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Abstract: Identifying spatial patterns in species diversépresents an essential task to
be accounted for when establishing conservatiostegires or monitoring programs.
Predicting patterns of species richness by a mioastd approach has recently been
recognised as a significant component of consemagilanning. Here, a spatially-
explicit data-set on birds presence and distrilouioross the whole Tuscany region was
analysed using geostatistical models. Species eghnvas calculated within 1x1 km
grid cells and 10 environmental predictors werduided in the analysis. A statistical
model integrating spatial components of variatiathypredictive ecological factors of
bird species richness was developed and used amnglriedictive regional maps of bird
diversity hotspots.
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1. Introduction

The identification of spatial patterns in speciegrsity represents an essential task for
biodiversity conservation strategies or monitoripgograms. Recently, species
distribution modeling emerged as a new approadet@rate species distribution maps,
on the basis of the relationship between speciesepce (or abundance) records and
environmental variables. Typically, modeling methadtempt to predict the probability
of occurrence of species as a function of a senefronmental variables. In particular,
geostatistical modeling techniques, which have bdmreloped mainly in the field of
geography, are designed to model spatially depenuleservations (Goovaerts 1997),
but in recent years, such methodologies have beptied even in the ecological
literature (Bacaro an Ricotta 2007). Birds are agndhe best-studied organisms,
especially in Europe. They are often considereexasllent indicators of environmental
changes and as good ecological proxies to assedsdbiversity values of an area. In
this work, a geostatistical modelling approach wapplied on the data provided by the
“Monitoring Program of Breeding Birds of Tuscanydne of the most extensive
regional bird monitoring programs in lItaly. The aohthis paper isi) to describe the



spatial patterns of bird species richness i@antb identify those environmental factors
underlying these patterns. This latter point repmés an important task in the ecological
context since the environmental proxies drivingdliichness could be used to decide
conservation strategies.

2. Materials and Methods

Bird data The bird species occurrence data were obtaineth fthe Monitoring
Program of Breeding Birds of Tuscany carried outhm®y Centro Ornitologico Toscano
(www.centrornitologicotoscano.oygand based on Point Counts method (Bikbwl. 2000).
Points were distributed according to a two stagespding design: in randomly selected
10*10 km UTM cells, a number of 12-15 point coumtsre selected according to a
second random sampling procedure. The original ds¢d of geo-referenced
observations was assembled to produce a regioralofiaird species richness for cells
of 1*1 km. Such a grid covering the whole Tuscaagion resulted in 22060 cells, 3584
of which enclosed data on bird occurrences.

Putative determinants of bird species richnefss each 1*1 km cell, three sets of
predictor/explanatory variables were derived anduged according to a similarity
criterion. 1) Geographical features (4 predictord)e coordinates for each grid cell
(Latitude and Longitude), elevation and distancéhtosea were included in this group.
II) Landscape feature and complexity (4 variabl€3ta on land cover were derived
from the third level of the CORINE Land Cover M&umr each grid cell, the number of
patches and the area (mean and standard deviaterjed by each land cover class
was calculated. Landscape shape complexity waslaetdc by using the AWMSI (Area
Weighted Mean Shape Index). The third level datéhef CORINE Land Cover were
used for calculating the Shannon index. 1ll) PriynBroductivity (2 variables): NDVI
(Normalized Difference Vegetation Index) and itanstar deviation were used on to
discriminate between the amount of biomass charsictg different vegetation types.

Geostatistical modellinga combined multi-predictor model was developedthis
study, and it was further used in conjunction wg#ostatistical techniques to predict
birds diversity in 1 x 1 km grid cells across théohke Tuscany region. Statistical
modelling process was organised into the followtimge parts: 1) Data transformation
(normalization); 2) Building the generalized linegpatial model: once the response
variable (number of bird species) at each grid wethin the Tuscany region was
denoted as:

Xy L=, n (1)
where x; identifies the spatial location (in two-dimensibrepace - longitude and
latitude expressed in kilometres) apds the bird richness value associated with the
locationx;, a geostatistical (isotropic) model can be defiasd

Y, =S[X;[+Z;:i= 1,.....,n (2)
where

{sixxo0?} (3)
is a Gaussian process with a spatially varying mgapdefined by a classical linear
regression model. The described Gaussian processascharacterized by a variance
given by:

c°=Var{Six} (4)
and by a positive-defined correlation function:



plu=Corr {SIX[jSIX' 1} (5)

defining the way correlation function decays toozfar increasing distances occurring
between observations at locationsand x’. Explanatory variables for modelling the
large-scale variation in bird diversity were chosga a model selection technique
(AIC). Secondly, the residuals from the model wexamined for spatial correlation and
a suitable family of correlations was chosen. Theneates of the parameters in the
trend surface (model spatial component) were upldatsing the quasi-Newton
optimisation function (Byrd et al. 1995) followeg maximum likelihood estimation of
the parameters of the covariance function usingeb&luals. 3) Universal kriging was
used to predict expected bird richness (and itatran) in each 1x1 km grid cell across
the whole Tuscany Region.

3. Results

The number of bird species per cell grid was noizedl using a Box-Cox power of
0.184. Only 4 predictors were included in the predé model (Table 1). The intercept
of the estimated spatial varying mean resultedlfigignificant and was, consequently,
included in the model.

Table 1: Description of explanatory variables (and thesaciated coefficients) included after stepwise
selection in the spatial varying mean component (0.001).

Trend parameters (spatial varying mean) Estimated ¥lue
Intercept 3.066
NDVI St.Dev. 0.811"
H’ index 0.104”
Mean elevation -0.001"
Distance sea >0.001"

Spatial Parameters

Nugget ¢%) 0.147
Partial sill &) 0.270
Range ¢) 0.054
Practical Range 0.162
Normalisation parameter (Box-Cox power)

lambda {) 0.184

Covariance Function Parameters (Matérn)
Order (k) 0.5 (exponential model)

The modeled spatial parameters highlighted thadcautelation in bird richness value
existed and strongly influenced the number of olestrspecies. In particular, the
practical range was reached after 16 km, indicatirggyabsence of further correlative
structure in data after this threshold (see FigyréRelatively to the covariance function
used to model the empirical variogram, the k=0.5rapeeter was selected
(corresponding to fit an exponential theoreticaliagram with respect to the observed
data). Predicted values were significantly relatdth observed bird richness {R:
0.448, p < 0.001). For comparison, a simple mutipgression model without the
inclusion of the spatial component in the analysi;wed a lower Rvalue (R=0.15,
p<0.001). Predicted bird richness (and its assediatiriance) across all the Tuscan
region is shown in Figure 2.
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Figure 1: Plot of the empirical (circles) and fittésolid line) semivariograms versus distance (km)
obtained using the residuals after the spatialimgrgnean was subtracted by raw (normalized) data.

Figure 2: Regional pattern of bird species richlraessexpected under the described geostatisticatimod
a) Expected birds species richness and b) its ¢age@ariance.

4. Conclusions

By applying geostatistical models, a well-perforghpredictive model was obtained for
the distribution of bird species richness in Tugcdny considering relatively few

variables. Ancillary variables based on remotelgssel information (e.g., NDVI or

ShannorH’ derived from a classified image) can be used asgdoWools to model the

spatial variation of bird species richness and tldaodiversity hotspots. Moreover,
geostatistical models own the advantage to incatpoinformation of environmental
co-variation and neighborhood effects, improving guality of predictions.
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