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Abstract: In recent years statistical analyses for monitoring the environment
are increasingly in demand in different areas such as epidemiology, engineering, econ-
omy, etc. An example is the statistical monitoring of air quality, which makes it
possible to statistically quantify the amount of certain pollutants in the lower tro-
posphere. For a better understanding of the stochastic behavior of pollutants we
focus on describing their extreme responses, because excessively extreme levels in
the air may have implications in the environment and on human health. We then
consider multivariate extreme value models and the class of maxstable processes in
order to asses the frequencies of several extreme pollutant levels in central Europe
and their spatial dependence structure.
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1 Introduction

Nowadays in many disciplines such as epidemiology, engineering, economy, etc, are
in great demand the statistical analyses for monitoring the environment. Specifi-
cally, it is very important to statistically quantify the amount of certain pollutants
in the lower troposphere and this is possible thanks to the statistical monitoring of
the air quality. A main aspect of environmental processes is their natural spatial do-
main, presupposing a statistical spatial analysis approach. One of the primary aims
of the latter is to asses the dependence structure of the underlying process. In this
case it is important to determine the degree of dependence of the pollutants’ levels
among the monitoring stations. There are a number of generic approaches to spatial
modeling that to date have already been widely applied (e.g., Diggle and Ribeiro,
2007). But these are suitable for modeling the mean process levels, therefore they
are inappropriate for handling extremal aspects. For a better understanding of the
stochastic behavior of pollutants we focus on describing their extreme responses, be-
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cause excessively extreme levels in the air may have implications in the environment
and on human health.

With this work we aim to describe the extreme values of certain pollutants, such
as fine particulate matters, sulphure, nitrogen dioxides, etc. recorded in central
Europe. Each pollutant is recorded at s = 1,...,S locations, within a continuous
region, for m-temporal observation with n = 1,2,.... At each site we compute
the maximum with respect to a block of N temporal observations. For example,
for hourly observations, we set N = 24 x 366 and this implies that we focus on
annual maxima of the process. Thus, we derive a temporal series of componentwise
maxima of process measurements denoted by {y;(s)} with ¢ = 1,... T the sample of
block maxima. In order to perform the analyses of the pollutants’ extreme levels we
consider the classes of multivariate extreme value models and of maxstable processes
(see e.g. Chapters 6, 9 of de Haan and Ferreira, 2006). These families provide a
quite general framework, with similar asymptotic motivations to the univariate case,
suitable to model extreme processes incorporating temporal or spatial dependence.
Statistical methods for max-stable processes and data analyses of practical problems
are discussed by Padoan et al. (2010).

2 Methods

A suitable setting for addressing spatial problems in the extreme values context is
provided by max-stable processes.

Let {Y(2)}.ex be a stochastic process defined on X C IR?, ¢ € IN, with continu-
ous sample path. Assume that n independent and identically distributed (iid) copies
of it, Y; with ¢ = 1, ..., n, are available, and hence focus on the limit of the rescaled
process { M,,(x)},ex. Specifically, if there exist continuous positive functions a,,(z)
and real functions b, (x), with n € IN such that

Z(z) = lim {M"(x) _b”(x)}mex (1)

is not a trivial limit, that is the normalized sequence M,,(x) converges in distribution
to a process Z(z) with non-degenerate marginals for all x € X, then we call Z an
extreme value process. Observe, that the limiting process Z posses three important
proprieties: a) it is a maz-stable process; b) all its univariate marginal distributions
belong to the generalized extreme wvalue class of distributions; c¢) all its finite p-
dimensional distributions, with p > 2, are characterized to be multivariate extreme
value distributions (see e.g. Chapters 1, 6 of de Haan and Ferreria, 2006).
Correlation coefficients and correlation functions are typically used in order to
describe pairwise dependence, under Gaussianity assumption, respectively for high
dimensional and spatial analysis. Similarly extremal coefficients and the extremal
coefficient functions describe the dependence for extremes. Specifically, given Z;,
i=1,...,n, iid copies of a component-wise random vector Z = (Z,...,Z,) € IR



with common unit Fréchet margins, then from the following relation
P {max(Zy,...,Z,) <z} =P{Z; < 2}° = exp(—0/2), z>0,

where the rightmost term is a Fréchet(#) distribution, the parameter 1 < 6 < p de-
fines the extremal coefficient. When 6 = 1 indicates complete dependence, whereas
0 = p corresponds to full independence. The extremal dependence of stochastic pro-
cesses has a similar definition. If now we consider a stationary max-stable process
Z(x) with univariate unit Fréchet margins then, for any pair of locations x, xo € X
separated by h = xo — x1, from the following relation

IP {max(Z(h), Z(0)) < z} = exp(—0(h)/z), z>0,

the real-valued function 6(h) defines the pairwise extremal coefficient function, where
o denotes the origin (e.g. Schlather and Tawn, 2003). From a practical point of view
we consider, for modeling the extremes of the pollutants, two specific families of max-
stable processes such as the Brown-Resnick process (e.g. Kabluchko et al., 2009) and
the Extremal Gausssian process (e.g. Schlather, 2002) and the class of multivariate
extreme value distributions named the Extremal-t model (e.g. Nikoloulopoulos et
al., 2009). We can easily fit these models to the pollutants data using the maximum
composite likelihood estimation method (e.g. Padoan et al., 2010) and then to
compare the different results. Moreover, for these models the closed form of the
extremal coefficients is known so that we can, after the fitting step, assess the
dependence structure and estimate the frequencies with which different high levels
of the pollutants occur.

3 Data

The dataset considered for the analysis consists of hourly measurements of some
pollutants of central Europe (see left panel of Figure 1) available on the Internet
at the website: http://www.eea.europa.eu. Specifically, we took into account a
time-period of 13 years, from January 1996 to December 2008, and we selected a
region of approximately 341.000 km?. The right panel of Figure 1 shows the area
where the monitoring weather stations are located and the numbers from 1 to 3
denote the locations for the different pollutants. In particular, the 139 stations
indicated with the number 1 monitor the benzene (COHG6), carbon monoxide (C'O)
and nitrogen dioxide (INO2), the 126 stations indicated by the number 2 monitor the
ozone (O3) and the 68 stations indicated by the number 3 monitor the particulate
matters (PM10), sulphure (SO2). For each pollutant there are some missing data
but the percentage is small, we can account on average (between sites) 2 % of missing
values. Given that in the analysis we focus on block maxima of pollutants, where
the blocks are formed by 24 x 366 temporal observations leading to sequences of
annual maxima, the small percentage of missing data should not have an impact on
the description of the extremes.
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Figure 1: Air quality data: the left panel reports the European map and the rectangle
displays the central part where the monitoring weather stations are located. The right
panel shows the expanded zone marked by the rectangle of the left panel and displays
with the numbers the locations of the monitoring stations.
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