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Abstract. In this work, a fully nonparametric geostatistical approach to estimate threshold-exceeding
probabilities is proposed. We suggest to use the nonparametric local linear regression estimator, with
a bandwidth selected by a method that takes the spatial dependence into account, to estimate the large-
scale variability (spatial trend) of a geostatistical process. To estimate the small-scale variability, a
bias-corrected nonparametric estimate of the variogram is proposed. Finally, a bootstrap algorithm is
used to estimate the probabilities of exceeding a threshold value at unsampled locations. The behavior
of this approach is also evaluated through simulation and with an application to a real data set.
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1 Introduction

In spatial statistics, an effective method for spatial uncertainty assessment consist in estimating the prob-
ability or risk, given the data, that a spatial variable exceeds a threshold value. For instance, a map with
estimated probabilities of pollutant concentrations exceeding a critical threshold can be very useful for
environmental evaluation and decision making.

We assume that the spatial process {Y (x),x € D CR? } can be modeled as:
Y (x) = m(x) +&(x), e))

where m(+) is the trend function, accounting for the large-scale variability, and the error term €, repre-
senting the small-scale variability, is a second order stationary process with zero mean and covariogram
C(h) =Cov(e(x),e(x+h)).
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In this framework, given n observed values {Y (x),...,Y(x,)} of this process at locations {xi,...,X,},
the goal is to make inference about the value of the variable Y at a location x¢. Specifically, we are inter-
ested in estimating the conditional probability:

P(Y(x0) > c|Y)
where c is a (critical) threshold value and Y = (Y (x1),...,Y (x,))".

There are several geostatistical approaches which may be used to estimate the probabilities of ex-
ceeding a threshold value, such as indicator kriging (e.g. Goovaerts et al. [6]), disjunctive kriging (e.g.
Webster and Oliver [10]) or Markov chain geostatistical modeling (Li et al. [7]), among others. How-
ever, the results obtained when these procedures are applied in practice could be unsatisfactory, usually
due to the misspecification of the assumed parametric model (apart from other potential issues). In this
work, under the general spatial model (1), and without assuming any parametric model for the trend
function and for the dependence structure of the process, a general nonparametric procedure for spatial
risk assessment is proposed.

2 Nonparametric geostatistical modeling

The local linear trend estimator (see, for instance, Opsomer et al. [8] and references therein) is given by:
p (%) = €] (X,WiX,) ' XEW,Y =Y,

where e; is a vector with 1 in the first entry and all other entries 0, X is a matrix with ith row equal
to (1,(x; —x)"), Wy = diag {Ku(x| —X), ..., Ku(x, —x)}, Kg(u) = [H| "' K(H 'u), K is a multivariate
kernel and H is a d X d symmetric positive definite matrix.

The bandwidth matrix H controls the shape and size of the local neighborhood used for estimating
m(x). We recommend the use of the “bias corrected and estimated” generalized cross-validation (GCV)
criterion proposed by Francisco-Ferndndez and Opsomer [4] to select this bandwidth in practice. This
method consists in selecting the bandwidth H that minimizes:

R 2
GCV,o(H) = %Z (Y(xl) m(X;))

being S the n x n matrix whose ith row is equal to s (the smoother vector for x = x;) and R an estimate
of the correlation matrix of the observations.

As in traditional geostatistical approaches, the usual dependence estimation method consists in re-
moving the trend and estimating the variogram from the residuals:

—-SY

Nevertheless, it is well-known that the direct use of the residuals in the estimation of the variogram (or
the covariogram) may produce a strong underestimation of the small-scale variability of the process (e.g.
Cressie [1], Section 3.4.3). Simply note that:

Var(8) = £ +SXS' — 5§ — S¥ = 3,
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where 3 is the covariance matrix of the errors. As this bias may also have a significant impact on the
estimation of threshold-exceeding probabilities, a similar approach to that described in Ferndndez-Casal
and Francisco-Fernandez [2] will be used. The iterative approach starts with an initial nonparametric
local linear fit of the trend. The squared differences of the corresponding residuals are conveniently
corrected and used to compute a pilot local linear variogram estimate. The final variogram estimate
is obtained by fitting a “nonparametric” isotropic Shapiro-Botha variogram model (Shapiro and Botha
[9]), or an anisotropic extension (Ferndndez-Casal et al. [3]), to the bias-corrected nonparametric pilot
estimate.

3 Bootstrap algorithm

The proposed bootstrap algorithm, designed to assess the variability of the fitted model, is a modification
of the semiparametric bootstrap described in Francisco-Ferndndez et al. [5]. The specific steps are the
following:

1. Using the procedures described in previous section:

(a) Obtain the optimal bandwidth matrix H, the residuals & = Y (x;) — rig(x;), i = 1,...,n, and
the estimated covariance function C of the errors, using the approach described above.

(b) Using the estimated covariogram C, compute the (estimated) covariance matrix of the errors
Y. and find the matrix L, such that 33 = LL/, using Cholesky decomposition.

(c) Compute the (estimated) covariance matrix of the residuals & = (£;,&,,...,8,)", denoted by
3. and the matrix Lg, such that 3ig = L L.

2. Generate a bootstrap sample with the estimated spatial trend g (X;) and adding bootstrap errors
generated as a spatially correlated set of errors. The bootstrap errors are obtained as follows:

(a) Compute the “independent” variables e = (ey, e, ...,e,)’, given by e = L '&.

(b) These independent variables are centered and, from them, we obtain an independent boot-

strap sample of size n, denoted by e* = (e}, e3,...,¢}) .

(c) Finally, the bootstrap errors &* = (&},...,&})" are £&* = Le*, and the bootstrap samples are
Y*(Xi) :ﬁiH(X,‘)—i-é?, i=1,2,...,n.

3. Compute the kriging prediction ¥'* (xp) at each unsampled location X from the bootstrap sample
(applying the nonparametric local linear regression estimator to the bootstrap sample, using the
same bandwidth H as for the original analysis, and adding the simple kriging predictions obtained
from the corresponding residuals).

4. Repeat steps 2 and 3 a large number of times B (in our analysis, B = 1,000). In a final point, a map
with the frequencies (across bootstrap replicates) of how often a location is included in the at-risk
area is computed.

Note also that this procedure can be adapted to the construction of confidence (prediction) intervals or
hypothesis testing.
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