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A Koksma-Hlawka inequality for simplices

Luca Brandolini, Leonardo Colzani,
Giacomo Gigante, Giancarlo Travaglini

The Koksma-Hlawka inequality gives an estimate of the error in a numerical
integration

N
/[01]d x)dr — — Z <D(z)V(f).

Here D (z;) is the discrepancy of the finite set of points {z1,...,2x} in [0, 1<,
defined by

D(ZJ)—SUP |I|_7ZXI (2)]
j=1

where T is an interval of the form [0,¢1] x [0,¢2] X ... X [0,¢4] with 0 < ¢ < 1,
and |I| = tyta...t4 is its measure. The term V (f) is the so-called Hardy-Krause
variation, and when f is smooth (say, C%) this variation takes the form
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The above sum is over all the non vanishing multiindices o = (aq,...,qq)
which take only the values 0 and 1, |a| is the number of 1’s, (9/0z)" =

(8/021) ... (8)024), Q% = {(xl, za) €01 =1ifa; = o} is the

|a|-dimensional face of [0,1]* parallel to aqey,...,aqeq ({e1,...,eq} is the
canonical basis of R?) containing the vertex (1, ..., 1), and dz is the |a|-dimensional
Lebesgue surface measure (see [5, 2.5], [6, 1.4], [7, 2.2]). There is an extense
literature on this type of estimates, where the contribution to the magnitude
of the error given by the irregularity of the point distribution {z1,...,znx} is
isolated from the contribution given by the steepness of the variation of the
function f. See e.g. [2], [3], [4], [5], [6], [7], [8]- In [1], one such result has been
proven, where the cube [0, 1]d is replaced by a generic bounded Borel subset (2

dx.

of R%. More precisely, let {1, ..., 2y} C [0,1)? be a distribution of N points in
the unit cube, and

”P:{zj+m:j:17...,N,m€Zd}



its periodic extension to the whole Euclidean space R?. For any z = (z1,...,2q) €
R and ¢ = (t1,...,tq) € (0,1)%, let

I(z,t) =Upeza ([0,t1] X ... x [0,tq] ++m)

be the periodic extension of the interval with opposite vertices x and x + t.
Call Z the collection of all such possible periodic intervals I (z,¢). Finally, let
T¢ = R?/Z4 be the torus. The main result in [1] is the following.

Theorem 1 Let f be a smooth Z%periodic function on R%, Q a bounded Borel
subset of R%, and P = {zj +m:5=1,...,N,m¢€ Zd} a periodic distribution
of points as described above. Then
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zZEPNQ

< Dz (Q,P) Vra(f),

where Dz (Q,P) is the discrepancy

)

Dz (Q,P) = sup |IﬂQ\—iﬁ(IﬂQﬂP)
ez N

with |A| and § (A) respectively the Lebesgue measure and cardinality of the set
A, and Vya(f) is the total variation
8 «
(8:3) f(z)
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where the sum is over all the multiindices a which take only the values 0 and 1,

|| is the number of 1’s, and (0/0x)” = (0/0x1)*" ... (8/0x4)™.

dx,

The finite sequence {z1,...,zn} may present repetitions, but in this case
> .epna f(2) must be replaced by Zjvzl Y omeza | (25 +m) xq (25 +m), and
similarly §(I N QN P) by Z;y:1 Y mezd Xina (27 +m).

When (2 is contained in [0, 1)d, the discrepancy Dz (2, P) is dominated by
2%sup |[(BN Q)| — N~ (BN QN P)|, where the sup is over all the intervals B
contained in the unit cube. This reflects the difference between the discrepancy
in a torus and the one in a cube, and it is due to the fact that an interval in T¢
can be split into at most 27 intervals in [0,1)".

One of the main features of Theorem 1 is the simplicity of its statement,
in particular in consideration of the fact that the set € is completely arbitrary.
On the other hand, observe that the total variation Vya(f) takes into account
not only the behaviour of f in €, but also the behaviour outside €2, which is
irrelevant in the estimate of

1
| rwie-5 ¥ ).
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Furthermore, the discrepancy Dz (Q,P) is defined in terms of the family of
periodic intervals 7, which a priori has no relation with €.

The aim of this paper is to show how Theorem 1 can be pushed forward in
order to overcome the two above objections, variation of f outside €2, and intro-
duction of arbitrary ”directions” in the discrepancy, and obtain results closer
to the original Koksma-Hlawka theorem when €2 is an arbitrary parallelepiped
(Theorem 6) or a simplex (Theorem 8) in R?, f is a smooth function in R?, not
necessarily periodic, and P is a Z% periodic distribution of points.

For the sake of completeness, we sketch here the proof of Theorem 1 (see [1]).

In what follows, f (n) = Jpa f(x)e™ 2™ ™% dy denotes the Fourier transform and
g* u(x) = [ra 9(x — y)du(y) the convolution, and these operators are applied
also to distributions.

Lemma 2 Let ¢ be a non vanishing complex sequence on Z%, and assume that
both ¢ and 1/ have tempered growth in Z%. Also let f be a smooth function on
T<. Define

g@) =Y ¢ '™,

nezd

Df (@)=Y ¢(n)f(n)e’™ .

nezd

Finally, let p be a finite measure on T%. Then the following identity holds:
[ 1@ = [ of @7 ats
Td Te

Lemma 3 Let the function g on R? be the superposition of the characteristic
functions of all the periodic intervals I (0,t) with t € (0, 1]d,

o) = / Yoo (@) dt.
(0,17

)

Then the function g has Fourier expansion
d .
g(z)=_ <H (26 () + 27”'%)_1) et
neZd \k=1
where n = (n1,...,nq), 6 (ng) =1 if ng, =0 and 6 (ng) =0 if ny # 0.
Lemma 4 If f is a smooth function on T¢, then

d
Df(x) = Z <H (26 (ng) — 2m’nk)> f(n) p2mine

nezd \k=1

= > (~1)ll 28 /[0 " ((;1) fz+y7)dy”.

@,86{0,1}%, a+p=(1,...,1)



We are using the notation (0/0z)" = (0/0x1)™" ... (0/0z4)"" and y® = 25:1 yfj e,
d

where {ej}jzl is the canonical basis of R, and dy” = dy,* dygd

The proofs of the above lemmas are quite straightforward. For the details,
see [1].
Proof of Theorem 1. Write p = dz — N1 > .cp 02, where ¢ is the point
mass centered at z. By Lemma 2 applied to the periodization v of the measure
Xaolt, and by Holder inequality, with g and ©f defined as in Lemma 3 and
Lemma 4 respectively,

/Q f(@)du(z)
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The estimate for [|D f|| ;1 (g4 follows from Lemma 4,
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The estimate for [|g * v|| .« pay follows from Lemma 3,

dx.
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< sup p(QN (=1 (==,t)))
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So far we have followed [1] almost "verbatim". Here we begin some variations
on this theme. The next proposition is a first intermediate step in our discussion,
and it consists in writing a version of Theorem 1 when 2 is an interval and with
Vra(f) replaced by a total variation relative to Q.

Proposition 5 Let f be a smooth function on R%, Q a compact interval in
[0, l)d, and P = {zj +m:5=1,...,N,m¢€ Zd} a periodic distribution of points
as above. Then
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where V& (f) is defined as

el = X e [ ‘(i)ﬂfu)

ac{0,1}? B<a

dx.

The symbol Zzepmﬂf(z) means that if z belongs to a j—dimensional face of
the interval ), then the term f(z) in the sum must be replaced by 27~9f (z).
A multiindex 3 is less than or equal to another multiindex o if B; < «ay for
any j = 1,...,d. Finally Q, is the union of all the |a|-dimensional faces of
parallel to the directions azeq,...,aqeq ({€1,...,eq} is the canonical basis).

Proof. Since the problem is translation invariant, we may assume that € is
contained in (0, 1)d. Let ¢ be a positive radial smooth function supported on
the unit ball and with integral 1, and let ¢, (z) = e ¢ (x/e). Then, for ¢
small enough, the function (fxq) * . (here the convolution is intended in R%)

is supported in (0, 1)d and can therefore be thought of as the image in the unit
cube of a smooth periodic function. Now,

1 *
JRCCESS NIC)
/Q (F(2) - (fxa) * 6, (x)) de

> (fxe)# 6. (2) Z;mﬂz)' (1)
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It is well known that (fxq) * ¢. — fxq as € — 0 in the L' norm. Hence the
first term in the above sum goes to zero. As for the second term, observe that
if z € PNS2 belongs to a j—dimensional face of €2, then

lim [ xq(z—y) o (y)dy=21""

e—0 Jrd

Similarly, '
lim (fxq) * 9. () — 2774f () = 0.

Therefore the second term in (1) goes to zero. Finally, we can apply Theorem
1 to the smooth function (fxq) * ¢, and obtain

| | xe)soc@do =5 3 (Fxa)en 2 2

z€PNQ
<Dz (Q,P)Vra((fxa) * ¢.) < Dz (2,P) Vra(fxa)-



Here Vra(fxq) is defined as before as

|(Z) v

but now the integral [, [(0/0z)" (fxq) (x)| dz must be intended as the total
variation of the finite measure (9/9x)” (fxq). That this is a measure follows
by applying Lebniz rule,

(i)a (Fra) @ =3 (;;)ﬁ f (@) (;ﬂg)7 Xa (@),

Bt+y=a

dx,

Vra(fxa) = Z 27l

ac{0,1}¢

and observing that (9/0x)” x(, is the (signed) surface measure supported on
Qq,...1)—~- Thus, the last inequality in (2) follows from the identity

9/0z; ((fxq) * ¢.) = (9/0z; (fxa)) * &-
and the inequality

/ ((0/02)° (fxe)) * 6. ()] de

< ([ 1000 (e @as) ([ 10 @las)

Finally, again by Leibniz rule,

ae{0,1}4 ¢
-y [ (2 @ () )
N a9, )\ 7= ql(z)|dx
aefo,1}¢ Il Pro Oz
B
< Yoy [ (g) s
ac{0,1}? B+y=a Q1,..,1)—~

Setting & = (1,...,1) — a4 3 gives the desired estimate. m

A homogeneity argument allows to simplify the total variation V¢ (f) in the
above proposition. We shall present this argument in the more general context
of integration over generic parallelepipeds.

Let Q be any non degenerate compact parallelepiped in R?, let W be a d x d
non singular real matrix taking the unit cube [0, 1]d to a translated copy of 2,
and let wy, . .., wg € R? be its columns. For any multiindex o € {0,1}%, define

(&) 1~ () () o

where 0/0w; = w; -V are the directional derivatives, and define €, as the union
of all the |a|-dimensional faces of §2 parallel to the directions ajws, ..., aqwq.



Theorem 6 Let f be a smooth function on R, Q a compact parallelepiped, and
P = {zj +m:j=1,...,N,m¢€ Zd} a periodic distribution of points. Then

o= Yo £ £ DOPIVR)

where

D (Q,P) = sup
Ier

W ()Nal - LE(W ()N P)|,

is the discrepancy of P in Q with respect to (periodic) parallelepipeds parallel to

Q, and .
W)= Y (55) 70| as

ae{0,1}¢
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Q] Ja,
is the total variation of f in Q2.

As before, the symbol ZZePnQ f (2) means that if z belongs to a j—dimensional
face of the parallelepiped €2, then the term f (z) in the sum must be replaced
by 2/7f(z). The integration over Q, is intended with respect to the |a|-
dimensional Lebesgue surface measure. Observe that, since in €2, there are
exactly 29711 faces, in the definition of total variation the integral is over all
possible faces and it is normalized by dividing by the measure of these faces.
Also observe that, while in Proposition 5 one integrates over the faces €2, all
the derivatives of the function f of order 8 < «, in this theorem the integration
is only for 5 = a.

It has to be emphasized here that by applying an affine transformation,
one can reduce the above problem to the estimate of the error in a numerical
integration over the unit square, and then apply the original Koksma-Hlawka

inequality. Assuming, for simplicity, that Q@ = W ([0, l}d), this procedure gives
the estimate

Q-
n (P, Q) ZzePnW([O,l)d) ! (2)‘ (3)

a7 (NP
(=) i@

1
X
Zd 12| Jqa
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where T is an interval of the form [0,¢1] x [0,22] X ... X [0,¢4] with 0 < ¢ < 1,
n (P, ) is the number of points of P contained in W ([07 1)d), and Q% is the
|| -dimensional face of  parallel to the directions cjws, ..., aqwy containing
the vertex W (1,...,1). The disadvantage of (3) with respect to Theorem 6 is in
the weight used in the Riemann sums. In Theorem 6 this weight is the inverse
of N, which is the exact number of points of P per unit cube. In (3) the weight
is the inverse of n (P, ) / ||, an extrapolation of the number of points per unit

< supllW(I) -
I

dx,




cube based on the number of points of P contained in 2. As we will see later,
in our application to simplices we will need a weight that is independent of the
choice of the parallelepiped 2.

Proof. Without loss of generality, assume that = W ([O, 1}d>. For any integer

m > 2, define the matrix V = mIW. Observe that Q := V=1 (Q) = [0 m- ]d.
Also, define the function f(z) = f (V). Thus, the restriction to € of f is

an "affine image" of the restriction to € of the function f. Finally let P be
the periodic distribution of points obtained by a periodic extension of the set

(V=1(P)) n o, 1% Call n (75) the cardinality of the set (V= (P)) N0, .
Then

z)dz — % Z:emp f (Z)‘

1 *
= ' / F(Vy) |det V| dy — *Zzemfl i T (V2)

N|d tV| ZzeQmP ~( )'

In the last two lines above, the * symbol in the summation signs refers to the
faces of the cube . Observe that we cannot immediately apply Proposition
5 to the last line in the above identities, since N |det V| may be different from

n (75> Anyhow, Proposition 5 gives

zeQNP

S

< paee]| [ s n(lﬁ)z;w 7
+det V] n(lﬁ) - N|d1et V] Z:efwﬁ o
< |detV|Dr (9,P) V5 (7) +

1 1 \ _
+det V] n(ﬁ) " N|detV] > s O



It turns out that the last term is negligible. Indeed,

n(7)

(v ) nio?) = > X (V' ()

= 2 Xuow G+ 0 =1 (P (0.)1))

j=1kezd

= mN|Q| + error term.

The error term is controlled by N times the number of unit cubes intersecting
the boundary of mf2, thus

error term = O (deil) .
It follows that

1 1 *

[det V] n (rﬁ) ~ Nldet V] Zzeﬁmﬁf (2)

m?|det W| 1 *
< R
- ‘(de|detW|+(9(de—1) N)‘ ‘Zzepmﬂf(z)‘

) S

and this tends to 0 as m — +oco. Thus we have

RS S <z>\ < Jim_|det V| Dz (0.P) V3 (7).

Consider first the discrepancy factor:

[det V| Dz (9, P)

~ 1 -~
— |det V| sup ‘mﬂ‘—fﬁ (anP)
ol
|det V|
_ nnol- nne .
sup ||V (1) n N|detV|+(9(de*1)ﬂ(V()m nP)

Note that, in general, V' (ﬁ) does not coincide with P, but the above identity
holds because V' ((NZ N 75) = QN P. Thus, proceeding as before,

det V| Dz (9. P)

|V(I)ﬂQ—Jbﬁ(V(I)ﬁQﬁP)‘—I—O(m1)Sup1ﬁ(V(I)ﬁQﬂP).

< sup
IcT icz N



Since
sup—h( (HNQnP)<C|Q|,

cz N
then
~ ~ 1
li Dz (Q = li Q — — nHnao
i fdenVDz () = sV (0001 e (1007
1
= sup |W(I)ﬂQ|—Nﬁ(W(I)ﬁQﬂ7))’.

The last identity follows from the fact that, for every positive integer m, the
collection of sets V' (I)N§ coincides with the collection of sets W (I)N(Q. Finally,
let us study the variation

v (7) 3 Zgalﬁl/ﬁa|<£v)6(fo‘/)(x)

ae{0,1}4 B<a

- ¥ ng—\mm |/

a€{0,1}4 B

=Y Yok g 207 Im el 'm| O"/Qa

ae{0,1}4 f<a

Z 22“&' \Blzd o Im\B\ a|/
B Q

ae{0,1}4 B<a [€2a]

dx

(2Y ov s
(;})Bf(y)
) (i)ﬂf(y)

Finally, when m — 400, all the terms in the innermost sum vanish, with the
exception of the term with 8 = «. Thus,

o flGe) 1ol
lim V~ = . i dv.
JAm Vi (7) ae{%}d 0l o, \ow) FW|

dy

dy.

]

Our last variation on the Koksma-Hlawka inequality is for simplices. Let
now S be a closed simplex in R, and let Vp,...,Vy be its vertices. For any
k=0,...,d, let w’ﬁ...,w’j, be the vectors joining the vertex Vi with the
other vertices, in whatever order. Call W}, the matrix with columns w¥, ..., wk.
Let Qi be the parallelepiped determined by the vertex Vi and the vectors
wy,...,wk. Finally, for every multiindex « € {0, 1}Ul7 let S* be the (unique)
|a|-dimensional face of S parallel to the directions ajw?,..., aqwk. In order
to deduce a Koksma-Hlawka inequality for simplices from the Koksma-Hlawka
inequality for parallelepipeds, it suffices to decompose the characteristic func-
tion of the simplex S into a weighted sum of characteristic functions of the
parallelepipeds €.

10



Lemma 7 There exists a constant Cq, depending only on the dimension d, such
that for every simplex S there exist smooth functions g, ..., @, satisfying the
following conditions:

i) For every k = 0,...,d, we have ¢, (Vi) = 1, and supp (¢},) is contained in
the open half space determined by the facet of S opposite to V.

ii) ZZ:O o (@) =1 for every x € S.
iii) For allk =0,...,d, and for all multiindices o € {0, 1}d,

(5z) @

Proof. When S is the standard simplex, the lemma follows from a simple
partition of unit argument. An affine transformation takes the general simplex
onto the standard simplex, without changing the norms in point iii). m

sup < Cy.

zeS

Theorem 8 Let f be a smooth function on R?, S a compact simplex, and
P = {Zj +m:j=1,...,N,m¢€ Zd} a periodic distribution of points. Then

doe — — E
ZEPOS

)| <D(S,P)Vs(f),

where
D(S,P) = max D (Q,P)

EEREE)

can be defined as the discrepancy of P with respect to the d + 1 parallelepipeds
associated with the simplex S, and

oy ¥ Z|’“|/ ’(m) F)

k=0 aec{0,1}? B<a

dx

is the total variation of f in the simplex S.

As before, the symbol Y7 1, f () means that if z belongs to a j-dimensional
face of the simplex S, then the term f(z) in the sum must be replaced by
27=4f (2). The integration over S* is intended with respect to the |a|-dimensional
Lebesgue surface measure. Finally, a multiindex 3 is less than or equal to an-
other multiindex v if 8; < o for any j =1,...,d.

Proof. Using the partition of unit in the above lemma, we can write

LS D IIC]
d
Z( Sf(z)% dmiizzepms 2) i (2 )>‘

| @@= 53, 1@ )|

IN
=1
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By Theorem 6, each term of the above sum is bounded by

Wi (1) N Q] — %ﬁ(Wk () mmp)’

sup
IeT
2d_|o“ ( a )a ‘
' = gk ) er) W) dy,
ae%z}d Q5 Jox [\ Ow? (fer) ()

where QF is the union of all the |a|-dimensional faces of € parallel to the
directions cyw?, ..., aqwk. In the above sum, the term corresponding to o =
(0,...,0) is just |f (Vi)|. When |a| # 0, by the definition of the functions ¢y,
the above integrals over the faces of the parallelepipeds can be replaced by the
integrals over the faces of the simplex,

d—|al o\
1 9 \°
= s L | (gr) Ge0 @]

Finally,

Hence, by the previous lemma,

9d—al ( ) )O‘
s 2o f(y)‘dy<
k k
ac{0,1}¢ |Qa| QF Ow
1 9\’
) | 1 9 dz.
< VG 35 o Jy (o) Fio)]ds
aef{0,1}* Pz “

a0

]

As an example, let us write explicitly the total variation Vg (f) in the 2—
dimensional case. Let S be a triangle with vertices Vi, Vo and V3 . Call I the
length of the edge Sy opposite to Vi, and wy the vector joining the two vertices

12



opposite to V. Then the variation is

Vs (f) = Co[f Vi)l + Co | F (Vo) + Ca | f (Va)]

+02l21/51 <f(:':)|+ L () do

8’[1}1

)
vel [ (11 @I +| 52 @))
)

9]
wear [ (171 +| 5L @
1 of of
+oag: [ (317 @+ 2| ko) v 2|52
s ) * o )]+

811)28’[1)3 8w18w3 811}1811)2

U
8

dxr

of

) as

+2' (x)’—i—

()
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