this value increased up to 94% when the heterojunction was dispersed onto
GSC. Yet, it is not clear if the role of GSC is only to increase the surface area, thus increasing
absorption of OTC onto the catalyst, or if it has an active role in the generation or mobility
of the photogenerated charges. The Bi2MoO6 heterojunction with hexagonal boron nitride
(h-BN) was prepared by Du et al. [121]. In the optimized composition (50% h-BN), it
degraded more than 95% of the starting OTC after 140 min of visible-light illumination.
Even if h-BN has no catalytic activity in itself, its large surface area promoted the adsorption
of OTC on the catalyst surface and the synergic interaction with the bismuth molybdate
effectively separated the photoinduced charges. The authors also performed trapping
experiments for elucidating the role of the diverse radical species and determined the
prominent role of h+ and O•−2 .

A Bi2MoO6 n-type semiconductor coupled with a CuBi2O4 p-type one was pre-
pared [132] with a peculiar structure made of nanosheets and nanorods, obtained via
hydrothermal synthesis. Despite the perfectly staggered band structures and the refined
microstructure, the degradation of OTC was limited to 74% in 60 min. However, more than
50% of it was completely mineralized.

Some interest has been raised by bismuth oxyhalides (BiOX, with X = F, Cl, Br, I).
Thanks to their layered structure, the halide negative ions alternate with positive Bi2O2

2+
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layers, helping in the separation of the generated electrons and holes [145]. BiOX vari-
ously coupled with other oxides has been applied in the photodegradation of OTC under
visible light.

Wen et al. [137] obtained the best performance by degrading 94% of the starting OTC
in 90 min using a 30% SnO2/BiOI heterojunction photocatalyst, where SnO2 particles were
grown in situ on BiOI nanosheets in different amounts. The importance of the in situ prepa-
ration and intimate contact between the two components is highlighted by the fact that a
mechanical mixture of the same components using the same amount only degraded about
50% of OTC in the same experimental conditions. Additionally, using radical scavengers
and inhibitors, the active species were determined to be h+ and O•−2 radicals. Less advanta-
geous was the coupling of BiOI with SrTiO3 by the same authors [139]; in this arrangement,
about 85% of the OTC was removed from the solution in 90 min. Priya et al. [138] instead
used BiOCl in a heterojunction with Bi2O3 and supported on large-surface-area materi-
als, GSC and chitosan (CT). Good removal performances were obtained in both cases
under solar light illumination (86 and 90% OTC degradation with GSC-supported and
CT-supported photocatalysts, respectively). The authors underline the importance of OTC
adsorption to the surface of the photocatalyst; indeed, bare Bi2O3/BiOCl, undispersed
onto GSC and CT supports only degraded about 50% of the starting OTC in the same
experimental conditions.

The investigation of heterojunction photocatalysts utilizing graphene-like materials is
constantly increasing. In this last section, the OTC degradation papers are collected, where
carbon nitride [114,124,130] or graphene oxide [134,135], were adopted in conjunction with
semiconductor oxides.

g-C3N4 (see also Section 3.4.2 below), which by itself acts as a reduction photocata-
lyst, was coupled with LaFeO3 [114], in the fashion of the so-called Z-scheme heterojunc-
tion [146]. g-C3N4 remarkably acted both on the adsorption step and in the separation
of photoinduced charges, increasing the removal efficiency of pristine LaFeO3 from 50 to
90% in 120 min of reaction under 40W LED light illumination. Sudhaik et al. [124] used
g-C3N4 in a heterojunction with magnetic NiFe2O4 to obtain a remarkable 97% degradation
in only 60 min under solar light illumination, and in 8 h, complete mineralization was
also obtained. The authors also studied the effect of the initial OTC concentration and pH
and concluded that the best conditions were those with high OTC concentrations (up to
24 mg L−1) and when OTC was in its zwitterionic form, at pH 5. Zheng et al. [130] also
reported a 94% degradation using carbon nitride coupled with Ag1.69Sb2.27O6.25 in a 4:1
ratio in 120 min. Moreover, experiments with radical scavengers showed that the active
species for the degradation were directly both the photogenerated e− and h+.

Graphene oxide was also investigated with CeO2/Fe3O4 [134] and with N-ZnO/CdS [135].
In the first case, the Fe2+/Fe3+ pair in Fe2.8Ce0.2O4 together with GO enhanced both ad-
sorption of OTC and charge separation, yielding an 88% degradation of OTC in 120 min.
N-doped ZnO and CdS were not as effective, degrading only 50% of OTC in 60 min, likely
due to the lower efficiency of ZnO, given its larger band gap.

A somewhat different approach was attempted by Mohan et al. [141], who used a
reduced graphene oxide composite with vanadium oxide (V2O5) coming from electronic
waste recovery. The results for the 20%RGO/V2O5/Pt(1%) catalyst were an outstanding
99% degradation of OTC in 40 min, at the expenses of the experimental simplicity, by adding
a •OH initiator (H2O2) and 1% of a metallic Pt catalyst. Indeed, the same catalyst without
Pt showed a diminished efficiency of 85% [128]. Yet, the authors interestingly applied the
developed photocatalyst on real wastewater, reporting an 87% removal efficiency in real
effluent conditions.

3.4. Photocatalytic Oxidation of OTC Using Graphene-Based Nanocomposites
3.4.1. Graphene: Structure and Properties

Carbon has different allotropes, which can be categorized according to hybridization
(sp, sp2, sp3), into zero-dimensional sp2 fullerenes, two-dimensional sp2 honeycomb lattice
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of graphene or three-dimensional sp3 crystals–diamond (Figure 7). Each allotrope shows
distinct electronic and mechanical properties. Graphene consists of a single layer of carbon
atoms that are bonded with a covalent sp2 bond with a single free electron, which accounts
for the conductivity of graphene.
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Graphene, fullerenes and CNTs, as novel nanomaterials, are attracting huge interest in
different fields, such as physical, chemical and biomedical fields, thanks to the extraordi-
nary physical properties, including extremely high thermal conductivity, excellent electrical
conductivity, high surface-to-volume ratio, remarkable mechanical strength, biocompati-
bility and transparency to visible light as well as to UV and IR. Their considerable optical
properties make them useful for photonic and optoelectronic applications [147].

Graphene is synthesized by various methods, such as mechanical exfoliation, liquid-
phase exfoliation and chemical vapor deposition, which are implicated in restacking prob-
lems between graphene layers because of van der Waals forces. These issues have been
resolved by surface modification with metal and metal oxide nanoparticles. Zinc (Zn),
silver (Ag), gold (Au), platinum (Pt) and cadmium (Cd) are the most frequently used
elements. Moreover, a large number of functional groups, such as carboxyl, hydroxyl ether
and epoxide, are present on the surface of GO, which render it more dispersible in water
and easy to use for composites design.

A N-ZnO/CdS composite was synthesized and subsequently incorporated on GO [135].
The obtained composite photocatalyst removes 50% of OTC in 60 min under visible-light
irradiation. Recently, graphene quantum dots (GQDs) smaller than 10 nm have attracted
attention because of their reservoir property, low toxicity and chemical inertness [148].
Moreover, it has been demonstrated that N- and S-co-doped GQDs (N, S-GQDs) show
improved optical properties in comparison with undoped GQDs, which exhibit three
excitation–wavelength–independent photoluminescence regions with emission peaks at
440 (blue), 550 (green) and 640 nm (red) at excitation wavelength intervals ranging from
340 to 420 nm, 460 to 540 nm and 560 to 620 nm, respectively. This means that each emis-
sion is related to a unified chromophore on the S,N-GQDs [149]. It was also shown that
the association of N, S-GQDs and Au nanoparticles promotes near-infrared light (NIR)
utilization. Based on these premises, ultrathin Bi2MoO6 (BMO) nanosheets were prepared
and co-modified with N, S-GQDs and Au nanoparticles, whose catalytic activity was es-
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timated through molecular oxygen activation for OTC degradation. This material shows
80% removal of OTC in 60 min [150]. Results are summarized in Table 5.

Table 5. OTC degradation over heterogeneous g-C3N4-based photocatalysts.

Photocatalyst Light
Source

(OTC)
(mg L−1)

Catalyst
(g L−1)

Removal
(%)

Time
(min) Ref.

N-ZnO/CdS/GO * Xe 300 W 20 0.5 50 60 [135]
N,S-GQDs/BMO * Xe 300 W 10 0.1 81 60 [150]
Co(1.28%)–pCN * Xe 300 W 20 0.3 18.3 40 [151]

OCN * Xe 300 W 20 1 85.7 120 [152]
Ag(8%)/g-C3N4 * Xe 300 W 20 1 81 120 [153]
Ag(7%)/g-C3N4 * Xe 300 W 30 0.2 98.7 120 [154]

NiSe(3%)/g-C3N4 * Xe 300 W 20 1 98.7 60 [155]
Br(15%)/g-C3N4 * LED 38.5 W 10 1 75 120 [156]

BPCNNS * Xe 300 W 15 1 71 120 [157]
PANI(5%)/g-C3N4 * Xe 350 W 5 0.5 88 100 [158]

ACN * Xe 300 W 20 0.3 79.3 60 [159]
B4NbO8Cl/g-C3N4 LED 18 W 20 1 87 60 [160]
BPQDs/g-C3N4 * Xe 300 W 10 0.6 81 60 [161]

Au(6 wt%)/g-C3N4/CeO2 Xe 500 W 15 0.4 88 150 [162]
GO/Ag2CrO4/g-C3N4 * Xe 300 W 10 0.2 94.2 90 [163]

* GO = graphene oxide; GQDs = graphene quantum dots; BMO = Bi2MoO6; CN, pCN = carbon nitride;
OCN = oxygen-substituted ultrathin porous g-C3N4; g-C3N4 = graphitic carbon nitride; PANI = polyaniline;
ACN = 2-hydroxy-4,6-dimethylpyrimidine grafted polymeric carbon nitride.

3.4.2. Graphitic Carbon Nitride g-C3N4

Recently, graphitic carbon nitride, a layered structure similar to graphene, has gained
huge attention because of its unique physicochemical properties (e.g., material stability,
thermal stability and narrow band gap) determined by S-triazine cores. The structure of
g-C3N4 is often considered as an evolution of compounds with direct C-N bonding, such
as urea and ethylenediamine, through cyanamide, melamine and their polymerized deriva-
tives, resulting in either triazine-based or heptazine-based structures (Figure 8). The basic
structural unit is either a triazine or heptazine core, both planar, so that the polymerized
final product can be a layered structure. This is the reason why these polymerized products
are called “graphitic” carbon nitrides.
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The popularity of g-C3N4 can also be attributed to its environmental benignity, abun-
dance, simple preparation process and low cost. Nevertheless, pristine carbon nitride
(pCN) shows low electronic conductivity, limited visible-light absorption and relatively
few surface-active sites. All these drawbacks have been resolved by different strategies,
including heterojunction construction, heteroatom doping and nanostructural engineering.
In particular metal oxides, metal sulfides, metal halides and carbonaceous nanomaterials
(rGO, GO, carbon dots) are currently used as cocatalysts to improve the g-C3N4 photo-
catalytic performance [164]. Its photocatalytic activity under visible light attracts is of
interest for studies on hydrogen evolution by water splitting and for pollutant degradation
at room temperature.

The electron-rich “nitrogen pot” in pCN represents an ideal site for metal incorporation.
Yang et al. [151], in 2020, developed a simple in situ growth strategy to anchor single-
atom Co onto pCN by forming Co-O and Co-N covalent bonds. This implant not only
extends optical absorption in the visible region but also facilitates electron transfer. These
positive effects have improved the photocatalytic activity for OTC degradation. Different
concentrations of Co, namely 0.29%, 1.28% and 2.52%, were tested, and the best result,
albeit not satisfactory, was achieved with Co(1.28%)–pCN (18.3% OTC removal, 40 min). In
2020, Gou et al. [152] developed a strategy to prepare a novel oxygen-substituted ultrathin
porous g-C3N4 nanosheet, and, as a result, this photocatalyst (OCN) showed enhanced ROS
generation, leading to promoted OTC degradation (85.76% OTC degradation in 120 min).

Recently Ren et al. [153] and Viet et al. [154] conducted separate studies on OTC
degradation using Ag-doped graphitic carbon nitrate as a photocatalyst, with 8% and 7%
Ag by weight, respectively. The nanocomposite synthesized by Ren et al., Ag(8%)/g-C3N4
produced a degradation of oxytetracycline equal to 81% in 120 min. The photocatalyst
investigated by Viet et al., Ag(7%)/g-C3N4, gave a better result, achieving 98.7% OTC
removal in 120 min.

A 3 wt% NiSe/g-C3N4 photocatalyst, produced through an environmentally friendly
hydrothermal method, showed remarkable photocatalytic activity, almost completely de-
grading OTC within 60 min (98.68% OTC removal) under visible-light irradiation [155].
These experimental results confirm that the use of highly dispersed NiSe nanodots enlarged
the visible-light absorption range, potentiated charge carrier mobility and afforded rich
active sites.

In 2019, Hong et al. [156] evaluated Br doping of g-C3N4 nanosheets, which showed
photocatalytic activity equal to 75% OTC removal in 2 h.

Non-metal dopants are well-known to regulate the electronic structure and band gap
of photocatalysts. Zhang et al. [157] improved the photocatalytic activity of g-C3N4 by
co-doping of non-metal elements and morphologic regulation. They introduced B and
P elements into the carbon nitride skeleton while decreasing the thickness via a thermal
etching route. The obtained B,P-co-doped nanosheets (BPCNNS) had narrow band gap
(2.61 eV) and thus utilized more visible light and ultrathin morphology to promote the
separation and migration ability of photogenerated charges. The BPCNNS materials
showed enhanced photocatalytic activity for removal of OTC in comparison with the
un-doped, single-element-doped and co-doped bulk samples. A total of 71% OTC was
removed after 120 min under visible light.

Among various types of semiconductors studied to augment the photocatalytic ef-
ficiency of g-C3N4 so far, polyaniline (PANI) was brought to the forefront due to its low
cost, excellent environmental stability and high conductivity. The catalytic activities of the
as-prepared catalysts with different amounts of PANI (3%, 5%, 7% and 10 wt%) were tested
by using OTC as a model pollutant. In 100 min, 88% OTC removal was obtained [158].
Yang et al. [159], in 2020, synthesized a novel 2-hydroxy-4,6-dimethylpyrimidine (HDMP,
10 wt%) grafted polymeric carbon nitride photocatalyst (ACN) with a facile in situ keto–enol
cyclization method. A total of 79.3% of the OTC was removed in 60 min.

The development of heterojunctions by coupling different semiconductors is also a
popular strategy adopted by many researchers to improve photocatalytic activity. A novel
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B4NbO8Cl/g-C3N4 nanocomposite was synthesized using the hydrothermal method, and
its photocatalytic efficiency was assessed under visible LED light irradiation, finding that it
was much more enhanced than pristine B4NbO8Cl and g-C3N4; OTC removal was 87% in
60 min [160].

A facile ice-assisted ultrasonic method was developed to obtain a metal-free BPQD-
loaded TCN (BPTCN) nanohybrid with a 1D tubular structure [161]. In this system, BPQDs
were dispersed onto the tubular g-C3N4. A total of 81% of OTC was effectively removed in
60 min. A Au(6 wt%)/g-C3N4/CeO2 plasmonic heterojunction has been lately fabricated
whose catalytic activity was carefully evaluated by the catalytic degradation of OTC (88%
degradation in 150 min) [162].

Researchers have demonstrated that the construction of a heterojunction photocatalyst
was more effective since the photogenerated electron–hole pairs were effectively trans-
ferred and separated. As a result, continuous efforts had been made to devise CN-based
binary heterojunctions (CN/BiVO4, CN/BiOBr, CN/TiO2, etc.) However, the photocat-
alytic activity of these binary systems is still not sufficient for practical purposes because
of the limited region of the visible-light response and the relatively lower photo-induced
electron–hole pair separation efficiency. With the aim to further promote the charge sep-
aration and transfer characteristics, ternary system construction was developed. In 2017,
a GO/Ag2CrO4/g-C3N4 (GO/ACR/CN) nanocomposite was fabricated through a facile
precipitation route and employed for multiple pollutants’ degradation in experiments
under visible-light irradiation [163]. Compared with ACR, CN, ACR/GO and ACR/CN,
the GO/ACR/CN ternary photocatalyst showed enhanced photocatalytic performance.
OTC removal reached 94.2% in 90 min.

4. Conclusions

In this review, the main aspects and recent advances in heterogeneous photocatalysis
for the degradation of oxytetracycline antibiotics in water are presented. We chose to review
only those papers where OTC concentration, catalyst concentration (where applicable),
required time, characteristics of the light source and percentage of removed pollutant are
clearly stated.

Photocatalytic oxidation of OTC using heterogeneous pure semiconductor oxides
(TiO2 or metal oxides with band gap energies in the range of visible-light energies) is
presented. To avoid the rapid recombination of electron–hole pairs that often occurs in
low-band-gap oxide semiconductors, coupling two different semiconductor compounds
with staggered conduction and valence bands is a good strategy. In this configuration,
the photoinduced electrons and holes end up accumulating on the two semiconductors
and become able to promote oxidation and reduction of the target compounds. Several
solutions are adopted to enhance the performances of catalysts, including (i) doping the
oxides with metal and/or non-metal elements, (ii) surface functionalization, (iii) composites
and (iv) nano-heterojunction. Finally, a discussion on non-oxidic photocatalysts is also
provided, exploring the application of graphene-based nanocomposites for the effective
treatment of OTC.

TiO2 P25 Degussa [84] (95% OTC removal in 35 min) and Ag3PO4/TiO2@MoS2 [93]
(90% OTC removal in 24 min) significantly outperformed other photocatalysts under UV irra-
diation. A g-C3N4/NiFe2O4 photocatalyst [124], showed remarkable photocatalytic activity
in degrading OTC (97% OTC removal in 60 min) under sunlight irradiation. Furthermore,
under visible-light irradiation, a 3 wt% NiSe/g-C3N4 photocatalyst [155] showed outstanding
activity by almost completely degrading OTC within 60 min (98.7% OTC removal).

Existing decontamination techniques usually rely on adsorption of pollutants onto
sorbent media, such as AC, which has to be eventually disposed of, or onto powerful
oxidizing agents; however, these sometimes just partially oxidize persistent pollutants,
yielding even more noxious byproducts. For large-scale wastewater treatment applications,
current photocatalytic treatment systems are less attractive than other existing advanced
oxidation techniques because they are more time-consuming and have higher costs. How-



Molecules 2022, 27, 2743 21 of 27

ever, application of photocatalysis still retains significant and unique advantages since
pollutants are often degraded to mineral end-products, and the degradation is achieved
without transferring the pollutant (as is the case with conventional treatment technologies
or AC) from one phase to another.
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