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A stochastic framework for gas retailer based
on temperature and oil prices evolution

F. Maggioni', M.T. Vespucci?, S. Gambarini, E. Allevi®, M.I. Bertocchi®,
R. Giacometti! and M. Innorta?.

We consider a new two—stage stochastic optimization model, named OMoGaS—2SV
(Optimization Modelling for Gas Seller—Second Stochastic version), to assist companies
dealing with gas retail commercialization. Due to nonlinearities present in the objective
function, the model can be classified as an NLP mixed integer model, with the profit
function depending on the number of contracts with the final consumers, the typol-
ogy of such consumers and the cost supported to meet the final demand. Constraints
related to a maximum daily gas consumption, to yearly maximum and minimum con-
sumption in order to avoid penalties are included. Consumers consumption profiles
are also considered. Temperature influences gas consumption of small consumers and
is modelled by a mean reverting process. Oil prices influence the energetic indices to
which sell and purchase prices are related. Forward curves of energetic indices have
been analyzed by econometric models while exchange rates are modelled by a GARCH
model. The results obtained by the stochastic version give clear indication of the
amount of losses that may appear in the gas seller’s budget.

Key Words. Gas sale company, energetic indices, mean reverting process, stochastic
programming.

1 Introduction

Starting in 1999 the Italian Natural Gas market has been undergoing a liberalization
process aiming at promoting competition and efficiency, while ensuring adequate service
quality standards. Timings and methods for the internal gas market liberalization have
been introduced following the European Gas Directive; the roles of different segments
of the natural gas “chain” have been identified and defined, such as import, production,
export, transportation and dispatching, storage, distribution and sale. In particular,
the principle has been introduced of unbundling among supply and transport/storage
and among distribution and selling. Before liberalization there was a national monop-
olistic operator, for all activities related to supply, transport, storage and wholesale
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commercialization, and local monopolistic operators, for distributing and selling to
final consumers. After liberalization the following operators run different activities:

e shippers: production/import, re-gasification and wholesale commercialization;
e national distributor: transport on national network and storage;

e local distributors: transport on local network;

e selling companies: purchase gas from shippers and sell it to final consumers.

In 2003 the Italian Regulatory Authority for Electricity and Gas, see [11], defined con-
sumption classes, on the basis of gas consumption in the thermal year, and introduced
a new gas tariff with Delibera 13406 in order to guarantee small consumers’ protec-
tion by applying the transparency principle in the pricing mechanism. The new tariff
is based on a detailed splitting in different components, whose values are periodically
revised, and represents a maximum price to be applied to small consumers. On the
other hand, the gas buying price is influenced by some energetic indices related to the
five following oil prices: Gasoil 0.2, 1% Fuel Oil, 3.5% Fuel Oil, Brent Dated and a
mixture of Crude Oils, expressed in $/(Metric Ton) and whose daily quotations are
available on Platts [17]. Consequently, in the purchase contract, the gas seller can
choose among 17 possible energetic indices formulas given by different linear combina-
tions of five oil prices reported above and by which the gas purchase price is monthly
updated. Furthermore, unlike domestic customers, who purchase gas according to the
index formula described by Delibera 134_06, industrial customers can choose the index
formula by which the gas purchase price is computed, which implies that the gas seller
faces the problem of develop a Risk Management Area for Oil Commodities to evaluate
and control this market risk.

Two optimization models, a deterministic one, see Allevi et al., (2007) [2] and a
stochastic one, see Allevi et al., (2007) [4] and Maggioni et al., (2006) [19], have been
developed to assist companies dealing with retail commercialization. For each citygate,
the gas seller has to decide the customer portfolio, i.e. the number of final customers
to supply in each consumption class, and the sell prices to apply to each consumption
class. Indeed, different customer portfolios determine different citygate consumption
patterns, which shippers refer to when setting the gas price to be paid by the gas seller
for the citygate supply. For each thermal year and each citygate there is a contract
between shipper and gas seller setting:

e the gas volume required by gas seller in the next thermal year;

the gas volume required in particular in winter months;

the maximum daily consumption (capacity) requested by gas seller;

the purchase price fixed by the shipper;

e energetic index formula.



In the contract it is also specified how to compute penalties, due by gas seller if daily
consumption exceeds daily capacity.

The stochasticity considered in Maggioni et al., (2006) [19], is due to the influence of
the temperature on consumption whereas sell and purchase prices do not change during
the contract. For small customers, using gas either only for cooking or for cooking and
heating, or for commercial activities and small industries, gas consumption in winter
months strongly depends on the weather conditions: this fact is taken into account in
the model, by including a mean reverting process modelling temperature and generating
temperature scenarios.

In this paper we consider again temperature as source of stochasticity but we also
consider the influence of oil prices on the energetic indices upon which sell and purchase
prices are monthly updated. We have modelled oil prices evolution by an endogenous
VAR(5) econometric model with five lags, the exchange rates €/$ by an IGARCH
model and finally we have built the forward curves of energetic indices by Monte Carlo
simulation on the errors.

The models for temperature and energetic indices are presented in sections 2 and
3 respectively. In section 4 the stochastic model, named OMoGaS—-2SV, is presented
and in section 5 numerical results related to a case study are reported and discussed.

2 The stochastic temperature model

In this section we want to find a stochastic model describing the temperature variations
along the months in a year time. We start with some definitions about temperature:

Definition 1 Given a weather station, let 77" and T;”i" denote the maximum and
the temperatures (in Celsius degrees) measured in day pu, respectively. We define the
mean temperature of day u as

_ T;naa: + T;nzn
I 2 :

(1)

Definition 2 Let T}, denote the mean temperature of day ;1. We define Heating De-
gree Days (HDD,: measure of cold in winter) and Cooling Degree Days (CDD,,:
measure of heat in summer) respectively as

HDD, = max {18 —T,,0} , (2)
CDD, = max{T, — 18,0} . (3)

For a given day HDD and CDD are the numbers of degrees of deviation from a reference
temperature level in Bergamo (18° C). The name “heating degree days” refers to the
fact that if temperature is below 18° C people tend to use more energy to heat their
homes; the name “cooling degree days” refers to the fact that if temperature is above
18° people start turning their air conditioners on. Typically the HDD season is from



November to March, whereas the CDD season is from May to September. April and
October are often referred to as “shoulder months”.

We have a database of temperatures measured in Bergamo in the last 12 years
(1/01/1994-30/11/2005). The database consists of daily minimum and maximum tem-
peratures, from which average daily temperatures are computed using (1). Due to the
cyclical nature of the temperature process we find that historical data give a reasonable
idea of the temperature level in the future. In Figure 1 we have plotted the daily mean
temperatures at Bergamo for the 12 years; it is evident that the temperature process
is mean stationary and variance stationary: it could be modeled as a mean reverting
process, reverting to some cyclical function. Being the temperature process evidently
not deterministic, we must consider the presence of noise. Moreover, the histogram of
the daily temperature differences in Bergamo (1994-2005) shows a good fit with the
corresponding normal distribution, though the frequency of small differences in daily
mean temperature is underestimated. Hence, the temperature process can be modelled
as a Brownian Motion.

In order to model the temperature behavior, we consider a Vasicek process with
mean reversion through the following stochastic differential equation:

AT, = a (9 — T,) dt + odW, (4)

where T} is the process to be modelled, a € R is the speed of mean reversion, ¥ is the
mean (constant) which the process reverts to, o is the process volatility (constant) and
W, is the Wiener process.
For the temperature process we need a ¥ = 9 () = ¥, computed according to (8); we
also need a = a (i) = a; and 0 = o (i) = 0; as functions changing over the months but
constant in each month .
Then our process becomes

dj—;g = Q; (ﬂt — E) dt + Uith . (5)

We need to determine a functional form for ¥, and estimates for a; and o; from historical
data. Dornier and Queruel, (2000) [13], showed that the process found in (5) is not
reverting to 1J;; to obtain a process that really reverts to the mean we have to add the
term o, to the drift term in (5) so that the equation becomes

The proof of reversion to the mean can be found in the Appendix.

2.1 The mean temperature 1,

By observing the plot of the temperature data measured in Bergamo in the last 12
years, see Figure 1, we note a strong seasonal variation, which can be modelled by the
function

sin (wt + ) (7)
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where t is the time measured in days, w = 27/365 is the period of oscillation and
¢ is a phase angle due to the fact that the yearly minimum and maximum mean
temperatures do not necessarily occur at January 1 and July 1 respectively. Moreover
the mean temperature actually increases each year (the positive trend in the data is
weak but it does exist): therefore we assume a linear warming trend. A deterministic
model 9, for the mean temperature at time ¢, is assumed to be given by

Uy = A+ Bt+ Csin(wt+ ) |, (8)
or equivalently by
vy = A+ Bt + C'[cos () sin (wt) + sin (@) cos (wt)] (9)

where we estimate the unknown parameters A, B, C, w and ¢ so that the curve given
by (9) fits the data.

In order to estimate the parameters in (9), a change of variables is operated and the
constants are renamed as follows

A= aq
B = a9
C'cos (@) = as (10)
C'sin (p) = ay
or equivalently
A= ay
B = as

C=\/d+a (11)

p = arctan (Z—;‘) -7
and we obtain
Uy = a1 + ast + azsin (wt) + a4 cos (wt) . (12)

The numerical values of the parameters in (12) are computed by the least squares
method, i.e. the parameter vector & = (aq, as, as, ay) is computed that solves

ming |9 — X* | (13)

where ¢ is the vector whose elements are given by (12) and X is the data vector. By
using the series of 4323 observations of the historic daily temperatures we get

A=13.33

B =6.8801 - 1075

C = 10.366 (14)
0 = —1.7302

In Figure 1 we can see a comparison between the observed temperatures and those
estimated by using the deterministic approach given by ¥, in the years 1994 — 2005.
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Figure 1: Comparison between measured temperatures and estimated mean o (t) at
Bergamo in the years 1994 — 2005.

2.2 Estimation of o;

For the estimation of the volatility o; we follow the same approach as in Alaton et al.,
(2002) [1], where the quadratic variation o7 of temperature is assumed to be different
along the months in the year, but nearly constant within each month. Since the gas
retailer model is based on a monthly discretization, it is only necessary to estimate
a volatility value for each month. For this reason o; is assumed to be a piece-wise
constant function, with a constant value during each month. One possibility is to use
an estimator based on the quadratic variation of T (see Basawa and Prasaka Rao,
(1930) [5])

| Nl

. 2

ot =5 2 (L =T, (15)
t=0

where NN; denotes the number of days of month ¢ and ¢ = 0 refers to the last day of the

previous month.

Another estimator is derived by discretizing (6) and using the discretized equation as

a regression equation. During a given month ¢, the discretized equation is
E :ﬁt—ﬁt_1+ai19t_1+(1—ai) E—1+0i6t—1 t = 1Nz s (16)

where {et}ivzll_ ! are independent standard normally distributed random variables. Thus
an efficient estimator of o; is (see Brockwell and Davis, (1990) [8]),

N
. 1 Z ; ;
0'.2 = (T;f — (1915 — 79,5,1) - CLﬂ?tfl - (1 - ai) Tt71)2 ) (17)
t=1

7
Nif2
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’ Month \ Estimator 1 \ Estimator 2 \ Mean Value ‘

January 1.6508 1.6196 1.6352
February 1.5415 1.5515 1.5465
March 1.7455 1.7209 1.7332
April 1.8480 1.8305 1.8393
May 1.8142 1.8013 1.8078
June 1.9871 1.9765 1.9818
July 1.7605 1.7298 1.7452
August 1.6305 1.6402 1.6354
September 1.4805 1.4674 1.4739
October 1.3831 1.3905 1.3868
November 1.5062 1.4933 1.4998
December 1.4912 1.4899 1.4906

Table 1: The estimators of o; based on the quadratic variation and the regression
approach and their mean value.

where a; is estimated in the following section. In Table 1 for each month ¢ the estimator
of o; based on the quadratic variation, the one based on the regression approach and
their mean value are reported.

2.3 Estimation of Speed of reversion

According to Bibby and Sorensen, (1995) [6], based on observations collected during
N; days of month 7, an efficient estimator a; of a; is the zero of the martingale function
given by
b (T, ,a,
(a;) = AT, — E[TT. ]} , (18)
zt 1

t=1

where b(T i—1;a;) denotes the derivative with respect to a; of the drift term

dv
b(Thai) = +ai (9, = T) . (19)
In order to obtain the solution of (18), we have to determine each of the terms
E[T3|T;-1]; thus, if we take again the process developed in (6) for a given month i
and integrate between day (t — 1) and day ¢ in month 7, we find

t
T, =0+ e % (T)_y — 9p_1) + e~ / ooe AW, | (20)
t—1

which yields
EL|Ti-] = e (Thmy — V1) + Uy (21)



’ Month \ Estimator a; ‘

January 0.2707
February 0.2055
March 0.2017
April 0.1755
May 0.3079
June 0.2364
July 0.3051
August 0.2559
September 0.2666
October 0.1594
November 0.183
December 0.1969

Table 2: The estimator a; based on the formula 23.

because the expected value of an Ito integral is zero.
By substituting (21) in (18) we find

Gola) =3 b(Ti1sai) [T, — 0 — e Ty — 0,1)] (22)

2
t=1 Ti-1

from which we obtain
e D)
2?21 —ﬁtflz{?fl (th — 191571)

g _

a; = —log (23)

Inserting the data of temperatures and the estimator ¢ given by (15), we find the
estimator a,. In Table 2 the values of the estimator a; in the twelve months are
reported.

2.4 Generation of temperature scenarios

In this section we consider the problem of generating temperature scenarios. By using
Euler approximation scheme, we discretize equation (6) obtaining

Ty =0 — 01+ a1+ (1 —a;) Ti—1 + 0i€i-1 (24)

where {et}fiﬁ are independent standard normally distributed random variables. Figure
2 shows both the evolution of a simulated trajectory of the estimated temperature and
its mean 1J;, while Figure 3 gives the evolution of 10 scenarios of temperatures.

The following notation is used:

o T° € R3% is the vector of random variables along scenario s, s = 1,..., N which
we have obtained using a mean reverting process; the component 7}’ represents
the daily average heating degree days for day ¢, ¢t = 1,... 365 along scenario s;
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Figure 2: Simulation of sample paths of temperature and the mean estimated by Monte
Carlo method.
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Figure 3: 10 scenarios of temperature estimated by Monte Carlo simulation.



e Due to the fact that the consumption data are monthly data, we generate monthly
temperature scenarios from the vector T¢ by averaging. Tm® represents the
monthly temperature scenario s, whose component 7'm; represents the monthly
heating degree days for month i, ¢« = 1,...12 along scenario s.

N
_ T'ms
Tm; = % for + = 1,...,12, is the expected value over all scenarios of

the random variable T'mj;

e A® € R' is the vector of distances of monthly heating degree days from its
expected value along scenario s, s = 1,..., N, i.e. A} :=Tmj —Tm, 1=
1,...,12, s=1,...,N.

e p° is the probability related to each scenario s, s = 1,..., N; we assume equal

1
probability, i.e. p® = N 5= 1,...,N;

3 Forward curves of energetic indices

3.1 Econometric model of the forward curves of energetic in-
dices

In this section we introduce the econometric model which describe oils evolution which
the gas price depends from. The considered oils are Gasoil 0.2, a primary distillation
of crude oil, 1% Fuel Oil and 3.5% Fuel Oil, respectively a low and high sulphur
concentration fuel oils, Brent Dated, a crude oil of North Europe and a mixture of
Crude Oils of Arabian countries. We have analyzed the database of these oils prices
expressed in $/(Metric ton) from January 1998 to June 2005; their behaviors against
time are plotted in Figure 4, in particular we have used monthly data because we are
interested in long period forecasting.

From the picture we can deduce some characteristics of these oils prices: positive
correlation (see also the correlation matrix reported in Table 3), non-stationarity, non-
trend-stationarity and an increasing trend in the last 6 observations. In order to test
non-stationarity and non-trend-stationarity of the series we have used the unit-root test
(see Dickey and Fuller (1979), [12]). The test was used also to check the stationarity
of returns of prices. In order to be sure to have stationarity on errors of the regression
between oil prices, we have to test the cointegration (see Engle and Granger (1987),
[14]). On this purpose we have checked the prices series cointegration by using the
Johansen’s procedure (see Johansen, (1988) [18]) based on the trace test.

The second step is to estimate the regression model (the PcGive 10.3 package has
been used). In order to reduce price volatility, we have considered the logarithm of
prices. Moreover, in order to capture the evolution and the interdependencies between
the five price time series, we have used a vectorial autoregressive model VAR (p):

Yt =C + AlYt-l + Tt + Ath—p + €, (25)
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Figure 4: Behaviors of the five oils prices considered from January 1998 to June 2005.

oils prices Gasoil 0.2 | 1% Fuel O. | 3.5% Fuel O. | Brent Dated | mix Crude O.
Gasoil 0.2 1.0000 0.92527 0.89595 0.98551 0.97287
Fuel O. 0.92527 1.0000 0.97617 0.93915 0.90788
3.5% Fuel O. 0.89595 0.97617 1.0000 0.92699 0.88928
Brent Dated 0.98551 0.93915 0.92699 1.0000 0.9732
mix Crude O. | 0.97287 0.90788 0.88928 0.9732 1.0000

Table 3: Correlation matrix of the oils prices.
where Y, ..., Y, 5 are 5 X 1 vectors, ¢ is 5 x 1 vector of constants, A;, 1 =1,---,p

are b X 5 matrices and €; is a 5 x 1 vector of error terms with mean equal to zero
(E(€;) = 0), variance—covariance matrix F(€,€}) given by a 5x 5 positive definite matrix
and without correlation across time (E(e:€; ;) = 0, Vk # 0). By using the Granger’s
causality technique (see Engle and Granger, (1987) [14]), we have also tested that the
VAR model is endogenous and finally, through some tests of correct specification on the
errors and checking the forecasting test reported below in Figure 5, we have concluded
that the best model to describe the oil prices evolution is a VAR(5) with five lags given
by eq. (25) with p = 5 and where:

—0.760758
—0.778114

C =

—0.

0353831 ,

—0.426081
—0.910448
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0.0059592  —0.263299 —0.126311 0.922934  0.309547
—0.591126  0.74439 0.281978  1.01744 —0.426275
A, =1 —0.669291 0.173789 0.620519  1.32116 —0.370503 ,
—0.723226 —0.0943601 —0.0381978 1.16304  0.417903
—0.702463 —0.0299675 —0.0610118 0.843319 0.942224
0.322835  0.123564  0.0885886  0.00826908 —0.453064
0.350232 —0.415353 —0.225388  —0.21569  0.141177
A, = | 0.0514133 0.178525 —0.217244 —0.0657114 —0.435402 ,
0.374726  0.0199061 —0.267055 —0.0080471 —0.150649
0.471634 —0.122579 —0.0353559 —0.0806189 —0.362299
—0.239912 0.00669066 —0.0871119  0.342314  0.00302752
—0.21206  0.149898 0.286594  —0.0227147  0.292289
A; = | —0.158735 —0.266217  0.234751  —0.0354881  0.777976 ,
—0.236272 —0.209425  0.366504 0.449007  —0.0507727
—0.455109 0.0289447  0.212137 0.41696  —0.0137538
—0.181235 0.409444 —0.257505 —0.281725  0.223338
—0.269708 0.474968 —0.251569  0.3478 —0.681305
Ay =] —0.0584977 0.784911 —0.36299  0.412928  —1.05716 ,
—0.0560197 0.749746 —0.474892 —0.384128 —0.0478829
0.0514887 0.519774 —0.481782 —0.148742 —0.0688354
—0.222403 —0.379329 0.351165 0.474257  0.0870958
0.0987397 —0.451213 0.331088 0.0164765  0.411279
As = —0.10459 —0.541229 0.0821804 0.215786  0.504756
0.0230342 —0.70368  0.528832  0.152169  0.300377
0.0919056 —0.62986  0.672984 0.161777 —0.0109883

3.2 Monte Carlo simulation of the forward curves of energetic
indices

Scenarios of (forecasted) oil prices have been generated by Monte Carlo simulation.
The error terms ¢! (i = 1,...,5) of the VAR(5) model (see eq. (25)) are correlated
normally distributed random variables, thus they can be described by the Brownian
motion
e =Y Y™ =dY) = pdt + o, dW} | 1=1,...

5 (26)

where Y%* are the observed values, y1; and o; are respectively the mean and the variance
of the errors series and W/ is the Wiener process. In our particular case eq. (26) is
given by:

—0.80242dt + 19.862dW}! |,
—0.47046dt + 12.42dW? |
—0.39153d¢t + 10.399dW} |
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Figure 5: Forecasting analysis of the endogenous model VAR(5) for the oils prices time
series, with exclusion of the first 24 observations.

e/ = —0.71279dt + 16.968dW;* |
e, = —0.67033dt + 17.797dW}

where we note that the Wiener processes W} are correlated; we have decomposed the
correlation matrix I' of the errors (see Table 4), by using the Cholesky decomposition
given by

r=cfc, (27)

where C' = [¢;;] is the lower triangular Cholesky matrix, reported in Table 5, from
which eq. (26) can be rewritten as

5
€i:dYtZ:det+0'zZCzdet]; Zzl,,5, (28)

J=1

where W/ are independent Wiener processes.
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Gasoil 0.2 | 1% Fuel O. | 3.5% Fuel O. | Brent Dated | mix Crude O.
Gasoil 0.2 1.0000 0.77755 0.7091 0.87108 0.8406
Fuel O. 0.77755 1.0000 0.8185 0.75532 0.81416
3.5% Fuel O. 0.7091 0.8185 1.0000 0.7581 0.83911
Brent Dated 0.87108 0.75532 0.7581 1.0000 0.93284
mix Crude O. 0.8406 0.81416 0.83911 0.93284 1.0000

Table 4: Correlation matrix of the errors € i = 1...,5 of VAR(5) model.

Gasoil 0.2 | 1% Fuel O. | 3.5% Fuel O. | Brent Dated | mix Crude O.

Gasoil 0.2 1.0000 0 0 0 0
Fuel O. 0.77755 0.62882 0 0 0
3.5% Fuel O. 0.7091 0.42483 0.56276 0 0
Brent Dated 0.87108 0.12406 0.15586 0.44893 0
mix Crude O. 0.8406 0.25532 0.23913 0.29328 0.29155

Table 5: Choleski matrix C' obtained by the decomposition of the correlation matrix
r=07C.

3.3 Forecasting analysis for exchange rates

In this section we consider the problem of simulating exchange rates between dollar
and Euro; the oil prices are in fact expressed in dollar, while in the contracts between
the shipper and gas retailer seller the price of gas is in Euro. We have analyzed the
database of the exchange rates expressed in €/$ from January 1998 to June 2005,
their monthly and daily behaviors against time; we have also analyzed their returns.
The related plots are shown in Figure 6, in particular we have considered also daily
data with the aim to verify possible non-linearity. From the picture as well as and
from some tests, such as unit—root test and the Bera—Jarque test on normality, we can
deduce that the exchange rate returns series is stationary whereas the exchange rate
series are not; both are not normally distributed. We have estimated an autoregressive
model AR(p) varying the number of lags p = 2,...,4. We have obtained that the best
process for daily returns of exchange rates is an AR(2) whereas for the monthly case
is an AR(1). In both cases the low values of R*-test (see e.g. Davidson, (2000) [10])
bring us to consider this modelization unreliable.

We have modelled the returns of exchange rates r; by a generalized autoregressive
conditional heteroskedasticity model GARCH(p, q) (see Bollerslev, (1986) [7]) as follows

r=c+ e, (29)

where c is a constant, ¢, = N(0,07) = 0;N(0,1) is the error term such that its variance
o? at time t depends on the squared error terms from p previous periods and on ¢
previous variances:

p q
=1 k=1
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By using some tests of correct specification we found that the best model is an Inte-
grated Generalized Autoregressive Conditional Heteroskedasticity IGARCH(1,1),

2 2 2
{ o; = ap+ ai€_, + fro;_,

Oél—i_ﬁlz1 ) <31)

which consists in a restricted version of the GARCH model, where the sum of the
persistent parameters a and  sum up to one. The numerical results are given by

{ Ty = 0.000216 + € s <32)

o2 = —0.00007 + 0.005748€2_, + 0.99445202 | .
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Figure 6: (a) Daily (top row) and monthly (bottom row) exchange rates prices and (b)
their relative variation expressed in €/$ from January 1998 to June 2005.

Simulating exchange rates by Monte Carlo method, we built 10000 gas prices scenarios,
according to different indices formulas, denoted in the sequel by v =1,...,17.
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4 The two—stage stochastic OMoGaS-2SV model

In the literature (see Brooks, (1981) [9], Eydeland and Wolyniec, (2003) [15], Ermoliev
and Wets, (1988) [16] and Ruszczynski and Shapiro, (2003) [20]) stochastic approaches
in the gas market deal mainly with the scheduling of development of gas fields, the use
of gas storage and the gas delivery problem.

The stochastic version of our model, which can be classified as a two-stage stochastic
program with recourse, includes a stochastic data process w = ( A, I,;) where the first
component A represents the temperature and the second component I, represents
the oil index price along the year. The consumptions of the first six classes of consumers
are considered as dependent on temperature variations along the months. We also
consider the stochastic nature of purchase and sell prices monthly updated according
to energetic indices related to oil prices.

The following notations are used:

o [ ={i=1,...,12} is the set of month indices, with i = 1 corresponding to July
and ¢ = 12 corresponding to the following June;

o J={j=1,...,10} is the set of consumer class indices;
e U ={¢=1,...,17} is the set of energetic indices formulas;
e S={s=1,...,N} is the set of scenario indices;
e c;; is the consumption of consumer j, j =1,...,6, in month ¢ € I along scenario
se S B
ij:CfL’j—i—C@'jAf, j=1,...,6,1€l, s€ 8§, (33)
where Cj; is the average consumption of consumer j in month i € I; for j =
7,...,10 the consumption does not depend on temperature and therefore
Cij:éijv ]:7,,10,261, (34)
e vaj is the annual volume of gas for consumer j, j =1,...,6, along scenario s € S
12
UCL;:ZCZ-, j=1,...,6,s€S, (35)
i=1
for j =7,...,10 the annual volume of gas is
12
va; = Cij7 j:7,,10 > (36)

16



vw; is the winter volume of gas for consumer j, j =1,...,6, along scenario s € S

9
ij:Zcfj, j=1,...,6, s€S, (37)
i=5
for j =7,...,10 the winter volume of gas is
9
vw; =Y Cy,  j=T7,...,10; (38)
i=5
r? is the ratio of winter gas consumption with respect to the total annual con-
sumption of consumer j, j = 1,...,6, along scenario s € S
s vwj )
ri = —=, j=1,...,6, se€ S, (39)
va;
for j = 7,...,10 the ratio of winter gas consumption with respect to the total
annual consumption is
VW,
r;=—2>, j=7,...,10; (40)
vaj

cd;; is the peak consumption per day of customer j € J in month ¢ € I for s € S

s

S f— —_—
Cdij = Gy e
i

jed, iel, ses, (41)
where t; is the number of days of the month ¢ € I and ~ is a parameter given by
the Authority;

nc; are the first stage decision variables representing the number of consumers
of class j € J, restricted to be nonnegative integers, subject to upper bounds,
m]’ y

Ogangmj, ]EJ, (42)

cm; is the citygate consumption of month ¢ € I along scenario s € .S

6 10
cmf:Zcfj~ncj+ch-j'ncj, rel, sefS; (43)
j=1 =7

ca’® is the gas volume to be purchased for supplying the citygate consumers along
scenario s € S

ca5:Zcmf, ses; (44)



e 1° is the citygate loading factor along scenario s € S and g is the first stage
decision variable representing the maximum consumption per day above which
the gas seller has to pay a penalty

S

ca
¥ = , SES; 45
T T365.47 (4)

e [; is the loading factor of consumer class j, j =7,...,10;

e 5% k =0,1,2 are second stage decision variables along scenario s € S
that represent the surplus of consumption in the peak day of winter month ¢
(1 = 5,...,9) with respect to gas availability given by the decision variable g.
These variables are used in computing the penalties by Z?:s Zi:l [kisy; © where
fri is the unitary penalty in month ¢ to be paid on the amount s;; *. The unitary
penalty p; is zero and the surplus variables s} ® must satisfy the relations

0<sf <my-g, i=5...,9, seb, (46)
mi g <sfy <micg, i=5,...,9, s€, (47)
T g <sf , i=5...,9, s€S, (48)

where 7y; represents the width of penalizations classes £ = 0,1 (no upper bound
for class k = 2);

e cw? is the citygate consumption in winter months along scenario s € S
cw® = Zmrﬁ seS; (49)

e h?is the ratio of winter gas consumption with respect to total annual consumption
along scenario s € S

hszﬂ,ses; (50)
ca’®
e ¢y, (¢ € W) are first stage decision binary variables which identify the more
appropriate indexation formula to be included (0 when a specific index formula
¥, 1 € U, is not chosen, 1 when 9, ¢ € W, is chosen). They have to satisfy the
relation

D p=1; (51)

(2
scenario s € S, at month ¢ € I: it is expressed as a linear function of z* and of

indices formulas, and is defined as

) P"fbb is the purchase price to be paid by the gas seller to the shipper along the

By, = PP+ ky, (17, — loy,) = QT + QS + q+m - 2% + ky, (I}, — loy,) , (52)
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where ¢ is the intercept and m is the slope; QT and (.S are fixed by the Italian
Regulatory Authority, ky, is a constant depending by the index buying formula
Y eV, I}, is a energetic index given with monthly, bimonthly or quarterly ca-
dence according to the following general formula

GasO;

y

1% FO

3.5% FO;
B+ O —

Brent;

Crude O3
)+ Dy 7 )+ Fy(————

fy

where Ay, By, Cy, Dy, Fy and ay, by, ¢y, dy, f, are constant depending on the
choice of ¢ (1p = 1, for buying and ¢ = 1), for selling) such that

Iiszp:Aw( )

A¢+B¢+C¢+D¢+F¢:1, Yew,

and finally Iy, is the energetic index at the moment of the drawing up of the
contract and it is fixed during all the length of the contract.

. P./jfw:l} is the price to be paid by the first 6 classes of consumers along the

1
scenario s € S and is defined as

Pi,js{ﬁ)s:l} = (OMP + kgyp=1y(Iy,—1y — loqwe=13) T QVD) - (1 — ),  (53)

where the value of CM P cover raw material costs (production, importation and
transport), it is decided by the Italian Regulatory Authority and it is monthly
updated by the term k:{ws:l}(ff{%:l} — Iy y,=13) defined by the Authority with
Decree 134/06; QV D too is fixed by the Authority and covers retail commercial-
ization costs and finally o; (0 < a; < 1) is a parameter representing possible

discount fixed by the gas seller to be applied to consumer j;

s

e P, is the price applied by the gas seller to consumer class j, j = 7,...,10,

(2
along the scenario s € S

17
e S :CS S S
Pz‘jzps = Z ¢wbPi*,¢b—5j'(1—T)+5j‘(rj —h )+)‘j+k5ws (IiZi*,d)s - 1—0%) ) (54)

Pp=1 J

where 3; and d; are constant values, ); is a possible recharge which can be applied
to the industrial consumer class j and ¢* is the month when the industrial clients
draw up the contract with the gas retailer.

We choose as objective function the expected value of the gas seller profit:

w = E[R(ncj,g) — C(ncj,g) — Pt (sf;°,9)] (55)
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where

12
Rcy.0) = Y03 Py -6y + 3030 3 i, -Gy
j=1 i=1 J=7 i=1 ¢s=1
represents the revenue,

12
ncﬂ> Z Z f% iy zs )

i=1 Yp=1

represents the costs and

represents the penalties of gas retailer.

Notice that

e the expected value of revenues from the first six classes of consumers is

6 12
B2 D (Ptvnmy €y ) | =
j=1 i=1

6
:Z (1 — ;) ne; Z CZJ CMP""QVD""I{;{% 1} (E[Iz‘s{wszl}] - IO{wszl})) J
7j=1

where we have taken into account that

E[A] =0,

()

and

1

E[Aj Iy, ] = BN E Iy, —y] =0,
because of the independence of A on I w1y and of eq. (60) .
e the expected value of revenues from the last four consumer classes is

BSOS S oy ] _

J=7 =1 ¢Ys=1

10 12
> ne; > Cy {E 1+ Z Pk, (B[I5y,] — fowb)}+
=7 =1

Yp=1
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10 12 17
+> ne; Y Cy > duky, (B — Top,) (61)
J=T7

i=i* Ys=1

where .
P, :PS—@-@—?-

J
J

)+5j'(7’j—hs)+)\j, (62)

and where we have considered that the industrial consumptions are independent
of temperature.
Notice that

E(PJ> - E(PS)—@--(1-E(?—j>)+5j-(rj—E(h5))+Aj: (63)
6' N N

— QT+QS+q—ﬂj+5jTj+)\j+(m+f)zx5ps_5j2h5ps.
17 =1 s=1

e the expected value of the costs is

12 17 12
EIS S 6uPs,- cmf] — QT +QS+q) > B lemi] +
i=1 p=1 i=1
" 12 12
+m E Zl(cmf)2 +2F Z (em3) (emi) | | +
= i k=1
i k>i i
17 12
+ > bu Yk, (BIL,) — To,) Blems); (64)
Yp=1 i=1
where
N
E [(em})?] = (em))? p*,
s=1
and B _
12 N 12
E| Y (emd)(emp)| =Y | Yo (em)(emy) | p*;
ik=1 s=1 ik=1
L k>i ] k>i




The constraints of our stochastic problem are the following:

0<nc;<nc, jeJ, (66)
6 10 2
chfj-ncj—i—chij-ncj—ggZSZ;, 1=25,...,9, s€ 8§, (67)
j=1 J=T7 k=0
0<si <mu-g, i=5....9 s€S, (68)
moicg < sf; <my-g, i=5...,9 s€S, (69)
7T2i'g§52is7 i:57"'7978657 (70)

17 17
Z¢¢s:17 Z%b:l- (71)

Ps=1 p=1

We note that in our model, as shown in the previous simplifying formulas (59), (61)
and (64), we take only the temperature as unique source of stochasticity because the
indices formulas on oil prices appear only as expected value in the objective function
and not in constraints; consequently we can drop oil prices as random variable and
consider these as parameters which are monthly updated.

Notice that the problem may also be formulated as a 2-stage stochastic model with
recourse as follow:

max Eg [f (z,y( A))] , (72)
Az =b, (73)
T(Ax+Wy( A)=h( A), (74)
x>0,y A)>0, (75)

where € = (h( A),T( A)) is a random vector influenced by random temperature
data. In our problem the first stage decision variables  involves:

e the number of customers nc; of class j € J;
e the daily capacity g above which the gas seller has to pay a penalty;
e binary variables ¢y, ¥ € U;

whereas the second stage decision variable y( A) involves the surplus in consumption
in the peak day S;C"; in winter month 7. Furthermore the first stage constraint (73)
is represented by equations (66) and (71) and the second stage constraint (74) by
equations (67), (68), (69) and (70).
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5 Results and model validations

In this section, we show the results of our stochastic model for a local gas seller
who has to decide the customer portfolio structure in a village in Northern Italy (Sotto
il Monte). The simulation is based on the data of thermal year 2004-2005 (for these
data see Allevi et al., (2005) [3]). We have developed a simulation framework based on
ACCESS 97, for database management, on MATLAB release 12, for data visualization,
and on GAMS release 21.5, for optimization. In the GAMS framework the DICOPT
solver has been used for the nonlinear mixed integer optimization problem. DICOPT
solves a series of NLP subproblems by CONOPT2 and MIP subproblems by CPLEX.
The relation between the part of the purchase price P®, which does not depend by oil
prices index formulas, and x° is estimated by the gas seller through a linear regression
using the data related to year 2004-2005 for all citygates managed by the gas seller. The
regression of P?® values has also been tried on the annual volume ca®, h* and ¢ but it
has been found not significant. Indeed, the value of R?-test (see e.g. Davidson, (2000)
[10]) with the regression on z* is 0.603, therefore not highly significant. However,
the introduction of non parametric regression, would introduce a more complicated
function in the model. On the other side, linear regression is currently used by the gas
seller in their simulations. In our case we use:

P*(z°) = QT + QS + 18.348 — 3.866 - z° |, (76)

where the intercept value 18.348 and the slope value —3.866; the values QT and QS
are given by the Italian Regulatory Authority: in our numerical experiments Q7T =
2.4953171 Eurocent/Stm? and QS = 0.63882 Eurocent/Stm?.

The relation between the consumption of consumer j, j = 1...,6, in month ¢ € I along
scenario s € S, ¢;; and the deviation from mean value over scenarios, Aj, is supposed
to be linear with intercept equal to C;; and the other coefficient computed via a linear
regression. The regression results to be significative for all the consumers.

In particular, we choose to work under the assumption that all the contracts on sale and
on purchase are stipulated in the same month (i.e. ¢* = 1), obviously we can modify
the objective function to take into account of possible diversified effective dates.

The model has been validated by running several tests both in the deterministic (see
Allevi et al., (2007) [2]) and in the stochastic case. For the stochastic model, we have
solved 10000 times the problem, each time with N = 80 scenarios randomly chosen
with the procedure described in Section 2.4. The optimal values both in the function
and in the decision variables are stable. We report in Table 6 their average over 10000
trials. The first column refers to the solution obtain by a first stochastic model de-
scribed in a previous paper (see Maggioni et al. (2006) [19]) in which the source of
stochasticity was again given by the dependence of consumption by the temperature
but the purchase and sell prices did not change during the year, whereas the second
column refers to the model described here in which the dependence of gas prices by
energetic indices is considered; in Table 7 are also reported the optimal values of pur-
chase prices along the months in a year obtained as solutions of the second stochastic
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First stochastic Second stochastic
Profit 152208 197264 Euro
P 19.67 23.85 Eurocent /Stm?
P’ 25.00 29.37 Eurocent /Stm?
P 19.88 26.52 Eurocent /Stm?
ca 4484407 4484406 Stm?3
g 26399 26251 Stm?3
x 0.4654 0.4678
O Uy = 11: 1% Fuel Oil 12,1,1
(N Y, =13: C6,1,1

Table 6: Optimal values for citygate Sotto il Monte respectively in the first (see [19])
and second stochastic case.

model.

By looking Table 6 we can note that, even if the two models are different and con-
sequently the correspondent results not comparable, the optimal profit value of the
second model, is much higher than the one of the first model; this is due to the fact
that gas retailer can choose to buy according to the lowest oil prices index formula 1/
and to sell to industrial customers at highest one ;.

In Figure 7 are reported the forward mean values along 1000 simulations of the
energetic indices Iy, — Iyy, with ¢ € W, in the period between July 2005 and June 2006.
As expected, the optimal purchase index formula is given by v, = 11 which corresponds
to the lowest index formula 1% Fuel Oil 12,1,1, and the optimal sell formula is ¢, = 13,
that is the highest index formula, C 6,1,1.

Another test has also been considered with the aim to quantify the losses in the gas
seller budget in the case of non optimal purchase and sell index formulas. In this case
we have fixed ¢, = s = 1% 3.5% Fuel Oil 9,1,1 (see Figure 7) and we have reported
in the first column of Table 8 the relative optimal profit value compared to the case of
optimal index formulas ¥, = 11 and ¥, = 13.

We have also solved the problem (55) with the related constrained (66) to (71) with-
out using the structure of two-stage stochastic optimization according to the following
special sampling strategy:

e we assume that temperatures along the different months are independent;

e for each month i =1,...,12 we compute
M; = max Tm}”® and m; = min Tm;'?;
ns€(l,...,NS] ns€(l,...,NS|

where NS is the number of simulations;

e N is the number of intervals in which we divide the difference M; — m; for i =
1,...,12;
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Month | P, 14,—11} Eurocent/Stm?
January 20.80
February 21.39
March 22.01
April 22.63
May 23.10
June 23.69
July 24.36
August 24.92
September 25.43
October 25.77
November 25.96
December 26.21

Table 7: Optimal values of purchase prices in the different months in a year as solutions
of second stochastic model.

non-optimal indices formula | Second stochastic
Profit 135561 197264 Euro
P 24.96 23.86 Eurocent /Stm?
P’ 29.38 29.38 Eurocent /Stm?
P 25.17 26.53 Eurocent /Stm?
ca 4484656 4484406 Stm?3
g 26264 26251 Stm?
x 0.4678 0.4678
Py 1% 3.5% Fuel Oil 9,1,1 1% Fuel Oil 12,1,1
b 1% 3.5% Fuel Oil 9,1,1 C 6,11

Table 8: Optimal values for citygate Sotto il Monte respectively in the case of choose
of non-optimal indices formula v, = ¥, = 1% 3.5% Fuel Oil 9,1,1 C 6,1,1 and second
stochastic case.
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0 - = =% Fuel Oil 12,1,1
1% 3.5 % Fuel O1l 12,1,1
A12,11
C 1211
Brent 12,11
134_06
—A923+5%
1% Fuel Qil 91,1
s | 00 3.5 % Fuel il 91,1
A911
C911
Brent9,1,1
= 1% Fuel Q1 6,1,1
11 g 1% 3.5 % Fuel Qil 6,11
AB1.1
mom WTEAA
Brent 6,11

Figure 7: Forward mean values along 1000 simulations of the energetic indices I, — Iy,
in the period between July 2005 and June 2006. Ax expected the optimal solutions
for purchase index formula is given by v, = 11 which corresponds to the lowest index
formula 1% Fuel Oil 12,1,1 and for sell by 1y = 13 which corresponds to the highest
index formula C 6,1,1.

e int (i) = % j=1,...,12, is the width of the interval i;

e pt; € RV are the vectors of the middle points of the intervals of temperature in
each month 7; the component

1
ptijk:mi+<k5—§)int(i), k:1,...,N, iZl,...,lQ,

is the middle point of each interval kK =1,..., N for each month : =1,...,12;

e p; € RY are the vectors of probabilities along the intervals in month 4; the
component p! is the probability associated to the middle point of the interval
r=1,..., N related to month ¢; it is given by the frequency of the corresponding
interval.

e The sample of temperatures in each months is ordered from the coldest to the
warmest temperature in that month.

For this sampling technique, we analyze the sensitivity of solution as the number of
intervals in each month increases. Therefore, we tested the case of NS = 1000 temper-
ature simulations as shown in Figures 8 and 9. In Figure 8 we can see the behavior of
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Special sampling technique

Profit 196728 Euro

P 23.85 Eurocent /Stm?

P’ 29.37 Eurocent /Stm?

P 26.52 Eurocent /Stm?

ca 4484656 Stm?

g 26264 Stm?

x 0.4678

Uy | W = 11: 1% Fuel Oil 12,1,1

(R s =13: C6,1,1

Table 9: Optimal values for citygate Sotto il Monte respectively in case of special
sampling technique.

the optimal profit value for an increasing number of temperature intervals: in this situ-
ation we observe that the optimal profit value is decreasing until a convergence around
a value between 196470 and 196435; the decreasing behavior is due to the fact that, for
an increasing number of temperature intervals, colder scenarios are taking into account
with the consequent reduction of profit due to penalties. Figure 9 represents the con-
vergence in the range between 26246 and 26318 of maximum daily consumption g as
the number of temperature intervals increases. Furthermore the optimal values of the
variables nc; (j € J) and ¢, (¢ € ¥) are the same for all the number of temperature
intervals considered.

1000 temperature simulations

197000 -
196900 ~
196800 -
196700
196600
196500 ~
196400
196300 4
196200 T T T T T T T T T T T T T T T T T T 1

10 20 30 40 50 60 70 80 90 100

number of temperature intervals

Figure 8: Case of NS = 1000 temperature simulations: optimal profit value as the
number of temperature intervals increases.

Finally, in order to relate clients number to the best selling price on the market P
if small customers, or P” if industrial ones, we have also thought to introduce in the
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1000 fempezature 5 imdations

26000
26700 -
26500 -

26300 - \A/v\__/\/\_/v
26100

25800 4

25700

25500

1] 10 20 30 40 50 L:11] T0 a0 a0 100

number of temperature intervals

Figure 9: Case of NS = 1000 temperature simulations: solution of the first stage
decision variable maximum consumption per day ¢, as the number of temperature
intervals increases.

model the following non linear constraints

(P} = Piip=1)0; +(P = Py —m)(1 = 0;
(P} = Pl )0 +(P = Pl —m)(1—1;) >

v

1,...,6, iel, Vs (77)
i=7....,10, i€ I, Vs(T8)

ne; < ﬂjn_cj ] eJ , (79)

where ¥; (j € J) is a binary variable, n¢; is the maximal number of customer class
j € J and m a negative number such that |m| > (P; — Py;), i € I, j € J. By the
way we have not taken into account in the model these constraints because they add
a further computational complexity which is not solvable by standard algorithm.

6 Conclusions

We have proposed a stochastic model for the management of a gas retail company
where we have considered temperature as source of stochasticity, but we have taken
into account also information on oil prices to which gas purchase and sell prices are
related and monthly updated. In order to allow the gas seller to evaluate the possibil-
ity of a client to migrate to other providers, a possible extension of the model consists
in including linear constraints among prices and number of clients. Finally, there are
various possible extensions of the model, for instance including different type of con-
tracts with the shipper (portfolio management of gas contracts) or considering storage
facilities for a gas shipper-seller.
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Appendix

Denoting with N; the number of days of a specific month ¢, in order to prove that the
process found in (6) is mean reverting we set
tfz};ll Ne

Y, = e<2§c;11 ON/]C akd3)+f0

mh%—ﬂ) (80)

Y

= [o(EiEh Neaw) (- TE)N ) (9, )

then Ito’s formula implies

4Y; = [o(H M) o) [<dd_it i (9 - Tt)> dt+ (81)
dv
_ (ai (1915 — E) —+ d_tt> dt — O'tth] s
hence .
ﬁ_%:—/%F@HMww$ZHWﬂMQ, (82)
0
that is

) ) t ) )
(82 Mo (] (9, — 1) = Ty [ e8NS o
0

(83)

but ¥y = Ty = C and thus

) ) t ) )
T, = 0, + e~ (i Near)+ai (=352 ) Vi / [e(zz;ﬁ Nm)w(sfzz;ﬁ)Nk] o dW, , (84)
0

from which we can see that the process reverts to its mean v; because the expected
value of an Ito Integral is zero.
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