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Localized waves (LW) are nondiffracting (“soliton-like”) solutions to the wave equations and are known to exist
with subluminal, luminal, and superluminal peak velocities V. For mathematical and experimental reasons,
those that have attracted more attention are the “X-shaped” superluminal waves. Such waves are associated
with a cone, so that one may be tempted—let us confine ourselves to electromagnetism—to look [Phys. Rev.
Lett. 99, 244802 (2007)] for links between them and the Cherenkov radiation. However, the X-shaped waves
belong to a very different realm: For instance, they can be shown to exist, independently of any media, even in
vacuum, as localized non-diffracting pulses propagating rigidly with a peak-velocity V>¢ [Hernandez et al.,
eds., Localized Waves (Wiley, 2008)]. We dissect the whole question on the basis of a rigorous formalism and
clear physical considerations. © 2010 Optical Society of America

OCIS codes: 350.5720, 320.5550, 350.7420, 070.7345, 350.5500, 070.0070.

1. INTRODUCTION

Localized waves (LW) are nondiffracting (“soliton-like”)
solutions to the wave equations and are known to exist
with subluminal, luminal, and superluminal peak-
velocities V. For mathematical and experimental reasons,
those that have attracted more attention are the “X-
shaped” superluminal waves. Such waves are associated
with a cone, so that some authors—let us confine our-
selves to electromagnetism—have been tempted to look
for links between them and the Cherenkov radiation [1].
However, the X-shaped waves belong to a very different
realm: For instance, they exist, independently of any me-
dia, even in vacuum as localized non-diffracting pulses
propagating rigidly with a peak velocity V>c¢, as verified
in a number of papers (cf., e.g., the references in the book
Localized Waves [2]). It is our aim in this paper to dissect
the question on the basis of a rigorous formalism and
clear physical considerations.

In particular we show, by explicit calculations based on
Maxwell equations only, that, at variance with what was
assumed by some previous authors (see, e.g., [1] and ref-
erences therein): (i) The “X-waves” exist in all space, and
in particular inside both the front and the rear part of
their double cone (which has nothing to do with Cheren-
kov’s). (i1) The X waves are to be found not heuristically
but by use of strict mathematical (or experimental) proce-
dures, without any ad hoc assumptions. (iii) The ideal
X-waves, as well as plane waves, are actually endowed
with infinite energy, but finite-energy X-waves can be eas-
ily constructed (even without recourse to space—time
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truncations); and at the end of this work, by following a
new technique, we construct finite-energy exact solutions,
totally free of backward-traveling waves. (iv) The most in-
teresting property of X-waves lies in the circumstance
that they are LWs, endowed with a characteristic self-
reconstruction property, which promises important practi-
cal applications (in part already realized, starting in
1992), quite independently of the superluminality—or
not—of their peak-velocity. (v) Insistence on attempting a
comparison of Cherenkov radiation with X-waves would
lead one to an unconventional sphere: that of considering
the rather different situation of the (X-shaped, too) field
generated by a superluminal point-charge, a non-
orthodox question actually exploited in previous papers
[3]: We show here explicitly that in such a case the point-
charge would not lose energy in the vacuum and that its
field would not need to be continuously fed by incoming
side-waves (as is the case, in contrast, for an ordinary
X-wave).

As already said, we wish to show, by the way, that the
Cherenkov—Vavilov radiation (in the following we shall
write only “Cherenkov” for brevity’s sake) has nothing to
do with the X-shaped LWs. Happily enough, the treat-
ment of the classic problem [4,5] of the Cherenkov radia-
tion from a point-charge traveling in a medium with
speed v such that ¢, <v <c, where ¢, and ¢ are the speed
of light in the medium and in the vacuum, respectively,
has reached by now a standard form [6].

In this paper, let us address our subject in terms of rig-
orous mathematics and physics.

© 2010 Optical Society of America



Zamboni-Rached et al.

2. CHERENKOV RADIATION VERSUS
X-SHAPED LOCALIZED WAVES

A. Initial Aims

One of our initial aims is showing that no “Cherenkov for-
mulation” of the X-shaped LWs is possible. In the papers
referring to the Cherenkov effect, except for some am-
biguous notation [6], the analysis of the ordinary scalar-
valued Cherenkov radiation is normally correct; indeed,
the relevant results are well known [4,5] and generally
accepted.

The ordinary Cherenkov radiation cannot be used,
however, to draw conclusions about the superluminal
LWs known as X-shaped waves (or simply X-waves). The
latter are nondiffractive solutions to the homogeneous
wave equations and propagate rigidly with superluminal
peak-velocities. They were predicted long ago [7,8], they
have been mathematically constructed [9-11], and finite-
energy versions of them have been experimentally pro-
duced [12—16] even in vacuum. Let us go on to explicit cal-
culations.

To be self-contained, let us initially address the (sim-
pler) scalar case, in which a field ¢ is governed by the in-
homogeneous wave equation

18 4m
Vz_c_zﬁ lﬁ(l‘,t)=—_j(rat)’ (1)

n n

with j=qué(p)S(z—-vt)/(27p). Here c,, is the speed of light
in the considered medium [17] and j(r,¢) is the generating
source, assumed to be point-like and moving along the
positive z axis with subluminal speed ¢, <v<e¢, while p
denotes the cylindrical radial coordinate.

A Green’s function for Eq. (1) is given explicitly as

Gr,t,x',t")=1G*(r,t,x",t' )+ (1 -G (r,t,x',t"), (2)
where

S(t' - (t * Rlcy))
G*(r,t,x',t'") = — 7 (3)
cn

and R=(z—z")%+p2+p'2—2pp’ cos(p—¢').

Quantities G* and G~ are the retarded and the ad-
vanced Green’s function, respectively.

When considering only the retarded Green’s function
({=1), the solution to the wave equation can be expressed
as

Mr,t):fdx’3fdt’G*(r,t,r’,t’)j(r’,t’). (4)

We can use the expression for G* given in Eq. (3) for a di-
rect calculation of the wave function ¢(r,t). However, for
reasons that will be made clear below, we prefer to follow
the procedure adopted in previous papers, such as [1].
Specifically, we shall determine the Fourier transform of
G* in the variables z and ¢ and subsequently the trans-
form of ¢ in the same variables. For ¢, <v <c¢, we obtain
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1 0 .
{( J do(- iW)qu(p%lewl/v)e“”y”>
21rc, .

+ ( f dw(iW)qHé(M;lw/v)e“”g’”>],
0

where {=z-vt, and H (1)’2 are the zero-order Hankel func-
tions of the first and second kind. Using, next, the rela-
tion H g(x) =-H (1)(—x) for x=0, the last equation is reduced
to

Wp, ) =

1 « )
Wp,d) = 5— J dwigH{(pY, wlv)e' (5)

(which, incidentally, is nothing but Eq. (7) of [1]), from
which one determines the well-known expression for the
Cherenkov radiation

298, for £ < — 471
= for{<-v,p
Wp,z,t) = - %, , (6)
0 elsewhere

where it should be noted that B,=v/c, and v,

51/\102/03_1_ The radiation exists only inside the rear

part { =—y,_11p of the Cherenkov cone.

As to the vectorial case, physically more significant, let
us only mention that it can be constructed by adopting
the Lorentz gauge and by considering the vector potential
A=A_e,, with A,= ¢, and the current density j=j,&,, with

J2=J-

B. Cherenkov Emission and X-Shaped Waves

One might be induced to look for a connection between
the Cherenkov emission and X-shaped waves. The sim-
plest X-waves are solutions to the homogeneous scalar
wave equation: They are wave functions of the type
X(p,z,t)=X(p, ), with {=z-V¢ and ¢,<V <, and they
can be obtained by suitable superpositions of axially sym-
metric Bessel beams, propagating in the positive z direc-
tion with the same phase-velocity (cf., e.g., [9—11]); pre-
cisely,

o

¥x(p, ) = J de(a))JO(p%\,/W/—C?L_1)eiwg/V, )

0

where Jy(.) is an ordinary zero-order Bessel function and
S(w) is the temporal frequency spectrum. Let us recall
that Eq. (7) represents a particular case of the superlumi-
nal waves, which in their turn are just a particular case of
the (subluminal, luminal, or superluminal) LWs. For the
specific spectrum S(w)=exp[-aw], with a a positive con-
stant, one obtains the zero-order (classic) X-wave:

|4

X=X(p,0)=— .
PO V=it V- D2

(8)
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Attempts at comparing the Cherenkov effect and the zero-
order X-wave can be suggested by the apparent math-
ematical similarity of Eqgs. (5) and (7). To be more specific:
(i) we have seen that for the inhomogeneous wave equa-
tion (1), a Cherenkov solution of the type given in Eq. (6)
exists only inside the cone rear part /=—7y!p. To obtain a
solution existing only inside the cone forward part ¢
=v1p, one should make use of the advanced Green’s func-
tion G™: This—to go on with our example—could lead one
to believe, on the basis of an incorrect analogy, that the
forward part of the X-wave is non-causal. (ii) Another
point that may lead to erroneous conclusions is that, if
one uses S(w)=i into the ¢x wave synthesis in Eq. (7),
that is, if one sets a=0 in Eq. (8) and multiplies it by ¢,
one obtains

- v
X(p,0) = , 9
(p,0) N 9)

which is mathematically identical, apart from a constant,
to the Cherenkov solution in Eq. (6), with a real part ex-
isting this time inside both the rear cone {=-7y"1p and the
forward cone {=vy lp. But the statement that the ad-
vanced part of the zero-order X-wave [cf. Eq. (8)] is non-
causal would again be due to an illicit extrapolation: In-
deed, the X-wave, being a solution to the homogeneous
wave equation, cannot possess singularities. In contrast,
the solution given in Eq. (9), which was obtained from the
Bessel beam superposition (7) using a constant spectrum
S(w), does have singularities and cannot be considered a
solution to the homogeneous wave equation. Actually, the
real part of the solution (9) can be an acceptable solution
for the inhomogeneous case only. [Indeed, we shall show
later on that it might represent the field of a point-charge
traveling with speed V>c¢, when using as a Green’s func-
tion the expression G=G*/2+G~/2, half-retarded and
half-advanced (which means, again, that it refers to an in-
homogeneous problem)].

It should be pointed out that the Bessel beam synthesis
in Eq. (7) is a particular case of more general spectral rep-
resentations yielding not only infinite but also finite-
energy superluminal [2,9-11] LWs. Not less important,
even a finite-energy close replica of the the classic X-wave
(8) (endowed, incidentally, with a finite field depth) can be
generated in a causal manner by means of a “dynamic” fi-
nite aperture (antennas, holographic or optical elements,
etc.). For instance, it is enough to consider an array of cir-
cular elements excited according to the function X(p,z
=0,¢), given by Eq. (7) or Eq. (8) on the aperture plane lo-
cated at z=0. The emitted finite-energy X-wave can be
calculated by means of the Rayleigh—Sommerfeld (II) for-
mula [18]

27 D/2 1
2,t) = do' do'p ——
Yrsan(p,2,t) jo ¢ JO A

(z-2") (z-2")
X [X]Tﬂ&cnt'X]T . (10)

The quantities inside the square brackets are evaluated
at the retarded time c,t'=c,t—R. The distance
R=\(z—2")?+p%+p'?—2pp’ cos(¢—¢') is now the separa-
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tion between source and observation points, and the ap-
erture diameter is denoted by D. The depth of field of the
particular solution given in Eq. (10) is known [19-21] to
be Z=Dv,/2 (at least when the aperture radius D/2 is
much larger than the spot width so=13ayV).

What was stated above has been theoretically (even via
numerical simulations) and experimentally verified: see,
for example, [9-16,22—-28,19-21,29,30,2].

We agree with previous authors such as Walker and
Kuperman [1] that the superluminal spot of any X-wave
is fed by the waves coming from the elements of the ap-
erture and that these waves carry energy propagating
with at most luminal speed. In such cases, the X-wave in-
tensity peaks at two different locations are not causally
correlated: This is indeed firmly accepted, since 1990s, by
those working on LWs (cf., e.g., the references in [31,30],
as well as [2,9-11,19-28]). The efforts in the area of
X-waves are not aimed at transmitting information super-
luminally: On the contrary, X-waves arouse interest be-
cause of their spatio-temporal localization, unidirectional-
ity, soliton-like nature, and self-reconstruction properties
in the near-to-far zone. Such properties bear interesting
consequences, from theoretical and experimental points of
view, in all sectors of physics in which a role is played by
a wave equation (including—mutatis mutandis—
elementary particle physics, and even gravitation).

C. Conditions for Constructing Further X-Shaped Waves
It is also true, and again well known, that the (ideal) zero-
order X-wave in Eq. (7) bears infinite energy (as well as
the plane waves). The fact that such a solution needs to be
fed for an infinite time has been known since the begin-
ning: In any case, as mentioned earlier, such a problem
can be overcome either by using [cf. Eq. (10)] apertures fi-
nite in space and time, i.e., by truncating the X-wave, or
by constructing exact, analytical finite-energy solutions
[29,22-28]. For reasons of space, we shall show only
briefly, but in an original rigorous way, how closed-form
solutions of the latter type can be actually constructed,
without any recourse to the backward-traveling waves
that trouble the ordinary approaches: See Subsection 2.E
below.

For the moment, let us recall that X-waves endowed by
themselves with finite energy even without truncation
have already been constructed in the past by using, how-
ever, an (very good, by the way) approximation: See, for
instance, the approximate solution in Eqgs. (2.31) and
(2.32) of [32], that is, the “SMPS pulse,” which is depicted
in Fig. 1. A finite-energy X-wave gets deformed while
propagating: Fig. 1(b) shows the pulse in Fig. 1(a) after it
has traveled 50 km.

Let us stress, as well, that the formulations leading to
LWs in general, and to X-waves in particular, are not cho-
sen ad hoc but are based on proper choices of the spectra
(which imply a specific space-time coupling
[29,22-28,33,34]) and of the Bessel functions (in order to
avoid singularities both at p=0 and at p=x). [By contrast,
the choice suggested, for instance, in Eq. (15) of [1] pre-
sents singularities]. To be clearer, let us observe that a
general solution to the scalar homogeneous wave equa-
tion in free space can be written (when eliminating eva-
nescent waves) in the form
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Fig. 1. (Color online) Example of an X-type LW endowed with finite energy (even without truncation), which consequently gets deformed
while propagating: (b) represents the pulse depicted in (a) after it has traveled 50 km. See [32] and the text.

% o0 wle
p, h,2,t) = >, [ f dw f dk A (ko)
y==% 0 —wle

e
XdJ,| p ol k2 |etkzeioteive (11)

by considering positive angular frequencies w only. For
obtaining ideal LWs propagating along the positive z di-
rection with peak-velocity V (that can assume a priori any
value 0=V =w, as we know), the spectra A, must have
the form [29,2,33,34]

Aks,0)= X S, (@) d0—(VE,+b,)], (12)

==

where b,=27uV/Az;, and it can be easily shown
[29,33,34] that solution (11) possesses the important prop-
erty ¥p,d,z,t)=ip,d,z+Azy,t+Azy/V), where Az, is a
chosen space interval along z. Equations (11) and (12) al-
ready confirm that LWs are not to be found by ad hoc as-
sumptions: Equation (12) does explicitly show that—as
mentioned above—the ideal LWs exist only in correspon-
dence with linear relations between w and %,, that is, with
specific space—time couplings. By assuming in particular
Aglks, @) =A,(k,, )= 8,S(0)O (k) d - (VE,+ap)], where
the Heaviside function O does eliminate, as desired, any
backward components and « is a constant, we can con-
struct an infinite number of subluminal, luminal, or su-
perluminal localized solutions, with axial symmetry and
in closed form. For instance, the X-shaped waves repre-
sented in Eq. (7), correspond to the particular value «
=0. To get finite-energy solutions one has to abandon the
strict requirement of a linear relation between w and k&,
and impose instead that the spectral functions A(k,,w)
possess non-negligible values only in the vicinity of a
straight line of the mentioned type [29]: This is briefly ex-
ploited in Subsection 2.E below.

D. X-Shaped Field Generated by a Really Superluminal
(Point) Charge

We have already established that no analogy between the
Cherenkov radiation and the X-wave solution is justified

even in material media. In the case of vacuum, the afore-
mentioned analogy should have rather led one to consider
the field generated by a really superluminal point-
charge!—an unconventional problem that was investi-
gated in [3] and references therein. In such a situation,
the point-charge superluminally traveling in the vacuum
is not expected to radiate, due to physical reasons pub-
lished long ago [35,8,36—38]. Such a charge does not radi-
ate in its rest frame [8,37,38] and, consequently, neither
does it radiate according to observers for whom it is su-
perluminal [35]. We establish this result below, by explicit
calculations based on Maxwell equations only.

Let us consider the wave equation (1) in vacuum (c,
—¢) with a superluminally moving (v—V>c¢) point
charge source. Use of the Green’s function G=(G*
+G7)/2 (cf., e.g., [39-43]) yields the following integral rep-
resentation for the solution [{=z-Vt]:

S T e s R
lp(p:g’t)_c WLV pvy cos Vg ) ( )

0

where N is the zero-order Neumann function and, now,
B, and 7y, have been replaced with 8=V/c and y!
=\V2/c2-1. The integration can be carried out explicitly,
and yields, for the field generated by a point-charge trav-
eling superluminally in the vacuum, the expression

gl - p*y T2 when 0 < py ™' <[
0 elsewhere

Hp,z,t) ={

(14)

This solution is different from zero inside the rear and
front parts of the unlimited double cone [3,31] generated
by the rotation around the z axis of the straight lines p
=+, in agreement with the predictions of the “ex-
tended” (or, rather, “non-restricted”) theory of special rela-
tivity [8,37,38]. The expression in Eq. (14) is precisely
equivalent to the solution given by Eq. (8) in our earlier
paper [3] (except for a constant that was wrong therein).

Going on to the (physically more suited) vectorial for-
malism, adopting the Lorentz gauge, and choosing a cur-
rent density j=j,€,, j,=Jj, a scalar electric potential ¢
=cy/V and a vector magnetic potential A= e, (cf. Fig. 2
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in [3], which refers to a negative point-charge), one ob-
tains, in analogy to [3], the electric and magnetic fields

E(p7 g) =-q 7_2Y(pép + géz): B=- qﬁy_széB?
(15)

in Gaussian units, where
Y=[2- 2y 23

inside the double cone (i.e., for 0<py1<|{]), while Y=0
outside it (that is, E and B are zero outside it). The cor-
responding Poynting vector is given by

C
= 4—q2ﬂy‘4Y2p(péz -le,). (16)
T

The total flux, through any closed surface containing the
point-charge at the considered instant of time, equals
zero. Thus, a point-charge traveling at a constant super-
luminal speed in vacuum does not radiate energy. This
fact is depicted and explained in an intuitive way in Fig. 4
of [3], which originally appeared in [7,8] and, for clarity, is
reproduced in this article as Fig. 2.

We wish to emphasize that in the present case the field
need not be fed, at variance with the case of the ordinary
X-waves. Once more, one can see that any analogies be-
tween the Cherenkov effect and the X-waves do com-
pletely break down in the case of the vacuum.

Apparently, most authors do not address other interest-
ing physical points. For example, usually no mention is
made of the fact that a superluminal charge is expected to
behave as a magnetic pole, in the sense fully clarified in
[44,45,8]. One can see even from Egs. (15) that E— 0, and
one is left with a pure magnetic field, in the limit V— .

E. Finite-Energy X-Shaped Waves

At last, as anticipated in Subsection 2.C above, we are go-
ing to show how finite-energy solutions can be obtained in
closed form without any recourse to the backward-
traveling waves that trouble the usual approaches (even

AP

emission

absorption

Fig. 2. This figure, which appeared in [3], but is taken from [8],
intuitively shows, among other things, that a superluminal
charge [35-38,7,8,30,31] traveling at constant speed in vacuum
would not lose energy: see [3] and the text. Reprinted with kind
permission of Societa Italiana di Fisica.
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if the intervention of such components has been already
minimized in [29,22-28], at the cost, however, of going on
to frequency spectra with a very large bandwidth). In fact,
when confining ourselves to superluminal LWs with axial
symmetry, let us put in Eq. (11) A, (%,, w)=6,0A(k,,») and
adopt the “unidirectional decomposition”

(=2z-Vi, n=z-ct.

In terms of the new variables [46,47] and confining our-
selves now to V>¢, Eq. (11) can be rewritten as

Wp,L,m) = (V—C)f dfrJ dado(p\y20* - 2(B- 1)oa)
0 —o

Xexp[-ianlexplio]A(a,0),

where a=(w-Vk,)/(V-c) and o= (w-ck,)/(V-c).

As mentioned above, ideal (infinite-energy) superlumi-
nal LWs are obtained by imposing the linear constraint
A(a,0)=B(0)8(a+ap). By contrast, finite-energy superlu-
minal LWs are obtained by concentrating the spectrum
A(a,0) in the vicinity of the straight line a=-«ay. By
choosing, for example,

O(-a- ay)
0 eda

A(a,0) = Vo

e, 17

we get the finite-energy exact solutions (free of any back-
ward components):

X —-agZ
Wp,¢, n)=ﬁe , (18)

where X is defined in Eq. (8); quantities a, d, and « are
positive constants; and

Cc
ZE(d—iﬂ)—m(a—ig—VX_l).

In Figs. 3(a) and 3(b) we show one such finite-energy
superluminal LW, corresponding to an exact, analytic so-
lution totally free of backward-traveling components. As
we know, any finite-energy X-wave gets deformed while
propagating: Fig. 3(b) shows the pulse in Fig. 3(a) after it
has traveled 2.78 km.

3. SOME CONCLUSIONS

The localized waves (LWs) are non-diffracting solutions to
the wave equations and are known to exist with arbitrary
peak-velocities 0 <V <. For mathematical and experi-
mental reasons, those that have attracted more attention
are the “X-shaped” superluminal waves. Such waves are
associated with a cone, so that—Ilet us confine ourselves to
electromagnetism—it was tempting to look for links be-
tween them and the Cherenkov radiation. However, the
X-shaped waves belong to a rather different realm: For in-
stance, they exist, independently of any media, even in
vacuum as localized rigidly propagating pulses. In this
paper we have dissected the question, on the basis of clear
physical considerations and a rigorous formalism; show-
ing that, in spite of the seeming mathematical similari-
ties of the solutions corresponding to the Cherenkov effect
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Fig. 3. Example of a finite-energy X-type LW, corresponding to an exact, analytic solution of Eq. (18), totally free of backward compo-
nents. This figure represents the real part of the field, normalized at p=z=0 for ¢=0, with the choices ¢=3.99xX10"® m, d=20 m,
V=1.005 ¢, and a;=1.26 X107 m~'. In this case the frequency spectrum starts at w= w,;,~3.77 X 10'® Hz and afterward decays expo-
nentially with the bandwidth Aw=7.54 X 103 Hz. The value w,,;, can be regarded as the pulse central frequency; since Aw/ w,;, <1, there
exists a well-defined carrier wave, which clearly shows up in the plots. Any finite-energy LW gets deformed while propagating:

(b) represents the pulse depicted in (a) after it has traveled 2.78 km.

and the zero-order X-waves, Cherenkov radiation has
nothing to do with the X-shaped LWs even in material
media.

Our calculations, based on Maxwell equations only, elu-
cidate that (i) the “X-waves” exist in all space, and in par-
ticular inside both the front and the rear part of their
double cone (which, as we said, has nothing to do with
Cherenkov’s); (ii) the X-waves are found not heuristically
but by use of strict mathematical (or experimental) proce-
dures, without ad hoc assumptions; (iii) the ideal
X-waves, as well as plane waves, are endowed with infi-
nite energy, but we have shown by a new technique how
to construct finite-energy X-waves (even without recourse
to space—time truncations), represented by exact solutions
totally free of backward-traveling waves; (iv) the most in-
teresting property of X-waves lies in the circumstance
that they are LWs, endowed with a characteristic self-
reconstruction property, and promise important practical
applications (in part already realized), quite indepen-
dently of their peak-velocity value; (v) and last, insistence
on attempting a comparison of Cherenkov radiation with
X-waves would lead one to a really unconventional
sphere: that of considering the rather different situation
of the (X-shaped, too) field generated by a superluminal
point-charge, a non-orthodox question actually exploited
in previous papers [3]. We show here in an explicit way,
incidentally, that in such a case the point-charge would
not lose energy in the vacuum, and its field would not
need to be continuously fed by incoming side-waves (as is
the case, in contrast, for an ordinary X-wave).
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