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Localized waves (LW) are nondiffracting (“soliton-like”) solutions to the wave equations and are known to exist
with subluminal, luminal, and superluminal peak velocities V. For mathematical and experimental reasons,
those that have attracted more attention are the “X-shaped” superluminal waves. Such waves are associated
with a cone, so that one may be tempted—let us confine ourselves to electromagnetism—to look [Phys. Rev.
Lett. 99, 244802 (2007)] for links between them and the Cherenkov radiation. However, the X-shaped waves
belong to a very different realm: For instance, they can be shown to exist, independently of any media, even in
vacuum, as localized non-diffracting pulses propagating rigidly with a peak-velocity V�c [Hernández et al.,
eds., Localized Waves (Wiley, 2008)]. We dissect the whole question on the basis of a rigorous formalism and
clear physical considerations. © 2010 Optical Society of America

OCIS codes: 350.5720, 320.5550, 350.7420, 070.7345, 350.5500, 070.0070.
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. INTRODUCTION
ocalized waves (LW) are nondiffracting (“soliton-like”)
olutions to the wave equations and are known to exist
ith subluminal, luminal, and superluminal peak-
elocities V. For mathematical and experimental reasons,
hose that have attracted more attention are the “X-
haped” superluminal waves. Such waves are associated
ith a cone, so that some authors—let us confine our-

elves to electromagnetism—have been tempted to look
or links between them and the Cherenkov radiation [1].
owever, the X-shaped waves belong to a very different

ealm: For instance, they exist, independently of any me-
ia, even in vacuum as localized non-diffracting pulses
ropagating rigidly with a peak velocity V�c, as verified
n a number of papers (cf., e.g., the references in the book
ocalized Waves [2]). It is our aim in this paper to dissect
he question on the basis of a rigorous formalism and
lear physical considerations.

In particular we show, by explicit calculations based on
axwell equations only, that, at variance with what was

ssumed by some previous authors (see, e.g., [1] and ref-
rences therein): (i) The “X-waves” exist in all space, and
n particular inside both the front and the rear part of
heir double cone (which has nothing to do with Cheren-
ov’s). (ii) The X waves are to be found not heuristically
ut by use of strict mathematical (or experimental) proce-
ures, without any ad hoc assumptions. (iii) The ideal
-waves, as well as plane waves, are actually endowed
ith infinite energy, but finite-energy X-waves can be eas-

ly constructed (even without recourse to space–time
1084-7529/10/040928-7/$15.00 © 2
runcations); and at the end of this work, by following a
ew technique, we construct finite-energy exact solutions,
otally free of backward-traveling waves. (iv) The most in-
eresting property of X-waves lies in the circumstance
hat they are LWs, endowed with a characteristic self-
econstruction property, which promises important practi-
al applications (in part already realized, starting in
992), quite independently of the superluminality—or
ot—of their peak-velocity. (v) Insistence on attempting a
omparison of Cherenkov radiation with X-waves would
ead one to an unconventional sphere: that of considering
he rather different situation of the (X-shaped, too) field
enerated by a superluminal point-charge, a non-
rthodox question actually exploited in previous papers
3]: We show here explicitly that in such a case the point-
harge would not lose energy in the vacuum and that its
eld would not need to be continuously fed by incoming
ide-waves (as is the case, in contrast, for an ordinary
-wave).
As already said, we wish to show, by the way, that the

herenkov–Vavilov radiation (in the following we shall
rite only “Cherenkov” for brevity’s sake) has nothing to
o with the X-shaped LWs. Happily enough, the treat-
ent of the classic problem [4,5] of the Cherenkov radia-

ion from a point-charge traveling in a medium with
peed v such that cn�v�c, where cn and c are the speed
f light in the medium and in the vacuum, respectively,
as reached by now a standard form [6].
In this paper, let us address our subject in terms of rig-

rous mathematics and physics.
010 Optical Society of America



2
X
A
O
m
r
b
v
t
a

h
L
l
w
p
h
e
d
c

p
h

w
i
s
p
d

w

a

v

�
a

W
r
r
t
S
G
f

w
t
t
t

(
w
C

w
�
p

u
t
A
j

B
O
t
p
w
X
c
m
t
c

w
S
t
n
t
s
s

Zamboni-Rached et al. Vol. 27, No. 4 /April 2010 /J. Opt. Soc. Am. A 929
. CHERENKOV RADIATION VERSUS
-SHAPED LOCALIZED WAVES
. Initial Aims
ne of our initial aims is showing that no “Cherenkov for-
ulation” of the X-shaped LWs is possible. In the papers

eferring to the Cherenkov effect, except for some am-
iguous notation [6], the analysis of the ordinary scalar-
alued Cherenkov radiation is normally correct; indeed,
he relevant results are well known [4,5] and generally
ccepted.
The ordinary Cherenkov radiation cannot be used,

owever, to draw conclusions about the superluminal
Ws known as X-shaped waves (or simply X-waves). The

atter are nondiffractive solutions to the homogeneous
ave equations and propagate rigidly with superluminal
eak-velocities. They were predicted long ago [7,8], they
ave been mathematically constructed [9–11], and finite-
nergy versions of them have been experimentally pro-
uced [12–16] even in vacuum. Let us go on to explicit cal-
ulations.

To be self-contained, let us initially address the (sim-
ler) scalar case, in which a field � is governed by the in-
omogeneous wave equation

��2 −
1

cn
2

�2

�t2���r,t� = −
4�

cn
j�r,t�, �1�

ith j=qv������z−vt� / �2���. Here cn is the speed of light
n the considered medium [17] and j�r , t� is the generating
ource, assumed to be point-like and moving along the
ositive z axis with subluminal speed cn�v�c, while �
enotes the cylindrical radial coordinate.
A Green’s function for Eq. (1) is given explicitly as

G�r,t,r�,t�� = lG+�r,t,r�,t�� + �1 − l�G−�r,t,r�,t��, �2�

here

G±�r,t,r�,t�� =
��t� − �t � R/cn��

cnR
�3�

nd R���z−z��2+�2+��2−2��� cos��−���.
Quantities G+ and G− are the retarded and the ad-

anced Green’s function, respectively.
When considering only the retarded Green’s function

l=1�, the solution to the wave equation can be expressed
s

��r,t� =� dx�3� dt�G+�r,t,r�,t��j�r�,t��. �4�

e can use the expression for G+ given in Eq. (3) for a di-
ect calculation of the wave function ��r , t�. However, for
easons that will be made clear below, we prefer to follow
he procedure adopted in previous papers, such as [1].
pecifically, we shall determine the Fourier transform of
+ in the variables z and t and subsequently the trans-

orm of � in the same variables. For c �v�c, we obtain
n
���,	� =
1

2�cn
���

−


0

d��− i��qH0
2���n

−1	�	/v�ei�	/v�
+ ��

0




d��i��qH0
1���n

−1�/v�ei�	/v�
 ,

here 	�z−vt, and H0
1,2 are the zero-order Hankel func-

ions of the first and second kind. Using, next, the rela-
ion H0

2�x�=−H0
1�−x� for x
0, the last equation is reduced

o

���,	� =
1

2cn
�

−





d�iqH0
1���n

−1�/v�ei�	/v �5�

which, incidentally, is nothing but Eq. (7) of [1]), from
hich one determines the well-known expression for the
herenkov radiation

���,z,t� = �
2q�n

�	2 − �n
−2�2

for 	 � − �n
−1�

0 elsewhere
� , �6�

here it should be noted that �n�v /cn and �n

1/�v2 /cn
2 −1. The radiation exists only inside the rear

art 	=−�n
−1� of the Cherenkov cone.

As to the vectorial case, physically more significant, let
s only mention that it can be constructed by adopting
he Lorentz gauge and by considering the vector potential
=Azêz, with Az��, and the current density j= jzêz, with

z� j.

. Cherenkov Emission and X-Shaped Waves
ne might be induced to look for a connection between

he Cherenkov emission and X-shaped waves. The sim-
lest X-waves are solutions to the homogeneous scalar
ave equation: They are wave functions of the type
�� ,z , t�=X�� ,	�, with 	�z−Vt and cn�V�
, and they

an be obtained by suitable superpositions of axially sym-
etric Bessel beams, propagating in the positive z direc-

ion with the same phase-velocity (cf., e.g., [9–11]); pre-
isely,

�X��,	� =�
0




d�S���J0��
�

V
�V2/cn

2 − 1�ei�	/V, �7�

here J0� . � is an ordinary zero-order Bessel function and
��� is the temporal frequency spectrum. Let us recall

hat Eq. (7) represents a particular case of the superlumi-
al waves, which in their turn are just a particular case of
he (subluminal, luminal, or superluminal) LWs. For the
pecific spectrum S���=exp
−a��, with a a positive con-
tant, one obtains the zero-order (classic) X-wave:

X � X��,	� =
V

��aV − i	�2 + �V2/c2 − 1��2
. �8�
n
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ttempts at comparing the Cherenkov effect and the zero-
rder X-wave can be suggested by the apparent math-
matical similarity of Eqs. (5) and (7). To be more specific:
i) we have seen that for the inhomogeneous wave equa-
ion (1), a Cherenkov solution of the type given in Eq. (6)
xists only inside the cone rear part 	=−�−1�. To obtain a
olution existing only inside the cone forward part 	
�−1�, one should make use of the advanced Green’s func-

ion G−: This—to go on with our example—could lead one
o believe, on the basis of an incorrect analogy, that the
orward part of the X-wave is non-causal. (ii) Another
oint that may lead to erroneous conclusions is that, if
ne uses S���= i into the �X wave synthesis in Eq. (7),
hat is, if one sets a=0 in Eq. (8) and multiplies it by i,
ne obtains

X̃��,	� =
V

�	2 − �V2/cn
2 − 1��2

, �9�

hich is mathematically identical, apart from a constant,
o the Cherenkov solution in Eq. (6), with a real part ex-
sting this time inside both the rear cone 	=−�−1� and the
orward cone 	=�−1�. But the statement that the ad-
anced part of the zero-order X-wave [cf. Eq. (8)] is non-
ausal would again be due to an illicit extrapolation: In-
eed, the X-wave, being a solution to the homogeneous
ave equation, cannot possess singularities. In contrast,

he solution given in Eq. (9), which was obtained from the
essel beam superposition (7) using a constant spectrum
���, does have singularities and cannot be considered a
olution to the homogeneous wave equation. Actually, the
eal part of the solution (9) can be an acceptable solution
or the inhomogeneous case only. [Indeed, we shall show
ater on that it might represent the field of a point-charge
raveling with speed V�cn when using as a Green’s func-
ion the expression G=G+/2+G−/2, half-retarded and
alf-advanced (which means, again, that it refers to an in-
omogeneous problem)].
It should be pointed out that the Bessel beam synthesis

n Eq. (7) is a particular case of more general spectral rep-
esentations yielding not only infinite but also finite-
nergy superluminal [2,9–11] LWs. Not less important,
ven a finite-energy close replica of the the classic X-wave
8) (endowed, incidentally, with a finite field depth) can be
enerated in a causal manner by means of a “dynamic” fi-
ite aperture (antennas, holographic or optical elements,
tc.). For instance, it is enough to consider an array of cir-
ular elements excited according to the function X�� ,z
0, t�, given by Eq. (7) or Eq. (8) on the aperture plane lo-
ated at z=0. The emitted finite-energy X-wave can be
alculated by means of the Rayleigh–Sommerfeld (II) for-
ula [18]

�RS�II���,z,t� =�
0

2�

d���
0

D/2

d����
1

2�R

��
X�
�z − z��

R2 + 
�cnt�X�
�z − z��

R � . �10�

he quantities inside the square brackets are evaluated
t the retarded time cnt�=cnt−R. The distance
=��z−z �2+�2+� 2−2�� cos��−� � is now the separa-
� � � �
ion between source and observation points, and the ap-
rture diameter is denoted by D. The depth of field of the
articular solution given in Eq. (10) is known [19–21] to
e Z=D�n /2 (at least when the aperture radius D /2 is
uch larger than the spot width s0=�3a�V).
What was stated above has been theoretically (even via

umerical simulations) and experimentally verified: see,
or example, [9–16,22–28,19–21,29,30,2].

We agree with previous authors such as Walker and
uperman [1] that the superluminal spot of any X-wave

s fed by the waves coming from the elements of the ap-
rture and that these waves carry energy propagating
ith at most luminal speed. In such cases, the X-wave in-

ensity peaks at two different locations are not causally
orrelated: This is indeed firmly accepted, since 1990s, by
hose working on LWs (cf., e.g., the references in [31,30],
s well as [2,9–11,19–28]). The efforts in the area of
-waves are not aimed at transmitting information super-

uminally: On the contrary, X-waves arouse interest be-
ause of their spatio-temporal localization, unidirectional-
ty, soliton-like nature, and self-reconstruction properties
n the near-to-far zone. Such properties bear interesting
onsequences, from theoretical and experimental points of
iew, in all sectors of physics in which a role is played by

wave equation (including—mutatis mutandis—
lementary particle physics, and even gravitation).

. Conditions for Constructing Further X-Shaped Waves
t is also true, and again well known, that the (ideal) zero-
rder X-wave in Eq. (7) bears infinite energy (as well as
he plane waves). The fact that such a solution needs to be
ed for an infinite time has been known since the begin-
ing: In any case, as mentioned earlier, such a problem
an be overcome either by using [cf. Eq. (10)] apertures fi-
ite in space and time, i.e., by truncating the X-wave, or
y constructing exact, analytical finite-energy solutions
29,22–28]. For reasons of space, we shall show only
riefly, but in an original rigorous way, how closed-form
olutions of the latter type can be actually constructed,
ithout any recourse to the backward-traveling waves

hat trouble the ordinary approaches: See Subsection 2.E
elow.
For the moment, let us recall that X-waves endowed by

hemselves with finite energy even without truncation
ave already been constructed in the past by using, how-
ver, an (very good, by the way) approximation: See, for
nstance, the approximate solution in Eqs. (2.31) and
2.32) of [32], that is, the “SMPS pulse,” which is depicted
n Fig. 1. A finite-energy X-wave gets deformed while
ropagating: Fig. 1(b) shows the pulse in Fig. 1(a) after it
as traveled 50 km.
Let us stress, as well, that the formulations leading to

Ws in general, and to X-waves in particular, are not cho-
en ad hoc but are based on proper choices of the spectra
which imply a specific space–time coupling
29,22–28,33,34]) and of the Bessel functions (in order to
void singularities both at �=0 and at �=
). [By contrast,
he choice suggested, for instance, in Eq. (15) of [1] pre-
ents singularities]. To be clearer, let us observe that a
eneral solution to the scalar homogeneous wave equa-
ion in free space can be written (when eliminating eva-
escent waves) in the form
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���,�,z,t� = �
�=−



 ��
0




d��
−�/c

�/c

dkzA��kz,��

� J�����2

c2 − kz
2�eikzze−i�tei��
 �11�

y considering positive angular frequencies � only. For
btaining ideal LWs propagating along the positive z di-
ection with peak-velocity V (that can assume a priori any
alue 0�V�
, as we know), the spectra A� must have
he form [29,2,33,34]

A��kz,�� = �
�=−





S������
� − �Vkz + b���, �12�

here b�=2��V /�z0, and it can be easily shown
29,33,34] that solution (11) possesses the important prop-
rty ��� ,� ,z , t�=��� ,� ,z+�z0 , t+�z0 /V�, where �z0 is a
hosen space interval along z. Equations (11) and (12) al-
eady confirm that LWs are not to be found by ad hoc as-
umptions: Equation (12) does explicitly show that—as
entioned above—the ideal LWs exist only in correspon-

ence with linear relations between � and kz, that is, with
pecific space–time couplings. By assuming in particular
0�kz ,���A��kz ,��=��0S�����kz��
�− �Vkz+�0��, where

he Heaviside function � does eliminate, as desired, any
ackward components and �0 is a constant, we can con-
truct an infinite number of subluminal, luminal, or su-
erluminal localized solutions, with axial symmetry and
n closed form. For instance, the X-shaped waves repre-
ented in Eq. (7), correspond to the particular value �0
0. To get finite-energy solutions one has to abandon the
trict requirement of a linear relation between � and kz
nd impose instead that the spectral functions A�kz ,��
ossess non-negligible values only in the vicinity of a
traight line of the mentioned type [29]: This is briefly ex-
loited in Subsection 2.E below.

. X-Shaped Field Generated by a Really Superluminal
Point) Charge

e have already established that no analogy between the
herenkov radiation and the X-wave solution is justified

ig. 1. (Color online) Example of an X-type LW endowed with fin
hile propagating: (b) represents the pulse depicted in (a) after
ven in material media. In the case of vacuum, the afore-
entioned analogy should have rather led one to consider

he field generated by a really superluminal point-
harge!—an unconventional problem that was investi-
ated in [3] and references therein. In such a situation,
he point-charge superluminally traveling in the vacuum
s not expected to radiate, due to physical reasons pub-
ished long ago [35,8,36–38]. Such a charge does not radi-
te in its rest frame [8,37,38] and, consequently, neither
oes it radiate according to observers for whom it is su-
erluminal [35]. We establish this result below, by explicit
alculations based on Maxwell equations only.

Let us consider the wave equation (1) in vacuum �cn
c� with a superluminally moving �v→V�c� point

harge source. Use of the Green’s function G= �G+

G−� /2 (cf., e.g., [39–43]) yields the following integral rep-
esentation for the solution 
	�z−Vt�:

���,	,t� =
q

c�0




d�N0��
�

V
�−1�cos��

V
	� , �13�

here N0 is the zero-order Neumann function and, now,
n and �n have been replaced with ��V /c and �−1

�V2 /c2−1. The integration can be carried out explicitly,
nd yields, for the field generated by a point-charge trav-
ling superluminally in the vacuum, the expression

���,z,t� = �q�
	2 − �2�−2�−1/2 when 0 � ��−1 � 			

0 elsewhere � .

�14�

his solution is different from zero inside the rear and
ront parts of the unlimited double cone [3,31] generated
y the rotation around the z axis of the straight lines �
±�	, in agreement with the predictions of the “ex-

ended” (or, rather, “non-restricted”) theory of special rela-
ivity [8,37,38]. The expression in Eq. (14) is precisely
quivalent to the solution given by Eq. (8) in our earlier
aper [3] (except for a constant that was wrong therein).
Going on to the (physically more suited) vectorial for-
alism, adopting the Lorentz gauge, and choosing a cur-

ent density j= jzêz, jz� j, a scalar electric potential �
c� /V and a vector magnetic potential A��ê (cf. Fig. 2

rgy (even without truncation), which consequently gets deformed
traveled 50 km. See [32] and the text.
ite ene
z
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n [3], which refers to a negative point-charge), one ob-
ains, in analogy to [3], the electric and magnetic fields

E��,	� = − q�−2Y��ê� + 	êz�, B = − q��−2Y�ê�,

�15�

n Gaussian units, where

Y � 
	2 − �2�−2�−3/2

nside the double cone (i.e., for 0���−1� 			), while Y=0
utside it (that is, E and B are zero outside it). The cor-
esponding Poynting vector is given by

S =
c

4�
q2��−4Y2���êz − 	ê��. �16�

he total flux, through any closed surface containing the
oint-charge at the considered instant of time, equals
ero. Thus, a point-charge traveling at a constant super-
uminal speed in vacuum does not radiate energy. This
act is depicted and explained in an intuitive way in Fig. 4
f [3], which originally appeared in [7,8] and, for clarity, is
eproduced in this article as Fig. 2.

We wish to emphasize that in the present case the field
eed not be fed, at variance with the case of the ordinary
-waves. Once more, one can see that any analogies be-

ween the Cherenkov effect and the X-waves do com-
letely break down in the case of the vacuum.
Apparently, most authors do not address other interest-

ng physical points. For example, usually no mention is
ade of the fact that a superluminal charge is expected to

ehave as a magnetic pole, in the sense fully clarified in
44,45,8]. One can see even from Eqs. (15) that E→0, and
ne is left with a pure magnetic field, in the limit V→
.

. Finite-Energy X-Shaped Waves
t last, as anticipated in Subsection 2.C above, we are go-

ng to show how finite-energy solutions can be obtained in
losed form without any recourse to the backward-
raveling waves that trouble the usual approaches (even

ig. 2. This figure, which appeared in [3], but is taken from [8],
ntuitively shows, among other things, that a superluminal
harge [35–38,7,8,30,31] traveling at constant speed in vacuum
ould not lose energy: see [3] and the text. Reprinted with kind
ermission of Società Italiana di Fisica.
f the intervention of such components has been already
inimized in [29,22–28], at the cost, however, of going on

o frequency spectra with a very large bandwidth). In fact,
hen confining ourselves to superluminal LWs with axial

ymmetry, let us put in Eq. (11) A��kz ,��=��0A�kz ,�� and
dopt the “unidirectional decomposition”

	 � z − Vt; � � z − ct.

n terms of the new variables [46,47] and confining our-
elves now to V�c, Eq. (11) can be rewritten as

���,	,�� = �V − c��
0




d��
−


�

d�J0����−2�2 − 2�� − 1����

�exp
− i���exp
i�	�A��,��,

here ����−Vkz� / �V−c� and ����−ckz� / �V−c�.
As mentioned above, ideal (infinite-energy) superlumi-

al LWs are obtained by imposing the linear constraint
�� ,��=B������+�0�. By contrast, finite-energy superlu-
inal LWs are obtained by concentrating the spectrum
�� ,�� in the vicinity of the straight line �=−�0. By

hoosing, for example,

A��,�� =
��− � − �0�

V − c
ed�e−a�, �17�

e get the finite-energy exact solutions (free of any back-
ard components):

���,	,�� =
X

VZ
e−�0Z, �18�

here X is defined in Eq. (8); quantities a, d, and �0 are
ositive constants; and

Z � �d − i�� −
c

V + c
�a − i	 − VX−1�.

In Figs. 3(a) and 3(b) we show one such finite-energy
uperluminal LW, corresponding to an exact, analytic so-
ution totally free of backward-traveling components. As
e know, any finite-energy X-wave gets deformed while
ropagating: Fig. 3(b) shows the pulse in Fig. 3(a) after it
as traveled 2.78 km.

. SOME CONCLUSIONS
he localized waves (LWs) are non-diffracting solutions to

he wave equations and are known to exist with arbitrary
eak-velocities 0�V�
. For mathematical and experi-
ental reasons, those that have attracted more attention

re the “X-shaped” superluminal waves. Such waves are
ssociated with a cone, so that—let us confine ourselves to
lectromagnetism—it was tempting to look for links be-
ween them and the Cherenkov radiation. However, the
-shaped waves belong to a rather different realm: For in-
tance, they exist, independently of any media, even in
acuum as localized rigidly propagating pulses. In this
aper we have dissected the question, on the basis of clear
hysical considerations and a rigorous formalism; show-
ng that, in spite of the seeming mathematical similari-
ies of the solutions corresponding to the Cherenkov effect
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nd the zero-order X-waves, Cherenkov radiation has
othing to do with the X-shaped LWs even in material
edia.
Our calculations, based on Maxwell equations only, elu-

idate that (i) the “X-waves” exist in all space, and in par-
icular inside both the front and the rear part of their
ouble cone (which, as we said, has nothing to do with
herenkov’s); (ii) the X-waves are found not heuristically
ut by use of strict mathematical (or experimental) proce-
ures, without ad hoc assumptions; (iii) the ideal
-waves, as well as plane waves, are endowed with infi-
ite energy, but we have shown by a new technique how
o construct finite-energy X-waves (even without recourse
o space–time truncations), represented by exact solutions
otally free of backward-traveling waves; (iv) the most in-
eresting property of X-waves lies in the circumstance
hat they are LWs, endowed with a characteristic self-
econstruction property, and promise important practical
pplications (in part already realized), quite indepen-
ently of their peak-velocity value; (v) and last, insistence
n attempting a comparison of Cherenkov radiation with
-waves would lead one to a really unconventional
phere: that of considering the rather different situation
f the (X-shaped, too) field generated by a superluminal
oint-charge, a non-orthodox question actually exploited
n previous papers [3]. We show here in an explicit way,
ncidentally, that in such a case the point-charge would
ot lose energy in the vacuum, and its field would not
eed to be continuously fed by incoming side-waves (as is
he case, in contrast, for an ordinary X-wave).
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