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Abstract
Spatial generalized linear mixed models are flexible models for a
variety of applications, where we have observations of spatially depen-
dent and non-Gaussian random variables. Our focus is inference in
spatial generalized linear mixed models for large data sets. Maximum
likelihood or Bayesian Markov chain Monte Carlo approaches may in
such cases be computationally very slow or even prohibitive. Alterna-
tively, one may consider a composite likelihood, which is the product
of likelihoods of subsets of data. Here, we use a composite likelihood
based on pairs of observations. In order to maximize the pairwise like-
lihood, we introduce a new Expectation-Maximization type algorithm
which uses numerical quadrature. We illustrate the method on simu-
lated data and on data from air pollution effects for fish populations in
Norwegian lakes. A comparison with alternative methods is given. We
find that the proposed algorithm gives reasonable parameter estimates

and that it is computationally efficient.

Keywords: composite likelihood, Expectation-Maximization algo-
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1 Introduction

We present methodology for computationally efficient parameter estimation
in generalized linear mixed models (GLMMs) for spatial data. This class of
models has found applications to a wide range of problems within spatial
statistics. Modern spatial data sets, for example those collected by remote
sensing or automatic sensors, can be very large. Inference for large data sets
requires repeated high-dimensional integration and matrix inversion, which
may be restrictive even for powerful computers. Our approach is based on a
composite (or pseudo-) likelihood which reduces the high-dimensional inte-
gral to a sum of low dimensional integrals. These low dimensional integrals
can be efficiently computed by numerical quadrature. The parameters are
estimated iteratively by an Expectation-Maximization (EM) type of algo-
rithm.

Spatial GLMMs are flexible models for a variety of applications where we
have observations of spatially dependent and non-Gaussian random variables.
Such applications include problems within epidemiology, ecology, agriculture
and remote sensing.The spatial GLMM was described by Diggle, Tawn &
Moyeed (1998). Here, the underlying random effects were modeled by a
Gaussian random field (GRF). As in standard GLMM (Breslow & Clayton
1993), given the random effects, the observations at the measurement loca-
tions are conditionally independent and follow a generalized linear model.

Both Bayesian and frequentist methods have been developed for inference
and forecasting in spatial GLMMs. Diggle et al. (1998) used a Bayesian
Markov chain Monte Carlo (MCMC) framework with priors on the unknown
regression parameters and the covariance parameters of the Gaussian random
field. The computational burden increases with the number of observations,
because the number of correlated random effects to be simulated is equal
to the number of observations. A more efficient Langevin-Hastings MCMC
algorithm was given by Christensen & Waagepetersen (2002).

Maximum likelihood estimation in spatial GLMMs generally involves nu-
merical integration of a high dimensional integral. The integral may be
computed by Monte Carlo integration. McCulloch (1997) reviews several
Monte Carlo techniques for maximum likelihood estimation within GLMMs.
Booth & Hobert (1999) describes a Monte Carlo EM (MCEM) algorithm
for the spatial probit model, while Zhang (2002) used a maximum likeli-
hood approach together with an MCEM algorithm to estimate parameters
of a general spatial GLMM. Alternatively, the integral may be computed by



Laplace’s method which uses a Gaussian approximation of the integrand. In
GLMM inference, this method has been used by Breslow & Clayton (1993)
and Skaug (2002).

Both Bayesian MCMC and maximum likelihood EM inference involves
high-dimensional matrices that have to be inverted repeatedly. Convergence
will be slower and more iterations will be needed as the dimension increases.
Thus, none of these approaches are practical for large data sets.

To gain in computational efficiency, one may approximate the GRF ran-
dom effects model and do inference under the approximate model. This
was done by Rue & Tjelmeland (2002), who approximated the GRF by a
Gaussian Markov random field. This allows for fast calculations drawing on
methods for Markov fields (Rue 2001). Another approach of this type is to
cast the model in the form of a tree structure. This allows for fast spatial
prediction by using the methods of Huang, Cressie & Gabrosek (2002).

An alternative to model approximation, which will be followed in this
paper, is to approximate the objective function. Instead of the likelihood, we
consider a pairwise likelihood, which is the product of likelihoods for pairs of
data and estimate parameters by maximizing this product. This reduces the
computational effort from order N3 to order N? operations. In practice, it is
not necessary to use all possible pairs of observations, but rather a subset of
neighboring pairs. This allows for further reduction in computational effort.

Pairwise likelihood is a special case of a more general class of pseudo likeli-
hoods called composite likelihood (Lindsay 1988). Applications to correlated
data include random set models in image analysis (Nott & Rydén 1999), cor-
related binary data (Kuk & Nott 2000), multivariate survival data analysis
(Parner 2001), multilevel models (Renard, Molenberghs & Geys 2003) and
frailty models for longitudinal data (Henderson & Shimakura 2003). Appli-
cations to Gaussian spatial data has been described by Hjort & Omre (1994).
Heagerty & Lele (1998) used a pairwise likelihood approach to analyze binary
spatial data in a spatial probit model, where the involved two-dimensional
integrals could be expressed in closed form. In the more general situation
to be considered here, these integrals require the use of two-dimensional nu-
merical integration. This can be done efficiently by numerical quadrature
techniques. Our proposed algorithm is a computationally efficient alterna-
tive to the MCEM algorithm, tuned to situations with many random effects.

The paper is organized as follows. In Section 2 we introduce notation for
the spatial GLMM and define pairwise likelihood. In Section 3 we describe
the algorithm and some theoretical properties, while the implemetation is
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described in Section 4. Finally, in Sections 5 and 6, our approach is assessed
through simulation studies and an application to fish data from Norwegian
lakes.

2 Pairwise likelihood inference

Let S C R? be some region of interest and denote by s a particular location
within S. We define the spatial GLMM.

(i) Denote by {u(s) : s € S} a stationary GRF with zero mean and spatial
covariance function Cov (u(s),u(s")) = o?p(s — s'; ). Here, p(-; o) is
a positive definite function and « is a vector of correlation parameters.

(ii) Given u = (u(sl), .. .,u(sn))T; s; € S;i=1,...,n, the observations

y = (y(sl), ce y(sn))T are mutually independent.

(iii) The conditional mean of an observation at s is E(y(s)|u(s))
= g7'(n(s)), where g(-) is a differentiable and invertible link function
with domain R, n(s) = " (s)B+u(s), (s) is a p dimensional vector of
known covariates and 3 is a vector of p unknown regression parameters.

(iv) Given a dispersal parameter ¢, the conditional density of an observation
y; = y(s;) given u; = u(s;), i = 1,...,n, belongs to the exponential
class

f(ilui; B, ¢) = exp[%{a(ui)yi - b(ui)}]c(%, yi).

Here, u; = E(y;|u;) while a(-), b(-) and ¢(-) are specific functions, see
McCullagh & Nelder (1989). If a(-) = ¢(-) we have a canonical link
function.

The likelihood of the GLMM is
L y) o / / 11 f(wiluss B.6) f(w; 0, ) du, 1)
=1

where ¥ = (83, ¢, 0%, ). Generally, the n-dimensional integral (1) cannot be
factorized into low dimensional terms as is common in a non-spatial GLMM
(McCulloch & Searle 2001). Unless the conditional density of y; is Gaus-
sian the integral will have to be evaluated by computational methods. We
mitigate this problem through the use of pairwise likelihood.
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Definition 1 (Pairwise likelihood). Let {L y),¥ € ¥,y € Y} be
a statistical model. The pairwise likelthood is the product of the bivariate
likelihoods

PL(¢;y) = |[ L(%;ui ), (2)
(i,)€ER
where R is a subset of all possible pairwise neighbors. The element in ¥

which maximizes the pairwise likelihood is v ,,p;, the mazimum pairwise
likelihood (MPL) estimator.

The pairwise likelihood in spatial GLMMs is a product of form (2) of
bivariate likelihoods from (1). This gives the product of double integrals

L(t;y) o H //f Yilui; B, @) f (yJ|UJaIB ?)f (uzauj,a a)duzdu]
(1,5)ER

Conditions for consistency and asymptotic normality of the MPL estimator
for observations on a spatial grid were given by Heagerty & Lele (1998) and
Heagerty & Lumley (2000).

3 EM for pairwise likelihood

The EM algorithm is a method for function maximization which alternates
an expectation step and a maximization step. It is popular for likelihood
inference and may also be used for pairwise likelihood.

Definition 2 (Pairwise EM). Choose a starting value ¢t such that
PL(p%;y) > 0 and set d = 0. The pairwise EM (PEM) algorithm iterates
the following steps until convergence.

(i) Expectation step: evaluate the sum of the conditional expectations

Q(Ylatp) = Z //log{f Uiy Ujy Yis Yjis P }f Ui, ui|Yi, yj; atp)duidu;.

(:,9)€ER
(3)

(i) Maximization step: choose 4419 such that 4119 = arg maxy Q(¢|49).
(iii) Set d=d+ 1.



PEM has similar properties as EM for full likelihood. The basic property
of EM type algorithms is the ascent property, which says that for each iter-
ation of the algorithm the likelihood will not decrease. This property also
applies to PEM.

Proposition 1 (Ascent property). Let g1, 19,21, ... be the sequence of
iterates of PEM, then the pairwise likelihood do not decrease at each iteration
of the PEM algorithm, i.e. PL(4¢;y) < PL(441%;y)-

Proof. See Appendix A. O

PEM produces a monotonous sequence. Therefore, convergence proper-
ties of EM (Wu 1983) applies to PEM with suitable changes in notation.

It is not necessary that 4 maximizes Q(t|q4¢) for the convergence of
PEM. Indeed, the ascent property is still satisfied if 4,1 is chosen such that

Qat1%|a) > Q(avp|a®p)- (4)

Algorithms where the maximization step is substituted with (4) are called
generalized EM algorithms (McLachlan & Krishnan 1997).

If the expectation can not be expressed in closed form it must be approxi-
mated numerically. We define an approximate version of EM by substituting
(@ by an approximation Q).

Definition 3 (Approximate pairwise EM algorithm). Choose a start-
ing value ¢ such that PL(p3p;y) > 0 and set d = 0. The approzimate
patruise EM algorithm iterates the following steps until convergence.

(i) Approximate expectation step: approximate the expectation step

~

(3) in PEM by Q(v; ).

(ii) Generalized maximization step: Choose 4,1 such that Q(ys1|4%)

> Qath|ath).
(iii) Set d = d + 1.

Here, the maximization step has been substituted by condition (4), be-
cause @(1#; 4¥) cannot be maximized analytically in spatial GLMMs.

Booth & Hobert (1999) and McCulloch (1997) used Monte Carlo integra-
tion in the expectation step for GLMMs. In pairwise likelihood maximization
the expectation step is a sum of double integrals. Double integrals are more
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efficiently evaluated by Gauss-Hermite quadrature than by Monte Carlo inte-
gration. Thus, we suggest to use quadrature in the approximate expectation
step. Our resulting quadrature pairwise EM (QPEM) algorithm is described
in detail in Section 4.

Typically, QPEM converges to a stationary point. To ensure that this sta-
tionary point is a local maximum it is advisable to rerun the algorithm with
perturbed starting values. Generally, assessment of convergence is simpler
for QPEM than for MCEM, because QPEM is a deterministic algorithm.

4 Implementation of QPEM

The estimation step of QPEM involves approximating the sum of double
integrals in (3) by Gauss-Hermite quadrature. Gauss-Hermite quadrature
reduces the integral of a function with respect to a given kernel to a weighted
sum of the integrand evaluated at M specific nodes. Details are given in
Appendix B. The resulting approximation of Q(t; 4%) is

Q; ap) = ZZlogf w(i gy (M), yir yj; )w (ug gy (m); atp). (5

(4,4)eR m=1

The bivariate nodes wu ;) (m) = (u;, u;)T(m) and the weights w (g ;) (m); a¥p),
m =1,..., M are given in Appendix B. Now, Q(1; 4¢) may be decomposed
into

Qi) = Q(B. 65¥p) + Q(o*, e ). (6)
Here, the two functions on the right hand side of (6) are defined

QB, dap) = > Zlogf Yi, Y3 |G,y (m); B, @) w (wg gy (m); a¥p),

(i,j)eR m=1
and
Qo ozap) = Y Zlogf (m); o, a)w (wg) (m); atp).-
(3,5)eR m=1

The advantage of the decomposition above is that the two terms may be
maximized separately. The first term, Q(83, ¢; 4¢), is the usual GLM term,
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involving only the fixed effects. The second term, @(02, a; 41), involves only
the random effects. The fixed effects term may be maximized by iterative
weighted least squares as described in McCullagh & Nelder (1989).

The random effects term @(0201; a®¥) is a weighted sum of log-bivariate
Gaussian densities with zero mean and covariance matrix

52 ( 1 P(i,j)(a))
Pig) () 1 ’

where p; ;) () = p(s; — 85 ).
The random effects term may also be maximized by Newton-Raphson.

However, experimentation led us to use the more robust Nelder-Mead down-
hill simplex algorithm (Nelder & Mead 1965).

4.1 Practical issues

Reasonable starting values are important for fast convergence to the correct
mode of the pairwise likelihood. Furthermore, we need to select a covariance
function for the spatial random effects field. Our procedure for choosing
realistic starting values and an appropriate covariance function is as follows.

First, neglect the random effects and estimate the regression parameters
B under a fixed effects model. Next, transform the observations by the link

function and fit empirical residuals i.e. 7(s;) = g(y;) — ;o B, i =1,...,n.
Now, the empirical variogram (Cressie 1993) for the residuals 7(s;); i =
1,...,n may be calculated. A plausible covariance function is fitted to the

empirical variogram and starting values for the covariance parameters 4o
and g are estimated by least squares.

Some care is needed if the model includes Poisson data with log link or
binary data with logit link. In the first case, a remedy is to add a small
number to each observation before transformation. In the second case, we
may aggregate the observations over spatial subregions and use the mean
frequencies of the aggregated data.

Different pairs of observed data give different contributions to the pairwise
likelihood product. Nott & Rydén (1999) observe that only distinct pairs that
show significant spatial dependence need to be included in the product. They
use a moving neighborhood and a fixed design mask to select pairs within
the neighborhood. They also discuss various choices of design masks and
weighting of pairs in the product.



In many spatial applications, the data are not regularly spaced, and the
above ideas are not straightforward to implement. In practice, we have found
that random sampling of pairs within a moving neighborhood works well.
Using a moving window excludes pairs far apart that have with little spatial
correlation, while the random sampling of pairs gives a reasonable coverage
of the neighborhood.

4.2 Variance of parameter estimates

Variance estimates for maximum likelihood parameter estimates are often
based on the information matrix. For pairwise likelihood we suggest corre-
sponding variance estimates based on pairwise information. Write pl(1; y) =
log PL(4; y), then a Taylor series argument, (Heagerty & Lele 1998, Nott &
Rydén 1999), shows that the asymptotic variance of the MPL estimator is
the inverse of the pairwise information

Z(y) = B, {V?pl(;y)} Var,  { Vpl(v; y) } B, { V(35 9)} -

To estimate Z(1)), we need the gradient and the Hessian of each bivariate
log likelihood log f(vi,v;;%). These are given by the following proposition.

Proposition 2 (Derivatives of the pairwise likelihood). Consider a
pair of locations (8;, 8;) such that f(ys:, y;;v¢) > 0 and assume that the order
of integration and differentiation may be inter-changed. Then, the gradient
and the Hessian matriz of logf(yi, Ui '(,b) are given by

and
Vv’ log f (v, Yj; P) = Eujy & log f(uz',uj,yz', Yjs P)
+ Varyjy Vog f(ui, uj, yi, Y53 ¥)-

Here, Eyjy and Vary)y are the expectation and the variance operators with
respect to the conditional density f(wi, u;|yi, y;; ¥).

Proof. The proof of the proposition is obtained by straightforward differen-
tiation using the approach in Louis (1982) to pairs of indices (4, 7). O



We see that the gradient and Hessian are byproducts of the expectation
step of the QPEM algorithm. The mean Ey{VQpl(’(/J; y)} and the variance
Var, {Vpl(vy;y)} are expectations with respect to the unknown true den-
sity of y. These moments may be estimated using window resampling, as
described by Heagerty & Lele (1998). In window resampling, we subdivide
the study region into overlapping spatial windows and compute empirical es-
timates of Ey{V2pl(¥,pr;y)} and Vary{Vpl(vp.;y)} for each window.
The final estimate is obtained by averaging window estimates with weights
proportional to the area of the respective windows. Some theoretical consid-
erations and a proof of consistency for window subsampling variance estima-
tors for general estimating functions in spatial models are given in Heagerty
& Lumley (2000).

5 Simulated data examples

We illustrate the use of our method on a spatial GLMM with Poisson errors,
log-link and 7n(s) = By + 151 +u(s). We use a random effects field u(s) with
zero mean and spatial covariance function

Cov(u(s'),u(s")) = o®exp(-3||s' — s"||/c).

Here, the constant 3 is introduced in accordance with geostatistics literature,
giving negligible covariance for |8’ —s”| > «. In the first example, parameters
were fixed at (8, 81,02, a) = (—2.0,0.1,1.5,6.0). We simulated n = 25 x 25
data on a regular grid of locations. A realization of simulated data from the
model is shown in Figure 1. The large proportion of zero values is due to (5,
being negative in the present example.

For each observation we use a neighborhood of radius 4. Constructing
pairs using all 48 neighbors gives 48n = 30,000 pairs, neglecting border
effects. This compares to a total number of possible pairs n(n — 1)/2 =
195, 000.

Now, parameters were fitted by QPEM with M = 4 x 4 Gauss Hermite
quadrature with starting values as described in Section 4. The maximization
with respect to the mixed effects parameters was constrained using logit-
like transformations in order to avoid singularities. The parameter o2 was
constrained to the interval (0.1,5.0) and « to the interval (0.1,10.0). We
used relative difference max; |411%; — 49|/|a%;| as convergence criterion.
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covariate simulated GRF

00 02 04 06 08 1.0

00 02 04 06 08 1.0

(log) simulated data histogram of the data

00 02 04 06 08 1.0
100 200 300 400

0

Figure 1: Realization from the spatial Poisson model. From top left to
bottom right: covariate z(s) = s;, simulated mixed effects field u(s), (log)
simulated data, histogram of the data.

Alternatively, the algorithm was stopped when Q(; 44) stopped increasing
at the M-step.

Our version of the QPEM algorithm was implemented in C++ and run
on 100 data sets simulated from the model. Figure 2 shows parameter values
as function of iteration number for one simulated data set. The algorithm
converged in less than 40 iterations for 80 of the data sets. For 10 data
sets 40-100 iterations was needed, while 9 data sets needed more than 100
iterations of QPEM to converge. Cases with slow convergence were usually
characterized by large values of o2.

The results are summarized in Table 1. We see that there is good cor-
respondence between true and estimated values. The largest bias occurred
for the range parameter «, which is typically difficult to estimate with any
method.

The computational time may be reduced by thinning the number of pairs
used within each moving neighborhood, as suggested in Section 4. We il-
lustrate this by subsampling » = 15 random locations without replacement
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Figure 2: QPEM iterates for a typical data set. From top left to bottom
right: 02, o, By and fi.

within a neighborhood of radius 4, as shown in Figure 3. Running through
all data locations we obtained about 15n = 9,375 pairs. The computing
time for this exercise was about 30% of the computing time needed for the
previous example, i.e. proportional to the reduction in the number of pairs
used.

The results from the thinning exercise are summarized in Table 2. Again,
there is good correspondence between true and estimated values. We see that
very little information is lost by random subsampling of pairs in this model
example.

We also ran the algorithm on the same data sets varying the neighborhood
radius, the number of sampled pairs and the number of quadrature nodes.
Increasing the number of quadrature nodes to 5 x 5 points gave very similar
results, while decreasing to 3 X 3 was considerably worse. Furthermore,
increasing the neighborhood radius and the number of sampled pairs did not
have much effect on the estimates.

Next, we compare our pairwise likelihood approach with maximum likeli-
hood (ML) estimation. The results from this study comparison will depend
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Table 1: Results from QPEM estimation on 100 simulated data sets from

the spatial Poisson model.
Parameter True Estimate (mean) Bias SD MSE

o? 1.5 1.40 -7.14% 0.40 0.1672
o 6.0 5.33 -12.6% 0.68 0.9123
Bo -2.0 -2.008 -0.4% 0.68 0.4618
b1 0.1 0.105 4.8% 0.05 0.0024
0
OO ®0 O
O ®000O0O0
OO ®®O0 0O
O®0O0 X ®@O0O0O0
O ®00O0O0O0
eOceO0eC e
Ceocee
@

Figure 3: Sampling pairs within a neighborhood of radius 4. Here, x is
the observation location and the filled circles are 15 neighbors sampled at
random with replacement. The contributing pairs consist of x and each of
the 15 sampled neighbors.

on the actual implementation of QPEM and ML, but may give an indication
of the difference between the methods.

The computationally demanding tasks are integrating out the random
effects and inverting the covariance matrix. Here, we compute the likelihood
using the full covariance matrix and Laplace’s approximation for integration
(Shun & McCullogh 1995). A general implementation of Laplace’s approx-
imation for random effects models is available in the software package AD
Model Builder (http://otter-rsch.com/admodel.htm). An advantage of this
package is that derivatives are calculated automatically, see Skaug (2002).

Again, we simulated 100 data sets from a spatial Poisson model. Since
inverting the covariance matrix in the likelihood is computationally demand-
ing, we used a smaller spatial grid of only n = 12 X 12 observations in this
exercise. Parameters were fixed at 3y = —2.0, ; = 0.3, 0> = 1.0 and o = 3.0.
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Table 2: Results from QPEM estimation with random subsampling of pairs
on the simulated Poisson data.
Parameter True Estimate (mean) Bias SD MSE

o? 1.5 1.44 -4.2% 0.44 0.1997
o 6.0 9.50 -9.1% 0.74 0.8001
Bo -2.0 -2.026 -1.3% 0.66 0.4314
b1 0.1 0.107 6.5% 0.05 0.0025

We ran QPEM using all neighboring pairs within a radius of 2.5 and with
M = 5 x 5 quadrature nodes. For both ML and QPEM, we used the true
parameter values as starting values.

A summary of the results is given in Table 3. We see that the mean
squared error for the estimated parameters o2, 3, and f3; are somewhat
smaller for ML than for QPEM. For the range parameter o, ML estima-
tion gives much larger bias and variance than QPEM. The present choice of
Bo and f; typically gives simulated data with very skewed likelihood. Laplace
approximation is based on a Gaussian approximation to the likelihood which
may not work well in this situation.

Table 3: Comparison between ADMB and QPEM for Poisson data on a
regular 12x12 lattice. Corr is the correlation between the ADMB and the
QPEM estimators.

ADMB QPEM
Param True Mean MSE Mean MSE Corr
o? 1.0 0.93 0.059 1.04 0.185 0.74
Q 3.0 4.72 10.717 2.83 1.670 -0.46
Bo -2.0 -1.97 0.257 -2.23 0.808 0.87
51 0.3 0.29 0.003 0.33 0.013 0.84

The computing time for QPEM on a typical dataset using a 550 MHz
Pentium IIT with 4GB RAM was 69 seconds. The ML estimates for the same
data set was computed in 756 seconds. In this case, QPEM used 21MB of
computer memory, while ML used 385 MB. In a different example, increasing
the number of simulated observations with 30% increased QPEM memory use
by 30% and ML memory use by 140%.
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6 Acidification data example

Acid deposition from long range transportation of air pollutants has been of
major concern in Norway for several decades. These pollutants contribute
to the acidification of lakes and streams, which may kill fish populations. In
particular, the trout populations are sensitive to acidification.

We use data on population status of trout from 542 lakes in Norway. The
data were collected during 1986 from interviews with local fishermen. For
each lake, the population status is coded as unaffected (0) or decreased /extinct
(1). In addition to spatial location of each lake, we use the measured acid
neutralizing capacity (ANC) as a covariate. ANC reflects local properties of
geology and soils as well as the load from current and historic acid deposition.
Our aim is to make spatial prediction of trout population status.

Figure 4 shows the observed population status. Here, green circles mark
lakes unaffected by acidification, while red circles mark affected lakes. We
see that trout in the southern and western parts of Norway are most affected
by acidification.

70
1

Latitude

60
1

Longitude

Figure 4: Trout data. Green circles denotes lakes where trout are not affected
by acidification, red circles lakes where the trout population has decreased
or is extinct.
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For the purpose of this study, we randomly sampled 400 observations
and reserved the remaining 142 observations for model validation. We use
a model with Bernoulli data, log-link and two regression parameters, i.e.
n(s) = Bo + B1ANC(s) + u(s). To obtain starting values, we used the pro-
cedure described in Section 4. The 400 sample observations were fitted to
a fixed effects model by using the package glm implemented in the R lan-
guage (Thaka & Gentleman 1996). The parameter estimates obtained by R
glm were ¢Sy = 0.222 and ¢, = —0.120. As suggested in Section 4, we cal-
culated an empirical variogram of transformed residuals. The shape of the
variogram suggested an exponential covariance function, and a least squares
fit provided starting values go? = 2.248 and o = 171.8 Km.

Data pairs for the QPEM algorithm were obtained by using r = 20 lo-
cations sampled from a neighborhood of radius 250 km around each of the
400 data locations. We used 4 x 4 points Gauss-Hermite quadrature and a
tolerance of 10~* for convergence. The algorithm converged after 14 itera-

tions to the values 52 — 2917, @ = 188.2 Km, By = 0.246, 3, = —0.161.
Convergence to a local maximum was checked by re-running the algorithm
with perturbed starting values. Standard deviations for the parameters were
estimated by window subsampling, as described in Section 4. For each of
the 400 locations, a window of 250 km and maximum 50 data locations were
used. The estimated standard deviations were (0.098,26.0 Km, 0.531,0.036).
We also estimated parameters by QPEM using 6 x 6 quadrature points and
obtained similar estimates.

For validation, we predict the observations at the 142 validation locations
using the QPEM estimates and compare with the original values. Following
Zhang (2002), the best predictor of the random effect u(sg) at some location
Sp in the validation set is

400

u(so) = E{u(so)|y} = Z ci(so) E{u(si)|y}

where y = (y(s1),...,¥y(8100))T are the data used for estimation, while
c1(80), ---, Cca00(S0) are ordinary kriging weights (Cressie 1993). The condi-
tional means E{u(s1)|y}, ..., E{u(s400)|y} are predicted by MCMC through
a single-component Metropolis-Hastings algorithm as suggested by Zhang

(2002). Finally, writing )(s0) = o + £12(80) +(s), the predictor for y(so)
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was obtained by mean of the threshold

5(s0) {1, if exp{7i(s0)}/[1 + exp{ii(so)}] > 0.5,
0, otherwise.

This procedure was repeated for each location in the validation set. The
predicted population status was correct at 129 of the 142 locations, i.e. about
90% of the cases.

We estimate parameter estimation by ML for this data set to need several
hours of CPU time on our 550 MHz Pentium ITI PC. However, ML estimation
was impossible due to the memory requirements of approximately 8 GB.

7 Discussion

The computational savings from using the QPEM algorithm are great com-
pared to likelihood inference. In particular, this is important for large data
sets, because the computing time for QPEM increases as a linear function of
the number of observations, while likelihood inference is cubic in the number
of observations. The pairwise likelihood function seems to capture much of
the information in the data, and this function may be efficiently maximized
by combining numerical quadrature and EM. The computational speed of
QPEM may be further increased through subsampling of pairs.

Since likelihood inference is computationally constrained by O(n?), it is
difficult to compare inference from ML and QPEM on large sets of data.
For a moderately large simulated data set, QPEM gives parameter estimates
that are comparable with ML, as measured by bias and variance. QPEM
also seemed to give reasonable estimates for a data set of size 400 on fish
health in Norwegian lakes.

For larger data sets where ML is impractical or impossible, QPEM may
be a promising method for inference. It may be particularly useful in data
mining of massive spatial data sets, such as those derived from remote sens-
ing. In contrast, QPEM may also be a practical tool for finding starting
values for maximum likelihood inference in data sets of moderate size.

The optimal tuning of our pairwise EM algorithm involves several topics
for further research. One such topic is subsampling of pairs for the pairwise
likelihood product. Another topic is related to the integration of the ran-
dom effects. Alternative quadrature methods or methods based on Laplace
approximation may be advantageous in various situations.
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QPEM is applicable to a wide class of spatial models, because there is
no restriction on the structure of the mixed effects covariance matrix. In
particular, QPEM is also applicable to non-spatial mixed models. A future
research topic of interest would be extension to non-Gaussian mixed effects
models. Finally, pairwise likelihood methods may also have applications to
model selection, and some work is in progress in this direction (Varin &
Vidoni 2003).
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A Proof of the proposition 1
Choose a starting value g1p and write pl(v;y) = log PL(¢; y). We have
pl(p;y) = > log L(%; v, y;)

(i,)ER

Z IOgL ’lp ylay] / f uzauj|yzayjad¢)duzdu]

(4,5)€R

Z //log{f u’uujaylayja }f uzau]|yzay]7d¢)duzdu]

(i,5)€R

_ Z //log{f uzauj|ylay]5 }f uz’uj‘y“yjadip)duzduj

(5,5)eER

= > Quy@la) — D Huj(wlatp)

(1.J)ER (5,7)ER
= Q(lap) — H(|atp).
Thus, the difference between log pairwise likelihoods in subsequent iterations
is
Plariy) — Pl ) = Qlar$law) = Qula) + Y Digylarlav),

(i,5)€R
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Here, Dy; ;) is the Kullbach-Leibler distance between the bivariate densities
(U'za u]|y27 Yjs d—|—1¢ and f Uy, U]‘yza Yj; d'(;b)

uz:u ‘yzay ad+1¢)}
Dy; lo J J Uiy Wi | Uiy Yis du;du;.
olanitlot) = = [ [1og{ Lttt ),

Since the Kullback-Leibler distance is non-negative, then pl(411%; y)—pl(a¥; y)
is non-negative and the map induced by PEM into the parametric space is
non-decreasing. O

B E step: Gauss-Hermite quadrature

Gauss-Hermite quadrature is designed to approximate integrals involving dis-
tributions close to the normal distribution. The integrand f(t) is split in a
Gaussian part (the envelope) and a remaining part, which after transforma-
tion of variables will be of the form e~ItI°/2 f (t). Gauss-Hermite quadrature
reduces each 1D integral to a weighted sum of f(t) evaluated at M specific
nodes. If f(t) is well approximated by a polynomial of low order, then the
integral may be accurately computed using a small M. A Gaussian approx-
imation of f(u;, u;|y;, yj;4%) could give acceptable accuracy with M = 1.
However, to compute the approximation, we need to compute the mode and
the second derivatives of f(u;, u;|yi, y;; 4%). Therefore, we chose instead the
distribution f(u;, u;) as envelope. The remaining part involves the likelihoods
f(yilu;), and the choice of M has to be tuned to the actual application.

Write Q(v; 4¢) = Z(i’j) Qi) (¥; 4vp). Bach Q) (1p; 42p) is a ratio of two
double integrals. The numerator of Q; ;) (v; a®) is given by

/ / log{ f (s, 15, ys, 53 W)} (uilss at0) £ (035 atf) f s, 5 029}y, (7)
while the denominator is
/ / F (gl at9) £ (5 55 at8) £ (1, 055 028 dutcl (8)

In order to approximate these integrals by Gauss-Hermite quadrature, we
transform the normal vector (u;,u;)T into independent standardized compo-
nents (v;,v;)T. This gives

Uy
(% o
vy = U PEpY (9)
(1= pfz)Y



where p ;) = p(s; — 8;; ). By solving for u;(v;) and wu;(v;,v;) in (9), the
denominator (8) becomes

/ (yi|ui(v3); at0) f (yj\uj(vi,vj);d'c,b)e_”?ﬂe_”?ﬂdvidvj. (10)

Now, (10) can be approximated by Gauss-Hermite quadrature

My

Z Z Fyilui(h(m1)); at } £ {yjlu; (h(ma), h(ma)); ath }k(ma)k(my).

m1 1 mo=1
(11)
Here, h(m) are the quadrature nodes and k(m) are the quadrature weights.
The quadrature formula for the numerator (7) is derived by a similar
procedure. The denominator depends on 4 and on the data, but not on .
Therefore, its contribution is only to change the weights of the quadrature
formula for the numerator. The final Gauss-Hermite quadrature formula for

Q(i,j) (93 4) becomes
Z log f{uz (h(ml))a Uy (h(ml)a h(m2)) y Yis Yy, ",b}w(w) (mh mo; d'(,b)

mi,m2
where the new weights are
w(i,j)(mlam2§d¢) =

f{yz|uz (h(ml)); d¢}f{yj|uj (h(m1), h(m2))§d¢}k(m1)k(m2)
z:ml,m2 f{yz|uz (h(ml));d@b}f{yj\uj (h(ml), h(m2));d’¢}k(m1)k(m2).

Note that the above weights corresponds to that used in the (5) with
w(u(i,j) (m); d’QP) = w(i,j)(mla ma; d’lp),

where the double indices (mq, ms) have been aggregated to simplify the no-
tation.
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