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Abstract: In the last decade, forest fires have become one of the worst natural
disasters in Portugal, causing great forest devastation, leading to both economic
and environmental losses and putting at risk populations and the livelihoods of the
forest itself. In this paper we present Bayesian hierarchical models to analyze spatio-
temporal fire data on the proportion of burned area in Portugal, by municipalities
and over three decades. Mixture of distributions was employed to model jointly the
proportion of area burned and the excess of no burned area for early years. For get-
ting estimates of the model parameters, we used Monte Carlo Markov chain methods.
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1 Introduction

According to the National Forestry Authority (Direcção Geral dos Recursos Flo-
restais), Portugal has the largest number of fires among five Mediterranean coun-
tries (Portugal, Spain, France, Italy and Greece), being important to look for spatio-
temporal patterns of fires e.g. modeling the proportion of burned area. As the pro-
portion of burned area (Y) is a continuous variable and restricted to the interval (0,
1), we can model it by assuming naturally a beta distribution (Ferrari and Cribari-
Neto, 2004) or Gaussian distribution and a Skew-Normal (Azzalini and Dalla Valle,
1996) distributions after a logit transformation, i.e. log(Y/(1−Y )). In addition,
we can use Bayesian hierarchical models to take into account spatially correlated
random effects (Silva et al., 2008) and excess zeros in the proportion of burnt area
by municipalities and years (Amaral-Turkman et al., 2010). Our aim is to present
a spatio-temporal analysis of forest fires in mainland Portugal, by 278 municipali-
ties between 1980 and 2006, from a Bayesian point-of-view and using Monte Carlo
Markov chain (MCMC) methods to obtain estimates of the parameters of interest.
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2 Materials and Methods

Let Yit the proportion of burned area in municipality i and year t, i = 1, . . . , n,
t = 1, . . . , T . Assume Yit or log(Yit/(1−Yit)) has a probability distribution with
mean µit and variance σ2. Silva et al. (2008) suggest that µit can be expressed by
µit = α + S0(t) + Si(t) + φi, where S0(t) can represent a nonlinear temporal effect,
Si(t) is the temporal effect by region i and φi a random effect of the spatial variation
associated with region i. If φi = bi + hi, component hi represents the unstructured
spatial random effect with Gaussian priori distribution (hi ∼ N(0, σ2

h≡ 1
τh

), and bi
the spatially correlated random effect with priori distribution, p(bi|τb = 1

σ2
b
), chosen

in terms of a conditional autoregressive model (CAR) (Besag et al., 1981), i.e.,
bi | b−i, σ

2
b ∼ N(b̄i, σ

2
b/mi), where b̄i is the mean of the random effects related to

the “neighbors” of the region i, mi the number of adjacent regions to region i and
σ2
b the variance component.

Upon the occurrence of zeros, the distribution of the proportion of area burned
(Yit is considered a mixture of distributions with probability function f(yit), denoting
f1(yit) = f(yit|yit 6= 0), i= 1, . . . , n, t= 1, . . . , T . Define Vit as a Bernoulli random
variable such that, Vit = 0, with probability pit0 , and 1, with probability pit1 ≡ 1−pit0 ,
where pit0 represents the probability of non-burned area in the region i in the year
t. Vit indicates the existence of the burnt area in the region i in the year t. Thus,
f(yit) = f1(yit)

Vit (1− pit0)Vit p
1−Vit
it0

. The probability of no burned area in the region
i at time t is modeled as, log(

pit0
1−pit0

) = β0 + β1t + ψi, where ψi is a CAR model.

We use assigned highly dispersed but proper priors. In fact, one typically assumes
independent normal prior for the regression coefficients. For the variance component
hyperparameters, one usually assigns an inverse gamma prior, e.g., σ2 ∼ IG(r1, s1),
σ2
b ∼ (r2, s2), σ

2
h ∼ IG(r3, s3) and σ2

ψ ∼ IG(r4, s4) with kernel density given for

x−(r+1)exp(−s/x), x > 0. Consequently, we can construct the related joint posteriori
distribution and use MCMC methods because the corresponding marginal posteriors
are not easy to get explicitly. Notice that these methods are implemented e.g. in
WinBUGS (Spiegelhalter et al., 2007).

3 Results and Concluding remarks

Based on the models in Section 2, we analyze the proportion Yit of burnt area due to
forest fires in 278 municipalities (mainland Portugal) and over 27 years (1980-2006).
Data were collected by Portuguese National Forestry Authority. Three scenarios
were considered for the data modeling:

A) Gaussian probability model: logit(Y ) ∼ N(µ, σ2);

B) Skew-normal model: logit(Y ) ∼ SN(µ, σ2, λ), where λ is a shape parameter;

C) Beta model: Y ∼ Beta(a, b), with E[Y ]=µ, V ar(Y )= µ(1−µ)
γ+1

and γ = a+b.
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By using MCMC methods via WinBUGS, we used 15,000 iterations for all fitted
models, taking every 10th iteration of the simulated sequence, after 5000 iterations
of burn-in. In Table 1, one can be observed some fitted models and, based on the
Deviance Information Criterion (DIC ), the selected model is model M4. Note that
S0(t) = ηt, in model M4, represents a second order random walk. For selected model

Model pD DIC (×106)
M1(A) µit = β0+β1 t+φi t+bi+hi 521 150.150

logit(pit) = δ0+δ1 t+ai
M2(B) µit = β0+βi t+φi t+bi+hi 509 150.150

logit(pit) = δ0 + δ1 t+ ai
M3(C) logit(µit) = β0+β1 t+φi t+bi+hi 581 149.996

logit(pit) = δ0+δ1 t+ai
M4(C) logit(µit) = β0+ηt+bi 411 149.995

logit(pit) = δ0+δ1 t+ai

Table 1: Model selection based on DIC

(M4), the posteriori mean, standard deviation (s.d.) and 95% higgest posterior
density (HPD) credible Intervals (CI) of some parameters of interest are in Table
2. Based on model M4, the spatio-temporal risks of burned area, defined here by
exp(ηt+bi) for municipality i, were used to produce maps in 1985, 1994 and 2001
(Figure 1), as well as maps for spatial risks exp(bi) and exp(ai) (Figure 2).

parameter mean s.d. 95% CI
δ1 -0.169 0.007 (-0.183, -0.156)
γ 24.82 0.449 (24.02, 25.69)
σ2
b 0.334 0.051 (0.237, 0.437)
σ2
η 3.357 0.508 (2.424, 4.379)
σ2
a 0.194 0.060 (0.098, 0.313)

pit0 0.143 0.003 (0.137, 0.150)

Table 2: Estimates of the model parameters (M4)

The spatio-temporal analysis of the burned area proportion in 278 municipalities
of mainland Portugal between 1980 and 2006 reveals an increasing trend in the pro-
portion of burned area, whereas the number of municipalities without burned area
trend to decrease. The space-time models studied here have smoothed estimates used
in the production of maps that are useful in the interpretation of spatio-temporal
data. This analysis of the Portuguese forest fires may isolate trends in small areas
of administrative knowledge for promoting an appropriate policy interventions to
reduce that national catastrophe.
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Figure 1: Spatio-temporal risks in 1985 (left), 1994 (middle) and 2001 (right)

Figure 2: Spatial risk maps - exp(bi) (left) and exp(ai) (right)
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