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1 Introduction

Modern monitoring systems are usually intended to ensure safety surveillance and
maintenance supervision of concrete structures and bridges which are often equipped
with a number of instruments and sensors. Meanwhile, techniques for optimal design
and dimensioning under budget constraints are being studied in this field, there is a
tendency to have highly instrumented monitoring systems, with sensors for example
for each bridge pier, joint, cable etc.. Moreover, low frequency monitoring systems,
based e.g. on hourly data, are more common in actual field monitoring as they
involve a reduced amount of data and, correspondingly, relevant savings in data
communication, computation and storage. Although, high frequency measuring
systems are promisingly being studied for structural health monitoring based on
modal vibration analysis and classification, see e.g. Basseville et al. (2004 and
2007) and Carden & Brownjohn (2008), they are not widespread because of high
costs and because the same authors show some evidence that classification methods
based on dynamic parameters give pour results.

Since visual inspection of such data is inadequate, methods for data analysis and
decision making are called for. Hence, this paper after reviewing statistical moni-
toring iun general, proposes a method able to extract information from a possibly
complex monitoring system for medium and long term bridge surveillance through
sequential structural health assessment. In particular, the proposed method is il-
lustrated with reference to the Certosa cable-stayed bridge in Milan, Italy, which is
presented in section 2 and discussed in more details by Biondini et al. (2006a, b)
and Bruzzi et al. (2007).

After introducing the general concept of statistical monitoring and sourveillance
in section 4, sections 3 and 5 introduce the two blocks which are skeletonized in Fig.
1 and constitute the statistical surveillance system. At the first stage, a statistical



monitoring system model (MSM) is used for understanding the bridge dynamics
under normal conditions. This implies dynamical modeling and adjustment for all
the observed external forcing factors, the main being temperature (see e.g. Wabh,
1971) then wind and traffic load. As a modeling by-product, the first stage gives
also the estimated correlation structure of the stochastic errors involved which de-
scribe both the measuring and the modeling errors and are important, not only for
understanding the uncertainty reduction given by the MSM, but also for defining
the optimal multivariate detector.

The second block is a multivariate hierarchical detector (MHD), which is applied
to the output of the previous MSM and gives, as a first output, a single value global
health statistics which is compared on line with an upper threshold. In case of
exceedance, a first level signal is given and a decision tree is used to localize the
source of the event according to a previously defined monitoring system segmentation
based on structural or instrumental criteria. Section 6 illustrates the performance of
the surveillance system on the basis of some artificial anomalies applied to Certosa
bridge data.

2 The monitoring data

The motivating example is based on the cable-stayed bridge over the Milan-Certosa
railway-junction, which was erected in 1980’s and is depicted in Fig. 2. After the
structural rehabilitation, whose lifetime impact has been discussed in details by
Biondini et al. (2006b), a number of new instruments have been installed including
jointmeters (JM), deflection meters, clinometers (CL), and thermometers, which
complement the data of the previously installed load cells (LC). For example, the
four pylons have been equipped with two-directional clinometers, jointmeters have
been fixed at the base of the deck, while deflection meters have been installed at the
center of two spans of the bridge for measuring the vertical movements.

Although the bridge is presently equipped with more then thirty instruments,
only those which yielded good data for long enough time have been used in this
study. In particular, in order to have sufficient data for both model identification
and validation, the period from April 1, 2005 to January 10, 2007 has been considered
with three time series for clinometers, five for jointmeters, five for load cells and four
for temperature. Figure 3, shows the different, scales, trends and behaviors for the
corresponding instruments; moreover the validation dataset, in black ink, begins
April 8, 2006.

On the one side, as shown by Tab. 1, the jointmeters are strongly correlated with
temperature, whilst clinometers are not correlated nor with temperature nor with
the other instruments and behave erratically like white noises processes as shown
by the analysis of the autocorrelation function performed by Bruzzi et Al. (2007).
The load cells have an intermediate behavior with some inertia and some correlation
with the jointmeters but without the clear seasonal trend shown by the jointmeters.
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Figure 1: Skeleton for monitoring system model

detector model (HDM).



Figure 2: Milan-Certosa bridge

Clinometers Jointmeters  Load cells

Clinometers low low low
Jointmeters High (+) Medium (-)
Load cells Medium (+)

Table 1: Synoptic correlation matrix for Certosa sensors.

3 The monitoring system model

The first of the two blocks underlying the surveillance system of Fig. 1 is a model
for the monitoring system (MSM) intended as a unique multivariate process subject
to the forcing factors related to normal functioning. This is aimed at understanding
the behavior and dynamics of the monitoring system through statistical correlations,
which are able to assess the structural relationships among the bridge components
and their response to environmental and anthropic factors.

According to this, the set of structural measurements at time ¢, denoted by v,
is related to the set of external covariates, denoted by x;, through a measurement
error, e;, and a dynamical component, j;, which is not directly observed. Hence the
MSM is given by the following set of vector equations,

Yo = pt + €
pe = Dxy + 1y (1)
n = An_1 + &

The first one is an observation equation where the measurement error e; is a
multivariate Gaussian white noise with covariance matrix denoted by R, which takes
into account the structural relationships after adjusting for thermal effects and time
dynamics.

The second equation in (1) describes the underlying MSM dynamics as the sum
of an observed component and a colored noise denoted by 7;. In particular, the
matrix D explains the effect of the external factors on the system. In this paper,
the nonlinear thermal effect is described by five different components given by the
long term high temperature, the long term low temperature and the short term

4
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T-prefix, °C. Estimation dataset is the black part, from April 1, 2005 to April 7,

imal degrees; jointmeter, JM-prefix, mm; load cell, LC-prefix, kN, thermometer,
2006. Validation dataset is the remaining red part.

Figure 3: Time series for the following instruments: clinometer, CL-prefix, sexadec-



variation of Fig. 4, together with the delayed effects of one and two days for the
short term temperature variation. Note that the two long term effects have been
computed as a 30 days temperature moving average cut, respectively, below and
above the median and the short term effect is simply the error term of the above
moving average.

Temperature components
T T T

301

251
20

8

Julo5  Oct05 Jan06 May06 Aug06 Nov06

Figure 4: Non symmetric thermal effect with temperature (°C) from T-S1: red is
long term high temepature, blue is long term low temepature and green is short
term variation.

Moreover, the persistency of the unobserved dynamic component,, is given by
the propagation matrix A, which has nonzero elements only on the main diagonal.
Similarly to the error, also the innovation is supposed multivariate Gaussian white
noise with covariance matrix given by ¥ = KRK’, where the squared matrix K
is related to the so called Kalman gain. Of course the introduced noises take into
account the reduced information on the monitoring system and, hence, estimates of
A, Y and R are useful for fair uncertainty assessment. In this paper the three equa-
tion of model (1) have the same dimension, which is thirteen for Certosa monitoring
system.

3.1 Partitioning

In some cases, it may be convenient to segment the monitoring system and the
observation set into blocks according to a structural or instrumental criterion. For
example Certosa bridge MSM may be partitioned according to the three types of
instruments installed, say A for clinometers, B for jointmeters and C for load cells,
which gives

y = (ya,ys,yc)

and e = (e, ep, ec) is conformably partitioned. Accordingly, the covariance matrix
of e4 is R4 and similarly for eg and ec. In the contest of partitioned systems, an
MSM is said to be a block diagonal monitoring system model if K is a block diagonal
matrix. This gives a block diagonal innovation model as the varaince covariance
matrix X satisfies the block diagonal property which is useful for simplifying anomaly
localization of section 5.



3.2 Model estimation

Following standard practice (see e.g. Ljung, 1999), the model identification and
minimum prevision error estimation of model (1) has been based on the first year
of available data after removing the averages and rescaling to unit variance each
measurement, component. Then, using the Akaike criterion known as AIC', only the
coefficients having a Student’s t statistic larger then the threshold 1.8 were included
in the final model. The corresponding estimates for D and A , are reported in Tab.
2 together with the respective standard deviations which are quite small and confirm
the limited uncertainty and good quality of these estimates.

Confirming the expectations based on preliminary analysis, the elements corre-
sponding to the clinometers are taken as zero by above AIC criterion, both in D and
A, and no uncertainty reduction is given for these instruments. Nevertheless keeping
these components in the model is useful for the multivariate detection approach of
section 5.

Estimated coefficients Standard deviations

Const Heat Cold Short A  Const Heat Cold Short A
Cl-1 chA 1.55 .056
Cl-1 chB -4.11 .055
Cl-2 chA -3.23 .054
Jm-S1 0.38 045 0.63 0.10 0.83 .034 .020 .020 .004 .02
Jm-S2 0.38 041 0.68 0.07 0.89 .038 .021 .021 .004 .01
Jm-S4 -0.38 0.59 0.38 0.21 0.83 118 .064  .063  .022 .02
Jm-S5 0.41 040 0.68 0.08 0.88 .034 .019 .019 .004 .01

Jm-GL1 037 045 0.62 0.12 0.79 025 .015 .015 .004 .02
Jm-GL2 0.44 0.40 0.69 0.05 0.90 049 .027v .027 .004 .01

Le-1 219.1 -0.55 0.96 721 056 .01
Lc-2 181.0 -0.47 -0.76  0.90 364 149 0.05 .02
Lc-3 179.4 -0.66 0.97 941 .050 .01
Lc-4 189.1 -0.72  0.97 1.11 .067 .01
Lc-5 337.2 -0.29 0.87 253 059 .02

Table 2: Estimates of model coefficients for matrices D and A with estimation
uncertainties.

On the other side, for jointmeters and load cells, which have non trivial D co-
efficients, the propagation coefficients from matrix A entail an important stable
dynamics after thermal adjustment as the minimum of the diagonal of matrix is
0.807 (with standard error 0.028) and the maximum is 0.957 (with standard devia-
tion 0.011). Moreover, the two seasonal effects assessed by the coefficients of matrix
D related to long term high temperature and long term low were significantly dif-
ferent, confirming asimmetry and the above idea of separating summer and winter
thermal effects.

The single figures for the remaining estimated coefficients in K and R are omitted
here for brevity. Just note that the covariance matrix R shows strong correlations
among the load cells, medium correlations among the jointmeters and low among



the inclinometers. Also the cross correlations among different instruments are fairly
low being generally less than 0.25 and close to zero for the clinometers. Comparing
to the synoptical correlation of Tab. 1 shows that the raw data correlations are
different from correlations adjusted for thermal effect and time dynamics.

It is worth observing that the fitted model explains the large part of the normal
variability of jointmeters as the five residual variances are less than 0.2% of the total
measurement variance. This fitting reduced but still interesting for the load cells as
the residual variances are now less then 43% of the corresponding total variances.
For the clinometers, as mentioned above, no reduction is given but, nevertheless,
embedding these measurements into the MSM is useful for the subsequent analysis.

The validation process has been carried out on two different steps. At the first,
the estimated model (1) has been checked for the so called in-sample residual analy-
sis, which confirmed, on the basis of graphical tests applied to the estimation dataset,
the hypothesis of normality and white noise for the errors et. The second and more
fundamental validation step is based on assessing the properties of the overall sur-
veillance system working on the second year data as in sections 6.

4 Statistical surveillance excursus

Statistical surveillance has its historical roots in the 1920's for quality control ap-
plications with the celebrated Shewhart’s control chart. At that time Walter A.
Shewhart, working at Western Electric and Bell Telephone Laboratories, proposed
a simple control chart for controlling manufacturing process and enabling to dis-
tinguish between common-causes (or in-control) and assignable-causes (or out-of-
control). See e.g. Bayart (2001) and Shewhart (1931).

Fig. 5 shows a reinterpretation of the original proposal, where daily deviation
from the in-control target, say v, is plotted against time. The central line corre-
sponds to the expected level when the process is in-control, taken as zero in the
example used here, and the two dashed lines at +3 times the common-causes stan-
dard deviation (o = 0.1) define the rule which signals for an assignable-cause.

From both the practical and theoretical point of view, this approach has a neat
interpretation if the process measurements are independent on different days and
Gaussian distributed in the absence of anomalies. Under these assumptions, in the
long run, it gives a rate of false positives which is 0.27% and the mean time between
false positives, which is known as the in-control Average Run Length, is 370 days,
or ARL (0) = 370. These figures can be tuned to special needs by moving the above
thresholds from +30 to the appropriate percentiles.

If an "assignable cause" is in act causing a shift of the process mean then, the
time to detection is expected to be correspondingly reduced. For example if the
true process level is A = 20 instead of zero, then the average time to detection is
ARL (20) = 6.3 but for smaller deviations, e.g. A = o, a longer time to detection
is implied, namely ARL (o) = 44.

Referring back to bridge slab data of section 2, Fig. 6 shows control charts for the
clinometric readings which are independent of time. The left panel shows one-year
observed data with no anomalies and one isolated false warning at day 117. The
right panel is related to a simulated anomaly which has been obtained by adding to



Figure 5: One year data for a Shewhart control chart with superimposed parent
Gaussian distribution.

the observed data of left panel and additive anomaly which starts at day 167 and
gradually rise to 1o. It is apparent that it is hardly recognized by the 430 Shewhart
control chart.
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Figure 6: Shewhart control chart for clinometer data. Abscissa: day. Dashed lines:
+30 bands. Left panel: observed data. Right panel: observed plus simulated
anomaly of size 1o and transient from 167" day.

4.1 Accumulating information over time

Since Shewhart, control charts have been extensively studied, modified and extended
to cover a huge variety of new situations which arise from the massive use of au-
tomatic data collection in many areas and the related need to have automatic and
objective criteria to implement surveillance, see e.g. Montgomery (2005) .



From the application point of view, many new fields have been devised, for exam-
ple: computer intrusion detection based on event intensity occurring in the informa-
tion system to be sheltered (see e.g. Ye et al., 2002); financial portfolio monitoring
(Golosnoy and Schmid, 2007); epidemiological surveillance based on counts control
charts where y; is the count of morbidity events (Woodall, 2006).

From the method point of view, the basic approach of Shewhart is recognized to
be a change detector without memory as, at each time ¢, it uses only the present data
y; without reference to the past history of y, itself. It is then tailored for detecting
large abrupt changes in data which does not show periodic fluctuations and inertia.
The first fundamental line of extension is then related to give more efficiency in
change detection by means of reducing the delay time, especially for small changes.

Suppose a permanent step change or assignable-cause takes place at time ¢t* and
this is of size A # 0 on average, namely E (y;) = A. The detection time # and delay
t — t* are then of interest. Under the afore mentioned Shewhart assumptions the
expected time to detection, Fa (f -t + 1) or Average Run Length under A is the
reciprocal of the probability of an exceedance, that is
= ; (2)

Pa (lye| > 30)
This quantity is to be reduced by accumulating information over time. To do this a

simple and effective way is smoothing the data by an exponentially weighted moving
average (EW M A), namely

ARL (A)

Zt = )\yt + (1 - A) Zt—1 (3)

with a small positive smoothing factor A, formally 0 < A\ < 1, which can be chosen
to optimize the average detection delay for certain fixed change amplitudes. As
deviations are being considered from a reference value, the EW M A detector gives
a warning if
|2e] > h

where the symmetric threshold A is determined in order to control the false signal
probability. Although the threshold h still retains the interpretation in terms of false
positive probability as for the Shewhart control chart, equation (2) does not hold
in such a simple form and the ARL computation requires numerical methods which
may be based on Markov chains methodology in simple cases (see e.g. Runger
and Prabhu, 1996) and on the Monte Carlo and/or Bootstrap methods for more
complicated ones (see e.g. Fasso ad Locatelli, 2007).

Considering the same clinometric anomaly of Fig. 6, the following Fig. 7 defi-
nitely shows that smoothing is effective for signalling small changes.

Alternative techniques for accumulating past information (Basseville and Niki-
forov, 1993) are based on the CUSUM statistic and maximum likelihood ratio’s.
Extensive applied and numerical analysis showed that, these three approaches are
very close one each other and EW M A is actually the preferred one among practi-
tioners and statisticians because is flexible and simple.

4.2 Multivariate control charts

The second fundamental line of extension is related to the complexity of measure-
ment set y;. Taking into account that y; is a measurement set of correlated quantities

10
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Figure 7: EWMA control chart for clinometer data. Abscissa: day. Dashed lines:
+30 bands. Left panel: observed data. Right panel: observed plus simulated
anomaly of size 1.50 and transient from 167" day. Smoothing A\ = 0.01.

(Fuchs and Kennet, 1998), joint monitoring all the averages together can be done by
multivariate EW M A charts (Bersimis et al., 2006, Lowry et al., 1992). The basic
idea is to use a statistic which takes into account correlation among the components
of 1;. Under the assumption that the measurement set y; is multivariate Gaussian,
such a quantity is the squared Mahalanobis distance from the target here assumed

to be zero, namely
Xt2 = th_lzt (4)

where X! is the inverse of the variance-covariance matrix of z,, which is given by
the vector counterpart of recursive equation (3). After an overall change is signalled
by the exceedance of an appropriate threshold, namely

X2 > h,

the diagnostic problem of identifying the particular measurement subsets which are
responsible for the detection has to be addressed.

Note that X? of equation (4) is constant for all z’s laying on the contour of
the corresponding multivariate Gaussian distribution. For example Fig. 8 shows
the bivariate case with correlation p = 0.8, where z's along the bisector of the
first and third quadrant are more common under normal operations and, conversely,
the statistic is larger in the opposite direction which is very uncommon under nor-
mal operations and therefore is to be interpreted as stronger evidence of assignable
causes.

5 The hierarchical multivariate detector

In this section the multivariate control chart technique is hierarchically applied to
various subsets of the outputs from MSM.

In particular surveillance is based on filtered data, namely on the residual ey,
computed day by day, using the estimated version of model (1). In order to have
a decision tree procedure, which strongly controls the overall false detection rate

11



Figure 8: Contours of the bivariate Gaussian distribution with correlation p = 0.8.

(see e.g. Fasso, 1992, and Hochberg & Tamhane, 1987), the residuals are fed to
a hierarchical multivariate detector (HMD) through a multivariate exponentially
weighted moving average of the previous section.

The first step, is applying the vector recursion of equation (3) to the residuals,
where the smoothing parameter A\ taken as a scalar here, but, generally speaking,
may be a matrix enabling to have different smoothing for the different model compo-
nents. Then, the stability of the whole structure is summarized by the single value
statistic (4).

In case the MSM is a block diagonal system, as approximately holds for the
Certosa MSM, equation (4) can be decomposed into the sum of the corresponding
second level statistics, namely:

th = Xfl,t + X?B,t + Xg“,t (5)

The statistic X? may be plotted against ¢ with small values are related to global
structural normality. On the other side, if some structural properties change or some
instruments fail, than persistently large values of X? are expected.

To be more precise, the procedure which gives a signal at time ¢ if

X?>h

is defined the first level detector. When such a first level signal is given, then the
second level detectors are activated for blocks S = A, B or C'. When

X;t > hs

then the second level detectors give a signal at block S and the corresponding third
level detectors are activated. This gives a signal at instrument j of block S when

2

Note that, the case of three levels and three blocks considered in this paper can
be straightforwardly extended to more general setups, allowing for mixed strate-
gies partly related to structural criteria (bridge pylons, deck etc.) and partly to
instrumental criteria.

12



5.1 Estimation of thresholds

In order to use the proposed hierarchical procedure for detecting and localizing
structural anomalies as discussed in the next section, the above thresholds have
been estimated for a false detection probability of 0.001 and using a computer in-
tensive approach. In particular, these quantities have been computed as percentiles
of the gamma distributions approximating the stationary distributions of , and of
its sub-components, which have been obtained by 10’000 days long simulated time
series. FEach time series has been simulated using model (1). To do this, first
the covariates have been simulated by an extension of the block bootstrap used by
Fasso & Locatelli (2007) with an average block length of 60 days and with each
block randomly amplified by a stochastic factor which increases the meteorological
uncertainty.

For taking into account the uncertainty of the estimates from section 3, the
95% worst case approach of Aply & Lee (2005) has been considered empirically.
In particular, the previous simulations have been replicated 200 times. At each
replication, the generating model coefficients have been randomly generated from
the multivariate Gaussian distribution describing the uncertainty of to the estimates
of section 3 in large samples.

6 Case studies

In order to study the properties of the MHD a number of simulation studies have
been considered, see Bruzzi et al. (2007) and Fasso and Pezzetti (2007) for more
details. Here, for illustrating its use and behavior, the validation dataset starting
on April 8, 2006 is considered as in Section 2 and Figure 3. The EW M A detectors
of previous section have been implemented with a smoothing factor A = 0.1, which
is appropriate for detecting medium to small anomalies.

The first example considers an artificial anomaly at the joint in the southern end
of the bridge deck. Fig. 9 shows the observed and corrupted data for jointmeters S2
and GL2. The simulated anomaly is given by two additive transients with opposite
sign, which start at August 1st, 2006, or the 500" day, and linearly reach £6mm
in two months. The anomaly size is quite small with respect to the total standard
deviations which are 12.08mm and 11.54mm for JM-S2 and JM-GL2, respectively.
Correspondingly, Figure 10.a shows that the first level detector gives a signal at day
515, which is an early detection and is much more clear than single measurements
inspection. After the first level warning, the second level detectors have to be checked
for threshold exceedances. The remaining three panels of Figure 10 show that the
cause of the first level signal is localized at the jointmeters block. As expected, the
third level detectors of Figure 11 clearly idenitify the most probable sources of the
anomaly at jointmeters S2 and GL2, where permanent thresholds exceedances start
around day 530.

The second example shows that for those instruments where no uncertainty re-
duction is achieved at the MSM step only those deviations which are larger in a
statistical sense, may be detected.

13
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Figure 9: Southern end deck joints. Continuous lines: observed data. Dashed lines:
artificial anomaly starting at day 500.

To see this, an anomaly at the clinometer CL-1 of the north-west pylon is sim-
ulated as in Figure 12. It has the same transient timing as the above example on
joints, but larger final sizes which are +1 the measurement standard deviation, that
is +0.03 for channel A and and —0.007 for channel B. For this anomaly, the first
and second level diagnostics of Figure 13 identifies the clinometers as the source of
anomaly and the third level detectors are not reported here for brevity.

7 Conclusions

The large amount of data resulting from highly instrumented monitoring systems
require appropriate tools for extracting useful information behind simple inspection
and absolute thresholds. In this paper after a self-contained review of statistical
surveillance an approach is presented for on-line analysis, early warnings and diag-
nostics.

The proposed methodology is capable of assessing field uncertainty and com-
pensating for environmental biases. Moreover, modeling the correlations among
measurements improves the efficiency in supervising the monitored system and in
localizing the source of anomaly with a prefixed rate of false detections, especially
for instruments strongly related to temperature.

The surveillance is based on a hierarchical multivariate detector which gives an
easy to understand "statistical graphical dashboard" where, at top level, a single
graph summarizes the whole monitoring system. In case of anomaly the top level
detector gives a signal and subsequently the diagnostic system is able to localize the
source of the anomaly.

As this approach is largely empirical, it requires historical data in order to be
appropriately calibrated and validated. Nevertheless, even with a freshly installed
monitoring system, a recursive estimation procedure may be implemented in order
to start with a simpler model and improve iteratively the model estimates and its
surveillance capability.

Last but not least, the data analysis process which is required for such an ap-
proach usually greatly improves the knowledge on the monitoring system and on
structure health being monitored.

14
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Figure 10: Joints anomaly. All panels: the horizontal dashed line is the threshold
h. Panel a): The first level detector gives a signal on 515" day. Panels b), c), d):
Second level detectors clearly identify the area of the anomaly.
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Figure 13: Clinometer anomaly. All panels: the horizontal dashed line is the thresh-
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