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In this paper we present a simple and effective method, based on appropriate superpositions
of Bessel–Gauss beams, which in the Fresnel regime is able to describe in analytic form the three-
dimensional evolution of important waves as Bessel beams, plane waves, Gaussian beams, and
Bessel–Gauss beams when truncated by finite apertures. One of the by-products of our mathematical
method is that one can get in a few seconds, or minutes, high-precision results, which normally require
quite lengthy numerical simulations. The method works in electromagnetism (optics, microwaves) as
well as in acoustics. © 2012 Optical Society of America
OCIS codes: 260.1960, 070.7345, 110.1220, 050.1755.

1. Introduction

The analytic description of wave beam (in particular,
optical beam) propagation is of high importance, both
in theory and in practice. Because of the mathema-
tical difficulties met when looking for exact solutions,
often the analytic description must be obtained in an
approximate way, and several other times one must
have recourse to a numerical solution of the (differ-
ential or integral) propagation equations both in
their exact or approximate forms.

A very common approximation is the paraxial one
[1], rather useful for obtaining analytic or numerical
solutions. For example, it is by such an approxi-

mation that one obtains the well-known Fresnel
diffraction integral [1], which yields accurate (anal-
ytic and numerical) results for a large part of the
proximal field region, as well as in the transition
region toward the distant field.

An important analytic solution forwarded by
the Fresnel diffraction integral is the Gaussian
beam, while another one is the Bessel–Gauss beam,
found by Gori and Guattari [2] in 1987. The latter,
endowed with a transverse profile in which the Bes-
sel function is modulated by a Gaussian function,
can be regarded as an experimentally realizable ver-
sion of the Bessel beam; indeed, the Bessel beam is a
quite noticeable exact, nondiffracting solution of
the wave equation, but is associated with an infinite
power flux (through any plane orthogonal to the
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propagation axis), as also happens, for instance, with
plane waves.

Notwithstanding the fact that some analytic
solutions do exist for the Fresnel diffraction inte-
gral, they are rare, and normally it is necessary to
have recourse to numerical simulations. This is
particularly true when the mentioned integral is
adopted for the description of beams generated by fi-
nite apertures, that is, of beams truncated in space.

The past attempts at an analytic description of
truncated beams were based on a Fresnel integral:
probably the best known of them being the Wen
and Breazele method [3], using superpositions of
Gaussian beams (with different waist sizes and
positions) in order to describe axially symmetrical
beams truncated by circular apertures. In that ap-
proach, those authors had to adopt a computational
optimization process to get the superposition coeffi-
cients and the beam waists and spot positions of the
various Gaussian beams; actually, the necessity of a
computational optimization to find out which beam
superposition is adequate to describe a certain
truncated beam is due to the simple fact that the
Gaussian beams do not constitute an orthogonal
basis.

To cope with the difficulty related with such a com-
putational optimization, Ding and Zhang [4] modi-
fied the method by choosing since the beginning
the beam waist values and then writing down a
set of linear equations in terms of the Gaussian beam
superposition coefficients. However, in that new ap-
proach the nonhomogeneous terms are given by inte-
grals that, once more, cannot in general be easily
evaluated in closed form.

In this paper we show that an analytic description
of important truncated beams can be obtained by
means of Bessel–Gauss beam superpositions, whose
coefficients are obtained in a simple and direct way,
without any need of numerical optimizations or of
equation system solutions.

Indeed, our method is capable of yielding analytic
solutions for the three-dimensional evolution of
Bessel beams, plane waves, Gaussian beams, and
Bessel–Gauss beams, when truncated by finite aper-
tures in the Fresnel regime.

2. Fresnel Diffraction Integral and Some Solutions

For simplicity’s sake, we shall leave understood
in all solutions the harmonic time-dependence term
exp�−iωt�.

In the paraxial approximation, an axially sym-
metric monochromatic wave field can be evaluated,
knowing its shape on the z � 0 plane, through
the Fresnel diffraction integral in cylindrical
coordinates:

Ψ�ρ; z� � −ik
z

exp
�
i
�
kz� kρ2

2z

��Z
∞

0
Ψ�ρ0; 0�
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�
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where k � 2π∕λ is the wavenumber, and λ the wave-
length. In this equation, ρ0 reminds us that the inte-
gration is being performed on the plane z � 0; thus,
Ψ�ρ0; 0� does simply indicate the field value on z � 0.

Let us consider a Gaussian behavior on z � 0; that
is, let us choose the “excitation”

Ψ�ρ0; 0� � ΨG�ρ0; 0� � A exp�−qρ02�; (2)

contained in [1]; with A and q being constants that
can have complex values. For Re�q� ≥ 0, one gets
the well-known Gaussian beam solution:
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where

Q � q − ik∕2z: (4)

Another important solution is obtained by consider-
ing on the z � 0 plane the excitation given by

Ψ�ρ0; 0� � ΨBG�ρ0; 0� � AJ0�kρρ0� exp�−qρ02�; (5)

which, according to Eq (1), produces the so-called
Bessel–Gauss beam [2]:
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with quantity Q being given by Eq. (4) and kρ being a
constant. (Quantity kp is the transverse wavenumber
associated with the Bessel beam transversally modu-
lated by the Gaussian function.)

The Bessel–Gauss beam given by Eq. (6) is parti-
cularly interesting since it can well be regarded as a
realistic version (experimentally speaking) of the
ideal Bessel beam:

ΨB�ρ; z� � AJ0�kρρ� exp�ikzz�; (7)

where kz �
�����������������������
ω2∕c2 − k2ρ

q
.

The Bessel beam, Eq. (7), is an exact solution to the
wave equation and is known to possess the important
characteristic of keeping its transverse behavior un-
changed while propagating, so it belongs to the class
of nondiffracting beams. However, the ideal Bessel
beam is endowed with an infinite power flux, and
cannot be concretely generated. By contrast, the
Bessel–Gauss beam, Eq. (6), modulates in space
the transverse behavior of the Bessel beam by a
Gaussian function, getting a finite power flux.
The Bessel–Gauss beam will no longer remain
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indefinitely undistorted, but nevertheless shows to
possess a rather good resistance to diffraction [2].

The Gaussian beam, Eq. (3), and the Bessel–
Gauss, Eq. (6), solutions are among the few solutions
to the Fresnel diffraction integral that can be had
analytically. The situation gets much more compli-
cated, however, when facing beams truncated in
space by finite circular apertures: for instance, a
Gaussian beam, a Bessel beam, or a Bessel–Gauss
beam, truncated via an aperture with radius R. In
this case, the upper limit of the integral in Eq. (1)
becomes the aperture radius, and the analytic inte-
gration becomes very difficult, requiring recourse to
lengthy numerical calculations.

As we have already mentioned, in their alternative
attempt at describing truncated beams, Wen and
Breazele [3] adopted superpositions of Gaussian
beams. To be, now, more specific, those authors gave
the solution for a wave equation in the paraxial ap-
proximation as

Ψ�ρ; z� � −
ik
2z

exp
�
ik
�
z� ρ2

2z

��XN
n�1

An

Qn
exp

�
−

k2ρ2
4Qnz2

�
;

(8)
with

Qn � qn −
ik
2z

: (9)

Solution (8) is a superposition of N Gaussian beams.
Its coefficients An and qn are to be obtained starting
from the field existing on the z � 0 plane, that is,
starting from the initial excitation that we shall call
V�ρ�. One therefore looks for Ψ�ρ; 0� � V�ρ�. From
Eq. (8) one gets

V�ρ� �
XN
n�1

An exp �−qnρ2�: (10)

The initial field V�ρ� can represent a beam (e.g., a
plane wave, a Gaussian beam, etc.) truncated by a
circular aperture with radius R. To get the coeffi-
cients An and qn from Eq. (10), those authors had re-
course to a computational optimization process in
order to minimize the mean square error: Namely,
to minimize the difference between the desired func-
tion V�ρ� and the Gaussian series in the right-hand
side (r.h.s.) of Eq. (10). Such a method yields good re-
sults, provided that the excitation function V�ρ� does
not oscillate too much. But the coefficients An and qn
are obtained in a strictly nonalgebraic manner, de-
pending on the contrary on numerical calculations.

Let us be more specific also about the modification
of Wen and Breazele’s method introduced by Ding
and Zhang [4]. They postulated the values of the
parameters qn and, by minimizing the mean square
error between the desired function V�ρ� and the
Gaussian series in Eq. (10), arrived at a system of
linear equations containing the unknowns An (the
coefficients of the Gaussian beam superposition),
without needing a numerical optimization process.

However, in the system of equations needed to deter-
mine the coefficients An, the nonhomogeneous terms
consist in integrals that, depending on the field one
wishes to truncate [i.e., depending on V�ρ�], can be
difficult to calculate analytically.

In the next section we are going to propose a
method, for the description of truncated beams, that
appears to be noticeable for its simplicity and, in
most cases, for its total analyticity. Our method is
based on Bessel–Gauss beam superpositions, the
coefficients of which can be directly evaluated with-
out any need of computational optimizations or the
solving of any coupled equation systems.

3. Method

Let us start with the Bessel–Gauss beam solution,
Eq. (6) and consider the solution given by the follow-
ing superposition of such beams:

Ψ�ρ; z� � −
ik
2z

exp
�
ik
�
z� ρ2

2z

�� XN
n�−N

An

Qn
J0

�
ikkρρ
2zQn

�

× exp
�
−

1
4Qn

�
k2ρ �

k2ρ2
z2

��
; (11)

with the quantities An being constants and Qn being
given by Eq. (9), so thatQn � qn − ik∕2z, where qn are
constants that can have complex values. Notice that
in this superposition, all beams possess the same
value of kρ.

Let us recall, incidentally, that all the beams we
are considering in this work are important particular
cases of the so-called localized waves (see [5,–7] and
references therein; see also [8,9]).

Our purpose is that solution (11) be able to re-
present beams truncated by circular apertures:
as announced, we are particularly interested in
the analytic description of truncated beams of Bessel,
Bessel–Gauss, Gaussian, and plane wave types.

Given one of such beams truncated at z � 0 by an
aperture with radius R, we have to determine the
coefficients An and qn in such a way that Eq. (11) re-
presents with fidelity the resulting beam. If the trun-
cated beam on the z � 0 plane is given by V�ρ�, we
have to obtain Ψ�ρ; 0� � V�ρ�; that is,

V�ρ� � J0�kρρ�
XN
n�−N

Ane−qnρ
2
: (12)

The r.h.s. of this equation is nothing but a superposi-
tion of Bessel–Gauss beams, all with the same value
kρ, at z � 0 [namely, each one of such beams is writ-
ten at z � 0 according to Eq. (5)].

Equation (12) will provide us with the values of the
An and qn, as well as of N. Once these values have
been obtained, the field emanated by the finite circu-
lar aperture located at z � 0will be given by Eq. (11).
Remembering that the qn can be complex, let us
make the following choices:
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qn � qR � iqIn; (13)

where qR > 0 is the real part of qn, having the same
value for every n, and qIn is the imaginary part of qn
given by

qIn � −
2π
L

n; (14)

where L is a constant with the dimensions of a
square length.

With such choices, and assuming N → ∞, Eq. (12)
gets written as

V�ρ� � J0�kρρ� exp �−qRρ2�
X∞
n�−∞

An exp
�
i
2πn
L

ρ2
�
;

(15)

which then has to be exploited for obtaining the
values of An, kρ, qR, and L.

Let us recall that the aim of our method is describ-
ing some important truncated beams starting from
the value of their near fields (i.e., of their fields in
the Fresnel region).

In the cases of a truncated Bessel beam (TB) or of a
truncated Bessel–Gauss beam (TBG), it seems natur-
al to choose quantity kρ in Eq. (15) to be equal to the
corresponding beam transverse wavenumber.

In the case of a truncated Gaussian beam (TG) or of
a truncated plane wave (TP), by contrast, it is natur-
al to choose kρ � 0 in Eq. (15).

In all cases, the product

exp�−qRρ2�
X∞
n�−∞

An exp
�
i
2πn
L

ρ2
�
; (16)

in Eq. (15) must represent:

(i) a function circ�ρ∕R�, in the TB or TP cases;
(ii) a function exp�−qρ2�circ�ρ∕R�, that is, a circ
function multiplied by a Gaussian function, in the
TBG or TG cases.

Of course (i) is a particular case of (ii) with q � 0. It
may be useful to recall that the circ function is the
step function in the cylindrically symmetrical case.
Quantity R is still the aperture radius, and
circ�ρ∕R� � 1 when 0 ≤ ρ ≤ R, and it equals 0 in the
contrary case.

Let us now show how Eq. (16) can approximately
represent the above functions, given in (i) and (ii).
Toward such an aim, let us consider a function
G�r� defined on an interval jrj ≤ L∕2 and possessing
the Fourier expansion:

G�r� �
X∞
n�−∞

An exp�i2πnr∕L� for jrj ≤ L∕2; (17)

where r and L, having the dimensions of a square
length, will be expressed in square meters (m2).

Suppose now the function G�r� is to be given by

G�r� �
�
exp�qRr� exp�−qr� for jrj ≤ R2

0 for R2 < jrj < L∕2;
(18)

where q is a given constant. In this case, the coeffi-
cients An in the Fourier expansion of G�r� will be
given by

An �
1
L

Z
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�
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L�qR −q�− i2πn
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�
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qR −q− i

2π
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n
�
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. �19�

Writing now

r � ρ2; (20)

in Eqs. (17) and (18), we have

X∞
n�−∞

An exp�i2πnρ2∕L�

�
�
exp�qRρ2� exp�−qρ2� for jρj ≤ R
0 for R < jρj <

���������
L∕2

p
;

�21�

where the coefficients An are still given by Eq. (19).
One recognizes that the left-hand side (l.h.s.) of
Eq. (21) is the term multiplying the Gaussian
in Eq. (16).

The l.h.s. of Eq. (21), which depends on ρ2, will not
be exactly periodical: but it will reassume the values,
assumed in the fundamental interval (jρj <

�������������
�L∕2�

p
),

in shorter and shorter further intervals, with de-
creasing spatial “periodicity,” for jρj >

�������������
�L∕2�

p
. In

such a way, with ρ ≥ 0, Eq. (16) becomes

exp�−qRρ2�
X∞
n�−∞

An exp�i2πnρ2∕L�

�
8<
:
exp�−qρ2� for 0 ≤ ρ ≤ R
0 for R < ρ ≤

���������
L∕2

p
exp�−qRρ2�f �ρ� ≈ 0 for ρ >

���������
L∕2

p
;

(22)

where f �ρ� is a function existing on decreasing space
intervals and assuming exp��qR − q�R2� (if qR > q) or
1 (if qR ≤ q) as its maximum values. Since

���������
L∕2

p
> R,

for suitable choices of qR and L, we have
exp�−qRρ2�f �ρ� ≈ 0 for ρ ≥

���������
L∕2

p
.

Therefore, we get

exp�−qRρ2�
X∞
n�−∞

An exp�i2πnρ2∕L�

≈ exp�−qρ2�circ�ρ∕R�; (23)
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which corresponds to case (i), when q � 0, and to
case (ii).

Let us recall once more that An are given
by Eqs. (19).

On the basis of what was shown before, we now
have a very efficient method for describing important
beams, truncated by finite apertures, namely, the TB,
TG, TBG, and TP beams. Indeed, it is enough to
choose the desired field, truncated by a circular
aperture with radius R, and describe it at z � 0 by
our Eq. (15). Precisely:

• In the TBG case: the value of kρ in Eq. (15) is
the transverse wavenumber of the Bessel beam
modulated by the Gaussian function, An is given in
Eq. (19), and q is related to the Gaussian function
width at z � 0. The values L and qR, and the number
N of terms in the series (15), are chosen so as to guar-
antee a faithful description of the beam at z � 0
when truncated by a circular aperture with radius R.
• In the TB case: the procedure will be the same

as for TBG, but with q � 0.
• In the TG case: the procedure is still the same

as for TBG, but with kρ � 0.
• In the TP case: the procedure is once more

similar, but this time using kρ � 0 and q � 0.

Finally, once the chosen beam is described on the
truncation plane (z � 0), the beam emanated by the
finite aperture will be given by solution of Eq. (11).

It is important to notice at this point that, for a gi-
ven truncation, innumerable sets of values of qR and
L exist that yield a faithful description of the trun-
cated field. The choice is made in order that the solu-
tion given by the series (15) has good convergence
properties. Of course, one will use a finite number
2N � 1 of terms in the mentioned series, with
−N ≤ n ≤ N. Let us go on to some examples.

4. Applying the Method

In this section we shall apply our method, as we
already said, to situations in which important

truncated beams appear. Notice that below we shall
always assume a wavelength of 632.8 nm.

A. Analytic Description of the Truncated Bessel Beam

Let us start from a Bessel beam, truncated at z � 0
by a circular aperture with radius R; that is to say,
from ΨTB�ρ; 0� � J0�kρρ�circ�ρ∕R�.

Let us choose R � 3.5 mm and the transverse wa-
venumber kρ � 4.07 · 104 m−1, which corresponds to
a beam spot with radius approximatively equal to
Δρ � 59 μm (while λ � 632.8 nm, as always).

At z � 0, the field is described by Eq. (15), where
An are given by Eq. (19) and where q � 0. In this
case, a quite good result can be obtained by the choice
L � 3R2, qR � 6∕L, and N � 23. Let us repeat that,
since such a choice is not unique, very many alterna-
tive sets of values L and qR exist, which also yield
excellent results.

Figure 1 shows the field given by Eq. (15): it repre-
sents with high fidelity the Bessel beam truncated
at z � 0.

The resulting field, emanated by the aperture, is
given by solution (11), and its intensity is shown
in Fig. 2. One can see that the result really corre-
sponds to a Bessel beam truncated by a finite aper-
ture. Figure 3 depicts the orthogonal projection of the
same result.

Increasing N, that is, increasing the number of
terms in the series (11), which expresses the result-
ing field, while keeping the same values for L and qR,
the spatial shape of the obtained field practically will
not change, but there will become more evident the
rapid oscillations that occur at the beam crest, i.e.,
for ΨTB�ρ � 0; z�. This is shown in Fig. 4, where we
used N � 500.

B. Analytic Description of the Truncated Gaussian Beam

Let us go on now to consider a Gaussian beam
truncated at z � 0; that is, ΨTG�ρ; 0� �
exp�−qρ2�circ�ρ∕R�, whose initial intensity spot
radius is Δρ � 59 μm, and therefore q � 1∕�2Δρ2� �
144 · 106 m−1. The radius of the circular aperture is

Fig. 1. (Color online) Field given by Eq. (15), representing a Bessel beam at z � 0, with kρ � 4.07 · 104 m−1 and truncated by a finite
circular aperture with radius R � 3.5 mm. The coefficients An are given by Eq. (19), with q � 0, L � 3R2, qR � 6∕L, and N � 23.
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equal to the beam spot radius, i.e., R � 59 μm, while,
as always, λ � 632.8 nm.

The situation at z � 0 is still described by Eq. (15),
with kρ � 0, where An are given by Eq. (19). Now, a
good result can be obtained, for instance, by using the
values L � 4R2, qR � 8∕L, and N � 81.

In Fig. 5 we show the field given by Eq. (15), in the
case of a Gaussian beam truncated at z � 0. The
dotted line depicts the ideal Gaussian curve, without
truncation.

The resulting field, emanated by the finite aper-
ture, is given by the solution (11), and Fig. 6 shows

Fig. 2. Intensity of a Bessel beam truncated by a finite aperture, as given by solution (11).

Fig. 3. (Color online) Orthogonal projection of the intensity shown in Fig. 2.

Fig. 4. (Color online) Oscillations of the field intensity on the z axis, when adopting N � 500 in Eq. (11).

1 June 2012 / Vol. 51, No. 16 / APPLIED OPTICS 3375



its square magnitude. In Fig. 7 we show the corre-
sponding orthogonal projection.

C. Analytic Description of a Truncated Bessel–Gauss
Beam

Let us now consider the interesting case of
a Bessel–Gauss beam truncated by a circular
aperture of radius R; that is, ΨTBG�ρ; 0� �
J0�kρρ� exp�−qρ2�circ�ρ∕R�, with kρ � 4.07 · 104 m−1,
q � 1.44 · 106 m−1, R � 1 mm, and λ � 632.8 nm.

The situation at z � 0 is described by Eq. (15),
where An are given by relations (19). A very good re-
sult can be obtained, e.g., by adopting the values
L � 10R2, qR � q, and N � 30. Figure 8 shows the
field in Eq. (15), in the present case of a Bessel–
Gauss beam truncated at z � 0.

The resulting field emanated by the finite aperture
is given by solution (11), and Fig. 9 shows its square
magnitude. Figure 10 depicts the orthogonal projec-
tion for this case.

D. Analytic Solution of a Truncated Plane Wave

Consider now the case of a plane wave truncated by a
circular aperture at z � 0, that is, ΨTP�ρ; 0� �

circ�ρ∕R�, where we choose R � 1 mm and
λ � 632.8 nm.

Once more, Eq. (15) describes the field at z � 0,
with kρ � 0, the coefficients An being given by

Fig. 5. (Color online) Field given by Eq. (15), when representing a Gaussian beam truncated at z � 0. The dotted line depicts the ideal
Gaussian curve, when truncation is absent.

Fig. 6. Square magnitude of the field emanated by a finite aperture, in the case of a Gaussian beam, according to the solution (11).

Fig. 7. (Color online) Orthogonal projection corresponding to
Fig. 6.
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relations (19), with q � 0. A good result can be ob-
tained by adopting, e.g., the values L � 6R2,
qR � 8∕L, and N � 150.

Figure 11 shows the field in Eq. (15), in the present
case of a plane wave truncated at z � 0.

The resulting field emanated by the finite aperture
is given by solution (11), and its square magnitude is
shown in Fig. 12. Figure 13 depicts the corresponding
orthogonal projection.

Fig. 8. (Color online) Field in Eq. (15), in the case now of a Bessel–Gauss beam truncated at z � 0. Here we adopted the values L � 10R2,
qR � q, and N � 30; see the text for details.

Fig. 9. Square magnitude of the field emanated by a finite aperture in the case of a truncated Bessel–Gauss beam, represented by
solution (11).

Fig. 10. (Color online) Orthogonal projection for the case in Fig. 9.
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5. Conclusions

In this paper, starting from suitable superpositions
of Bessel–Gauss beams [2], we have constructed a

simple and effective method for the analytic descrip-
tion, in the Fresnel region, of important beams trun-
cated by finite apertures.

Fig. 11. (Color online) Field at z � 0, with kρ � 0, as given by Eq. (15) in the new case of a plane wave truncated at z � 0. We have here
adopted the values L � 6R2, qR � 8∕L, and N � 150. The coefficients An being given by relations (19), with q � 0.

Fig. 12. Square magnitude of the resulting field, emanated by the finite aperture, as given by solution (11) in the present case of a
truncated plane wave.

Fig. 13. (Color online) Orthogonal projection corresponding to Fig. 12.
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The solutions obtained by our method, and repre-
senting truncated Bessel beams, truncated Gaussian
beams, truncated Bessel–Gauss beams, and trun-
cated plane waves, fully agree with the known re-
sults obtained by lengthy numerical evaluations of
the corresponding Fresnel diffraction integrals. (In-
cidentally, let us mention that all the beams consid-
ered in this work are important particular cases of
the so-called localized waves [5–8].)

At variance with the previous Wen and Breazele
approach [3] (which uses a computational method
of numerical optimization to obtain Gaussian beam
superpositions describing truncated beams) and
even at variance with the Ding and Zhang approach
[4] (which is an improved version of [3]), our method
does not need any numerical optimizations nor the
numerical solution of any coupled equation systems.

Indeed, the simpler method exploited in this paper
is totally analytic, and it directly applies to the
beams considered above as well as to many other
beams that are being investigated and will be pre-
sented elsewhere, such as truncated higher order
Bessel and Bessel–Gauss beams, beams truncated
by annular apertures, or beams truncated and modu-
lated by convergent/divergent lenses. In particular,
we have applied this method to remote sensing by
microwaves (see, e.g., [10]), constructing finite anten-
nas which emit truncated Bessel beams with the re-
quired characteristics. Of course, this method works
in electromagnetism (optics, microwaves) as well as
in acoustics.

Let us stress that one of the main by-products of
our mathematical method is that by its use, one
can get in a few seconds, or minutes, high-precision
results that could otherwise require lengthy numer-
ical simulation.
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