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Abstract

In this paper, we deal with stochastic dominance rules under the assumption

that the random variables are stable distributed. The stable Paretian distri-

bution is generally used to model a wide range of phenomena. In particular,

its use in several applicative areas is mainly justified by the generalized central

limit theorem, which states that the sum of a number of i.i.d. random variables

with heavy tailed distributions tends to a stable Paretian distribution. We

show that the asymptotic behaviour of the tails is fundamental for establishing

a dominance in the stable Paretian case. Moreover, we introduce a new weak

stochastic order of dispersion, aimed at evaluating whether a random variable

is more ”risky” than another under condition of maximum uncertainty, and a

stochastic order of asymmetry, aimed at evaluating whether a random variable

is more or less asymmetric than another. The theoretical results are confirmed

by a financial application of the obtained dominance rules. The empirical anal-

ysis shows that the weak order of risk introduced in this paper is generally a

good indicator for the second order stochastic dominance.

Keywords: Asymmetry, heavy tails, stable Paretian distribution, stochastic

dominance.

2010 MSC: 60E15, 60E07, 91GXX, 91G10

∗Corresponding author
Email addresses: sol@unibg.it (Sergio Ortobelli ), tommaso.lando@unibg.it (Tommaso

Lando), filomena.petronio@vsb.cz (Filomena Petronio), tomas.tichy@vsb.cz (Tomas
Tichý)
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1. Introduction

Historically, the Gaussian distribution has always been considered the most

relevant probability distribution, due to its important role in statistical inference

and to its use in approximating real-valued random variables (r.v.) in many

fields of study.5

The key reason why the normal distribution is so important is because of

the Central Limit Theorem, which states that the sum of a sufficiently large

number of independent and identically distributed (i.i.d.) random variables

is approximately normally distributed (regardless of the underlying distribu-

tion) provided that each random variable has finite variance. When we deal10

with random variables which do not have finite variance, and thereby when the

Gaussian distribution in unsuitable as a limit distribution, we rely on the gener-

alized central limit theorem [1], which states that the sum of a number of i.i.d.

random variables with a Paretian tail distribution (decreasing as |x|−α−1, where

0 < α < 2, and therefore having infinite variance) tends to a stable Paretian15

distribution as the number of summands grows.

Nevertheless, in real world problems the assumption of finite variance is not

always appropriate, because several phenomena are well described by random

variables which are generally not square-integrable. Therefore, heavy tailed and

skewed distributions have often been considered a more realistic distributional20

assumption for a wide range of natural and man-made phenomena, such as

natural sciences (see e.g. [2]), social sciences (see e.g. [3]) or econometrics (see

[4] and the references therein). For this reason, the stable Paretian distribution

has been proposed as an alternative model to the Gaussian distribution in many

different frameworks.25

In the financial literature, it is well known that asset returns are not nor-

mally distributed, as several studies by Mandelbrot (see [5],[6],[7],[8]) and Fama

(see [9],[10],[11]) recognized an excess of kurtosis and non-zero skewness in the

empirical distributions of financial assets, which often lead to the rejection of the
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assumption of normality and proposition of the stable Paretian distribution as30

an alternative model for asset returns. The Fama and Mandelbrot’s conjecture

was supported by numerous empirical investigations in the subsequent years,

(see [12],[13]).

In view of the several financial applications of the stable Paretian distribu-

tion, the aim of this paper is to (stochastically) order stable distributed random35

variables. Stochastic dominance rules quantifies the concept of one random vari-

able being ”preferable” to another, by establishing a partial order in the space of

distribution functions. For instance, in a financial context, stochastic orderings

are used to establish an order of preferences for investors whose utility func-

tions share certain characteristics [14]. Indeed, it is well known that stochastic40

dominance rules are generally aimed at addressing investors and institutions

towards the best choices in terms of expected gain and risk (see, among others,

[15],[16],[17],[18],[19]).

Actually, the financial interpretation of stochastic dominance is straightfor-

ward, when the order of preferences can be summarized by maximum expected45

gain and minimum risk. According to the literature [20], for the expected gain

we generally use the first moment (expectation) and for the risk we generally

use the variance: this is especially suitable in case of normality. To justify the

choices based on the so-called mean-variance rule, we need that the return dis-

tributions are elliptical and asymptotically approximated by a Gaussian law.50

Under these assumptions, the mean-variance rule is consistent with the choices

of non-satiable and risk averse investors.

However, in this paper, we do not rely on these non-realistic assumptions.

In fact, we study the conditions for ordering choices of non satiable risk averse

investors in the general case that i) the r.v. does not necessarily have finite55

variance; ii) the distribution is asymptotically approximated by a stable Pare-

tian law. It is well known in literature that we can obtain the second order

stochastic dominance between stable distributions by a mean-dispersion com-

parison (similar to the Gaussian case), but only when the stable distributions

present the same skewness parameter and index of stability ([12], [21]). In this60
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paper, we present more general results, by considering two fundamental aspects

of the stable Paretian distributions, namely: the tail behaviour and the asym-

metry. In particular, we show that the tail parameter (i.e. index of stability)

is crucial for establishing a dominance, in that a distribution with heavier tails

cannot dominate (with respect to the discussed preference order) a distribution65

with lighter tails. Moreover, we define a new stochastic order, weaker then the

second order stochastic dominance, and prove that it holds if some conditions

on the skewness parameters are verified.

In Section 2, we also introduce a stochastic order of asymmetry which is

based on the absolute moments of appropriately standardized random variables.70

This definition generalizes the traditional definition of asymmetry, based on the

Pearson’s moment coefficient, and is especially suitable for dealing with heavy

tailed r.v.’s, whose moments of order 2 (and 3) do not exist finite. In Section

3 we prove that the skewness parameter of the stable Paretian distribution is

indeed coherent with the stochastic order of asymmetry. Finally, in Section 475

we analyze the empirical distributions of a set of asset returns from the U.S.

equity market, and show the validity and usefulness of our theoretical results.

2. Stochastic dominance rules for Dispersion and Asymmetry order

In this section, we provide some general results which hold for any kind of

random variable. In particular, we introduce new stochastic orderings which will80

be useful when dealing with stable distributions. We first recall the definitions

of some classical stochastic orders.

Definition 1.

- First order stochastic dominance (FSD): we say that X dominates Y with

respect to the first stochastic dominance order (in symbols X FSD Y) if and85

only if FX(t) ≤ FY (t),∀ t ∈ R, or, equivalently X FSD Y if and only if

E(g(X)) ≥ E(g(Y )) for any increasing function g.
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- Second order stochastic dominance (SSD or increasing concave order): we

say that X dominates Y with respect to the second stochastic dominance or-

der (in symbols X SSD Y or X ≥icv Y ) if and only if
∫ t
−∞ FX (u) du ≤90

∫ t
−∞ FY (u) du, ∀t ∈ R or, equivalently X SSD Y if and only if E(g (X)) ≥
E(g(Y )) for any increasing and concave function g. Obviously X FSD Y

implies also X SSD Y.

- Increasing and convex order: we say that X dominates Y with respect to the in-

creasing convex order (in symbols X ≥icx Y ) if and only if
∫ +∞
t

1− FX (u) du95

≥
∫ +∞
t

1− FY (u) du, ∀t ∈ R or, equivalently X ≥icx Y if and only if

E(g (X)) ≥ E(g(Y )) for any increasing and convex function g. Obviously

X FSD Y implies also X ≥icx Y .

- Rothschild-Stiglitz stochastic dominance (RS or concave order): we say that X

dominates Y with respect to the Rothschild-Stiglitz order (in symbols X RSY)100

when X SSD Y and E (X) = E (Y ) (or Y ≥icx X and E (X) = E (Y ))

or equivalently X RS Y if and only if E(g (X)) ≥ E(g(Y )) for any concave

function g.

The following theorem extends the well-known result of Hanoch and Levy

[22] which determines a sufficient condition for SSD. Similarly, we obtain a105

sufficient condition which allows to deny the SSD and the ≥icx dominance. Both

conditions are based on the number of crossing points between distributions,

and will be really useful in Section 3. In particular, we establish that if two

distributions have an even number of crossing points, then the SSD and the

≥icx ordering cannot hold.110

Theorem 1. Let X and Y be two random variables.

a) Let FX and FY have a single crossing point say t1 such that FX (t) ≤ FY (t)

for t < t1 (FX (t) < FY (t) for some t < t1) and FX (t) ≥ FY (t) for t ≥ t1.

If E (X) ≥ E (Y ), then X SSD Y . If E(X) ≤ E (Y ), then Y ≥icx X.
b) Assume E (X) = E (Y ) < ∞. Let FX and FY have an even number k115

of crossing points, namely t1, . . . , tk (where t1 < t2 . . . < tk) such that,
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if we let t0 = −∞ and tk+1 = ∞ we have: (−1)iFX (t) ≤ (−1)iFY (t)

for ti ≤ t < ti+1 and i = 0, . . . , k and (−1)iFX (t) < (−1)iFY (t) for

some ti ≤ t < ti+1. Then there exists at least one point say t′′ < ∞
such that

∫ t′′
−∞ FX (z) dz >

∫ t′′
−∞ FY (z)dz (thus the condition X SSD Y can-120

not be true). Moreover there exist a point s′ such that
∫ +∞
s′ {1− FX (z) dz

<
∫ +∞
s′ 1− FY (z)dz

}
(thus the condition X ≥icxY cannot be true).

Generally, stochastic dominance should be aimed at establishing an order of

preference under conditions of maximum uncertainty, as the preference should

hold a fortiori under sharper conditions. For this reason, it is especially worth125

to study the RS order, which corresponds to the condition of high uncertainty

E (X) = E (Y ). It is known that the expected value of a random variable

X ∈ (−∞,∞) can be formulated as follows:

E (X) = −
∫ 0

−∞
F (x)dx+

∫ ∞

0

1− F (x)dx. (1)

Moreover,

E |X| =
∫ 0

−∞
F (x)dx+

∫ ∞

0

1− F (x)dx. (2)

We define the positive and negative parts of a r.v. X respectively by:130

X+ =





X X ≥ 0

0 X < 0
and X− =




−X X ≤ 0

0 X > 0
. (3)

The following results show that the RS stochastic order implies some weaker

orders which involve the absolute values of the random variables.

Proposition 1. Let X and Y be random variables with finite expected values.

The following implications hold.

1 If X RS Y then − (X−) SSD − (Y−) and − (X+) SSD − (Y+)135

2 If − (X−) SSD − (Y−) and − (X+) SSD − (Y+) then −|X| SSD − |Y |
3 −|X| SSD − |Y | if and only if |Y | ≥icx |X|
4 If X RS Y and E |X| = E |Y | then |X| RS |Y |
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Proposition 2. Let X and Y be random variables with E (X) = E (Y ) = 0.

The following implications hold.140

1 If X RS Y and X and Y are symmetric, then |Y | SSD |X| (|Y | ≥icv |X|).

2 If X RS Y,X and Y are symmetric and E |X| = E |Y |, then X =d Y .

Proposition 1 is especially useful for the analysis proposed in this paper,

because it provides a necessary condition for SSD when E (X) = E (Y ) (or

equivalently, for RS). Indeed, Propositoin 1 (point 3) states that the RS or-145

der implies an inverse stochastic dominance between the absolute values of the

random variables. Therefore, the order |Y |≥icx|X|, identified by the conditions

E|Y | ≥ E|X| and E(h (|X|)) ≤ E(h (|Y |)) (for h increasing and convex), reflects

the major “risk” or dispersion of Y compared to X, and can be especially useful

under condition of maximum uncertainty. In other words, when comparing dis-150

tribution with equal means, if |Y | ≥icx |X| holds we can argue that X is prefer-

able than Y in terms of risk aversion. Furthermore, in the particular condition

when E (X) = E (Y ) = 0, Propositoin 2 states that, if X RS Y and X, Y are

symmetric, then |Y |≥icx|X| and |Y |≥icv|X|, and thereby Y presents, a fortiori,

a higher dispersion, or risk, compared to X. Observe that this situation might155

suggest a stronger condition, i.e. the first order stochastic dominance between

|Y | and |X|, meaning that |Y | is stochastically “larger” than |X|. However, it

is worth noting that these two conditions generally do not imply |Y | FSD |X|:
this can be shown by a straightforward counter-example.

Example 1. Let U , V be discrete and positive random variables with the fol-160

lowing distributions:

FU (z) =





0 z < 1

1/3 1 ≤ z < 3

1 z ≥ 3

; FV (z) =





0 z < 2

2/3 2 ≤ z < 4

1 z ≥ 4

(4)

It is easy to verify that
∫ t
−∞ FU (z) dz ≤

∫ t
−∞ FV (z)dz for any t ∈ R and

∫∞
t

1− FU (z)dz ≥
∫∞
t

1− FV (z)dz for any t ∈ R, thus U≥icvV and U≥icxV ,
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nevertheless we do not have U FSD V : hence generally U≥icvV and U≥icxV
; U FSD V .165

Proposition 1 suggests that, when we know that E(Y ) = E(X) but the RS

order is not verifiable (provable), it is possible to analyze a weaker order of

“risk” by studying the distributions of the absolute values. In particular, we

focus on a weaker order implied by |Y | ≥icx |X|, which can be obtained by a

particular class of increasing and convex functions (namely the power functions)170

and which will be especially useful in section 3, for the stable Paretian case. Let

Z be a random variable and define:

ϕZ (p) = sign(p)E(|Z|p), p ∈ R. (5)

Observe that, when ϕX(p) ≤ ϕY (p) holds ∀p ≥ 1, we have that |z|p is an

increasing and convex function, thus X RS Y ⇒ X − E(X) RS Y − E(Y )

⇒ |Y − E(Y )| >icx |X − E(X)| ⇒ ϕX−E(X)(p) ≤ ϕY−E(Y )(p), ∀p ≥ 1; from175

Proposition 1 we also deduce that X RS Y ⇒ ϕX(p) ≤ ϕY (p), ∀p ≥ 1.

Moreover, if X,Y are symmetric, E (Y ) = E (X) = 0 and X RS Y then

Propositions 1 and 2 yield a stronger condition, that is, ϕX(p) ≤ ϕY (p) for any

p. Hence, we argue that the condition ϕX(p) ≤ ϕY (p), ∀p ≥ 1, reflects the

major risk of Y compared to X. We are now able to define a new stochastic180

order of risk, expressed in terms of the absolute centered moments of order p.

Definition 2. Let X and Y be random variables belonging to Lq = {X|E (|X|q)
<∞}, for q ≥ 1. We say that X dominates Y with respect to the central

moment dispersion (CMD) order (in symbols X≥cmdY ) if and only if

ϕX−E(X)(p) ≤ ϕY−E(Y )(p),∀p ≥ 1.

We say that X dominate Y with respect the moment dispersion (MD) order,

(in symbols X ≥md Y ), if and only if

ϕX(p) ≤ ϕY (p), ∀p ≥ 1

Observe that the moment dispersion order is a FORS ordering (see [15]) for

the absolute value of centered random variables. Moreover, as a consequence of

the Proposition 1 and the previous discussion, we obtain the following corollary.
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Corollary 1. Let X and Y be random variables with finite expected values. If185

X RS Y , then X ≥md Y and X ≥cmd Y .

It is well known that a r.v. is symmetric if and only if it exists a real number

m such that fX (m− x) = fX (m+ x) for any x, where fX is the probability

density function of X. However, this definition cannot be easily empirically

verified. Nevertheless, when the distribution of the r.v. X is more concentrated190

around its mean, compared to another random variable Y, then we expect X to

be “more symmetric” than Y. Thus, in some sense, the moment dispersion is

related to the concept of symmetry. If two random variables are not symmetric,

we may be interested in determining which one is more asymmetric than the

other. This comparison may be possible if the r.v.’s are properly standardized.195

We recall that usually, in statistics, a random variable is standardized by sub-

tracting its expected value and dividing the difference by its standard deviation.

Then, the asymmetry is generally measured by the Pearson’s moment coefficient

of skewness, that is, the standardized moment of order three.

However, the Pearson’s coefficient presents two drawbacks. First, it cannot200

be defined for all random variables. Second, it is not always able to detect asym-

metry. Differently, in this paper we also consider random variables that do not

necessarily have finite variance (for which the traditional measures of skewness

cannot be evaluated). Furthermore, we define asymmetry as a characteristic

which involves the whole distribution of a properly standardized variable. In205

particular, in order to identify the concept of asymmetry we need to establish a

stochastic order for more (or less) asymmetric distributions. For this purpose,

we first define a generalized standardization procedure that can be used even

for random variables that do not have finite variance. Indeed, observe that we

can easily generalize the idea of standardization when the random variable is in210

the domain of attraction of a stable law.

Let X be a random variable in the domain of attraction of a stable law with

finite expectation E(X) = µX and infinite variance. Let {Xi}i∈N be indepen-

dent and identically distributed observations of X. Thus, we know that there
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exists a sequence of positive real values {dX,i}i∈N and a sequence of real values215

{aX,i}i∈N, such that, as n→ +∞:

1
dX,n

n∑

i=1

Xi + aX,n
d→X ′ ; (6)

where X
′ ∼ SαX (σX , βX , µX) is an α-stable Paretian random variable,

where 0 < αX ≤ 2 is the so-called stability index, which specifies the asymp-

totic behavior of the tails, σX>0 is the dispersion parameter, βX ∈ [−1, 1] is

the skewness parameter and µX ∈ R is the location parameter. Observe that, in220

this paper, we consider the parameterization for stable distributions proposed by

Samorodnisky and Taqqu [23]). Our idea is that, when the sum of i.i.d. random

variables (except for an affine transformation) admits a limiting distribution,

we can standardize it by subtracting the location parameter µX (in our case

E(X) = µX) and by dividing by the scalar parameter σX . Hence we obtain the225

generalized standardization of X, given by X = X−µX
σX

, where µX = E
(
X
)

= 0

and σX = 1. In particular, when the random variable X has also finite stan-

dard deviation
√
V (X) = σX , we obtain the classical standardization, by using

dX,n =
√
n and aX,n = −√nµX in 6. As specified above, we assume that the

distributions have finite mean, because in most of the practical cases (e.g. in230

finance) we actually deal with (at least) integrable r.v.s. Hence, based on the

definition of generalized standardization, it is possible to introduce an ordering

of asymmetry, which is especially suitable for dealing with distributions that do

not have finite variance. We argue that X is more right-asymmetric than Y if

X presents a lighter left tail and a heavier right tail, compared to Y , that is,235

if −(X−) stochastically dominates (in some general sense) −(Y −) and simi-

larly −(Y +) dominates −(X+) (see e.g.[24, 25]). Then, coherently with this

principle, we propose the following ordering of asymmetry.

Definition 3. Let X and Y be random variables with means µX , µY and scalar

parameters σX , σY .240

- We say that X is more right asymmetric than Y , (in symbols X�rY ), if and
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only if

φX (p) ≥ φY (p) , ∀p ≥ 1

where

φX (p) = E
(
X
<p>

)
= E

(
X+

p
)
− E(X−

p
),

x<p> = sign (x) |x|p and X = X−µX
σX

.

- We say that X is more left asymmetric than Y , (in symbols X�lY ), if and

only if

φX (p) ≤ φY (p) , ∀p ≥ 1.

This asymmetry ordering is a simple FORS ordering [15] for standard-

ized (in the sense specified above) random variables. In particular, �r (as

well as �r) is clearly consistent with the skewness ordering “≥6” defined by

[24]. Moreover, the Pearsons coefficient of skewness, that is φX(3), is obvi-245

ously isotonic (coherent) with the ordering defined above. Note that the or-

der is reversed if we consider the opposites of the random variables, because

φ−X (p) = −φX (p) . Furthermore, the conditions Y ≥md X and X�rY imply

that E
(
X−
)

= E
(
X+

)
≥ E(Y +) = E

(
Y −
)
, because φX (1) = φY (1) = 0 and

limp→1+ ϕX (p) + φ
X

(p) = 2E
(
X+

)
. From these considerations, we deduce250

that the �r and �l orders (of right and left asymmetry) are strictly related

with the moment dispersion order, as stated in the following corollary.

Corollary 2. Let X and Y be two random variables. Then the following im-

plications hold:

a) X�rY if and only if Y�lX.255

b) X�rY if and only if −Y�r −X .

c) If X≥cmdY and σX ≤ σY , then X ≥md Y . In particular, if σX ≤ σY and

X RS Y , then X ≥md Y .

d) If X�rY and Y ≥md X, then

E
(
X−
)

= E
(
X+

)
≥ E

(
Y +

)
= E

(
Y −
)
.

11



While, if X�rY and X ≥md Y , then

E
(
X−
)

= E
(
X+

)
≤ E

(
Y +

)
= E

(
Y −
)
.

Observe that generally the Pearson’s coefficient of skewness is improperly

employed for identifying asymmetry, because it cannot be used to rank all dis-260

tributions. Note that the MD ordering between standardized variables could be

interpreted as an order of symmetry, in that X ≥md Y implies that X is “more

symmetric” than Y (in a general sense). Moreover, it can be interpreted as an

ordering of kurtosis (see [24]), in that X ≥md Y is a location and scale invariant

ordering which implies that Y presents heavier tails than X (this is especially265

clear in the case that X and Y are symmetric) and which makes it possible to

extend the well known kurtosis index (based on the central moment of order

four) to the case of distributions with infinite variance.

Another important considerations is as follows. Roughly speaking, a distribu-

tion is intuitively right (or left) asymmetric if its right (or left) tail is heavier270

than its left (or right) tail. Thus, we can give a definition of right (left) asym-

metry consistent with the asymmetry orderings.

Definition 4. Let X be random variables with mean µX and scalar parameters

sX .

- We say that X is right asymmetric if and only if φX (p) ≥ 0,∀p ≥ 1.275

- We say that X is left asymmetric if and only if φX (p) ≤ 0,∀p ≥ 1.

- We say that X is symmetric if and only if φX (p) = 0,∀p ≥ 1.

Clearly, a symmetric distribution according to Definition 4 is also symmetric

according to the Pearson’s coefficient, because E
(
X+

p
)

= E(X−
p
) ∀p ≥ 1

implies that X−=X+ in distribution. Moreover, a r.v. is right asymmetric if280

and only if it can be seen as the opposite of a left asymmetric r.v.. Finally, if

X is right asymmetric then E
(
X+

p
)
≥ E(X−

p
) for any p ≥ 1, and thereby

X−≥mdX+. Thus, the following corollary is a logic consequence of the previous

discussion.
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Corollary 3. Let X and Y be two random variables. Then the following im-285

plications hold:

i) X is right asymmetric if and only if X−≥mdX+.

ii) X is right asymmetric if and only if −X is left asymmetric.

iii) If X−RS X+then X is right asymmetric.

As in some cases it would not be possible to verify the conditions for Defi-290

nition 3, we introduce a weaker order of asymmetry.

Definition 5. Let X and Y be random variables belonging to Lq = {X|E (|X|q)
<∞}, for q ∈ (1, 2), with means µX , µY and scalar parameters σX , σY .

- We say that X is weakly more right asymmetric than Y (in symbols X�wrY )

if and only if there exists a value s ∈ (1, q) such that

φX (p) ≥ φY (p) , ∀p ≥ s.

- We say that X is weakly more left asymmetric than Y (in symbols X�wlY )

if and only if there exists a value s ∈ (1, q) such that

φX (p) ≤ φY (p) , ∀p ≥ s.

On the one hand, the value q ∈ (1, 2) ensures that we can always compare

random variables which are in the domain of attraction of a stable law. On the295

other hand, Definition 5 is consistent with the Pearson’s coefficient of skewness,

besides being weaker than Definition 3 (i.e. X�rY implies X�wrY and X�lY

implies �wlY ).

3. Stochastic orders in the stable Paretian case

In this section, we deal with the problem of ordering stable Paretian distri-300

butions. In particular, we prove that, in the stable Paretian case, the index of

stability is crucial for establishing the SSD order, based on some results proved
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in Section 2. Furthermore, we prove that the skewness parameter is strictly re-

lated to the moment dispersion (MD) order, and show that it is also consistent

with the stochastic order of asymmetry defined in Section 2.305

Let us briefly summarize some important characteristics of the stable distri-

bution. As discussed in the introduction, the stable Paretian law is especially

appropriate for approximating the distribution of a random variable X whose

tails are significantly heavier than the Gaussian law, that is, for large x

P (|X| > x) ≈ x−αL(x) (7)

where 0 < α < 2 and L(x) is a slowly varying function at infinity. This tail310

condition implies that the random variable X is in the domain of attraction of

a stable law. In this case, we obtain the convergence condition described in 6.

This convergence result is a consequence of the Stable Central Limit Theorem

(SCLT) for normalized sums of i.i.d. random variables (see [23], [12]) and it is

the main justification for the use of stable distribution in many areas of study,315

such as finance and econometrics. In particular, the SCLT makes it possible

to characterize the skewness and kurtosis of a wide range of phenomena in a

statistically proper way.

We recall that, if X ∼ Sα(σ, β, µ), and α < 2, then E (|X|p) < ∞ for any

p < α and E (|X|p) = ∞ for any p ≥ α. Therefore, stable distributions do not320

generally have finite variance, which happens only when α = 2 (i.e. Gaussian

distribution, E (|X|p) <∞ for any p). Unfortunately, except in few cases, we do

not have a closed form expression for the density of stable Paretian distribution,

which is identified by its characteristic function, given by:

E (exp {itX} ) =

=





exp
{
itµ− |tσ|α

(
1− iβ sign (t) tan

(
πα
2

))}
α 6= 1

exp {it (µ+ 2βσ ln(σ)π) −|tσ| (1 + 2iβ ln |tσ| sign(t)/π)} α = 1
(8)
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It is worth noting that, since the density and distribution functions of the325

stable Paretian distribution cannot be expressed with elementary functions, it

is not possible to verify the integral conditions for the RS and SSD orders.

However, some simple orderings are a consequence of the stable Paretian tail

behavior which is mainly determined by the stability parameter α. As a matter

of fact, in the stable case, the behavior of the tails is so crucially important to330

determine a stochastic order between the distribution functions, for fixed values

of location and scale parameter.

It is known that, if X ∼ Sα(σ, β, 0), then, as x approaches infinity, we obtain:

P (±X > x) ≈

≈





exp
{
− (α− 1)

(
x

ασBα

)− α
α−1
}

( x
ασBα

)−
a

2α−2√
2πα(α−1)

if β = ∓1∧ < α < 2

exp
{
− 1

2

(
πx
2σ − 1

)
− exp

[(
πx
2σ − 1

)] }
/
√

2π

if β = ∓1 ∧ α = 1

Cα (1± β)σαx−α otherwise

(9)

where Bα =
[
cos
(
π
2 (2− α)

) ]−1/αand Cα = Γ(α)
π sin

(
πα
2

)
.335

Equation 9 shows that, for β = ∓1 and α < 1, stable distributions are

negative (β = −1) or positive (β = +1).

The theorems and porpositions of this section establish under which condi-

tions we can obtain a stochastic dominance between stable distributions.

Let X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2). As quite logical and340

trivial, if µ1 > µ2, and the other parameters are equal, we obtain that the dis-

tribution of X1 is right-shifted compared to the distribution of X2, and therefore

FX1 < FX2 (X1 FSD X2) as it is apparent also from Fig. 1 (in the case α < 1)1.

1The figures have been obtained with the Mathematica 9 package for the numerical com-
putation of stable distributions, see [26] and [27].
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Figure 1: CDFs of stable distributed r.v.’s, with fixed α < 1, σ, β (respectively 0.8, 1, 0) and

different values of µ = 0, 0.5, 1, 1.5, 2, (from left to right).

In particular, it is worth noting that, when α1, α2 < 1, and β1, β2<1, X1

and X2 cannot be compared with the second-order stochastic dominance SSD,345

because the integral
∫ t
−∞ FXi (z) dz (for i = 1, 2) diverges. However, it is pos-

sible to establish the first order stochastic dominance according to the location

(as observed above) and also the skewness parameters, as proved in [23]. In-

deed, Fig. 2 shows that, if β1 > β2, α1 = α2 < 1, σ1 = σ2 and µ1 = µ2, then

the disproportions between the left and right tails of X1 and X2 yield an FSD350

order, i.e. FX1 < FX2 . Therefore, on fixed values of α < 1 and σ, it is sufficient

that µ1 ≥ µ2 and β1 ≥ β2 with at least one strict inequality to obtain the FSD

order. This is stated in the following proposition.

Proposition 3. Consider X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2). Sup-

pose α1 = α2 < 1 and σ1 = σ2. Moreover µ1 ≥ µ2 and β1 ≥ β2 with at least355

one strict inequality. Then X1 FSD X2.

The case α < 1 is however less interesting for our purposes, especially be-

cause of the several empirical investigations, e.g. in the Financial literature,

which have shown that generally asset returns comply to stable Paretian laws,

but the tail parameter α is generally greater than 1. Hence, in what follows360
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Figure 2: CDFs of stable distributed r.v.’s, with fixed α < 1, σ, µ (respectively 0.8, 1, 0)

S0.8(1, β, 0) and different values of β = 0 + 0.09i, i = 1, . . . , 10, (from left to right).

we analyze the case α > 1, and therefore consider only distributions with fi-

nite means and for which it is possible to use the SSD order. Obviously, on

fixed values of tail and skewness parameters, we might verify the SSD with a

mean-dispersion approach (similar to the mean-variance approach used in the

Gaussian case): the aim of this paper is to overcome this quite restrictive as-365

sumption and deal with the problem under more general conditions. For this

analysis, note that, given X ∼ Sα(σ, β, µ), then X = σY + µ, where Y is

the standardized stable Sα(1, β, 0). For the standardized stable Y we know

that
∫ 0

−∞ FY (z) dz = E(Y−), which represents the expected losses valued for a

stable random variable (see [28]) and it is given by:370

∫ 0

−∞
FY (z) dz =

Γ ((α− 1) /α)
π

cos(θ)

(cos(αθ))1/α
(10)

where θ =
arctan(βtan(πα/2))

α . This formula is graphically represented by Fig.3

(varying alpha and beta).

Let X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2). Clearly, Fig.3 shows

that, for fixed α1 = α2, σ1 = σ2 and µ1 = µ2, we cannot have the SSD

dominance except for |β1| < |β2|. However, we shall show in Theorem 3 that the375

SSD order is actually not verified in this case. Moreover, if α1 < α2, β1 = β2,
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Figure 3: Expected losses E(Y−) for standardized stable distributed r.v.’s, where α varies

from 1.01 to 2 and β from −1 to 1.

σ1 = σ2 and µ1 = µ2 then formula 9 suggests that X1 presents heavier tails

than X2. Thus, when µ1 = µ2, X1 and X2 have equal mean, i.e.

−
∫ 0

−∞
FX1 (x) dx+

∫ ∞

0

1− FX1 (x) dx =

= −
∫ 0

−∞
FX2(x)dx+

∫ ∞

0

1− FX2(x)dx,

we argue that the area under the curve FX2on the left tail of X2 (which is

finite because α2 > 1) is sufficiently large that
∫ t
−∞ FX2(x)dx is always greater380

or equal than
∫ t
−∞ FX1(x)dx and that the area

∫ t
−∞ F1(x)dx should approach

∫ t
−∞ FX2(x)dx only asymptotically (note that, as t tends to infinity, the integrals

obviously diverge). We illustrate this concept in Fig. 4 and Fig. 5. In particular,

Fig. 4 refers to the case when X1 and X2 are symmetric (β1 = β2 = 0) (observe

that the distributions show some similarity with the Gaussian distribution, as α385

approaches 2). The effect of the stability indices is evident, especially in the case

of skewed distributions (Fig. 5). From Fig. 4 we also note that, when the index

of stability approaches 2, the distribution gets close to the normal distribution,

regardless of the skewness parameter. The following theorem states that we

can obtain the SSD and ≥icx orders between stable Paretian distributions by390

18



a comparison between location, scalar, and tail parameters.

Figure 4: CDFs of stable distributed r.v.’s, with fixed β, σ, µ (respectively 0, 1, 0) Sα(1, 0, 0)

and different values of α = 1 + 0.9i, i =, 1, . . . , 10.

Theorem 2. Consider X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2). Sup-

pose α1 ≥ α2 > 1, β1 = β2, σ1 ≤ σ2 with at least one strict inequality. If

µ1 ≥ µ2, then X1 SSD X2. If µ2 ≥ µ1, then X2≥icxX1. In particular, if

µ1 = µ2, then X1 RS X2.395

As a straightforward consequence, the assumptions of thoerem 2 (regardless

of the location parameter) also imply X1 ≥md X2, which can be interpreted

as an ordering of kurtosis (as discussed in section 2). Hence, as expected, we

obtain the α parameter is actually consistent with kurtosis.

Now, we can investigate the effects of the skewness parameters, e.g. whether a400

more positively skewed variable dominates a less skewed one (like in the case

α < 1), or rather whether a more symmetric variable could be considered, in

some sense, less “risky”. Indeed, equation 9 shows that the asymptotic behavior

of the tails depends on the skewness parameter β, besides the tail parameter

α. The skewness parameter determines the disproportion between the left and405

the right tails, in particular, if β is positive (or negative), we obtain that the
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Figure 5: CDFs of stable distributed r.v.’s, with fixed β, σ, µ (respectively 0.5, 1, 0)

Sα(1, 0.5, 0) and different values of α = 1 + 0.9i, i =, 1, . . . , 10.

right (or left) tail is heavier than its left (or right) tail. The extreme cases

when β = ±1 are especially explicatory. On the one hand, when |β| < 1 the

tails follow a typical Paretian (power law) distribution, and therefore they can

be defined “heavy”, compared to those of a Gaussian distribution. On the other410

hand, when β = +1 (or −1) then the left (or right) tail distribution is decreasing

with an exponential behavior (as the Gaussian distribution) and therefore we

have that the distribution is heavy tailed, but only on its right (or left) side.

Let X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2) and suppose that β1 >

β2, α1 = α2 > 1, σ1 = σ2 and µ1 = µ2. In this case, the assumptions of Thoerem415

1 are not satisfied (some graphical examples below show that the FSD does not

hold). Intuitively, a more right-skewed distribution transfers weight from the

left to the right tail. On the one hand, when α < 1, the tails are so heavy that

basically absorb most of the body of the distribution, therefore a disproportion

between right and left tail implies that a more right skewed distribution gets420

stochastically larger (FSD). On the other hand, when α > 1, the weight of

the tails is downsized and therefore a more right skewed distribution is anyway

“heavier” on its right tail, but this is not sufficient to yield a strong (FSD)

ordering between the distribution (Theorem 4 below proves indeed that β1 > β2

does not even yield the SSD). Finally, in the case α > 1, the skewness parameter425
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does not seem to be strictly related to a strong ordering (such as SSD), like the

tail parameter does. However, we can realize that a more symmetric distribution

can be preferable than a more skewed distribution, in terms of dispersion or

risk-aversion. Indeed, a more symmetric distribution is generally less “spread

out”, so we argue that, if |β1| < |β2|, then X1 dominates X2 in terms of some430

weaker order of dispersion (risk). In particular, the following theorem states

that |β1| < |β2| yields the moment dispersion order (MD). Fig. 6 shows that

different β’s do not yield FSD as well as SSD (for Theorem 1, even number

of crossing points), but, by contrast, the less skewed r.v.’s are less spread out

around the zero value.435

Figure 6: CDFs of stable distributed r.v.’s, with fixed α, σ, µ (1.5, 1, and 0 respectively),

S1.5(1, β, 0) and different values of β = 0 + 0.2i, i =,−5, . . . , 5.

Theorem 3. Let X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2). Suppose

|β1| < |β2|.

- If α1 = α2 > 1, σ1 = σ2, µ1 = µ2 then X1 does not dominate X2 w.r.t.

the SSD and X1 does not dominate X2 w.r.t. the ≥icx order. In addition,

ϕX1−E(X1)(p) ≤ ϕX2−E(X2)(p), ∀ − 1 ≤ p ≤ α, and thereby X1 ≥cmdX2 and440

X1 ≥md X2.

- If α1 ≥ α2 > 1 then X1 ≥md X2. Moreover, if α1 ≥ α2 > 1 σ1 ≤ σ2, µ1 = µ2

with at least a strict inequality, then X1 ≥cmdX2.
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Therefore, a less skewed distribution may be preferable to a more skewed

one by risk averse investors. Observe that we can also prove that the skew-445

ness parameter β determines whether a distribution is symmetric or (right-left)

asymmetric, according to definition 4.

Proposition 4. Assume X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2) where

α1, α2 > 1. Thus, the following implications hold.

- If β1 ≥ 0 ≥ β2, then X1�rX2450

- β1 > 0 if and only if X1 is right asymmetric

- β1 < 0 if and only if X1 is left asymmetric

- β1 = 0 if and only if X1 is symmetric

Moreover, as a consequence of what discussed above, we obtain the following

orderings among the positive and negative parts of standardized stable distri-455

butions, when β1 > β2 ≥ 0, or β2 < β1 ≤ 0.

Theorem 4. Let X1 ∼ Sα1(σ1, β1, µ1), X2 ∼ Sα2(σ2, β2, µ2) with α1 = α2 > 1,

σ1 = σ2, µ1 = µ2.

1) If β1 > β2 ≥ 0, then:

X2 ≥cmdX1, Xi− RS Xi+ (i = 1, 2), X2+ ≥icx X1+ X1− SSD X2+,460

X1− SSD X2−, and X1 �wr X2 (or X2�wlX1).

2) If β2 < β1 ≤ 0, then:

X1 ≥cmdX2, Xi+ RS Xi− (i = 1, 2), X2− ≥icx X1− X2+ SSD X1+,

X2+ SSD X1−, and X1 �wr X2 (or X2�wlX1).

On the one hand, Theorem 4 confirms the intuition for which the skewness465

parameter can determine if a random variable is more or less right (or left)

asymmetric than another one, according to the weak asymmetry order defined

in Section 2. Hence, the skewness parameter is coherent with the defined order.

On the other hand, we conjecture that under the hypothesis of Theorem 4

the strong asymmetry order of Definition 3 holds, but, unfortunately, we were470

not able to prove it. Moreover, the weaker orders of asymmetry are strongly
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influenced from the heavy tails (represented by small values of the index of

stability) as proved in the following proposition.

Proposition 5. Assume X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2, β2, µ2). Thus,

the following implications hold.475

1. If β1 < 0 and 1 < α1 < α2 then X1�wlX2

2. If β1 > 0 and 1 < α1 < α2 then X1�wrX2

According to Theorems 2 and 4 and Proposition 5 we deduce that, generally,

risk seeking non satiable decision makers (agents who optimize the increasing

convex ordering) should prefer right asymmetric random variables with the low-480

est index of stability, highest mean and scalar parameter. Moreover, in Theo-

rems 3 and 4 and Proposition 5 we show that, by varying the index of stability

and the skewness parameter, we are not generally able to find strong orders

such as SSD and ≥icx, although we cannot exclude that some stronger orders

might hold. In particular, given two random variables X1 ∼ Sα1(σ1, β1, µ1) and485

X2 ∼ Sα2(σ2, β2, µ2) with α1 > α2 > 1, σ1 = σ2, µ1 = µ2 and β1 6= β2, then

the two distributions generally present an odd number of crossing points (i.e. 1

or 3 for each different sub-case analyzed, e.g. β1 > β2 ≥ 0, β2 > β1 ≥ 0 etc.).

Therefore, when the gap between the indexes of stability is large enough, we

observe that FX1 and FX2 are single crossing (on the left if β1 is positive, on490

the right otherwise), and therefore X1 SSD X2, as shown in Fig. 7.

On the other hand, we can obtain three crossing points (1 on the left and 2

on the right if β1 is positive, 2 on the left and 1 on the right otherwise) when

α1 and α2 are “closer”. This is shown in Fig. 8. It should be stressed, that,

in Fig. 8 we can only see two crossing points (which would exclude that X1495

SSD X2 for Theorem 1), but actually we know from equation 9 that we have

another crossing point as t approaches infinity, because FX1(t) tends to 1 faster

than FX2(t) does. Finally, this analysis highlights that in many cases we cannot

exclude the SSD when the index of stability and the skewness parameters vary

at the same time. However, it is worth noting that it is also possible, in some500
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Figure 7: X1 ∼ S1.8(1, 0.8, 1) (dashed) and X2 ∼ S1.6(1, 0.1, 1) (red). 1 crossing point.

particular cases that the SSD order does not definitely hold. This can be shown

by a straightforward counter-example.

Figure 8: X1 ∼ S1.8(1, 0.8, 1) (dashed) and X2 ∼ S1.75(1, 0.1, 1) (red). 3 crossing point (the

third one is not visible but we know that there exists from the behavior of the tails).

Example 2. Let X1 ∼ Sα1(σ1, β1, µ1) and X2 ∼ Sα2(σ2,−1, µ2). Suppose

α1 > α2 > 1, σ1 = σ2, 1 = µ2 and β1 > −1. Consider the distributions of

− (X1+) and − (X2+). From Theorem 1 we know that if X RS Y then − (X1−)505

SSD − (X2−) and − (X1+) SSD − (X2+). But equation 9 yields that the tail of

− (X2+) approaches zero faster than the tail of − (X1+), therefore we definitely
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have that the condition − (X1+) SSD − (X2+), which is necessary for RS, does

not hold.

We conclude that, in the case of α > 1, which is surely the most interesting510

from a practical point of view, the index of stability is crucially important in

establishing an order of preference between stable distributions. This aspect

could have a strong impact for classical economical and financial choices. On

the one hand, a less skewed distribution should be generally preferred than a

more skewed one by risk averse decision maker that generally want to reduce515

the dispersion (MD order). On the one hand, a more right skewed distribution

should be generally preferred than a less right skewed one by risk seeking decision

maker. Therefore, we can properly order stable distributions according to the

relations between the parameters. In the next section we propose one of the

several possible financial applications of the stochastic order relations discussed520

above.

4. A financial application

The results of Section 3 have several applications in different areas of study,

because of the fundamental role of the stable distribution, discussed in the

introduction. In some areas of study, such as finance or econometrics, it is525

well known that distributions are generally heavy tailed, thus the determi-

nantion of the tail pobabilities can play a key role (for a recent estimation

method of tail probabilities for heavy tailed distributions see e.g. [29]). In

particular, it is well known that the stable Paretian model is especially suit-

able for approximating the empirical distribution of financial assets (see, for530

instance, [5],[8],[9],[13],[30],[31],[32],[33]). Obviously, alternative models with

explicit forms for densities have also been considered in the literature, e.g. the

Student’s t distribution or the generalized hyperbolic distribution [34]. Nev-

ertheless, as specifed in the introduction, the main advantage of the stable

distribution compared to others is represented by its role in the generalized cen-535

tral limit theorem. A possible financial application of multivariate stochastic
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dominance rules for symmetric stable distribution has been recently proposed

by [35]. In this section, we simply apply the stochastic dominance rules stated

in the previous sections to real financial data, in order to empirically verify the

validity of these rules.540

The dataset consists of 2242 assets that were active and sufficiently liquid2 in

the last year (from February 2014 until February 2015) in the U.S. equity market

(NYSE, NASDAQ, AMEX). As it is well known, the empirical distribution of

financial assets is generally conformed to the stable distribution, hence, for each

asset, we estimated the unknown parameters (α, σ, β, µ) with the maximum like-545

lihood (ML) method. Note that there are mainly two approaches to the problem

of ML estimation in the stable Paretian case. Modern ML estimation techniques

for stable distributions either utilize i) the fast Fourier transform method for

approximating the stable density function [36], [12]; or ii) the direct integration

method [37]. Both approaches are comparable in terms of efficiency and the550

differences in performance result from different approximation algorithms. In

our analysis we used the first approach. Then, we applied the stochastic dom-

inance rules established above, based on the estimated parameters. The used

methodology can be described as follows.

Let X and Y be two assets, let (x1, . . . , xn) and (y1, . . . , yn) be the obser-555

vations of the asset returns during the considered period and Fn,1 and Fn,2 the

corresponding empirical distributions. For i = 1, 2, we denote with α̂i, σ̂i, β̂i, µ̂i

the ML estimates of stable parameters (α, σ, β, µ) and with F̂i the corresponding

stable Paretian distributions. For simplicity, let us define, with a little abuse of

notation, the relations “SSD” and “≥cmd” in the domain F of all distribution560

functions, instead of the class of random variables (hence FX SSD FY is equiv-

alent to X SSD Y and similarly FX≥cmdFY is equivalent to X≥cmdY ). From

the results of the previous sections we can establish the following rules.

2We introduce a liquidity filter in our dataset taken from DataStream, which requires

that each asset must be traded daily for at least 100000 USD on average during the period

01/02/2014 - 01/02/2015.
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1) If α̂1≥ α̂2, σ̂1 ≤ σ̂2,
∣∣∣β̂1

∣∣∣ ≤
∣∣∣β̂2

∣∣∣ and µ̂1 ≥ µ̂2 then F̂1SSD F̂3 ≥cmdF̂2 where

the distribution F̂3 correspond to a stable random variable with parameters565

α2, σ2, β1, µ2

2) If Fn,1 and Fn,2 are single crossing and we observe the following inequality be-

tween the sample mean of the asset returns 1
n

∑n
j=1 xj = x ≥ y = 1

n

∑n
j=1 yj ,

then Fn,1 SSD Fn,2.

By applying rule 1 to the data, we found 329 assets (over 2242) which are570

dominated from some other assets with respect to two different orders between

fitted distributions. As we know, the MD order is weaker than the RS order,

thus we do not really know if the SSD holds, but this results give us important

information on the empirical distributions, that are likely dominated at the

second order from other assets. Indeed, by applying rule 2 to the empirical575

distribution of these 329 assets, we found that 231 assets are actually dominated

at the second order, hence the strong order seems to hold at least for 2/3 of

the cases. Figures 9, 10 and 11 show some particular examples of second order

dominance between empirical distributions. In Figure 9 we report the estimated

parameters of stable distributions and the empirical SSD dominance for a couple580

of asset returns. Figures 10 and 11 show left and right empirical tails of all the

distributions which are SSD dominated (in the sense of rule 2) by one of the

non-dominated return distributions.

In these figures, we observe that the right and left tails of the dominant

distribution are much thinner than the others, which also present higher skew-585

ness (in terms of the absolute value of β): this confirms that the tail behavior,

which determines the probability of big losses and/or big gains, is crucial in

determining a dominance in the stable Paretian case.

From these considerations, we argue that the introduced criteria can be

absolutely useful to exclude a certain set of assets from the investors’ choices.590

Therefore, if applied properly, the same criteria can be also used for the choice

of the optimal portfolio.
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Figure 9: Example of SSD dominance between the empirical distributions of the assets: “Dol-

lar tree” and “Inventergy global”.

Figure 10: Example of right tails of some assets SSD empirically dominated by the “United

Bankshares”.

5. Conclusion

In this paper, we determined some new rules to establish stochastic domi-

nance between stable distributed random variables. It should be stressed that595

the stable Paretian distribution is justified by the generalized central limit the-
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Figure 11: Example of left tails of some assets SSD empirically dominated by the “United

Bankshares”.

orem for sums of i.i.d. random variables. Hence, the theoretical results of this

paper may have several applications in many different fields of study. In particu-

lar, we introduced two new stochastic orders, namely: i) the moment dispersion

order, which expresses the major dispersion or “risk” between two variables with600

equal expectation; and ii) the asymmetry order, which is especially suitable for

dealing with random variables that do not necessarily have finite variance.

Then, we prove and show under which conditions we can obtain these newly

introduced orders in the stable Paretian case. In particular, we show that the

asymptotic behavior of the tails, which is mainly determined by the index of605

stability, is crucially important to establish a dominance. Indeed, under some

particular conditions, we are able to prove that the second order stochastic

dominance is strictly related to this parameter. Moreover, we obtain that the

stable skewness parameter is coherent to the asymmetry order defined in section

2.610

Finally, we show the usefulness of these new results in determining dominated

and dominating assets in the U.S. stock market. Our empirical findings confirm

that the newly introduced order of risk is actually closely related to the stronger

order, that is the SSD, and thereby it can be profitably used to compare and
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order financial variables, according to investors’ preferences.615

Appendix

A. Proof of Theorem 1.

On the one hand, Hanoch and Levy [22] proved point a) for SSD ordering.

On the other hand, we know that −X SSD −Y if and only if Y ≥icxX
see [14]. When. E (X) ≤ E (Y ) then E (−X) ≥ E (−Y ). Moreover, the620

crossing-point condition holds also for the opposite of the random variables,

i.e. F−X (t) ≤ F−Y (t) for t < −t1 (F−X (t) < F−Y (t) for some t < −t1)

and F−X (t) ≥ F−Y (t) for t ≥ −t1.Thus, when E (X) ≤ E (Y ) from Hanoch

and Levy [21] we get that −X SSD −Y , that implies Y ≥icx X. As for

point b), define FY (z)− FX(z) = ∆Y (z).
∫∞
−∞∆Y (z)dz =

∫ tk
−∞∆Y (z)dz +625

∫∞
tk

∆Y (z)dz = 0, thus
∫ tk
−∞∆Y (z)dz = −

∫∞
tk

∆Y (z)dz. By assumption

FX (t) ≤ FY (t) for t > tk (FX (t′) < FY (t′) for some t′ > tk) therefore
∫∞
tk

∆Y (z) dz > 0 and
∫ tk
−∞∆Y (z)dz < 0 which implies that the condition X

SSD Y cannot hold. Similarly,
∫∞
t1

∆Y (z) dz = −
∫ t1
−∞∆Y (z)dz. By assump-

tion FX (t) ≤ FY (t) for t < t1 (FX (t′) < FY (t′) for some t′ < t1) therefore630

∫∞
t1

∆Y (z) dz < 0 and
∫ t1
−∞∆Y (z)dz > 0 which implies that the condition

X ≥icxY cannot be true.

B. Proof of Proposition 1.

1) Observe that:

F−(X−) (t) =





FX(t) t ≤ 0

1 t > 0
, F−(X+) (t) =





1− FX(−t) t ≤ 0

1 t > 0
.635

Hence, by assumption we have that − (X−) SSD − (Y−).

Nevertheless X RS Y implies −X RS−Y (see [14]), thus − (X+) SSD

− (Y+).

2) As [− (X−)]+[− (X+)] = −|X| and its cumulative distribution is F−|X| (t)

= F−(X−) (t) + F−(X+) (t), then 1) yields −|X| SSD − |Y |.640

3) −|X| SSD − |Y | for 2), thus − |X| ≥icv − |Y | which is equivalent to

|Y |≥icx|X| (see [14]).
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4) Point 1) and condition E |X| = E |Y | yield −|X| RS − |Y |, which is

equivalent to |X| RS |Y |.

C. Proof of Proposition 2.645

1) Define FX(z) − FY (z) = ∆X(z) and −∆X(z) = ∆Y (z). For symmetry

we have that:

∫ 0

−∞
∆Y (z) dz −

∫ 0

−t
∆Y (z) dz =

=
∫ ∞

0

∆X (z) dz −
∫ t

0

∆X (z) dz ≥ 0

As
∫ 0

−∞∆Y (z)dz is non-negative we obtain
∫ 0

−t ∆Y (z)dz =
∫ t

0
∆X(z)dz ≥ 0.

Thus
∫ 0

−t ∆Y (z)dz−
∫ t

0
∆X (z) dz = 0 and

∫ 0

−t ∆Y (z)dz+
∫ t

0
∆X(z)dz ≥ 0

which is equivalent to |Y | SSD |X|.650

2) From Proposition 1 and point 1) we respectively obtain |X|≥icv|Y | and

|Y |≥icv|X| which yield |X| =d |Y |. But X and Y are symmetric, hence

|X| =d |Y | ⇔ X =d Y .

D. Proof of Proposition 3.

Assume µ1 > µ2 and let X3 ∼ Sα1(σ1, β1, µ2). Thus X1 =d X3 + (µ1 − µ2)655

which yields X1 FSD X3.

Assume β1 > β2 and let X4 ∼ Sα1(σ1, β2, µ2). We obtain X1 FSD X3 (in

particular X1 =d X3 if µ1 = µ2) and X3 FSD X4 as proved in [23] (Property

1.2.14).

E. Proof of Theorem 2.660

When α1 = α2 we get the same result of Ortobelli and Rachev [21]. Now,

suppose α1 > α2. Let X3 ∼ Sα1(σ2, β1, µ2) and Zi = Xi = Xi−µi
σi

(for

i = 1, 2).

First assume that µ1 ≥ µ2 and consider two different cases βi = 0 and

βi 6= 0.665

1) β1 = β2 = 0.
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In this case, Z1 ∼ Sα1(1, 0, 0) and Z2 ∼ Sα2 (1, 0, 0) . The analytical

study of the distribution functions ensures that FZ1 and FZ2 have a sin-

gle crossing point in (−∞, 0), in that, for some −t0 < 0, FZ1 (t) < FZ2(t)

for t < −t0 and FZ1 (t) > FZ2(t) for 0 > t > −t0 (see [26], [38]). Then,670

for symmetry, we know that FZ1 and FZ2 also cross in +t0 and obviously

in 0 (FZ1 (0) = FZ2 (0) = 1\2). Moreover,
∫ 0

−∞ FZi (z) dz = Γ
[
αi−1
αi

]
/π

(for i = 1, 2) as proved in [28], hence we derive that
∫ 0

−∞ FZ2 (z) dz ≥
∫ 0

−∞ FZ1 (z) dz (we recall that the Gamma function is decreasing in (0, 1/2)).

For any t < 0 we have
∫ t
−∞ (FZ1

(z)− FZ2(z))dz < 0, because FZ1675

and FZ2 are single crossing functions in (−∞, 0) and
∫ 0

−∞ FZ1 (z) dz <
∫ 0

−∞ FZ2 (z) dz. Moreover, for symmetry, we obtain that, for any t > 0:
∫ t
−∞ (FZ1

(z)− FZ2(z))dz =
∫ −t
−∞ (FZ1

(z)− FZ2(z))dz < 0.

Let X3 ∼ Sα1(σ2, 0, µ2). We have that X3 SSD X2 and we also know

that X1 SSD X3 as proved by [21]. This results yield X1 SSD X2.680

2) β1 = β2 6= 0

If β1 = β2 6= 0 then X1 SSD X3. The analytical study of the distribution

functions ensures that FX3 and FX2 are single crossing, i.e., for some

t0 < ∞, FX3 (t) < FX2(t) for t < t0 and FX3 (t) > FX2(t) for t > t0,

where t0 > 0 if β1 = β2 > 0 and t0 < 0 if β1 = β2 < 0 (see [26], [38]).685

Thus, since X2 and X3 have equal mean, Theorem 1 yields X3 SSD X2

and we obtain the thesis.

Now, assume that µ1 ≤ µ2.

Recall that −X SSD −Y if and only if Y ≥icxX (see [14]) and that

−Xi ∼ Sαi(σi,−βi,−µi). Now if we consider X4 ∼ Sα2(σ1,−β2,−µ2) we690

know that −X1 SSD X4 for the previous analysis and that X4SSD−X2

as a consequence of [21]. Thus −X1SSD−X2, which implies X2 ≥icxX1.

F. Proof of Theorem 3.

Let us assume α1 = α2 > 1, σ1 = σ2, µ1 = µ2. The study of the distribu-

tion functions ensures that FX1 and FX2 have two crossing points, in particu-695

lar, for some t1 < 0 and t2 > 0, FX1 (t) < FX2(t) for t < t1, FX1 (t) > FX2(t)

for t1 < t ≤ t2 and FX1 (t) < FX2(t) for t > t2. Thus, for Theorem 1, nor
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condition X1 SSD X2 neither condition X1 ≥icxX2 are true. To prove that

X1 ≥cmdX2 we use the mathematical formula of E (|X|p) derived by [39],

where for any stable centered random variable X = Y − E(Y ), we get:700

E (|X|p) = σp
(

1 + β2tan2απ

2

) p
2α ·

· cos
( p
α

arctan
(
βtan

απ

2

) ) 2pΓ
(
α−p
α

)
Γ
(
p+1

2

)
√
π ΓΓ

(
2−p
p

) .

If we derive E (|X|p) with respect to β we obtain:

∂E(|X|)p
β

= σpA (p)
(
1 + β2r2

) p
2α−1 p

a
rcos y [βr − tan y ]

where A (p) =
2pΓ(α−pα )Γ( p+1

2 )√
π Γ( 2−p

p ) , y = p
αarctan (βr) and r = tan

(
πα
2

)
.

It is straightforward to prove that σpA (p)
(
1 + β2r2

) p
2α−1 ≥ 0, hence it is

sufficient to study the sign of p
αrcos y [βr − tan y ].

Observe that −π2<y < π
2 (r = tan πα

2 < 0, therefore y = p
αarctan (βr) ≤ 0

for β ≥ 0, and y ≥ 0 for β ≤ 0), then cos y ≥ 0. Note that rcos y ≤ 0 is an705

even function of β, because cos y = cos(−y) and r does not depend on β.

Thus the sign of ∂E(|X|p)
β depends on the sign of p and βr− tan y . Suppose

that β ≥ 0: if 0 ≤ p < α then tan y ≤ 0 (as βr ≤ 0 and −π2 < y ≤ 0),

in particular, since 0 < p
α < 1, the infimum of tan y is exactly equal to

βr (tan y > βr), which yields βr − tan y < 0 and therefore ∂E(|X|p)
β ≥ 0.710

Conversely, if −1 ≤ p ≤ 0 then βr ≤ 0 and 0 ≤ y < π
2 , which also yields

βr − tan y < 0 and therefore ∂E(|X|p)
β ≤ 0 (as p ≤ 0).

Moreover, arctan−x = −arctanx , then βr − tan y (and thereby ∂E(|X|p)
∂β )

is an odd function of β. These results can be summarized as follows:

- If 0 ≤ p < α and β ≥ 0 then ∂E(|X|p)
β ≥ 0;715

- If 0 ≤ p < α and β < 0 then ∂E(|X|p)
β < 0;

- If −1 ≤ p ≤ 0 and ≥ 0 then ∂E(|X|p)
β ≤ 0;

- If −1 ≤ p ≤ 0 and β < 0 then ∂E(|X|p)
β > 0;
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Therefore for fixed mean, scalar parameter, index of stability and |β1| < |β2|
we get the thesis, i.e., ∀p ∈ (−1, α1):720

ϕX1−E(X1)(p) ≤ ϕX2−E(X2)(p).

Now suppose α1 ≥ α2 > 1 and |β1| < |β2|. Consider that Xi ∼ Sαi(1, βi, 0)

(i = 1, 2) and assume X3 ∼ Sα2(1, β1, 0). Observe that as a consequence of

the first point X3 ≥cmdX2. Moreover, if α1 = α2, X1 = X3 in distribution,

otherwise X1 ≥cmdX3 as a consequence of Theorem 2 and Corollary 1. Thus

X1 ≥mdX2.725

Now suppose that α1 ≥ α2 > 1 σ1 ≤ σ2, µ1 = µ2, and |β1| < |β2| with

at least an inequality strict and assume X4 ∼ Sα2(σ2, β1, 0). As a conse-

quence of Theorem 2 and Corollary 1 X1 ≥cmdX4 and for the previous point

X4 ≥cmdX2. Thus X1 ≥cmdX2.

G. Proof of Proposition 4.730

It is well known that when β1 = 0 the stable distribution X1 is symmetric.

Furthermore, observe that −Xi ∼ Sαi(σi,−βi,−µi). Consider the stan-

dardized versions of X1 and X2 given by X1 and X2. Assume β1 > 0 and

consider that E
(
X1−

)
= E

(
X1+

)
. Then, the analytical study of the distri-

bution functions ensures that F−X1−
and F−X1+

are single crossing, i.e., for735

some t0 < 0, F−X1−
(t) < F−X1+

(t) for t < t0 and F−X1−
(t) > F−X1+

(t)

for t > t0. Thus, from Theorem 1 (or Theorem 3 in [22]) we deduce X1−RS

X1+, and thus, as consequence of Corollary 3, X1 is right asymmetric when

β1 > 0. The remainder of the Proposition is a consequence of Corollary 3.

H. Proof of Theorem 4.740

To prove the theorem, we only need to prove it for β2 < β1 ≤ 0 since

the remainder of the theorem is a consequence of −Xi ∼ Sαi(σi,−βi,−µi).
Observe that from property 1.2.18 in [23], we know that limp→αi (αi − p)
E
(
X
<p>

i

)
= αi2Cαiβi where Cαi is the positive value defined in 9. There-

fore we have that X1�wrX2. From Proposition 4 we know that X1 and745

X2 are left asymmetric and from Theorem 3 we know that X1 ≥cmdX2. In
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addition, the analytical study of the distribution functions ensures that the

positive and negative parts of the standardized distributions are single cross-

ing. Thus from formula 10 and Theorem 1 we deduce that X2− ≥icxX1−,

X2+SSD X1+ and , X2+SSD X1−.750

I. Proof of Proposition 5.

From property 1.2.18 in [23], we know that limp→αi (αi − p) E
(
X
p

i±
)

=

αiCαi (1± βi) (and in particular limp→αi (αi − p) E
(
X
<p>

i

)
= αi2Cαiβi )

where Cαi is the positive value defined in 9. Therefore, we get X1�wrX2

anytime β1>0 and 1 < α1<α2 . Moreover, we get X1�wlX2 anytime β1<0755

and 1 < α1<α2 .
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