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A Koksma-Hlawka inequality for simplices

Luca Brandolini, Leonardo Colzani,
Giacomo Gigante, Giancarlo Travaglini

The Koksma-Hlawka inequality gives an estimate of the error in a numerical
integration CCCCCC

Z

[0;1]d
f(x)dx�

1

N

NX

j=1

f (zj)

CCCCCC
� D (zj)V (f) :

Here D (zj) is the discrepancy of the �nite set of points fz1; : : : ; zNg in [0; 1)
d
,

de�ned by

D (zj) = sup
I

CCCCCC
jIj �

1

N

NX

j=1

�I (zj)

CCCCCC
;

where I is an interval of the form [0; t1]� [0; t2]� : : :� [0; td] with 0 < tk < 1,
and jIj = t1t2:::td is its measure. The term V (f) is the so-called Hardy-Krause
variation, and when f is smooth (say, Cd) this variation takes the form

V (f) =
X

B2f0;1gd;jBj6=0

Z

QB

CCCC
�
@

@x

�B
f (x)

CCCC dx:

The above sum is over all the non vanishing multiindices B = (B1; : : : ; Bd)
which take only the values 0 and 1, jBj is the number of 1�s, (@=@x)

B
=

(@=@x1)
B1 ::: (@=@xd)

Bd , QB =
n
(x1; : : : ; xd) 2 [0; 1]

d
: xj = 1 if Bj = 0

o
is the

jBj�dimensional face of [0; 1]
d
parallel to B1e1; : : : ; Bded (fe1; : : : ; edg is the

canonical basis of Rd) containing the vertex (1; : : : ; 1), and dx is the jBj�dimensional
Lebesgue surface measure (see [5, 2.5], [6, 1.4], [7, 2.2]). There is an extense
literature on this type of estimates, where the contribution to the magnitude
of the error given by the irregularity of the point distribution fz1; : : : ; zNg is
isolated from the contribution given by the steepness of the variation of the
function f . See e.g. [2], [3], [4], [5], [6], [7], [8]. In [1], one such result has been

proven, where the cube [0; 1]
d
is replaced by a generic bounded Borel subset A

of Rd. More precisely, let fz1; : : : ; zNg � [0; 1)
d
be a distribution of N points in

the unit cube, and

P =
�
zj +m : j = 1; : : : ; N; m 2 Zd

	

1



its periodic extension to the whole Euclidean space Rd. For any x = (x1; : : : ; xd) 2

R
d and t = (t1; : : : ; td) 2 (0; 1)

d
, let

I (x; t) = [m2Zd ([0; t1]� : : :� [0; td] + x+m)

be the periodic extension of the interval with opposite vertices x and x + t.
Call I the collection of all such possible periodic intervals I (x; t). Finally, let
T
d = Rd=Zd be the torus. The main result in [1] is the following.

Theorem 1 Let f be a smooth Zd�periodic function on Rd, A a bounded Borel
subset of Rd, and P =

�
zj +m : j = 1; : : : ; N; m 2 Zd

	
a periodic distribution

of points as described above. Then

CCCCC

Z

A

f(x)dx�
1

N

X

z2P\A

f (z)

CCCCC � DI (A;P)VTd(f);

where DI (A;P) is the discrepancy

DI (A;P) = sup
I2I

CCCCjI \ Aj �
1

N
] (I \ A \ P)

CCCC ;

with jAj and ] (A) respectively the Lebesgue measure and cardinality of the set
A, and VTd(f) is the total variation

VTd(f) =
X

B2f0;1gd

2d�jBj
Z

Td

CCCC
�
@

@x

�B
f (x)

CCCC dx;

where the sum is over all the multiindices B which take only the values 0 and 1,
jBj is the number of 1�s, and (@=@x)

B
= (@=@x1)

B1 ::: (@=@xd)
Bd .

The �nite sequence fz1; : : : ; zNg may present repetitions, but in this caseP
z2P\A f (z) must be replaced by

PN

j=1

P
m2Zd f (zj +m)�A (zj +m), and

similarly ] (I \ A \ P) by
PN

j=1

P
m2Zd �I\A (zj +m).

When A is contained in [0; 1)
d
, the discrepancy DI (A;P) is dominated by

2d sup
CCj(B \ A)j �N�1] (B \ A \ P)

CC, where the sup is over all the intervals B
contained in the unit cube. This re�ects the di¤erence between the discrepancy
in a torus and the one in a cube, and it is due to the fact that an interval in Td

can be split into at most 2d intervals in [0; 1)
d
.

One of the main features of Theorem 1 is the simplicity of its statement,
in particular in consideration of the fact that the set A is completely arbitrary.
On the other hand, observe that the total variation VTd(f) takes into account
not only the behaviour of f in A, but also the behaviour outside A, which is
irrelevant in the estimate of

CCCCC

Z

A

f(x)dx�
1

N

X

z2P\A

f (z)

CCCCC :

2



Furthermore, the discrepancy DI (A;P) is de�ned in terms of the family of
periodic intervals I, which a priori has no relation with A.
The aim of this paper is to show how Theorem 1 can be pushed forward in

order to overcome the two above objections, variation of f outside A, and intro-
duction of arbitrary �directions� in the discrepancy, and obtain results closer
to the original Koksma-Hlawka theorem when A is an arbitrary parallelepiped
(Theorem 6) or a simplex (Theorem 8) in Rd, f is a smooth function in Rd, not
necessarily periodic, and P is a Zd�periodic distribution of points.
For the sake of completeness, we sketch here the proof of Theorem 1 (see [1]).

In what follows, bf (n) =
R
Td
f(x)e�2�in�xdx denotes the Fourier transform and

g � �(x) =
R
Td
g(x � y)d�(y) the convolution, and these operators are applied

also to distributions.

Lemma 2 Let ' be a non vanishing complex sequence on Zd, and assume that
both ' and 1=' have tempered growth in Zd. Also let f be a smooth function on
T
d. De�ne

g (x) =
X

n2Zd

' (n)
�1
e2�in�x;

Df (x) =
X

n2Zd

' (n) bf (n) e2�in�x:

Finally, let � be a �nite measure on Td. Then the following identity holds:
Z

Td

f(x)d�(x) =

Z

Td

Df (x) g � � (x)dx:

Lemma 3 Let the function g on Rd be the superposition of the characteristic
functions of all the periodic intervals I (0; t) with t 2 (0; 1]

d
,

g(x) =

Z

(0;1]d
�I(0;t) (x) dt:

Then the function g has Fourier expansion

g (x) =
X

n2Zd

 
dY

k=1

(2E (nk) + 2�ink)
�1

!
e2�in�x;

where n = (n1; :::; nd), E (nk) = 1 if nk = 0 and E (nk) = 0 if nk 6= 0.

Lemma 4 If f is a smooth function on Td, then

Df(x) =
X

n2Zd

 
dY

k=1

(2E (nk)� 2�ink)

!
bf (n) e2�inx

=
X

B;C2f0;1gd; B+C=(1;:::;1)

(�1)
jBj
2jCj

Z

[0;1]jCj

�
@

@x

�B
f
�
x+ yC

�
dyC :

3



We are using the notation (@=@x)
B
= (@=@x1)

B1 ::: (@=@xd)
Bd and yC =

Pd

j=1 y
Cj
j ej,

where fejg
d

j=1 is the canonical basis of R
d, and dyC = dy

C1
1 : : : dy

Cd
d .

The proofs of the above lemmas are quite straightforward. For the details,
see [1].
Proof of Theorem 1. Write � = dx � N�1

P
z2P Ez, where Ez is the point

mass centered at z. By Lemma 2 applied to the periodization � of the measure
�A�, and by Hölder inequality, with g and Df de�ned as in Lemma 3 and
Lemma 4 respectively,

CCCC
Z

A

f(x)d�(x)

CCCC =

CCCCCC

Z

Td

f(x)

0
@X

n2Zd

�A (x+ n)

1
A d�(x)

CCCCCC

=

CCCC
Z

Td

f(x)d�(x)

CCCC � kDfkL1(Td) kg � �kL1(Td) :

The estimate for kDfkL1(Td) follows from Lemma 4,

Z

Td

jDf (x)j dx �
X

B2f0;1gd

2d�jBj
Z

Td

CCCC
�
@

@x

�B
f (x)

CCCC dx:

The estimate for kg � �kL1(Td) follows from Lemma 3,

jg � �(x)j =

CCCC
Z

Rd

g (x� y)�A (y) d�(y)

CCCC

=

CCCCC

Z

Rd

Z

(0;1]d
�I(0;t) (x� y) dt�A (y) d�(y)

CCCCC

�

Z

(0;1]d

CCCC
Z

Rd

��I(�x;t) (y)�A (y) d�(y)

CCCC dt

� sup
t2(0;1]d

� (A \ (�I (�x; t)))

� sup
I2I

CCCCjI \ Aj �
1

N
] (I \ A \ P)

CCCC :

So far we have followed [1] almost "verbatim". Here we begin some variations
on this theme. The next proposition is a �rst intermediate step in our discussion,
and it consists in writing a version of Theorem 1 when A is an interval and with
VTd(f) replaced by a total variation relative to A.

Proposition 5 Let f be a smooth function on Rd, A a compact interval in
[0; 1)

d
, and P =

�
zj +m : j = 1; : : : ; N; m 2 Zd

	
a periodic distribution of points

as above. Then
CCCC
Z

A

f(x)dx�
1

N

X�

z2P\A
f (z)

CCCC � DI (A;P)V
�
A(f);
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where V�A(f) is de�ned as

V�A(f) =
X

B2f0;1gd

X

C�B

2jBj�jCj
Z

AB

CCCCC

�
@

@x

�C
f (x)

CCCCC dx:

The symbol
P�

z2P\A f (z) means that if z belongs to a j�dimensional face of

the interval A, then the term f (z) in the sum must be replaced by 2j�df (z).
A multiindex C is less than or equal to another multiindex B if Cj � Bj for
any j = 1; : : : ; d. Finally AB is the union of all the jBj�dimensional faces of A
parallel to the directions B1e1; : : : ; Bded (fe1; : : : ; edg is the canonical basis).

Proof. Since the problem is translation invariant, we may assume that A is
contained in (0; 1)

d
. Let � be a positive radial smooth function supported on

the unit ball and with integral 1, and let �" (x) = "�d� (x="). Then, for "
small enough, the function (f�A) � �" (here the convolution is intended in R

d)

is supported in (0; 1)
d
and can therefore be thought of as the image in the unit

cube of a smooth periodic function. Now,

CCCC
Z

A

f(x)dx�
1

N

X�

z2P\A
f (z)

CCCC

�

CCCC
Z

A

(f(x)� (f�A) � �" (x)) dx

CCCC

+
1

N

CCCCC
X

z2P\A

(f�A) � �" (z)�
X�

z2P\A
f (z)

CCCCC (1)

+

CCCCC

Z

A

(f�A) � �" (x) dx�
1

N

X

z2P\A

(f�A) � �" (z)

CCCCC :

It is well known that (f�A) � �" ! f�A as " ! 0 in the L1 norm. Hence the
�rst term in the above sum goes to zero. As for the second term, observe that
if z 2 P\A belongs to a j�dimensional face of A, then

lim
"!0

Z

Rd

�A (z � y)�" (y) dy = 2
j�d:

Similarly,
lim
"!0

(f�A) � �" (z)� 2
j�df (z) = 0:

Therefore the second term in (1) goes to zero. Finally, we can apply Theorem
1 to the smooth function (f�A) � �" and obtain

CCCCC

Z

A

(f�A) � �" (x) dx�
1

N

X

z2P\A

(f�A) � �" (z)

CCCCC (2)

� DI (A;P)VTd((f�A) � �") � DI (A;P)VTd(f�A):
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Here VTd(f�A) is de�ned as before as

VTd(f�A) =
X

B2f0;1gd

2d�jBj
Z

Td

CCCC
�
@

@x

�B
(f�A) (x)

CCCC dx;

but now the integral
R
Td
j(@=@x)

B
(f�A) (x)j dx must be intended as the total

variation of the �nite measure (@=@x)
B
(f�A). That this is a measure follows

by applying Lebniz rule,

�
@

@x

�B
(f�A) (x) =

X

C+D=B

�
@

@x

�C
f (x)

�
@

@x

�D
�A (x) ;

and observing that (@=@x)
D
�A is the (signed) surface measure supported on

A(1;:::;1)�D . Thus, the last inequality in (2) follows from the identity

@=@xj ((f�A) � �") = (@=@xj (f�A)) � �"

and the inequality
Z
j((@=@x)

B
(f�A)) � �" (x)j dx

�

�Z
j(@=@x)

B
(f�A) (x)j dx

��Z
j�" (x)j dx

�
:

Finally, again by Leibniz rule,

VTd(f�A) =
X

B2f0;1gd

2d�jBj
Z

Td

CCCC
�
@

@x

�B
(f�A) (x)

CCCC dx

=
X

B2f0;1gd

2d�jBj
Z

Rd

CCCCCC

X

C+D=B

�
@

@x

�C
f (x)

�
@

@x

�D
�A (x)

CCCCCC
dx

�
X

B2f0;1gd

2d�jBj
X

C+D=B

Z

A(1;:::;1)�D

CCCCC

�
@

@x

�C
f (x)

CCCCC dx:

Setting ~B = (1; : : : ; 1)� B+ C gives the desired estimate.
A homogeneity argument allows to simplify the total variation V�A(f) in the

above proposition. We shall present this argument in the more general context
of integration over generic parallelepipeds.
Let A be any non degenerate compact parallelepiped in Rd, let W be a d�d

non singular real matrix taking the unit cube [0; 1]
d
to a translated copy of A,

and let w1; : : : ; wd 2 R
d be its columns. For any multiindex B 2 f0; 1g

d
, de�ne

�
@

@w

�B
f (x) =

�
@

@w1

�B1
: : :

�
@

@wd

�Bd
f (x) ;

where @=@wj = wj �r are the directional derivatives, and de�ne AB as the union
of all the jBj�dimensional faces of A parallel to the directions B1w1; : : : ; Bdwd.

6



Theorem 6 Let f be a smooth function on Rd, A a compact parallelepiped, and
P =

�
zj +m : j = 1; : : : ; N; m 2 Zd

	
a periodic distribution of points. Then

CCCC
Z

A

f(x)dx�
1

N

X�

z2P\A
f (z)

CCCC � D (A;P)VA(f);

where

D (A;P) = sup
I2I

CCCCjW (I) \ Aj �
1

N
] (W (I) \ A \ P)

CCCC ;

is the discrepancy of P in A with respect to (periodic) parallelepipeds parallel to
A, and

VA(f) =
X

B2f0;1gd

2d�jBj

jABj

Z

AB

CCCC
�
@

@w

�B
f (y)

CCCC dy

is the total variation of f in A.

As before, the symbol
P�

z2P\A f (z)means that if z belongs to a j�dimensional
face of the parallelepiped A, then the term f (z) in the sum must be replaced
by 2j�df (z). The integration over AB is intended with respect to the jBj�
dimensional Lebesgue surface measure. Observe that, since in AB there are
exactly 2d�jBj faces, in the de�nition of total variation the integral is over all
possible faces and it is normalized by dividing by the measure of these faces.
Also observe that, while in Proposition 5 one integrates over the faces AB all
the derivatives of the function f of order C � B, in this theorem the integration
is only for C = B.
It has to be emphasized here that by applying an a¢ne transformation,

one can reduce the above problem to the estimate of the error in a numerical
integration over the unit square, and then apply the original Koksma-Hlawka

inequality. Assuming, for simplicity, that A =W
�
[0; 1]

d
�
, this procedure gives

the estimate
CCCC
Z

A

f(x)dx�
jAj

n (P;A)

X
z2P\W([0;1)d)

f (z)

CCCC (3)

� sup
I

CCCCjW (I)j �
jAj

n (P;A)
] (W (I) \ P)

CCCC

�
X

B2f0;1gd;jBj6=0

1

jABj

Z

AB

CCCC
�
@

@w

�B
f (x)

CCCC dx;

where I is an interval of the form [0; t1]� [0; t2]� : : :� [0; td] with 0 < tk < 1,

n (P;A) is the number of points of P contained in W
�
[0; 1)

d
�
, and AB is the

jBj�dimensional face of A parallel to the directions B1w1; : : : ; Bdwd containing
the vertexW (1; : : : ; 1) : The disadvantage of (3) with respect to Theorem 6 is in
the weight used in the Riemann sums. In Theorem 6 this weight is the inverse
of N , which is the exact number of points of P per unit cube. In (3) the weight
is the inverse of n (P;A) = jAj, an extrapolation of the number of points per unit

7



cube based on the number of points of P contained in A. As we will see later,
in our application to simplices we will need a weight that is independent of the
choice of the parallelepiped A.

Proof. Without loss of generality, assume that A =W
�
[0; 1]

d
�
. For any integer

m � 2, de�ne the matrix V = mW . Observe that eA := V �1 (A) =
�
0;m�1

�d
.

Also, de�ne the function ef (x) = f (V x) : Thus, the restriction to eA of ef is
an "a¢ne image" of the restriction to A of the function f . Finally let eP be
the periodic distribution of points obtained by a periodic extension of the set�
V �1 (P)

�
\ [0; 1)

d
. Call n

�
eP
�
the cardinality of the set

�
V �1 (P)

�
\ [0; 1)

d
.

Then
CCCC
Z

A

f(x)dx�
1

N

X�

z2A\P
f (z)

CCCC

=

CCCC
Z

eA

f(V y) jdetV j dy �
1

N

X�

z2eA\V �1(P)
f (V z)

CCCC

= jdetV j

CCCC
Z

eA

ef(y)dy � 1

N jdetV j

X�

z2eA\ eP
ef (z)

CCCC :

In the last two lines above, the � symbol in the summation signs refers to the
faces of the cube eA. Observe that we cannot immediately apply Proposition
5 to the last line in the above identities, since N jdetV j may be di¤erent from

n
�
eP
�
. Anyhow, Proposition 5 gives

CCCC
Z

A

f(x)dx�
1

N

X�

z2A\P
f (z)

CCCC

� jdetV j

CCCCCC

Z

eA

ef(y)dy � 1

n
�
eP
�
X�

z2eA\ eP
ef (z)

CCCCCC

+ jdetV j

CCCCCC

0
@ 1

n
�
eP
� � 1

N jdetV j

1
AX�

z2eA\ eP
ef (z)

CCCCCC

� jdetV j DI

�
eA; eP

�
V�eA

�
ef
�
+

+ jdetV j

CCCCCC

0
@ 1

n
�
eP
� � 1

N jdetV j

1
AX�

z2eA\ eP
ef (z)

CCCCCC
:

8



It turns out that the last term is negligible. Indeed,

n
�
eP
�

= ]
��
V �1 (P)

�
\ [0; 1)

d
�
=

NX

j=1

X

k2Zd

�[0;1)d
�
V �1 (zj + k)

�

=
NX

j=1

X

k2Zd

�
V ([0;1)d) (zj + k) = ]

�
P\V

�
[0; 1)

d
��

= mdN jAj+ error term.

The error term is controlled by N times the number of unit cubes intersecting
the boundary of mA, thus

error term = O
�
Nmd�1

�
:

It follows that

jdetV j

CCCCCC

0
@ 1

n
�
eP
� � 1

N jdetV j

1
AX�

z2eA\ eP
ef (z)

CCCCCC

�

CCCC
�

md jdetW j

Nmd jdetW j+O (Nmd�1)
�
1

N

�CCCC
CCC
X�

z2P\A
f (z)

CCC

=
O
�
m�1

�

N

CCC
X�

z2P\A
f (z)

CCC

and this tends to 0 as m! +1. Thus we have
CCCC
Z

A

f(x)dx�
1

N

X�

z2P\A
f (z)

CCCC � lim
m!+1

jdetV j DI

�
eA; eP

�
V�eA

�
ef
�
:

Consider �rst the discrepancy factor:

jdetV j DI

�
eA; eP

�

= jdetV j sup
I�I

CCCCCC

CCCI \ eA
CCC� 1

n
�
eP
� ]
�
I \ eA \ eP

�
CCCCCC

= sup
I�I

CCCCjV (I) \ Aj �
jdetV j

N jdetV j+O (Nmd�1)
] (V (I) \ A \ P)

CCCC :

Note that, in general, V
�
eP
�
does not coincide with P, but the above identity

holds because V
�
eA \ eP

�
= A \ P. Thus, proceeding as before,

jdetV j DI

�
eA; eP

�

� sup
I�I

CCCCjV (I) \ Aj �
1

N
] (V (I) \ A \ P)

CCCC+O
�
m�1

�
sup
I�I

1

N
] (V (I) \ A \ P) :

9



Since

sup
I�I

1

N
] (V (I) \ A \ P) � C jAj ;

then

lim
m!+1

jdetV j DI

�
eA; eP

�
= lim

m!+1
sup
I�I

CCCCjV (I) \ Aj �
1

N
] (V (I) \ A \ P)

CCCC

= sup
I�I

CCCCjW (I) \ Aj �
1

N
] (W (I) \ A \ P)

CCCC :

The last identity follows from the fact that, for every positive integer m, the
collection of sets V (I)\A coincides with the collection of setsW (I)\A. Finally,
let us study the variation

V�eA

�
ef
�

=
X

B2f0;1gd

X

C�B

2jBj�jCj
Z

eAB

CCCCC

�
@

@x

�C
(f E V ) (x)

CCCCC dx

=
X

B2f0;1gd

X

C�B

2jBj�jCj

CCCeAB
CCC

jABj

Z

AB

CCCCC

�
@

@x

�C
(f E V )

�
V �1 (y)

�
CCCCC dy

=
X

B2f0;1gd

X

C�B

2jBj�jCj
2d�jBjm�jBj

jABj

Z

AB

CCCCC

�
@

@v

�C
f (y)

CCCCC dy

=
X

B2f0;1gd

X

C�B

2jBj�jCj
2d�jBjmjCj�jBj

jABj

Z

AB

CCCCC

�
@

@w

�C
f (y)

CCCCC dy:

Finally, when m ! +1; all the terms in the innermost sum vanish, with the
exception of the term with C = B. Thus,

lim
m!+1

V�eA

�
ef
�
=

X

B2f0;1gd

2d�jBj

jABj

Z

AB

CCCC
�
@

@w

�B
f (y)

CCCC dy:

Our last variation on the Koksma-Hlawka inequality is for simplices. Let
now S be a closed simplex in Rd; and let V0; : : : ; Vd be its vertices. For any
k = 0; : : : ; d, let wk1 ; : : : ; w

k
d , be the vectors joining the vertex Vk with the

other vertices, in whatever order. Call Wk the matrix with columns w
k
1 ; : : : ; w

k
d .

Let Ak be the parallelepiped determined by the vertex Vk and the vectors
wk1 ; : : : ; w

k
d : Finally, for every multiindex B 2 f0; 1g

d
, let SkB be the (unique)

jBj�dimensional face of S parallel to the directions B1w
k
1 ; : : : ; Bdw

k
d . In order

to deduce a Koksma-Hlawka inequality for simplices from the Koksma-Hlawka
inequality for parallelepipeds, it su¢ces to decompose the characteristic func-
tion of the simplex S into a weighted sum of characteristic functions of the
parallelepipeds Ak.
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Lemma 7 There exists a constant Cd, depending only on the dimension d, such
that for every simplex S there exist smooth functions '0; : : : ; 'd satisfying the
following conditions:

i) For every k = 0; : : : ; d, we have 'k (Vk) = 1, and supp ('k) is contained in
the open half space determined by the facet of S opposite to Vk.

ii)
Pd

k=0 'k (x) = 1 for every x 2 S.

iii) For all k = 0; : : : ; d, and for all multiindices B 2 f0; 1g
d
,

sup
x2S

CCCC
�
@

@wk

�B
'k (x)

CCCC � Cd:

Proof. When S is the standard simplex, the lemma follows from a simple
partition of unit argument. An a¢ne transformation takes the general simplex
onto the standard simplex, without changing the norms in point iii).

Theorem 8 Let f be a smooth function on Rd, S a compact simplex, and
P =

�
zj +m : j = 1; : : : ; N; m 2 Zd

	
a periodic distribution of points. Then

CCCC
Z

S

f(x)dx�
1

N

X�

z2P\S
f (z)

CCCC � D (S;P)VS (f) ;

where
D (S;P) = max

k=0;:::;d
D (Ak;P)

can be de�ned as the discrepancy of P with respect to the d + 1 parallelepipeds
associated with the simplex S, and

VS (f) = Cd

dX

k=0

X

B2f0;1gd

X

C�B

1

jSkBj

Z

SkB

CCCCC

�
@

@wk

�C
f (x)

CCCCC dx

is the total variation of f in the simplex S:

As before, the symbol
P�

z2P\A f (z)means that if z belongs to a j�dimensional
face of the simplex S, then the term f (z) in the sum must be replaced by
2j�df (z). The integration over SkB is intended with respect to the jBj�dimensional
Lebesgue surface measure. Finally, a multiindex C is less than or equal to an-
other multiindex B if Cj � Bj for any j = 1; : : : ; d.
Proof. Using the partition of unit in the above lemma, we can write

CCCC
Z

S

f (x) dx�
1

N

X�

z2P\S
f (z)

CCCC

=

CCCCC

dX

k=0

�Z

S

f (x)'k (x) dx�
1

N

X�

z2P\S
f (z)'k (z)

�CCCCC

�
dX

k=0

CCCC
Z

Ak

f (x)'k (x) dx�
1

N

X�

z2P\Ak
f (z)'k (z)

CCCC :
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By Theorem 6, each term of the above sum is bounded by

sup
I2I

CCCCjWk (I) \ Akj �
1

N
] (Wk (I) \ A \ P)

CCCC

�
X

B2f0;1gd

2d�jBj

jAkBj

Z

AkB

CCCC
�
@

@wk

�B
(f'k) (y)

CCCC dy;

where AkB is the union of all the jBj�dimensional faces of Ak parallel to the
directions B1w

k
1 ; : : : ; Bdw

k
d : In the above sum, the term corresponding to B =

(0; : : : ; 0) is just jf (Vk)j. When jBj 6= 0, by the de�nition of the functions 'k,
the above integrals over the faces of the parallelepipeds can be replaced by the
integrals over the faces of the simplex,

2d�jBj

jAkBj

Z

AkB

CCCC
�
@

@wk

�B
(f'k) (x)

CCCC dx

=
1

jBj jSkBj

Z

SkB

CCCC
�
@

@wk

�B
(f'k) (x)

CCCC dx

Finally,

�
@

@wk

�B
(f'k) (x) =

X

C+D=B

�
@

@wk

�C
f (x)

�
@

@wk

�D
'k (x) :

Hence, by the previous lemma,

X

B2f0;1gd

2d�jBj

jAkBj

Z

AkB

CCCC
�
@

@wk

�B
f (y)

CCCC dy �

� jf (Vk)j+ Cd
X

B2f0;1gd

jBj6=0

X

C�B

1

jBj jSkBj

Z

SkB

CCCCC

�
@

@wk

�C
f (x)

CCCCC dx:

As an example, let us write explicitly the total variation VS (f) in the 2�
dimensional case. Let S be a triangle with vertices V1; V2 and V3 . Call lk the
length of the edge Sk opposite to Vk, and wk the vector joining the two vertices
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opposite to Vk. Then the variation is

VS (f) = C2 jf (V1)j+ C2 jf (V2)j+ C2 jf (V3)j

+C2
2

l1

Z

S1

�
jf (x)j+

CCCC
@f

@w1
(x)

CCCC
�
dx

+C2
2

l2

Z

S2

�
jf (x)j+

CCCC
@f

@w2
(x)

CCCC
�
dx

+C2
2

l3

Z

S3

�
jf (x)j+

CCCC
@f

@w3
(x)

CCCC
�
dx

+C2
1

jSj

Z

S

�
3 jf (x)j+ 2

CCCC
@f

@w1
(x)

CCCC+ 2
CCCC
@f

@w2
(x)

CCCC+ 2
CCCC
@f

@w3
(x)

CCCC+

+

CCCC
@2f

@w2@w3
(x)

CCCC+
CCCC
@2f

@w1@w3
(x)

CCCC+
CCCC
@2f

@w1@w2
(x)

CCCC
�
dx:
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