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Abstract 

The purpose of this research is the development a method for simultaneously adjusting the velocity tracking 

control and the inclination angle stabilization using control techniques for a two-wheeled self-balancing 

vehicle. The control tasks involve balancing the vehicle around its unstable equilibrium configuration along 

with steering and velocity tracking. In this study, the mathematical dynamic model of the vehicle is derived 

using the Lagrange method, under the assumptions of pure rolling and no-slip conditions which are 

expressed through nonholonomic constraint equations. Along with the mathematical descriptions, a 

multibody virtual prototype featuring advanced tire-ground interaction modelling has been developed using 

the MSC Adams software suite. Several classical and modern control strategies are investigated and compared 

to implement the method. These include Sliding Mode Control (SMC), Proportional Integral Derivative 

(PID), Feedback Linearization (FL), and Linear Quadratic Regulator Control (LQR) for the under-

actuated and unstable subsystem that accounts for the pitch and longitudinal motions. The capabilities 

of these control strategies are verified and compared not only through Matlab simulation but also using 

Adams-Matlab co-simulation of the controller and the plant. Although every control technique has its 

advantages and limitations, the extensive simulation activities conducted for this study suggest that the 

SMC controller offers superior performances in keeping the system balanced and providing good velocity-

tracking responses. Moreover, a Lyapunov-based analysis is used to prove that the sliding mode control 

achieves finite time convergence to a stable sliding surface. These advantages are counterbalanced by 

the complexity and the large number of parameters belonging to the designed SMC laws, the scheduling 

of which can be difficult to implement. For the comparison results another non-linear control strategy, 

i.e. the feedback linearization method, is presented as an alternative. Through the Jacobian 

linearization approach the mathematical model of the system is linearized, allowing the use of control 

techniques such as linear quadratic regulation, which are deployed to treat the balancing, steering, and 

velocity tracking tasks. Finally, the empirical tuning of a PID controller is also demonstrated. The 

performance and robustness of each controller are evaluated and compared through several driving 

scenarios both in pure- Matlab and Adams-Matlab co-simulations. 
 

Keywords: Two-wheeled self-balanced vehicle; Matlab-Adams co-simulations;  Sliding Mode Control;  
Feadback linearization;  PID control; LQR method, Stabilization, Tracking 
 

 
1. Introduction 

As contemporary urbanization reaches unprecedented scale and intensity, personal transportation is a topic of 

particular interest, especially in relation to the combined needs of low emission, high maneuverability, and 

reduced parking space occupation. A Two-Wheeled Self-Balancing Vehicle (TWSBV) is defined as a small 

size vehicle, which composed of an unbalanced intermediate chassis, a steering rod, and two wheels mounted 

on each side of the chassis frame which is equipped with electric actuators and sensors. The Segway is a 

commercial example of a two-wheeled self-balancing vehicle. The forward or backward motion of the 

TWSBV can be obtained by the operator through the small perturbation of the angular position of the rod (the 

rod is rigidly attached to the chassis; therefore the tilt angle of the rod coincides with the tilt angle of the 

chassis). Moreover in order to turn the TWSBV or to travel in an arc shape, the driver has to shift his or her 

body weight on the left or on the right foot; in other words the driver signals the turning direction by a 
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corresponding shift of their center of gravity. This force distribution change can be sensed by appropriately 

configured transducers. The peculiar characteristics of the TWSBV include inherent instability and under-

actuated and highly nonlinear coupled dynamics, which are featured in many other important practical 

applications like building stabilization under action of earthquakes and which make the system especially 

challenging from a control perspective. 

 Generally, studies concerning TWSBV can be classified into two main fields: modelling on one hand and 

control on the other. Moreover, the studies concerning the TWSBV can be classified according to the role 

envisioned by the researchers for the device itself, which can serve either as a personal transportation vehicle 

or as an autonomous or remotely controlled mobile robot. Some studies are inspired by the inverted pendulum 

system and involve the creation of small-size robots, while other publications are more focused on the design 

and construction of a full-scale TWSBV to transport passengers or goods. Some research as mentioned above 

has been focused on modelling issues; in [1, 2] comprehensive information on the modelling of the TWSBV 

is provided. Typical TWSBV mathematical model development is performed by Euler-Lagrange analysis [3]; 

however, Newton modelling [4] has been also well studied, while Kane’s method in [1] has been 

investigated. Within the TWSBV system, the number of actuators is less than the number of degrees of 

freedom. Although controlling an under-actuated system is more challenging compared to fully actuated 

systems, it can also bring advantages such as reduced bulk and mechanical complexity. As such, it 

deserves more investigation in theory and practice. The two-wheeled self- balancing vehicle has been 

subjected to various control techniques. In [ 5 ]  partial feedback linearization is designed to control the 

two-wheeled inverted pendulum system. In [6] Adaptive control is designed using a network neural function 

RBF and an SMC for the two wheeled self-balanced robot. In [7] the sliding mode control is used for 

t h e stabilization of the robot and the disturbance rejection. In [ 8 ]  the authors have validated the 

robustness of the SMC and LQR controllers in the presence of matched uncertainties and input 

disturbance. In [9] concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐

wheeled self‐balancing robot in the presence of disturbance. The hierarchical sliding mode control with 

perturbation estimation technique has been designed on a two-wheeled inverted pendulum system for the 

two tasks of balancing and velocity tracking [10]. In [11] the authors verified that the settling time of a 

sliding mode controller compares favorably to PID, state feedback, and LQR controllers. The effects of 

uncertain rolling resistance between the wheel and surface have been furthermore investigated in [12]. 

The Genetic optimization algorithm has been applied in [13] to find the best PID gain values for fastest 

stability. The majority of the literature concentrated on developing control algorithms to keep the vehicle 

balanced and on checking the performance of the system, typically using the Matlab-Simulink software 

suite. Commonly the mathematical descriptions of the TWSBV are driven for simplicity by the 

assumption of pure rolling, no-slip conditions which are expressed through nonholonomic constraint 

equations. However, there are few and rare studies that considered joint and ground frictions [14,15]. It should 

be noted that to generate traction forces at the contact point between the wheel and the surface micro-

slipping is necessary. Due to the Industrial applications benefit with regard to introducing controller that can 

guarantee the performance of system in real-world, our study has been carried out. Since the structure of the 

proposed control algorithm is based on the simplification of mathematical model to keep the controller design 

easy [16]. Hence, to clarify the effect of nonholonomic constraint on performance of system, before 

transitioning it to real-world applications [17]. It is necessary to be verified the performance of controller for 

both models with slippery road case and a with assumption of pure rolling, no-slip. 

Therefore, in this paper, a multibody virtual prototype featuring advanced tire-ground interaction 

modelling has been developed using the MSC Adams software suite. MSC Adams is a virtual prototyping 

simulation software dedicated to multi-body dynamics which allows the user to create highly detailed 

models of engineering mechanical systems. Moreover, the availability of an interface between the multi-

body physics simulation and the Matlab-Simulink software enables the validation of control systems 

typically designed using simplified representations of the actual plant on a more realistic virtual model. 

With respect to the control of the TWSBV, the most challenging task is achieving satisfactory results for 

longitudinal motion control performance as well as maintaining the upright position of the vehicle body, 

both in pure-Matlab and in an Adams-Matlab co-simulation. In article [ 1 ] , it is shown that the control 
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strategy therein proposed can successfully stabilize the adopted mathematical model of the TWSBV. 

However, the verification of the underlying modelling assumptions is lacking, making it difficult to predict 

the controller performance when applied to an actual system. On the other hand, the use of Adams to 

simulate the mechanical dynamics of the vehicle and to verify the controller performance has convinced us 

of the robustness of the proposed controllers. We would like to highlight the fact that the full power 

of the Adams software can be deployed to account for physical effects such as slipping conditions and 

road-tire interaction forces that are usually left unmodeled in the analytic representation of the vehicle 

used for control purposes. As such, the Adams-Matlab co-simulation represents a highly useful 

intermediate step between the design of the controller and its experimental validation on a physical 

prototype. The main contributions of this study pertain therefore to two aspects: on the one hand, 

proposing the 𝛼 method for adjusting the velocity tracking control and the linclination angle 

stabilization using control techniques based on the ideal case (characterized by the assumption of no-slip 

conditions between the road and the wheel) to the mathematical model of the plant, as implemented 

directly in Matlab; on the other hand to confirm and compare the robustness and effectiveness of different 

control algorithms a Adams-Matlab co-simulation is implemented. The content of this study can be 

organized into three main sections: in section 2 methodologies for deriving the equations of motion of the 

TWSBV are presented. In section 3 the multibody Adams model is described along with the creation 

of an interface with the Matlab-Simulink environment. The control strategies presented in this work 

are subsequently detailed in section 4. The study is concluded in section 5 with a summary of completed 

work. The future research is described in section 6. 

 
 

 

2. Mathematical Modeling 

The mathematical model of the two-wheeled self-balancing vehicle is needed not only for simulation 

purposes, but also to guide the design of the mechanical structure, to choose an appropriate actuation system, 

and for the synthesis of the closed loop regulator of any physical prototype. Given such a foundational role 

played by modelling, a physics-based approach has been adopted to develop from first principles a concise 

set of equations that describes the dynamics of the system. The Lagrange methodology is perhaps more 

familiar and widely described in the literature [1, 2, 17]. Fig. 1 shows the schematic diagram of the TWSBV, 

with the assumption of pure rolling and no-slip conditions (slip in tires is ignored). It is composed of an 

unbalanced intermediate chassis, a steering rod, and two wheels mounted on each side. 
 

 
Fig. 1: Schematic diagram of the TWSBV and denotations. 

 

A description of the relevant parameters has been provided in Table. 1 and Table 2.  
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Table 1. The parameters and variables of the TWSBV 

Notation Definition 

Torques of left and right wheels 𝜏1, 𝜏2 

Rotational angles of the left and right wheels 𝜑1, 𝜑2 

The position coordinates of the system in X–Y plane 𝑥, 𝑦 

The inclination angle of TWSBV 𝛾 

Yaw angle of TWSBV 𝜃 

Table 2: The parameters and variables of the TWSBV 
Definition Notation Value Unit 

Mass of chassis(mass of driver is included) 𝑚𝑐ℎ 120 kg 

Mass of the wheel 𝑚𝑤 3 kg 

Inertia moment of the chassis about the 𝑌3𝑐ℎ 𝐼𝑦𝑦𝑐ℎ  15.7 kg.m2 

Inertia moment of the chassis about the 𝑋3𝑐ℎ 𝐼𝑥𝑥𝑐ℎ  36 kg.m2 

Inertia moment of the chassis about the 𝑍3𝑐ℎ 𝐼𝑧𝑧𝑐ℎ 37.5 kg.m2 

Inertia moment of the chassis about the 𝑋3𝑐ℎ 𝐼𝑤1 0.048 kg.m2 

Inertia moment of the chassis about the 𝑌3𝑐ℎ 𝐼𝑤2 0.027 kg.m2 

Gravity Acceleration 𝑔 9.81 m2s−1 

The radius of the wheel 𝑟𝑤 0.2 m 

Half of the distance between the  wheels l 0.3 m 

Distance from the middle point between two wheels to the centre of gravity of the chassis h 0.3 m 

 

The chassis of the TWSBV has three degrees of freedom, namely the longitudinal motion and the rotations 

around the x-axis and the y-axis. In order to describe the full dynamics of the three degrees of freedom, the 

following generalized coordinates [𝑥, 𝑦, 𝜃, 𝛾, 𝜑1, 𝜑2] are introduced. Since ideal control of this type of 

physically unstable vehicle is desired, the first step is modelling the dynamic behaviour of the system. 

Nevertheless, the dynamic analysis of TWSBV is challenging, because of the dynamic behaviour of the two 

wheels which are subjected to nonholonomic constraints; as a result, two types of equations govern the motion 

dynamics of TWSBV. These include equations of motion of the wheels under the condition of pure rolling 

without slipping, and the equations describing the dynamic behaviour of the whole system. Under the adopted 

assumption of sufficient friction between the wheel and the ground, the instantaneous velocity of the point of 

contact between the two is equal to zero at all times. It is important to note that the centre of mass represented 

in Fig.1 takes into account also the driver (which is not shown in the schematics) but the mass has been 

presented in Table 2.  

Based on the assumption of pure rolling and no-slipping, the Lagrange method is employed to obtain the 

general system dynamics, as described by equations (1-3), [1].  

(3𝑚𝑤 +𝑚𝑐ℎ)�̇� +  ℎ 𝑚𝑐ℎ(�̈� 𝑐𝑜𝑠  𝛾 − �̇�
2 𝑠𝑖𝑛 𝛾 − �̇�2 𝑠𝑖𝑛 𝛾 )   =

1

𝑟𝑤
(𝜏1 + 𝜏2) (1)  

(2(𝑚𝑤𝑙
2 +  𝑙𝑐𝑤)+  𝐼𝑥𝑥 𝑠𝑖𝑛

2 𝛾 +  𝑚𝑐ℎℎ
2 𝑠𝑖𝑛2

 
𝛾 + Izzch 𝑐𝑜𝑠

2 𝛾 +𝑚𝑤𝑙
2)�̈� + (𝑚𝑐ℎℎ

2+ Ixxch−

𝐼𝑧𝑧𝑐ℎ 𝑠𝑖𝑛 2𝛾 �̇��̇�  +  𝑚𝑐ℎℎ 𝑠𝑖𝑛 𝛾�̇�𝑢 =
1

rw
(τ1 + τ2)  

(2)  

(𝐼𝑦𝑦𝑐ℎ +𝑚𝑐ℎℎ
2 )�̈� +𝑚𝑐ℎℎ 𝑐𝑜𝑠 𝛾 �̇� (

1

2
(𝐼𝑥𝑥𝑐ℎ −𝑚𝑐ℎℎ

2− 𝐼𝑧𝑧𝑐ℎ) 𝑠𝑖𝑛2𝛾 �̇�
2)− 𝑚𝑐ℎ𝑔ℎ 𝑠𝑖𝑛 𝛾

= −(𝜏1+ 𝜏2) 
(3)  

In addition, in order to facilitate the definition of the system model and the design of the controller, we define 

𝜏1 + 𝜏2 = 𝜏𝑣 and 𝜏1 − 𝜏2  =  𝜏𝑤. For simplification of the system analysis, new symbolic functions 

𝛬𝑢, 𝛹𝑢, 𝑋𝑢, 𝛷𝑢, 𝛬𝛾 , 𝛹𝛾 , 𝑋𝛾 , 𝛷𝛾 , 𝛬𝜃, 𝛹𝜃 and 𝑋𝜃 are introduced, which are given in Appendix 1. Thus the final 

equations of motion of the TWSBV can be expressed by substituting the expressions above in Eqs. (7-9), 

yielding: 

�̇� = 𝛬𝑢�̇�
2+  𝛹𝑢�̇�

2+  𝑋𝑢𝜏𝑣 +  𝛷𝑢𝑔 
(4)  

�̈� = 𝛬𝛾�̇�2+ 𝛹𝛾�̇�
2 + 𝑋𝛾𝜏𝑣 + 𝛷𝛾𝑔 

(5)  
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�̈� = 𝛬𝜃�̇�
2𝑢+ 𝛹𝜃�̇��̇� + 𝑋𝜃𝜏𝑤 

(6)  

Furthermore, the overall dynamic system is separated into two decoupled algebraically independent 

subsystems: one is the longitudinal motion subsystem while the other is the steering subsystem. The steering 

subsystem is a single-input, single-output (SISO) system, that has a simple dynamic description, while the 

longitudinal motion subsystem is a single-input, multi-output (SIMO) system, which has two output variables 

to be controlled, namely pitch angle γ and longitudinal velocity u using a single input 𝜏𝑣 to be determined by 

the control system. 
 

3. Multibody Virtual Model 

The configuration of the vehicle is shown in Fig. 2 and Fig. 3. In particular, Fig. 2 represents the 3D 

CAD model of the vehicle, while Fig. 3 shows an inner view of the chassis. The vehicle is composed of 

the chassis, two DC electric motors to drive the wheels, two gearboxes connected on one hand to the 

motors’ shafts and on the other to the driving pulley of a timing belt transmission that proves a further 

speed reduction to the wheels and the tires. The motors are powered by batteries. The internal layout of 

the chassis (Fig. 3) is therefore as follows: motors (a), gearboxes (b), and timing belts. 

 
Fig. 2: 3D Model of the TWSBV system. 

 

 
Fig. 3: Chassis’ Internal Layout. 

 
3.1 Adams Model  

The model used for controller design doesn’t take into account some characteristics of the real system, 

like the presence of tires between the wheels and the ground which makes the ideal no-slipping hypothesis 

no more valid. Hence, to better approximate the real behaviour of the system, a more realistic dynamic 

model, which includes also the tires, has been developed with MSC Adams, as shown in Fig. 4. The tires 

have been widely discussed by Pacejka [18]. The tires model used in this paper is the 5.2.1 Model 16, because 

of its simplicity and a small set of parameters; since the simulation are performed on flat ground, combined 

effects are negligible and the camber angle is absent. The main parameters of the tire are the vertical 

stiffness 𝑘𝑧, which slightly increases for small deformations, vertical damping 𝑐𝑧, and longitudinal 

friction µ.  
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Fig. 4: Adams Model. 

 

The latter parameter is defined as a function of the slip speed 𝑣𝑠𝑥. Fig. 5 shows the tire slip quantities, 

while Fig. 6 shows the shape of the function µ(𝑣𝑠𝑥). According to Pacejka’s model 5.2.1, longitudinal 

force 𝐹𝑥 and lateral force 𝐹𝑦 are expressed by the following equations: 

 
Fig. 5: Tire Slip Quantities 16 

 

 
Fig. 6: Friction Coefficient µ vs. Local Speed Velocity 16 

 

𝐹𝑥 =  µ𝐹𝑧 (7)  

𝐹𝑦= −[µ𝑠𝑡𝑎𝑡 𝐹𝑧(1 −  𝑒
𝑘𝛼|𝛼|)𝑠𝑖𝑔𝑛(𝛼)]         

(8)  

𝐹𝑧 =  𝐹𝑠𝑡𝑖𝑓𝑓 −  𝐹𝑑𝑎𝑚𝑝 (9)  

Where 𝐹𝑧 depends on tire deformation 𝑑 and deformation speed 𝑣𝑧 as follows: 

𝐹𝑠𝑡𝑖𝑓𝑓=  𝑘𝑧𝑑
(𝜎) (10)  

𝐹𝑑𝑎𝑚𝑝 =  𝑐𝑧𝑣𝑧 (11)  

The tire slip speed depends on the wheel’s longitudinal speed 𝑣𝑥 and the wheel’s rolling speed Ω𝑅1: 
𝑣𝑠𝑥 =  𝑣𝑥 −  Ω𝑅1 (12)  

Where Ω and 𝑅1 are the angular speed and the radius of the wheel, respectively. The rolling resistance 

moment is calculated as follows: 

𝑀𝑦 =  𝑓𝑣 𝐹𝑧𝑅1 (13)  

The tire’s parameters have been properly selected and integrated within the MSC Adams model. Their values 

are summarized in Table 3. As far as the other vehicle’s components are concerned, motors have been 
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modelled as massive rotors revolving with respect to the stator, fixed to the chassis; moreover, the motors are 

modelled as ideal torque generators and the control torque (action between rotor and stator) is applied 

according to the different control strategies adopted, as subsequently described. Gearboxes between motors 

and wheels are modelled through their kinematic relationship between input and output speed. Similarly, the 

timing belts are kinematically simulated, utilizing the coupler joint of Adams. Moreover, in order to measure 

the state of the system, sensors are used in Adams that match the transducers placed on the real system. 

Table 3: Tire parameters 
Definition Notation Value Unit 

Vertical stiffness kz 206 𝑁/𝑚𝑚 
Vertical stiffness exponent θ 1.1  

Vertical damping cz 2.06 Ns/mm 
Lateral stiffness ky 50 𝑁/𝑚𝑚 

Cornering stiffness coefficient kα 50 𝑁/𝑑𝑒𝑔 
Static friction coefficient µs 0.95  

Dynamic friction coefficient µd 0.75  
The velocity of the  static friction coefficient vµs 3000 𝑚𝑚/𝑠 
The velocity of the  dynamic friction coefficient vµd 6000  

Rolling resistance coefficient fv 0.01 𝑚𝑚/𝑠 

 

The Adams software can be used not only for the automatic formulation of equations accurately describing 

linear and nonlinear mechanical dynamics but also to embed such a model within the Matlab-Simulink 

environment. Adams/Matlab co-simulation of the controller prototyped in Simulink and of the plant 

implemented in Adams is thus achieved.  

In this subsection, the Adams-Matlab co-simulation environment which combines Adams and Matlab-

Simulink is employed to validate the proposed control strategies. The virtual prototype of the TWSBV 

is built in the Adams environment and subsequently imported into Matlab’s Simulink. As a result, the 

inputs of the Adams virtual prototype are generated from the output of the proposed controller. Moreover, 

the state variables of the Adams virtual model are fed back to the controller deployed to regulate them. 

Fig. 7 shows the Adams-Matlab co-simulation block diagram of TWSBV which contains two inputs and 

six measurable state variables. Moreover, the general block diagram depicting a general control system 

acting on the multibody model can be seen in Fig. 8. In the following the Adams-Matlab co-simulation 

results are utilized for the verification and improvement of the examined controllers. 
 

 
Fig. 7: Adams-Matlab co-simulation. 
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Fig. 8: General control structure for longitudinal velocity, tilt angle and yaw angle control. 

 

4. Control System Design 

The purpose of this section is to present a model-based approach to the design of the control architectures 

for the TWSBV. The main assets that have been leveraged to design each controller are the mathematical 

model implemented in Matlab and the more detailed prototype developed in Adams. In particular, the 

general strategy is to tune the controller parameters using the lightweight Matlab simulation; each tuned 

controller was then used within the Adams-Matlab co-simulation. As might be expected, given the 

discrepancies between the two models, the Adams-Matlab co-simulations tend to highlight a deterioration 

of the performance of the controller if compared with the results provided by the pure-Matlab analysis. In 

particular, in all cases, the use of an unmodified controller leads to failure in the stabilization task. 

However, a key parameter, shared by all controller families, was identified and acted upon in order to 

restore the self-balancing capabilities of the vehicle without the need to re-tune all the gains of the control 

system. This parameter, which will be denoted as α, is the quantity used to treat the underactuated 

nature of the longitudinal subsystem. As will be shown in the following sections, α is responsible, in 

various forms, for the definition of one controllable output which is a function of both pitch and 

longitudinal velocity. In particular, α can be manipulated to prioritize the balancing task. The modified 

controller still suffers from a performance loss in its tracking capabilities but regains the ability to hold 

the TWSBV around the unstable equilibrium configuration. The advantages and disadvantages of 

controllers in the scope of this work also are highlighted. 

 

4.1 Reference velocity Trajectory generation  

The above discussion dealt with TWSBV modelling; however, the definition of the longitudinal reference 

velocity has not until now been considered. On the other hand, it is well known that the acceleration and 

deceleration capabilities of the vehicle contribute to determine its handling and safety characteristics. 

Hence the velocity references selected for evaluation purposes within the scope of this work feature 

acceleration and deceleration periods, separated by a phase where a stationary cruise velocity is held. 

Accordingly, the motion profile can be entirely characterized by the following parameters: 
 

– initial and final velocity 𝑢0, 𝑢𝑓 ; 

– maximal velocity 𝑢𝑚; 

– acceleration and deceleration time intervals; 

– stationary velocity time interval. 
 

As shown in Fig. 9, the resulting reference velocity trajectory is characterized by a trapezoidal profile. 

Analytically such a velocity function can be specified as shown below: 

𝑢𝑑(𝑡) =

{
 
 

 
 𝑢0 + (𝑢𝑚 −𝑢0) (

𝑡

𝑡𝑎 − 𝑡0
) 𝑖𝑓 𝑡 ∈  [𝑡0, 𝑡𝑎)

𝑢𝑚                                          𝑖𝑓 𝑡 ∈  [𝑡𝑎, 𝑡𝑏)

𝑢𝑚 − (𝑢𝑚 −𝑢𝑓)(
𝑡 − 𝑡𝑏
𝑡𝑓 − 𝑡𝑏

) 𝑖𝑓 𝑡 ∈  [𝑡𝑏, 𝑡𝑓 )

 
(14)  
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Fig. 9: Velocity Reference Profiles. 
 

Different values for parameters of Eq. 17 are considered, in Table 4. 
 

Table 4: The Motion Profile Parameters 

Motion cases 𝑡0 𝑡𝑎 𝑡𝑏 𝑡𝑓 𝑢0 𝑢𝑚 𝑢𝑓 

motion case a 0 1 11 12 0 1.5 0 

motion case b 0 3 13 16 0 1.5 0 

motion case c 0 10 20 30 0 1 0 

4.2 Sliding Mode Controller  

The controller designed using the SMC method [19] is particularly appealing due to its ability to deal with 

nonlinear systems and disturbances. Sliding mode control principles have been successfully applied in a wide 

range of problems, which for example include state-space systems, chemical processes, robotics, and 

mechatronic systems. The main core of sliding mode control is related to the satisfactory design of the 

function which expresses the sliding surface for the controlled variables. In other words, the idea behind SMC 

is to define a surface along which the process can slide to its desired set point [20]. Therefore, the first step 

in designing SMC is the definition of the sliding surface 𝑠(𝑡). The sliding surface is chosen to represent the 

desired behavior for the selected sliding variables; in our case, such behavior features the convergence of the 

tilt angle to zero and the tracking of the longitudinal velocity set point. 

Therefore, we need two sliding mode surfaces for the two sliding variables 𝛾, 𝑢 to design the control law 

for 𝜏𝑣, which represents the sum of the torques applied to the wheels. The sliding surface 𝑠(𝑡) has been 

chosen in this study as the differential equation governing the tracking error which can generally be 

defined, as follows: 

𝑠(𝑡) = (
𝑑

𝑑𝑡
+ 𝑐)

𝑛

𝑒(𝑡) (15)  

In Eq. 18, e(t) is the tracking error i.e. the difference between the set point and output measurement; 

c is a tuning parameter, which helps to adjust t h e  convergence rate. This term is selected by the 

designer and determines the performance of the system. The constant n is the system order. In order to 

define control errors, we can select state variables [x, u, γ, γ̇ ]. The control errors are then defined as: 

𝑒1 =  𝑥 −  𝑥𝑑, 𝑒2 =  𝑢 −  𝑢𝑑, 𝑒3 =  𝛾 −  𝛾𝑑, 𝑒4 = �̇� − �̇�𝑑, where 𝑥𝑑 is the desired longitudinal 

position, 𝑢𝑑 represents the desired longitudinal velocity, while 𝛾𝑑 and �̇�𝑑, the desired inclination angle and 

angular velocity, which can be set to zero. The system error dynamics can be expressed as 

�̇�1  =  𝑒2 (16)  

�̇�2  =  𝛬𝑢�̇�
2
+  𝛹𝑢�̇�

2+  𝑋𝑢𝜏𝑣 +  𝛷𝑢𝑔 −  𝑢𝑑 (17)  

�̇�3  =  𝑒4 
(18)  

�̇�4  = 𝛬𝛾�̇�
2
+ 𝛹𝛾�̇�2+ 𝑋𝛾𝜏𝑣 + 𝛷𝛾𝑔 − �̇�𝑑 (19)  
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The objective of the control is to ensure the convergence of the controlled variables to the desired values. 

Hence, for controlling two variables, the inclination angle and the longitudinal velocity, two sliding surfaces 

should be designed. For the intended purposes, two sliding surfaces are described by equations (20-21). 

𝑠1 = �̇�1 +  𝑐1𝑒1 (20)  

𝑠2 = �̇�3 +  𝑐2𝑒3 (21)  

Fundamentally as mentioned before, two types of control tasks should be designed to maintain the inclination 

angle (balancing) and track the desired longitudinal velocity at the same time. Since the longitudinal motion 

subsystem has a SIMO structure with one input and two outputs, a third sliding surface is needed to fulfil 

both control aims. In order to achieve this goal, the constant positive integer value α has been defined to give 

priority to the balancing as follows: 

𝑆 =  𝑠1  +  𝛼 𝑠2,     𝛼 >  0 
(22)  

In order to maintain S at a constant value, dS(t)/dt= 0 

�̇�  =  �̇�1  +  𝛼 �̇�2 (23)  

Next, substituting from Eqs. (17, 19) into (23) the yields: 

𝑆 ̇
 =  �̇�2 +  𝑐1𝑒2 +  𝛼(�̇�4 +  𝑐2𝑒4) (24)  

If we use the following control input the sliding surface will be an attractive surface and Eq. (24) will 

be stable, which is analyzed in the Stability Analysis section. 

𝜏𝑣 = −
1

𝑋𝑢
(𝛬𝑢𝜃̇

2 + 𝜑𝑢𝑔 −  𝑢𝑑 + 𝑐1𝑒2 + 𝛼(𝛬𝑢𝜃̇
2 + 𝜓𝛾𝛾̇

2 + 𝑋𝛾𝜏𝑣 + 𝜑𝛾𝑔 − 𝛾�̇� + 𝑐2𝑒4)) − 𝑘1𝑡𝑎𝑛ℎ(𝑆) −  𝑘2𝑆  
(25)  

The positive tuning parameters 𝑘1 and 𝑘2 are used to have a stable control algorithm. The chattering 

phenomena [26, 27], which are typical of systems controlled using SMC techniques, are high-frequency 

oscillations around the desired values that can be reduced using the saturation function instead of the 

discontinuous sign function.  While there exist various approaches to address this issue, the Super-Twisting 

Algorithm (STA) stands out as a particularly compelling choice. Another solution to reduce chattering in 

SMC is to replace the sign function with a continuous and smooth function like the hyperbolic tangent (tanh) 

function. Using tanh instead of the sign function can make the control input smoother and more continuous. 

The readers who are interested in the mathematical descriptions of SMC for steering subsystem can refer to 

Appendix 2.  

 

4.2.1 SMC Tuning and Results 

In this subsection, the tuning of the parameters of the SMC algorithm will be discussed. Parameter tuning 

has been developed and tested both on the mathematical model implemented in Matlab and on the virtual 

prototype created in Adams. A sensitivity analysis has been carried out until reaching an optimum result with 

respect to the closed-loop system performance. The performance of the controller can be defined in relation 

to the reference trajectory assigned for the velocity. 

Let it be recalled that three reference velocity profiles were defined in section 4.1 and labelled as: 

– Case a 

– Case b 

– Case c 

These references are used to represent different actions taken by the driver and are each characterized 

by increasing values of acceleration, deceleration, and peak velocity. As such it might be expected that 

the tracking performance will not be uniform. The parameters of the SMC controllers are obtained by 

trial and error. The tuned parameters are given as c1 = 0.01, c2 = 1.5, k1 = 2 and k2 = 12. In Fig. 10 

obtained results for the sliding mode control with 𝛼 technique in stabilization and velocity tracking in pure-

Matlab and co-simulation with Adams are presented. 
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Fig. 10: Sliding mode control with 𝛼 technique in stabilization and velocity tracking in pure-Matlab and co-simulation 

with Adams  
 

As can be seen, the sliding mode control in both pure-Matlab and Adams-Matlab co-simulation using the 𝛼 

technique was able to track the reference velocity in different reference velocity profiles and stabilize the 

inclination angle well. The results in the pure-Matlab have the ideal state and show fewer errors, but because 

the real model with different effects and phenomena is present in Adams software, it represents more errors. 

In case a, which takes less time and is considered a more difficult profile, the amount of errors is higher, and 

in case c, which has better conditions in this respect, fewer tracking errors are seen. It can also be seen that in 

the stages where the velocity control is being carried out, the pendulum angle error has a limited value and 

when the reference velocity is followed, the inclination angle control has its ideal state and the angle reaches 

zero. The results for three different profiles show the proper performance of the sliding mode control along 

with the 𝛼 technique. 
 

4.3 Stability Analysis 

The Lyapunov stability theorem utilizes a positive definite function called the Lyapunov function 𝑉 (𝑥) 
to show that the system is stable if the time derivative of V (x) is negative definite [15]. Consider, for 

example, a continuous scalar function 𝑉 (𝑥) that is 0 at the origin and positive elsewhere i.e. 𝑉 (0)  =  0 

and 𝑉 (𝑥)  >  0 for 𝑥 =  0. Imagine the function 𝑉 (𝑥) as an energy function; if the time derivative of 

𝑉 (𝑥) is negative, it can be implied that the energy is strictly decreasing over time, and all states will 

converge to zero. By utilizing the Lyapunov stability theory [21], we can prove the stability of the 

controlled closed-loop system composed by the plant and the SMC controller designed using the α 

technique. Eqs. (22) describes two surfaces suitable for these controlling purposes combined with the 

use of the coefficient α. Let the Lyapunov candidate function is considered as: 

𝑉1 =
1

2
𝑆2 (26)  
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It is clear that 𝑉1 is positive definite (lpd). The first time derivative of 𝑉1 can be calculated as 

�̇�1 = 𝑆�̇� = 𝑆(𝑠1  +  𝛼 𝑠2) (27)  

Substituting from (20, 21) into (34) results in 

�̇�1 = 𝑆�̇� = 𝑆(�̇�2 +  𝑐1𝑒2 +  𝛼(�̇�4 +  𝑐2𝑒4)) (28)  

Substituting from (17, 19) into (35) yields 

�̇�1 = 𝑆(𝛬𝑢�̇�
2 + 𝜓𝑢�̇�

2 + 𝑋𝑢𝜏𝑣 + 𝜑𝑢𝑔 − 𝑢𝑑 + 𝑐1𝑒2 + 𝛼(𝛬𝑢�̇�
2 +

𝜓𝛾�̇�
2 + 𝑋𝛾𝜏𝑣 + 𝜑𝛾𝑔 − �̇�𝑑 + 𝑐2𝑒4))  (29)  

After taking the time derivative �̇�1 and substituting from Eq. (25), the control input 𝜏𝑣 cancels some terms 

so that �̇�1  can be expressed as 

�̇�1 =  𝑆(−𝑘1𝑡𝑎𝑛ℎ(𝑆) −  𝑘2𝑆)  = −𝑘1|𝑆|  −  𝑘2𝑆
2 (30)  

Finally, �̇�1 becomes negative definite. It is confirmed that by providing the condition SṠ < 0 the sliding 

surface S = 0 is an attractive surface that guarantees the stability of the sliding mode controller [16]. 

We have considered only SMC surfaces of the tilt angle and the longitudinal velocity of TWSBV for the 

SIMO subsystem. In order to prove the Lyapunov-based stability of the whole system, the steering 

subsystem which is single-input, single-output (SISO) should also be considered. Consider the Lyapunov 

function candidate for the yaw angle controller as 

𝑉2 =
1

2
𝑠3
2 (31)  

The derivative of the Lyapunov function candidate and using Eq. (31) results in 

�̇�2  =  𝑠3𝑠3̇ = 𝑠3(𝛬𝜃𝜃�̇� + 𝜓𝜃𝛾̇𝜃̇ + 𝑋𝜃𝜏𝜔 − 𝜃�̈� + 𝑐3𝑒5̇)                       (32)  

After  taking  the  time derivative of 𝑉2 and  substituting from Eq. (32), the control  input  𝜏𝑤 can be 

used to cancel some of the terms in �̇�2, and it can be expressed as 

�̇�2  = 𝑠3(𝑘5𝑡𝑎𝑛ℎ(𝑠3) − 𝑘6𝑠3) = −𝑘3|𝑠3| − 𝑘4𝑠3
2                       (33)  

Finally, �̇�2 becomes negative definite. It is confirmed that by providing the condition 𝑠3�̇�3 < 0 the sliding 

surface 𝑠3 =  0 is an attractive surface that guarantees the properties of stability and robustness of the 

SMC controller. Consider that the TWSBV dynamic model of the system has two separated decoupled 

algebraically independent subsystems: one is the longitudinal motion subsystem while the other is the 

steering subsystem. For each subsystem we applied the Lyapunov theorem; the general Lyapunov function 

of the overall system is the summation of both Lyapunov functions of two subsystems [22]. 

𝑉 = 𝑉1 + 𝑉2 =
1

2
𝑆2 +

1

2
𝑠3
2 (34)  

By calculating the derivative of the Lyapunov function as follows 

�̇� = �̇�1 + �̇�2 = −𝑘1|𝑆| − 𝑘2𝑆
2 − 𝑘3|𝑠3| − 𝑘4𝑠3

2 (35)  

Since both �̇�1 and �̇�2 are negative definite, so is �̇�. The stability of the overall system is thus proven. 
 

4.4 Feedback Linearization Method  

In this section, the developed nonlinear dynamic model has been used in order to design a model-based 

Feedback Linearization (FL) controller for the under-actuated TWSBV. We will start by discussing the 

concepts of feedback linearization and then we will show how to utilize this method for controlling the 

TWSBV. The feedback linearization method uses nonlinear state feedback in order to obtain closed-loop 

stable linear dynamics [5]. These linear dynamics can then be easily regulated using an outer control loop 

designed using classical techniques. First, the dynamic equation of the system is written as 

𝑥(𝑛)  =  𝑓(𝑥)  +  𝑏(𝑥)𝑢  (36)  
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where 𝑢 is the scalar input, 𝑥 =  [𝑥, �̇� , . . . , 𝑥(𝑛−1)] is the state vector, and 𝑓(𝑥) and 𝑏(𝑥) are nonlinear 

functions of system states. Assuming that 𝑏 is non-zero, we can obtain the open-loop relationship between 

input and states as below: 

𝑢 =
1

𝑏
(𝑣 − 𝑓) (37)  

According to the feedback linearization method, the internal control loop input v is defined as follows: 

𝑥(𝑛)  =  𝑣 (38)  

Thus, the internal control loop input v can be chosen as 

𝑣 =  −𝑘0𝑥 − 𝑘1�̇� − 𝑘𝑛−1𝑥
(𝑛−1) (39)  

Therefore, according to Eq. (49) v is defined as a state feedback controller [23]. Let us utilize this interesting 

above-mentioned approach for designing the FL controller for the TWSBV. Firstly by choosing a state 

representation of the system, the transformation of a non-linear dynamic system into a linear one can be 

realized. Considering the nonlinear dynamic equations of the system with the α technique can be rewritten as 

�̇�  +  𝛼 �̈� =  𝐴 +  𝐵 𝜏𝑣 
(40)  

where A and B are nonlinear functions of states and nonzero. The dynamic equations are simplified through 

feedback linearization. In order to cancel the nonlinear terms and impose the desired closed-loop linear 

dynamics, the system can be represented as 

𝜏𝑣 =
1

𝐵
(�̇� + 𝛼�̈� − 𝐴) (41)  

By Eq. (41) the nonlinearities can be cancelled, and we can obtain a simple linear relationship between the 

outputs and the input. Designing the outer control loop for tracking velocity reference and balancing the whole 

system controller can be done by choosing �̇� and �̈� as follows: 

�̇� =  �̇�𝑑  −  𝑘0(𝑢 −  𝑢𝑑) (42)  

�̈� =  �̈�𝑑  −  𝑘1(𝛾 − 𝛾𝑑)  − 𝑘2(�̇� − �̇�𝑑)         (43)  

By using the α technique: 

�̇�  +  𝛼 �̈�  = �̇�𝑑 − 𝑘0𝑒2  +  𝛼 (�̈�𝑑  −  𝑘1 𝑒3  −  𝑘2𝑒4) (44)  

Thus, the following control law is obtained: 

𝜏𝑣 =
1

𝐵
(�̇�𝑑 − 𝑘0𝑒2  +  𝛼 (�̈�𝑑  −  𝑘1 𝑒3  −  𝑘2𝑒4) − 𝐴) (45)  

 

This controller can be easily implemented, and numerical results show that the designed method works 

effectively. The control block diagram is depicted in Fig. 11. Obtained results both in pure-Matlab and the 

Adams-Matlab co-simulation of the feedback linearization method for the TWSBV system are presented in 

Fig. 12 both for pure-Matlab and for the Adams-Matlab co-simulation. It can be seen that both tracking 

velocity reference and balancing are achieved.  
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Fig. 11: Schematic block diagram of feedback linearization with α technique controller 

 

 
Fig. 12: Feedback linearization control with 𝛼 technique in stabilization and velocity tracking in pure-Matlab and co-

simulation with Adams 
 

As can be seen, the feedback linearization control in both pure-Matlab and Adams-Matlab co-simulation 

using the 𝛼 technique was able to track the reference velocity in different reference velocity profiles and 

stabilize the inclination angle well. In case a, which takes less time and is considered a more difficult profile, 

the amount of errors is higher, and in case c, which has better conditions in this respect, fewer tracking errors 

are seen. It can also be seen that in the stages where the velocity control is being carried out, the inclination 

angle error has a limited value and when the reference velocity is followed, the pendulum angle control has 

its ideal state and the angle reaches zero. The results for three different profiles show the proper performance 

of the feedback linearization along with the 𝛼 technique.  
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4.5 PID Control  

In this section, the Proportional-integral-derivative (PID) controller [24] has been investigated owing to its 

simplicity and effectiveness in many technical and industrial applications. The PID controller has three 

control parameters, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 which are called the proportional, the integral, and the derivative gains, 

respectively. To stabilize the TWSBV and to track the longitudinal reference velocity, two parallel PID 

controllers have been employed. The outputs of the two controllers are combined by using the α technique, 

in such a way that the tilt control task is overall prioritized. The general parallel structure of controllers and 

the α technique are shown in Fig. 13. At the mathematical level the resulting control signal is therefore 

described as 

𝜏𝑢 = 𝑘𝑝𝑒2(𝑡) + 𝑘𝑖 ∫ 𝑒2 (𝑡) + 𝑘𝑑�̇�2(𝑡)  (46)  

𝜏𝛾 = 𝑘𝑝𝑒3(𝑡) + 𝑘𝑖 ∫ 𝑒3 (𝑡) + 𝑘𝑑�̇�3(𝑡)  (47)  

𝜏𝑣 = 𝜏𝑢 + 𝛼𝜏𝛾 
(48)  

  

 
Fig. 13: Closed loop control system block diagram 

 

The validation of the tracking performance is done in three different scenarios. As attested by the pure-

Matlab simulation and Adams-Matlab co-simulation results reported in Fig. (14), the PID controller can 

effectively satisfy the two combined purposes, i.e. tracking the velocity reference and balancing the TWSBV 

at the same time. Fig. 14 demonstrates that during the acceleration and deceleration phases, the controller 

takes care of decreasing the velocity error. Soon after reaching the constant cruise velocity value, the PID 

controller is also able to guarantee convergence of the tilt angle error to zero. As can be seen, the PID control 

could smoothly follow the Case c reference profile. It means that it has had enough time to stabilize the system 

and track the reference velocity. 
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Fig. 14: PID control with 𝛼 technique in stabilization and velocity tracking in pure-Matlab and co-simulation with 

Adams 

As can be seen, the PID control in both pure-Matlab and Adams-Matlab co-simulation using the 𝛼 technique 

was able to track the reference velocity in different reference velocity profiles and stabilize the inclination 

angle well. In case a, which takes less time and is considered a more difficult profile, the amount of errors is 

higher, and in case c, which has better conditions in this respect, fewer tracking errors are seen. It can also be 

seen that in the stages where the velocity control is being carried out, the pendulum angle error has a limited 

value and when the reference velocity is followed, the inclination angle control has its ideal state and the 

angle reaches zero. The results for three different profiles show the proper performance of the PID control 

along with the 𝛼 technique. 
 

4.6 LQR Control  

This subsection presents the development of an LQR controller based on the α technique. In order to show 

the advantages or disadvantages of the designed LQR controllers for the TWSBV we need to evaluate the 

closed-loop performance of the system with the designed longitudinal reference profiles. The full-state 

feedback controller with the LQR method [25] gives promising results. The equations of the linearized 

longitudinal sub-system are rearranged into a state space formulation in order to deploy LQR methods. 

In order to define the relative weight between longitudinal speed and pitch errors, a new definition as below 

by the α technique can be employed. Linear control techniques developed for fully-actuated systems cannot 

be used directly to stabilize the underactuated TWSBV system. The linear model for the TWSBV can be 

easily obtained in the form �̇� =  𝐴𝑥 +  𝐵𝑢. It is clear that the inclination angle 𝛾 is controlled by the torque 

𝜏𝑣 and the longitudinal velocity 𝑢 cannot be controlled in isolation, meaning that the inclination angle of the 

vehicle has a direct influence on the longitudinal velocity. The α technique is applied to the minimal 

representation of the system in order to introduce a new state variable defined as a linear combination of 

longitudinal velocity and rate of change of pitch angle. The linear quadratic regulator derives closed-loop 
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pole locations which are the optimal pole locations with respect to an energy cost function that can guarantee 

the desired closed-loop performance of the system. The LQR controller consists of a feedback gain matrix K, 

which will be generally used to implement the control input 𝑢 =  −𝐾𝑒 as 

𝑢 =  −𝐾 [

𝑒3
𝑒4

𝑒2 + 𝛼𝑒4
] 

(49)  

where K is the gain matrix defined as 

𝑢 = −𝑅−1𝐵𝑇𝑃𝑥 (50)  
Here P is a positive definite matrix which is solved from the following Algebraic Riccati Equation (ARE). 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (51)  
For achieving the optimal response, weight matrices Q and R are selected by the designer. The Q matrix 

contains weighted values for states. These values should be allocated according to the relative importance of 

each state. It is important to remember that a higher value in the Q matrix implies a higher level of regulation 

and prioritization of the affected state variables. The R matrix elements act like input weights, which can 

affect the amount of controller input signal. The LQR method minimizes a performance index defined as: 

𝐽 =
1

2
∫ {𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢}𝑑𝑡
∞

0

 
(52)  

The design key to find the right weight matrix 𝑄 and matrix 𝑅 are based on the empirical tuning: 

  𝑄 = 𝑑𝑖𝑎𝑔[1 2 10], 𝑅 = 1  

In Fig. 15 obtained results for the LQR method with 𝛼 technique in stabilization and velocity 

 tracking in  pure-Matlab and co-simulation with Adams are presented. 
 

 

 
Fig. 15: LQR control with 𝛼 technique in stabilization and velocity tracking in pure-Matlab and co-simulation with 

Adams 
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As can be seen, the LQR control in both pure-Matlab and Adams-Matlab co-simulation using the 𝛼 technique 

was able to track the reference velocity in different reference velocity profiles and stabilize the inclination 

angle well. In case a, which takes less time and is considered a more difficult profile, the amount of errors is 

higher, and in case c, which has better conditions in this respect, fewer tracking errors are seen. It can also be 

seen that in the stages where the velocity control is being carried out, the pendulum angle error has a limited 

value and when the reference velocity is followed, the inclination angle control has its ideal state and the 

angle reaches zero. The results for three different profiles show the proper performance of the LQR control 

along with the 𝛼 technique. 

 

4.7 Tuning the 𝛼 parameter 

Obtained results for tuning the 𝛼 parameter for the sliding mode control in stabilization and velocity tracking 

in pure-Matlab and co-simulation with Adams are presented in Fig. 16. 
 

 
Fig. 16. Comparison of performance for tracking the motion profiles with different 𝛼 values using sliding mode 

controller 
 

The SMC controller tries to prevent the degradation of the closed loop performance, which occurs during 

sudden acceleration in one second and deceleration in one second. It is remarkable that increasing 𝛼 directly 

can amplify the weight and priority of the balancing task but on the other hand can weaken the ability to 

follow the reference longitudinal velocity. For example in Case a, it is easily understandable that by increasing 

the value of 𝛼 balancing has been improved but on the other side the velocity tracking has been confronted 

with a significant reduction in performance. The different motion profiles for reference trajectories are 

generated that comply with human driver requirements by exposing him/her to acceptable levels of 

accelerations, decelerations, and peak velocities. It is obvious that in case b the performance becomes better 

in comparison with case a. As can be seen, for 𝛼 = 4 shortest settling time for the longitudinal velocity is 

visible. In the third scenario, on the other hand, the vehicle can smoothly follow the reference trajectory, given 
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the better matching between the required accelerations and the vehicle's capabilities. As the sliding surface 

using 𝛼 technique and the linear relationship between the tilt angle and longitudinal velocity surfaces, the 

TWSBV can eventually reach the target of reference velocity. Even though the vehicle reaches the target 

velocity smoothly, it takes 12s to achieve the stable state and during the whole process, the stability of the 

vehicle has been guaranteed by the pitch variable being close to zero.  
 

5. Summary and Conclusion 

 

This paper provides the modelling and control of the non-linear underactuated two-wheeled self-balanced 

vehicle. The equations of motion are obtained based on the Lagrange method and non-holonomic constraints. 

The 𝛼 technique is presented in order to simultaneously stabilize the velocity tracking error and the inclination 

angle of the TWSBV. Moreover, several controllers were developed based on the proposed 𝛼 technique in 

the pure-Matlab environment. The aim was to stabilize the TWSBV around the unstable equilibrium 

configuration while also providing trajectory-tracking abilities. In parallel, the MSC Adams software has been 

utilized in order to model the vehicle as a multi-body system in which the tire-ground interactions are 

modelled in greater detail. 

According to the similarities between the obtained results in both pure-Matlab model and co-simulation 

Adams-Matlab model, we can conclude that the mathematical model describes reasonably well the behavior 

of the real TWSBV. We remark that the controllers are based on the mathematical model featuring the 

assumption of pure rolling without slipping, by which the plant model assumes a manageable analytical form. 

On the contrary in the Adams model the slipping condition and road-tire model and reaction forces have been 

modeled. The Adams model has been developed to provide a virtual dynamic prototype of the TWSBV to 

detect any undesirable effect of the controller before the testing phase on the actual TWSBV prototype. 

A brief outline of this document is as follows: section 2 provides detailed dynamic model of TWSBV which 

used throughout this research. In section 3 the Adams model introduced and also technical specification of 

various part of TWSBV have been presented. In section 4 deals with the control methodology to achieve 

desired performance, results of each designed controller based on pure-Matlab and Adams-Matlab co-

simulation are discussed in the relevant subsections. The study is concluded in summary in order to providing 

general overview for reader. SMC method is especially attractive since its capability to handle nonlinear 

systems and disturbances, while SMC offers several advantages, such as robustness and good tracking 

performance; but in other hand chattering phenomena is a well-known disadvantage of sliding mode control. 

Feedback linearization relies on accurate models of the system dynamics. Therefore, developing an accurate 

model of a complex system can be challenging. However, in our case the friction effects are neglected to 

simplify the feedback linearization controller which causing an undesirable performance. The main 

distinguishing feature on the performance of SMC can be observed, is in the most severe conditions (Fig. 10). 

It means SMC controller is to prevent the degradation of the closed loop performances, which occur during 

sudden acceleration in one second and deceleration in one second. Moreover, as shown in Fig. 12, FL 

controller performance results have shown that in Case A leads to oscillation and poor stabilization of the 

vehicle. As it might be expected, given the discrepancies between the two models, the co-simulations tend to 

highlight a deterioration of the performance of the controller if compared with the results provided by the 

pure-Matlab analysis. Adams-Matlab co-simulation represents a highly useful intermediate step between the 

design of the controller and its experimental validation on a physical prototype. it is observed that LQR offers 

steady-state error during tracking longitudinal velocity and also requires a linear model to get an adequately 

controlled system. Also the accurate determination and tuning of the PID parameters could be challenging, 

finding appropriate parameters. By comparing Tab.5, which reports the results for the Case A,Tab.6 which is 

relative to Case B and Tab.7 which is relative to Case C; it is clear that MAE and RMSE in both variables 

inclination angle and longitudinal velocity are provided.  
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Table 5: The Motion Profile Parameters 

Motion cases A 𝑅𝑀𝑆(𝑒𝑢) 𝑀𝑎𝑥|𝑒𝑢| 𝑅𝑀𝑆(𝑒𝛾) 𝑀𝑎𝑥|𝑒𝛾| 

SMC 0.393 1.25 0.042 0.121 

FL 0.394 1.30 0.048 0.140 

PID 0.368 1.23 0.055 0.167 

LQR 0.394 1.35 0.046 0.153 

 

Table 6: The Motion Profile Parameters 

Motion cases B 𝑅𝑀𝑆(𝑒𝑢) 𝑀𝑎𝑥|𝑒𝑢| 𝑅𝑀𝑆(𝑒𝛾) 𝑀𝑎𝑥|𝑒𝛾| 

SMC 0.206 0.506 0.279 0.650 

FL 0.217 0.533 0.327 0.072 

PID 0.193 0.458 0.039 0.096 

LQR 0.259 0.632 0.030 0.073 

 

Table 7: The Motion Profile Parameters 

Motion cases C 𝑅𝑀𝑆(𝑒𝑢) 𝑀𝑎𝑥|𝑒𝑢| 𝑅𝑀𝑆(𝑒𝛾) 𝑀𝑎𝑥|𝑒𝛾| 

SMC 0.060 0.100 0.0099 0.0157 

FL 0.069 0.110 0.0084 0.0133 

PID 0.039 0.090 0.0104 0.0194 

LQR 0.083 0.126 0.0098 0.0149 

 

In this research authors tried to briefly introduces and analyses some commonly used controllers such as PID, 

LQR, FL, SMC for a TWSBV. This study’s main contribution is a comprehensive discussion that  includes 

the advantages and the limitations of the mentioned controllers to provide a proper understanding that may 

help the user to choose a suitable one.  

 

6. Further Research 

The future perspectives of this dissertation include the modeling of the terrain surface as accurately as possible. 

There is a gap between even surface models and actual vehicle performance on uneven surfaces, as the driver, 

while using the TWSBV for outdoor activity, is always affected by several phenomena such as unknown 

terrain, inclination angle, changing slope and external disturbances. In order to deal with the above mentioned 

phenomena, we foresee improvements within the Adams surface models. By focusing on modeling different 

terrain profiles, vehicle maneuverability over several terrain types can be analyzed. Moreover to enhance the 

ground surface model, sloped terrain can be incorporated within the TWSBV simulation. Additionally road 

disturbances can be further investigated and finally a disturbance observer can be designed in order to 

specifically increase the vehicle performance. 

 

7. Appendix 1 

In equations of motion of the TWSBV Eqs. (4-6) mentioned parameters are defined as: 

𝛬𝑢 =
−𝐵𝑢𝐶𝛾 − 𝐴𝛾𝐶𝑢

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 

(53)  

𝜓𝑢 = −
𝐶𝑢𝐴𝛾

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 

(54)  

𝑋𝑢 =

𝐴𝛾
𝑟𝜔
+ 𝐵𝑢

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 (55)  

𝜑𝑢 =
𝐵𝑢𝐷𝛾

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 

(56)  
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𝛬𝛾 =
−𝐶𝛾𝐴𝑢 + 𝐵𝑢𝐶𝑢

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 

(57)  

𝜓𝛾 =
𝐵𝛾𝐶𝑢

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 

(58)  

𝑋𝛾 =

𝐵𝛾
𝑟𝜔
+ 𝐴𝑢

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 (59)  

𝜑𝛾 = −
𝐴𝑢𝐷𝛾

𝐴𝑢𝐴𝛾 − 𝐵𝑢𝐵𝛾
 

(60)  

𝛬𝜃 =
𝐵𝜃
𝐴𝜃

 
(61)  

𝜓𝜃 =
𝐶𝜃
𝐴𝜃

 
(62)  

𝑋𝜃 =
𝐷𝜃
𝐴𝜃

 
(63)  

𝐴𝑢 = 3𝑚𝜔 +𝑚𝑐ℎ 
(64)  

𝐵𝑢 = ℎ𝑚𝑐ℎ𝑐𝑜𝑠𝛾 
(65)  

𝐶𝑢 = −ℎ𝑚𝑐ℎ𝑠𝑖𝑛𝛾 
(66)  

𝐴𝛾 = 𝐼𝑦𝑦𝑐ℎ +𝑚𝑐ℎℎ
2 

(67)  

𝐵𝛾 = ℎ𝑚𝑐ℎ𝑐𝑜𝑠𝛾 
(68)  

𝐶𝛾 = −
1

2
[𝐼𝑥𝑥𝑐ℎ +𝑚𝑐ℎℎ

2 − 𝐼𝑧𝑧𝑐ℎ]𝑠𝑖𝑛2𝛾 (69)  

𝐷𝛾 = −ℎ𝑚𝑐ℎ𝑠𝑖𝑛𝛾 
(70)  

𝐴𝜃 = [2(𝑚𝜔𝑙
2 + 𝐼2𝜔) + 𝐼𝑥𝑥𝑐ℎ𝑠𝑖𝑛

2𝛾 + 𝑚𝑐ℎℎ
2𝑠𝑖𝑛2𝛾 + 𝐼𝑧𝑧𝑐ℎ𝑐𝑜𝑠

2𝛾 +𝑚𝜔𝑙
2] 

(71)  

𝐵𝜃 = −𝑚𝑐ℎℎ𝑠𝑖𝑛𝛾 
(72)  

𝐶𝜃 = −(𝑚𝑐ℎℎ
2 + 𝐼𝑥𝑥𝑐ℎ − 𝐼𝑧𝑧𝑐ℎ)𝑠𝑖𝑛2𝛾 

(73)  

𝐷𝜃 =
1

𝑟𝜔
 

 

(74)  

8. Appendix 2 

 

The focus of our discussion remains centered on the core aspects of designing controller for longitudinal 

motion of TWSBV. However, for the benefit of interested readers, the detailed formula for steering subsystem 

controller has been thoughtfully provided in the appendix 2. The steering subsystem which is a single-input, 

single-output (SISO) should also be considered as 

�̈� = 𝛬𝜃�̇�
2𝑢+ 𝛹𝜃�̇��̇� + 𝑋𝜃𝜏𝑤 (75)  

The yaw state error and yaw rate error are defined as 𝑒5 = 𝜃 − 𝜃𝑑, 𝑒6 = �̇�  − �̇�𝑑 where 𝜃𝑑 is the desired   
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yaw angle. The error differential equation can be expressed as: 

�̇�5 =  𝑒6 (76)  

�̇�6 = 𝛬𝜃�̇�
2𝑢+ 𝛹𝜃�̇��̇�+ 𝑋𝜃𝜏𝑤 − �̈�𝑑 (77)  

If we use the conventional sliding surfaces as below: 

𝑠3 = �̇�5 +  𝑐3𝑒5,      𝑐3 >  0 
(78)  

In order to maintain 𝑠3 at a constant value, therefore ds3(t)/dt = 0. 

�̇�3 = �̇�6 +  𝑐3�̇�5                       (79)  

Substituting from Eq. (78) into E q . (80) yields: 

�̇�3 = 𝛬𝜃�̇�
2𝑢+ 𝛹𝜃�̇��̇�+ 𝑋𝜃𝜏𝑤− �̈�𝑑+  𝑐3�̇�5 (80)  

If we use the following control input the sliding surface will be  

𝜏𝜔  =  
1

𝑋𝜃
(−𝛬𝜃𝜃�̇� − 𝜓𝜃𝛾�̇�̇ + 𝜃�̈� − 𝑐3𝑒5̇ − 𝑘3𝑡𝑎𝑛ℎ(𝑠3) − 𝑘4𝑠3)                       (81)  

The positive control gains 𝑘3 and 𝑘4 are used to have a stable control algorithm. 

Steering Subsystem control discussion 

In previous sections, the yaw angle is stabilized around zero. In this section in addition to longitudinal control 

based on the 𝛼 technique, the yaw angle control is successfully tracked a reference trajectory. Obtained results 

in tracking a reference sinusoidal trajectory are shown in Fig. 17. 

  
Fig. 17: Yaw angle control in tracking a reference trajectory along with longitudinal control 

 

The results demonstrate that the system's yaw angle can effectively track a sinusoidal reference trajectory 

while maintaining longitudinal control. This indicates that the proposed control approach is effective in 

simultaneously controlling both the yaw angle and longitudinal behavior of the system. 
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9. List of Symbols 

Mathematical Symbols 
𝑐𝑧 Vertical damping 
𝑑 Tire deformation 
𝑓𝑣 Rolling resistance coefficient 
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𝐹𝑥 Longitudinal force 

𝐹𝑦 Lateral force 
𝑔 Gravity Acceleration 
h Distance from the half distance between to wheels to the centre of gravity of the chassis 

𝐼𝑦𝑦𝑐ℎ Inertia moment of the chassis about the 𝑌3𝑐ℎ 

𝐼𝑥𝑥𝑐ℎ Inertia moment of the chassis about the 𝑋3𝑐ℎ 

𝐼𝑧𝑧𝑐ℎ Inertia moment of the chassis about the 𝑍3𝑐ℎ 

𝐼𝑤1 Inertia moment of the chassis about the 𝑋3𝑐ℎ 

𝐼𝑤2 Inertia moment of the chassis about the 𝑌3𝑐ℎ 

𝑘𝑝, 𝑘𝑖, 𝑘𝑑 Proportional, integral, and derivative gains 
𝑘𝛼 Cornering stiffness coefficient 
𝑘𝑦 Lateral stiffness 
𝑘𝑧 Vertical stiffness 
l Half of the distance between the wheels 

𝑚𝑐ℎ  Mass of chassis (mass of driver is included) 
𝑚𝑤 Mass of the wheel 
P Positive-definite matrix 

Q, R Weight matrices 
𝑟𝑤 The radius of the wheel 
𝑠(𝑡) Sliding surface 
𝑢0, 𝑢𝑓 The initial and final velocity 
𝑢𝑚 Maximal velocity 
𝑣𝑠𝑥 Slip speed 

𝑣𝑧 Deformation speed 
𝑣µ𝑠 The velocity of the static friction coefficient 
𝑣µ𝑑 The velocity of the dynamic friction coefficient 

𝑉 Lyapunov function candidate 
𝑥, 𝑦 The position coordinates of the system in X–Y plane 

 

Greek Symbols 

𝛼 Control gain 

Ω Angular speed 

µ𝑠 Static friction coefficient 

µ𝑑 Dynamic friction coefficient 
𝜏1, 𝜏2 Torques of left and right wheels 
𝜏𝑣 Torque input for longitudinal motion 
𝜏𝑤 Torque input for yaw motion 

𝜑1, 𝜑2 Rotational angles of the left and right wheels 
𝜃 Yaw angle of TWSBV 
𝛾 The inclination angle of TWSBV 
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