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Illuminant direction estimation is an important research issue in the field of image processing. Due to
low cost for getting texture information from a single image, it is worthwhile to estimate illuminant
direction by employing scenario texture information. This paper proposes a novel computation method
to estimate illuminant direction on both color outdoor images and the extended Yale face database B.
In our paper, the luminance component is separated from the resized YCbCr image and its edges are
detected with the Canny edge detector. Then, we divide the binary edge image into 16 local regions
and calculate the edge level percentage in each of them. Afterward, we use the edge level percentage
to analyze the complexity of each local region included in the luminance component. Finally, according
to the error function between the measured intensity and the calculated intensity, and the constraint
function for an infinite light source model, we calculate the illuminant directions of the luminance com-
ponent’s three local regions, which meet the requirements of lower complexity and larger average gray
value, and synthesize them as the final illuminant direction. Unlike previous works, the proposed
method requires neither all of the information of the image nor the texture that is included in the training
set. Experimental results show that the proposed method works better at the correct rate and execution
time than the existing ones. © 2014 Optical Society of America
OCIS codes: (100.0100) Image processing; (200.4740) Optical processing; (330.0330) Vision, color,

and visual optics.
http://dx.doi.org/10.1364/AO.53.000226

1. Introduction

The brightness of an image varies with the angle
between the object surface normal vector and the
illuminant direction. Illuminant direction estimation
refers to the process of identifying irradiation direc-
tion based on the luminance distribution of a specific
image. It has recently become one of the most popu-
lar research issues in the fields of computer vision,
face recognition, and image authenticity identifica-
tion. Besides, illuminant direction estimation can

provide effective help in illuminant analysis [1–7],
which is used in many home electronic devices such
as smart TV, digital camera, etc. Recent years have
witnessed increasing interest in this study. Some rel-
evant works are briefly summarized below.

First, the illuminant parameters can be observed
directly by placing a special calibration object within
the scene. The object, such as a mirror sphere, should
have explicit geometry and surface reflection charac-
teristics. Zhang andYang [8] restrict their discussions
to the shading of a Lambertian sphere of known size
in a multiple distant light source environment
and use the least-square and iteration techniques
to determine the three-dimensional (3D) geometric
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information of critical points, thus estimating the
light source directions and intensities if certain con-
ditions are satisfied. Bouganis and Brookes [9] use all
pixels within a region to form a robust estimation of
the corresponding virtual light and present a novel
method for multiple light source detection by apply-
ing a Lambertian sphere as a calibration object.
Their high-precision experimental results demon-
strate that the proposed method is robust. Zhou
and Kambhamettu [10] summarize their previous
researches and present a unified framework for
scene illuminant estimation. Unlike previous works,
they estimate thedifferent types of light sourcesusing
a general light source model. It should be noted
that the special calibration object discussed above
is necessary for these methods. However, the special
calibration object is inconvenient to carry, and the
scene of image would be changed because of the
appearance of the special calibration object. So there
is a big limitation on illuminant direction estimation
by placing a special calibration object.

Second, shadow analysis can be used to estimate il-
luminant direction effectively. Sato et al. [11] propose
amethod for estimating the illuminant distribution of
a real scene from the image brightness observed
on a real object surface in that scene. By using the
occlusion information of the incoming light, they suc-
cessfully estimate the illuminant distribution of a
real scene even for images taken in a complex illumi-
nant environment [11]. Through combining some
user-specified informationwith regularization by cor-
relation and developing a constrained non-negative
quadratic programming technique, Kim and Hong
[12] present a practical method that estimates illumi-
nant distribution from shadows using only a single
shadow image. Although shadow analysis could
produce a good result in illuminant direction estima-
tion, shadowsare poorly informative about lightwhen
their sizes in the image are small or their shapes are
complex.

Third, artificial intelligence has recently become a
popular way to estimate illuminant direction. By
learning the parameters of the proposed neural
reflectance model, Cho and Chow [13] optimize a
proper reflectance model and report a new neural-
based 3D shape reconstruction model. Their experi-
mental results demonstrate the performance of the
proposed approach given different specular effects,
unknown illuminant conditions, and different noise
environments. Chow and Yuen [14] present a neural
computation approach that estimates illuminant
direction from a scenario reflectance map. Chantler
et al. [15] propose a novel classifier that classifies
surface texture and simultaneously estimates the
unknown illuminant conditions. For the reason that
all the data need to be trained before being applied
to illuminant direction estimation, the method of
artificial intelligence cannot meet the hard real-time
requirement.

Fourth, model-based illuminant direction estima-
tion is an effective way to estimate a complex scene

illumination. Someworks achieve illuminant estima-
tion based on specific reflectance models of object
surfaces. These include Lambertian, dichromatic,
Torrance–Sparrow models, and so on. Zheng and
Chellappa [16] present a method for estimating re-
flectance map parameters in a Lambertian imaging
model. Tests on both synthetic and real images show
that their estimators are more robust and accurate
than the existing methods [16]. Hara et al. [17] pro-
pose two types of methods to estimate the surface
reflectance property of an object. The first method
estimates the light source position by fitting to the
Lambertian diffuse component. The second method
simultaneously recovers the reflectance properties
and the light source positions by optimizing the lin-
earity of a log-transformed Torrance–Sparrow model
[17]. Pentland [18] recovers illuminant direction and
estimates surface orientation, which has been evalu-
ated on both natural and synthetic images and
found to produce useful information about the scene.
However, the given algorithm does not consider the
effects of shadows. Based on Pentland’s approach,
Yang et al. [19] improve the approach by using
regional growth and present a stable and accurate
approach for illuminant direction estimation, but
they must face another new problem that regional
growth needs a lot of time.

Of course, some works [20–22] based on other the-
ories have also been presented to achieve illuminant
direction estimation. Although all the above-
mentioned methods can provide important informa-
tion for illuminatnt direction estimation, there still
are some shortcomings, such as difficult operation,
low correct rate, and high computational complexity.
Inspired by the methods of model-based illuminant
direction estimation, this paper aims to find out a
new method with a higher correct rate and less exe-
cution time to estimate illuminant directions of
images captured in the real world. The rest of this
paper is organized as follows: the details of the pro-
posed method are described in Section 2. Section 3
provides and analyzes the experimental results
obtained by some conventional methods and by the
proposed method. Finally, conclusions are given in
Section 4.

2. Proposed Method

This section covers the details of the proposed system
procedure for illuminant direction estimation, image
preprocessing, and method introduction.

A. System Architecture

Just as introduced in Section 1, our proposed method
is inspired by model-based illuminant direction esti-
mation and aims to achieve the requirements of a
higher correct rate and less execution time. The sys-
tem architecture of the proposed method is shown in
Fig. 1. We represent the color image as a function
f �x; y�. First, the image is resized by image interpo-
lation and transformed to the YCbCr color space,
that is, f �x; y� is converted to f YCbCr�x; y�. There are
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two reasons why the YCbCr color space is our choice
for illuminant direction estimation. (1) Some re-
searches have proved that the YCbCr color space
is a popular selection for illuminant analysis.
(2) The YCbCr color space becomes our first selection
considering that the brightness information of an im-
age is stored in the “Y” channel. Then, the luminance
componentY , represented by f Y�x; y�, is chosen as the
input. Soon afterward, we use the Canny edge detec-
tor [23] to find object boundaries in the luminance
component Y and get the binary edge image repre-
sented as f be�x; y� in this paper. To reduce the com-
putational complexity, the binary edge image is
divided into 16 local regions, which are represented
as f ibe�x; y� (i � 1; 2;…; 16), corresponding to f iY�x; y�
(i � 1; 2;…; 16) in the luminance component Y .
The reason that we divide the image into 16 local
regions is given in Section 3. The order of the
local regions’ number is left to right, then top to
bottom. After analyzing the complexity and calculat-
ing the average gray value of each local region
(Subsection 2.B), three of them are selected by the
rules that this paper makes. Finally, the proposed
method estimates the illuminant direction of each
selected local region and synthesizes the three illu-
minant directions as the final result.

B. Image Complexity Analysis

Different regions in the image make different contri-
butions to the illuminant direction estimation. For
example, smooth regions play a more important role
than the concavo–convex ones [19]. Usually, as illus-
trated in Fig. 2, the smooth regions have similar tex-
tures and simple edges, whereas the concavo–convex
regions have opposite characteristics. So it is worth-
while to find out regions with simple edges for illu-
minant direction estimation. That is to say, searching
a suitable image complexity analysis method is
important to the final estimation results. Image edge
information, which reflects the number of objects
in an image, is often utilized to describe image com-
plexity [24,25]. This paper applies the Canny edge
detector to look for object boundaries and gives the
following four steps to achieve edge detection.

The first step is to remove noise by smoothing and
enhancing. The second step is to find the image gra-
dient. The third step, edge thinning, aims to remove
unwanted spurious points on the edge of an image

and results in 1-pixel-thick edge elements. In the
final step, the binary edge image f be�x; y� is computed
by hysteresis thresholding. Some samples and their
binary edge images are shown in Fig. 3.

Chacon et al. [26,27] propose a method that deter-
mines image complexity based on analysis of the
edge level percentages in the image. According to
the local region f ibe�x; y� (i � 1; 2;…; 16), let pi�x; y�
denote the gray value at pixel �x; y�. So edge level per-
centage ψ i is defined by

ψ i �
jAj

M ×N
; A � fpi�x; y�jpi�x; y� � 1g; (1)

where j • j indicates the cardinality of a set and
M ×N is the dimension of the image. The edge level
percentages of some samples are shown in Fig. 4.
From this figure, the corresponding ψ6 is biggest
for the sixth local region of the Lena image, which
is the most complex.

C. Region Selection

After getting ψ i (i � 1; 2;…; 16) for each local region,
according to increase of the order of fψ ig, the se-
quence f f iY�x; y�g is rearranged and a new sequence
fFi

Y�x; y�g is obtained. That is to say,

(a)

(b)

Fig. 2. Local regions and their edge detection results. It is known
that regions with simple edges always have similar textures.
(a) Sample 1. (b) Sample 2.
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Fig. 1. System architecture of the proposed illuminant direction estimation method.
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ψ�Fi
Y�x; y�� ≤ ψ�Fi�1

Y �x; y��: (2)

In the process of region selection, although some
shadow regions have smaller ψ i, they should not

be selected. Based on the fact that shadow regions
usually have a lower gray value [28,29], the region
selection depends on not only ψ i but also ηi
(i � 1; 2;…; 16), which is defined as the average gray
value of the ith region f iY�x; y�. The average gray val-
ues of some samples are shown in Fig. 5. fηig are
rearranged in order from small to big and the first
eight values are chosen to form a new set, B. The
overall flow of the region selection is shown in Fig. 6,
where C represents the set of selected regions. In this
paper, the number of selected local regions, which
equals the cardinality of C, is 3. The reason that
we set the number as 3 is explained in Section 3.

D. Illuminant Direction Estimation

Spatial objects within a real scene lose their 3D
characteristics in the images, and the z-component
of the light source direction cannot be estimated
when the surface albedo and light source strength
are unknown [30]. To simplify the problem, the 3D
Lambertian model is converted to a two-dimensional

Fig. 4. Edge level percentages of some samples. Abscissa represents the serial number of local regions and ordinate shows the value of
edge level percentage.

Fig. 5. Average gray values of some samples. Abscissa represents the serial number of local regions and ordinate shows the average gray value.

Fig. 3. Some samples and their binary edge images.
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(2D) representation, as shown in Fig. 7. The require-
ment is that the z-component of light source direction
should be 0. That is to say, the z-component of the
normal vector Nz is assumed to 0.

The normal direction of a pixel could be seen as the
direction in which the most dramatic change in gray
values occurs [31,32]. As shown in Fig. 8, the points
on the normal lines are those that have maximal

gray-scale difference from the center pixel. Some-
times, there is a plurality of points meeting the
requirements of the calculation process. For this
case, the final normal direction is defined as the sum-
mation of normal lines, and the magnitude of the nor-
mal is the value of maximal gray scale, which is the
difference between the points on the normal lines
and the center pixel. So the normal direction of
any pixel in the image could be calculated. In this
section, we adjust the method proposed in [30], so
as to satisfy our research needs.

Compared with the method in [30], the improve-
ments in our proposed method can be summarized
as follows: (1) unlike the method in [30], our method
divides the image into 16 local regions and applies
the illuminant direction estimation algorithm to
the selected three local regions. It can effectively re-
duce the execution time and improve the average
correct rate. (2) Depending on the edge level percent-
ages and the weights, our method determines the
contributions of three local regions to the final
illuminant direction and synthesizes three directions
of the selected local regions as the final illuminant
direction.

The kth selected region and the measured inten-
sity of pixel �xi; yi� are represented as f kY�x; y�
(k � 1, 2, 3) and f kY�xi; yi�, respectively. Let k be m
or n (m, n � 1, 2, 3 m ≠ n); the error function be-
tween calculated intensity Mv and measured
intensity b is given by

f 1�Lm;Ln; ka� �

������������������������

2
6666666666666666664

Nx�f mY �x1; y1�� Ny� f mY �x1; y1�� 0 0 1

Nx�f mY �x1; y2�� Ny� f mY �x1; y2�� 0 0 1

..

. ..
. ..

. ..
. ..

.

Nx�f mY �xp; yp�� Ny�f mY �xp; yp�� 0 0 1

0 0 Nx�f nY�x1; y1�� Ny�f nY�x1; y1�� 1

0 0 Nx�f nY�x1; y2�� Ny�f nY�x1; y2�� 1

..

. ..
. ..

. ..
. ..

.

0 0 Nx�f nY�xp; yp�� Ny�f nY�xp; yp�� 1

3
7777777777777777775

2
6666664

Lm
x

Lm
y

Ln
x

Ln
y

ka

3
7777775
−

2
6666666666666666664

f mY �x1; y1�
f mY �x1; y2�

..

.

f mY �xp; yp�
f nY�x1; y1�
f nY�x1; y2�

..

.

f nY�xp; yp�

3
7777777777777777775

�������������������������

2

� kMv − bk2; (3)

where k • k indicates the magnitude of a matrix, Lm
x

and Lm
y are two components of the illuminant direc-

tion corresponding to the mth selected region, Ln
x

and Ln
y are two components of the illuminant

direction corresponding to the nth selected region,
Nx�f mY �xi; yi�� and Ny�f mY �xi; yi�� are two components
of the normal vector in pixel �xi; yi� of the mth se-
lected region, Nx�f nY�xi; yi�� and Ny�f nY�xi; yi�� are
two components of the normal vector in pixel
�xi; yi� of the nth selected region, and ka is the

Fig. 6. Overall flow of region selection. B and C represent the
set of first eight values of fηig and the set of selected regions,
respectively.

Fig. 7. 3D Lambertian model and its 2D representation.
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constant intensity of environmental light. The
constraint function is given by

f 2�Lm; Ln; ka� �

�������������

�
−1 0 1 0 0

0 −1 0 1 0

�
2
66666664

Lm
x

Lm
y

Ln
x

Ln
y

ka

3
77777775

�������������

2

� kCvk2: (4)

Therefore, the final error function f �Lm;Ln; ka� is
defined as

f �Lm;Ln; ka� � f 1 � λf 2; (5)

where λ is the Lagrange multiplier. According to the
image based on an infinite light source model, the
illuminant direction vector v makes the constraint
function equal to 0 and the error function to be the
minimum [30]. So the process of calculating v is
translated into seeking the optimal solution for the
following mathematical programming:

�
min f 1�Lm;Ln; ka� � kMv − bk2
s:t: f 2�Lm;Ln; ka� � kCvk2 � 0

: �6�

Seeking the optimal solution for Eq. (6) is equivalent
to solving the following equations:

� ∂f �Lm;Ln; ka�
∂v � 2MTMv − CTλ − 2MTb � 0

Cv � 0
: �7�

For the constraint function being equal to 0, we
know that Lm is equal to Ln. In our method, let
L�m;n� represent Lm or Ln. Supposing that for
�m;n� exist three particular cases (1,2), (2,3), and
(3,1); then, the illuminant direction L�m;n� could
be calculated by using Eq. (7).

Although L�1; 2�, L�2; 3�, and L�3; 1� are often
different from the actual illuminant direction, they
are all useful and have different contributions to
the estimation of the final illuminant direction.
Actually, both choosing one illuminant direction
and calculating the average illuminant direction of

L�1; 2�, L�2; 3�, and L�3; 1� are unreasonable. So the
proposed method synthesizes the three directions
of different local regions as the final illuminant
direction. It is known that the region with smaller
image complexity has more contributions to the final
illuminant direction L. That is to say, the edge level
percentages could be used as weights to adjust L.
Weight W�m;n� is defined as

W�m;n� � 1
ψm � ψn

: (8)

Let L̂�m;n� represent the normalized L�m;n�, so the
final illuminant direction L can be calculated by

L � L̂�1; 2� � L̂�2; 3� � L̂�3; 1�
� W�1; 2�L�1; 2� �W�2; 3�L�2; 3� �W�3; 1�L�3; 1�:

(9)

3. Experimental Results and Analysis

In this section, the experiment results on both color
outdoor images and the extended Yale face database
B [33,34] are presented. The Yale face database B is
set up for performance evaluation of face recognition
or facial expression recognition algorithms [35–37].
Because of the human face occupying a very small
percentage of the entire illuminant scene, the face
images are considered to meet the infinite light
source model. It should be noted that the entire
illuminant scene refers to the photo-taking place
rather than the entire image. Two experiments are
implemented in our work. Moreover, it should be
noted that the parameters of Canny edge detector
[T1 T2] and σ are set as [0.04 0.10] and 1.5, respec-
tively. For convenience of description, this paper pro-
vides the angle representation rule of illuminant
direction in the image, as shown in Fig. 9.

For the luminance component Y with size Q ×Q
and its edge image, we aim to divide them into some
local regions of the same width and height. It is
known that the luminance component Y , as well
as its edge image, can be divided into 4, 16, or 64 local
regions. Three different cases of image partition are
shown in Fig. 10.

We perform some comparisons of average correct
rate rc and execution time t among three different

Fig. 8. Calculation process for the normal vector. The points on the normal lines are those that have maximal gray-scale difference from
the center pixel.
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cases, and the number of image samples is 20. The
comparison results are as follows:

t�case c� > t�case b� > t�case a�; (10)

rc�case b� > rc�case c� > rc�case a�: (11)

Obviously, because of the size of the local region
being the largest in case c, the computation of case
c is the most complex. Moreover, for case c, more
regions with complex textures are considered, which
is negative to estimate illuminant direction.

It has been proved that the normal directions of
some pixels in a local region are different from the
actual illuminant direction. The greater the number
of pixels with the same or similar textures that a
local region contains, the more accurate is the illumi-
nant direction estimation result. Therefore, despite
having the shortest execution time, case a has the
lowest average correct rate.

Considering all things, we divide the luminance
component Y into 16 local regions, as well as its edge
image.

To get the best performance of illuminant direction
estimation, finding the best number of selected local
regions is necessary. Here, for convenience of explan-
ation, the number of selected local regions, which
equals the cardinality of C, is represented as T.
Figure 11 shows the change in average correct rate
with T. As shown in the figure, the two average
correct rates reach their highest values when T is
3. As T increases, the experimental time also in-
creases. Meanwhile, some useless local regions with

devastating impacts are selected, which lowers the
correct rates. Although the case of T being 1 or 2 costs
less time than the case of T being 3, some useful local
regions are removed and the rates drop deservedly.
So T has been set as 3 in this paper.

In the first part of the content below, the experi-
mental results in the case of single color outdoor
images have been described. Then, the second part
describes the experimental results in the case of
the face database.

A. Experimental Results for Color Outdoor Images

In regard to the color outdoor images, the real illu-
minant direction often could not be given as accurate
as for laboratory collected images. However, the
direction of the shadow or visible light source can
effectively determine the light source direction,
which could be used to evaluate the performance
of the illuminant direction estimation in this experi-
ment. In our method, the directions of shadow and
visible light source are observed and defined man-
ually. They are only references to evaluate our illu-
minant direction estimation results and do not
participate in the calculation.

A total of 100 RGB clear sky images are selected to
test the proposed method. To easily evaluate the
accuracy of illuminant direction estimation, the
shadows in the images are necessary. First, in order
to unify the size of the experimental data, all RGB
images are resized to 512 × 512 pixels by image inter-
polation and converted to the YCbCr color space.
Afterward, edge detection and partition are applied
to the luminance component Y . The size of each local
region is 128 × 128 pixels. Finally, after complexity
analysis and local region selection, this experiment
estimates the illuminant directions of three selected
local regions and synthesizes them as the final result
L. The experimental results of some samples are
shown in Fig. 12. The results show that regions with
stronger light and simpler content are selected to
estimate the final illuminant direction. It is consid-
ered to be successful when the final illuminant
direction L is parallel or approximately parallel to
the shadow direction in the image.

Most of the images discussed above are clear sky
images where sunlight is not occluded by clouds
and where it is predominant over the diffuse
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Fig. 10. Three different cases of image partition. (a) Case a. (b) Case b. (c) Case c.

Fig. 9. Angle representation rule of illuminant direction.
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skylight. In order to verify the effect of our method,
we add 100 images to our experiments. Fifty of them
are unclear sky images where the sun is partly
occluded by clouds or hazes, and the remaining are
taken at night. The experimental results of some
samples are shown in Fig. 13 and prove that the pro-
posed method is successful for these types of images.

To evaluate the performance of the proposed
method, comparisons among the method based on
regional growth [19], the method using the entire im-
age [30], the method of shadow analysis [12], and the
method proposed in this paper are shown in Table 1. It
shows that the proposed method outperforms the
method using the entire image in both average

Fig. 12. Some results of the first experiment. (a) Luminance component Y . (b) Partition results. (c) Selected regions. (d) Final illuminant
direction L: direction indicated by dotted arrow.

Fig. 13. Some illuminant direction estimation results. (a) Unclear sky images. (b) Images taken at night.
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correct rate and execution time. Illuminant direction
estimation based on shadow analysis has its insur-
mountable drawback that it depends largely on the
existence of shadows. But obvious and large-sized
shadows are often lacking in the photos. So the aver-
age correct rate of this method is only 74% when the
objects of the experiment are unclear sky images.
Compared with the method based on regional growth
and the method of shadow analysis, although with
no obvious advantage in average correct rate, the
proposed method shortens the execution time.

B. Experimental Results for the Face Database

To evaluate the accuracy and effectiveness of the pro-
posed method, images from the extended Yale face

database B are used in the second experiment. This
database is set up for performance evaluation of face
recognition and illuminant-processing algorithms
under large variations in illumination and pose. In
our work, 342 face images of 38 human subjects rep-
resenting nine illuminant conditions (0° elevation)
under frontal pose are employed, in which the
human subjects comprise 10 individuals in the origi-
nal Yale face database B and 28 individuals in the
extended Yale face database B. Due to the acquired
images being 8-bit (gray scale) and stored in PGM
raw format, all of them are not covered as YCbCr
images, first. They are manually cropped and resized
to 256 × 256 pixels for this experiment. After edge
detection, the next step is to divide each image into
16 local regions. It should be noted that the size of
each local region is 64 × 64 pixels. The remaining
steps are the same as the first experiment. The
experimental results of some samples are shown in
Fig. 14, which demonstrate the robustness of the
proposed method.

Different from the outdoor images, each image
from the extended Yale face database B has been
given the light source direction. So it is not needed

Table 1. Average Correct Rate rc and Execution Time t of the First Experiment

Sunny Unclear Sky Night

Method rc (%) t�s� rc (%) t�s� rc (%) t�s�
Entire image [30] 76 29.632 70 31.501 66 29.204
Regional growth [19] 93 91.431 90 95.522 88 93.607
Shadow analysis [12] 90 100.532 74 94.852 88 95.964
This paper 95 4.084 94 4.742 92 3.879

Fig. 14. Some results of the second experiment. (a) Original images and their real illuminant directions. (b) Partition results. (c) Selected
regions. (d) Final illuminant direction L.

Table 2. Average Correct Rate rc and Execution Time t of the
Second Experiment

Method rc (%) t�s�
Entire image [30] 69.8 16.055
Regional growth [19] 92.1 58.596
Shadow analysis [12] 88.7 75.386
This paper 93.6 2.044
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to evaluate the accuracy of illuminant direction esti-
mation by shadows, which is necessary in the first
experiment. We consider it successful when the abso-
lute value of the difference between the final illumi-
nant direction L and the real illuminant direction
is less than or equal to 4°. Some comparisons of
average correct rate and execution time are shown
in Table 2.

4. Conclusions

In this paper, a new method for illuminant direction
estimation has been proposed. In our method, the
given entire image is divided into 16 local regions.
To improve the accuracy of illuminant direction
estimation and speed up the estimation procedure,
three local regions, which meet the requirements
of lower complexity and larger average gray value,
are selected to calculate the final light source direc-
tion. The experimental results for the color outdoor
images and the extended Yale face database B show
the significant advantages of the proposed method
over the existing ones.

Our method aims to select those local regions
that meet the assumption of Lambertian surfaces.
However, it fails to give the obvious effects to images
that do not have any local regions meeting this
assumption. Since the proposed method is useless
for the case of multiple light sources, the illuminant
directions of images that are taken on an overcast
day or a rainy day cannot be estimated successfully.
For images where the sun is completely occluded by
clouds, in fact, their light sources cannot be counted.
Sunlight shines through the thick clouds and then
scatters in different uncertain directions. For this
reason, it is difficult to estimate the illuminant direc-
tion for this type of image. Therefore, the authors
will mainly devote their energy and enthusiasm to
overcome these limitations in the future.

This work was supported in part by the Specialized
Research Fund for the Doctoral Program of Higher
Education (Grant No. 30400002012102002), the
China Postdoctoral Science Foundation (Grant
No. 2013M540837), and the National Natural Sci-
ence Foundation of China (Grant No. 61103097).
The authors would like to thank the providers of
the extended Yale face database.
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