UNIVERSITA DEGLI STUDI DI BERGAMO
DIPARTIMENTO DI INGEGNERIA DELIINFORMAZIONE
E METODI MATEMATICT

QUADERNI DEL DIPARTIMENTO

Department of Information Technology and Mathematical Methods
Working Paper

Series “Mathematics and Statistics”
n. 15/MS — 2009
Maximum hkelihood estimation

of the dynamic coregionalizaion model

with heterotopic data

by

A. Fasso, F. Finazzi, C. D’Ariano

* Viale Marconi. 5, I — 24044 Dalmine (BG), ITALY, Tel. +39-035-2052339; Fax. +39-035-562779




COMITATO DI REDAZIONE?

Series Information Technology (IT): Stefano Paraboschi
Series Mathematics and Statistics (MS): Luca Brandolini, Ilia Negri

¥ L’accesso alle Series ¢ approvato dal Comitato di Redazione. 1 Working Papers della Collana dei Quaderni del
Dipartimento di Ingegneria dell’Informazione e Metodi Matematici costituiscono un servizio atto a fornire la tempestiva
divulgazione dei risultati dell’attivita di ricerca, siano essi in forma provvisoria o definitiva.



Maximum likelihood estimation
of the dynamic coregionalization model
with heterotopic data

Alessandro Fasso, Francesco Finazzi, Cinzia DAriano
DIIMM, University of Bergamo
alessandro.fassoQunibg.it

November 30, 2009

Abstract

The information content of multivariable spatio-temporal data de-
pends on the underlying spatial sampling scheme. The most informa-
tive case is represented by the isotopic configuration where all vari-
ables are measured at all sites. The opposite case is the completely
heterotopic case where different variables are observed only at differ-
ent locations. A well known approach to multivariate spatio-temporal
modelling is based on the linear coregionalization model (LCM).

In this paper, the maximum likelihood estimation of the hetero-
topic spatio-temporal model with spatial LC'M components and tem-
poral dynamics is developed. In particular, the computation of the
estimates is based on the EM algorithm and two solutions are pro-
posed: one is based on the more cumbersome exact maximization of
the a posteriori expected log likelihood and the other is an approxi-
mate closed-form solution, whose properties are assessed in terms of
bias and effi ciency through an extensive Monte Carlo simulation.

KEY WORDS: EM algorithm; multivariate spatio-temporal models; dy-
namic mapping; particulate matters; Aerosol Optical Thickness.



1 Introduction

Multivariate environmental data collected over space and time may arise from
two basically different spatial sampling schemes. Considering a monitoring
system based on a network with instruments which do not move over time,
the simplest case is represented by the isotopic or collocated configuration
where each variable is measured at each network site. For example, this is
the case in modelling the joint distribution of air pollution concentrations
and meteorological variables coming from the same ground level monitoring
network with every stations equipped with all the instruments.

The opposite case is represented by the completely heterotopic or non-
collocated configuration, within which two different variables are never ob-
served at the same site. An example arises when modelling the joint distrib-
ution of pointwise satellite data and pollution concentrations from a ground
level monitoring network.

The approach to multivariate spatial modelling based on the linear core-
gionalization model (LC'M) has been extended to the multivariate spatio-
temporal modelling in classical papers (e.g. Rouhani and Wackernagel, 1990)
and still deserves special attention in literature. For example, De Iaco et al.
(2005) used a bivariate LCM model for spatio-temporal cokriging of isotopic
temperature and humidity in the Lombardy region in northern Italy. Simi-
larly, Jost et al. (2005) used the same cross-product model to analyse water
storage in a forest ecosystem in Austria. Moreover, Liu and Koike (2007)
used the spatio-temporal coregionalization model for partially heterotopic
data on water quality in the Arike Sea, in Japan.

Identification and estimation is a key issue in the coregionalization model
as most of applications are based on heuristic variogram fitting. For example,
Lark and Papritz (2003) used simulated annealing for fitting the covariograms
to soil data of Swiss Jura, and Bishop and Lark (2008) considered nonpara-
metric coregionalization. Recently, maximum likelihood estimation for the
purely spatial LCM has been considered by Zhang (2007), who showed that
the M algorithm gives an iterative procedure based on quasi-closed-form
formulas, at least in the isotopic case. In particular, at each EM step the
coregionalization matrices are computed by closed-form while only the low
dimensional geostatistical parameters require numerical optimization.

In this paper, the maximum likelihood estimation is considered for the
heterotopic spatio-temporal model with spatial LCM component and tem-
poral dynamics proposed by Fasso et al. (2009) for satellite data calibra-



tion. The problem of spatio-temporal calibration has been attached using the
Kalman filter approach (Brown et al., 2001) and the cokriging (Orasi et al.,
2009). Our result is based on the EM algorithm and generalizes Zhang (2007)
as it allows for time correlation, covariates and heterotopic data. Moreover,
it generalizes Fasso and Cameletti (2009a, b) who gave the EM algorithm for
the univariate case which has been extended to the locally weighted setup
by Bodnar and Schmid (2009). Two solutions are proposed, one is based on
the more cumbersome exact maximization of the a posteriori expected log
likelihood, while the other is an approximate solution with closed forms for
the coregionalization matrices.

The rest of the paper is organized as follows. Section 2 introduces the
multivariate spatio-temporal model based on coregionalization and autore-
gressive temporal dynamics. Section 3 discusses the structure of both data
and variance-covariance matrices of the various model components. Section
4 defines the EM algorithm and proposes both an exact procedure and an
approximate solution, which has the advantage of reducing the dimension of
the subset of parameters which are not computed by closed-form formulas.

Section 5 illustrates the algorithm capabilities thanks to an extensive
Monte Carlo simulation campaign based on realistic data related to satellite
AOT data calibration. In particular, the algorithm is tested over large data
sets that give rise to covariance matrices up to millions of elements. Bias and
effi ciency of the approximate solution are shown to be satisfactory. After the
conclusions of Section 6, the Appendix gives technical details on both the
exact and approximate EM algorithms.

2 Model

For any time t € N and any site s € D C R2, let Y (s,t) = (Yi(s,1), ..., Yy(s,1))’
be a g—dimensional spatio-temporal process. The first stage measurement
equation is

Y(s,t) =Ul(s,t) +e(s,t) (1)

where £(s,t) is a Gaussian instrumental error which is white noise in space
and time with ¢ x ¢ covariance diagonal matrix Iy(s).

At the second stage, the underlying true local variable U(s,t) has the
following structure:

U(s,t) = X(s,t)3+ KZ(t) + W(s,t) (2)
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where X (s,t) is a b-dimensional spatio-temporal field of known covariates,
Z(t) is the d-dimensional latent temporal state, which is constant in space
and has Markovian temporal dynamics, while W (s, t) is the latent random
spatial effect at time t. In particular, the latent state at time ¢ is defined as

Z({t)=GZ(t—1)+n(t)

where G is a d X d transition matrix with eigenvalues \; such that |\;| < 1,
n(t) ~ Nyg(0,%,) and Z(0) ~ Ng(po,Xz,). The g x d matrix K is fixed in
time and it accounts for the weights of the d components of Z(t) for each
spatial location s € D.

The latent component W (s, t) is a Gaussian process GP,(0,Ty) and it
is described by a g-dimensional linear coregionalization model (LCM) of ¢
components:

W(s,t) =Y Wy(s,t)

where W, = (Wpl, e Wg) is white noise in time but correlated over space
with a ¢ X ¢ covariance and cross-covariance matrix function given by

Fp<h7 9[)) - (COV<W;<S)7 W]z (S,)))i,j:L...,q = Vppp(h: 0]’)
The above covariance and cross-covariance functions are assumed to be isotropic
and h = ||s — §'|| is the Euclidean distance between two sites s, s’ € D. For

each p = 1,...,¢, V}, is a positive semi-defmite ¢ x ¢ matrix and p,(h,0,) is
a valid correlation function, for example the Matern function, characterized
by the parameter vector 6,. In addition, the processes W, are uncorrelated
in the sense that, for any 7 # j

cov(Wi(s), W;(s")) =0, Vs,s' € D

The multivariate ¢ x g covariance matrix for W is then
Ty (h, 01, 00) = > Tp(h,60,) =Y Vipy(h,6,)
p=1 p=1

The model parameters are collected in the following R— dimensional vector
v = UGC*(B, F07 Hos Ga Ena ; ‘/17 917 ceey ‘/07 00) - (leYa \IjZov \I/Z7 \IIW) (3)

where the operator vec* vectorizes all the unique parameters contained in the
covariance matrices excluding zeros. The matrices K and Y, are assumed
to be known and do not take part in model parametrization and estimation.

4



3 Data structure

In order to deal with the most general case, it is assumed that each variable
is possibly observed over different sets of sites. If S; = {s;1,..., Sin, } is the
set of sites for the variable Y;, 7+ = 1,...,q, three cases can be distinguished:
the isotopic case, the partially heterotopic case and the entirely heterotopic
case (Wackernagel, 1998). The isotopic case is characterized by the fact that
each variable is observed at each site, so that S; = ... = S,. Within the
entirely heterotopic case, two different variables are never observed at the
q

same site and ﬂSZ- = (). A less narrow case is the partially heterotopic

=1
setting, in which only some variables share only some sites. In this work it

is also assumed that the sets S; do not change with time t € 7 = {1,...,T'}.
Now, let Y; = (Yi(s11,t),...; Yi(S1,n051), -0, Yo(Sq15t), oo, Yo(Sqmy- 1)) be
the N = n; + ... + n, dimensional observation vector at time ¢ at the sam-
pling sites S = {S,...,.5,} and let X; be the N x b matrix of known re-
gressors at time t. Let Y = (Yi,...,Yr) be the N x T full data matrix,
Z = (Zy, 21, ..., Z7) be the T + 1 vector of the latent temporal process and
W, = Wy1, Wya, ... Wyr), p =1, ..., ¢, be the N x T matrices of the ¢ spatial
latent processes. The collection of all processes is W = (W7, ..., W,).
The N x N symmetric matrix of distances between each pair of sampling
locations in S is given by the block representation
_ (2%
H = (H )z’,j:l,..‘,q
with n; X n; dimensional blocks H*. If p,(H,0,) is the spatial correlation
matrix for the W, process observed at S, then

Y (Vp, 0y, H)= (U;7jpp(Hi7j> Qp)) (4)

is the N x N variance-covariance block matrix of the process W,,. In partic-
ular, the k, I-th element of the block v;7 p,(H"7,6,) is cov(Wp(six), Wp(s;1)),
k=1,..,n;1l=1,..n; It must be noted that, unless the isotopic setting
is considered, only the diagonal blocks of X, are square.

ivjzl’“'vq

4 Maximum-likelihood estimation

The maximum likelihood (ML) estimation of the unknown parameter vector
U defined by (3) is performed by means of the EM algorithm (McLachlan

5



and Krishnan, 1997). This method is particularly useful in the presence
of either latent variables or missing data. The former being the case of the
model defined by (1), in which the processes Z(t) and W (s, t) are not directly
observed.

4.1 Likelihood function
The complete data likelihood L(¥;Y, Z, W) can be written as

LB:Y, Z,W) = L(Wy:Y | ZW) - L(T5: Z) - LTy W)

Note that, since Z in uncorrelated with W and, also, W, ; is uncorrelated
with W, . for each t # 7 and p # o/, p,p' =1, ..., ¢ it follows that

LWz, Vyw; Z,W) = L(Vz; Z)L(Vw; W)

=LYy 7)- ﬁﬁL(\I’W§ W)

p=1t=1

Moreover, since the observations Y; are mutually independent given the latent
components (Z, W), we have

T
LUy Y | Z,W) = [[L(Wy; Y2 | Z,W)
t=1
Finally the first-order Markovian assumption implies that
T
LWz 2) = L(Wg; Zo) - [ [L(92: Zi | Zica)

t=1

Now from model assumptions of Section 2, we have the following probability
distributions

(Y, | Z,W) ~ Ny(Xo8 + KZy + Wy, 5o) (5)
Zoy ~ Na(po, Xz,)
(Zy | Z4—1) ~ Na(GZ—1, 5y)
Wyt~ Nn(0,5,), p=1,....c (6)



These give the log-likelihood function which, apart from an additive constant,
is based on the following summands

=21(Uy; Y | Z, W) =T log|Xo| +

T
+> (M= XB—KZ, - W) (S0) " (Vi — XiB — KZ, — W)
t=1

—21 (W ; Zo) = 10g Sz, + (Zo — o) (£20) ™ (Zo — o)
T
—2(Vy; Z) = Tlog |S,| + > (Zi — GZ1)' (S) " (Z — GZi)
t=1

c T
—20(Ty; W) = [Tlog S, + Y (W) S, (W)
p=1 t=1
4.2 The E-step

The (k + 1)—iteration of the EM algorithm is composed of two steps, the
E-step and the M-step. During the E-step, the algorithm computes the
expectation of the complete data log-likelihood conditionally on the observed
data Y under the parameter W*) that is

= Q Uy, ¥W) +Q (Vz2, VW) + Q (V2,9V) +Q (T, ¥™)  (7)
The first term in (7) is
T
Q (Uy, TW) = Tlog[So| + Y _tr [S' (e + A + KPIK')]
t=1

where



er = E(Y; —XtB—KZt—Wt|Y):Yt—Xt6—KZtT—WtT

Wl =EW,|Y) Z =Y E(W,,|Y)
p=1

AT = Var(W, | Y) = Z pt_ZVar(WmY)
=1

ZF = E(Z|Y)

Pr =Var(Z,|Y)

Where Z, P/ are the Kalman Smoother outputs with formulas given in
Appendix (A.1), while W/ and Al are Kriging quantities given in Appendix
(A2).

The second term in (7) is given by

Q (W2, W) = log Sz, | + tr {50 (2 — o) (2 = o) + P }
The third term in (7) can be written as

Q (Vz, W) = Tlog |S,| + tr [S," (S11 — S10G" — G}y + GSeoG)]
where

T
Su=> 2" (Z1) + P!

t=1

T
Sio = ZZtT (2121)/ + Ptj,;—l

t=1

T
Soo = Z zl, (Zth), + P,

t=1

The last term in (7) is given by

Q (T, ¥ ZTlog]Z ]—l—ztr{ [ +Wft (Wgt),}}



4.3 The M-step

At the M-step, Q) (\IJ, \I/(k)) is maximized with respect to ¥, and U#+D ig
chosen so that
¢+ — argmax Q (P, \If(k))

In this case the maximization can mostly be solved in closed form and the
solution of 8‘% = 0 is obtained by partitioning the parameter vector ¥ =
{\II\I/} where W= {0y, U, U,}, ¥ = Uy, The matrix ¥y, is assumed

constant.
Extending the results of Fasso & Cameletti (2008), the closed-form esti-

mation formulas for the parameters in ¥ are given by
-1
BUk+1) [Z X! < ))_1 Xt] :
=1

ﬂ(k‘H) Zg:(k)

A k) (o)) !

G = S§0) (S(go)>

B = = [SY; 1y ednye <51’5 ) +GSS G]

Moreover, the closed form for the ¢ x ¢ diagonal variance matrix of the
instrumental error ¢ is given by:

, 1 - L =
P = diag (— tr QB0 — e Qee® ) (8)
ny Ny
where
1 T
0= (@30), =13 = LY el A KT

and ng) is the N x N dimensional sample variance matrix of € at time ¢ and
k — th step. The temporal average is a consequence of the time-invariance
property assumed for the distribution of . The proof of (8) is given in
Appendix (A.3.1).



For what concerns V), a closed form estimation formula, obtained from
the minimization of ) (\IIWP, \I!(k)), cannot be easily derived since, unless this
is an isotopic case, it is diffi cult to write theg x ¢ matrix V}, as a function of
the N x N matrix 3,(V},, 0,, H) in closed form. For this reason, a closed-form
estimation formula is proposed here for V,, based on unconstrained minimiza-
tion of () (\I/Wp, \I/('“)) and least square matrix approximation. According to
the proof given in Appendix (A.3.2), the M-step can be approximated by

~p(k+1) - p=1,..c¢ 9)
tr {pp (H%J" 9},’“’) ]
2,7=1,...,q
where

(k) _ (77, (k
Ulg ) _ ( PJ( ))'szl _____ q (10)
I o LN e e (e 1
- f Z pt ? Z .t + p,t p,t ( )

and U;E,k;s) is the sample NV x N cross-covariance matrix of W, at time ¢ and
step k — th. Note that the temporal average is a consequence of the time-
invariance property assumed for the distribution of W), ;.

Numerical optimization methods are used in order to update the para-
meter vector ¢, when a closed-form solution cannot be found. This gives

440 = argin {log 5] 4 [(5) O]} =1
0

P

where S = Zék)(‘/;,ﬁp,H ). Of course, it is possible to estimate V, by
numerical optimization too, giving

[‘A/p(kﬂ), ég““)] = ar‘% I;lin {log !Ez(f)} + tr [(E(k))_l U(k)] } ,p=1,..c

p p

(12)
It must be noted, however, that the matrix V), is composed by (¢* + ¢) /2 in-
dependent elements and numerical optimization becomes cumbersome when
q is high.
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5 Monte Carlo simulation study

In order to evaluate the EM algorithm of Section 4.1, a large simulation
study is implemented. Two aspects are taken into consideration: how well
the parameter vector ¥ can be estimated from data and how starting values
may inflience the estimation procedure. The first question is related to the
spatial and temporal structure of data, namely the length T" of the temporal
frame and the number of sites in S. The second question is considered
by forcing different perturbations on the starting values. In particular we
consider both random perturbations and systematic offsets.

Moreover we compare the exact and approximate formulas given by equa-
tions (12) and (19) in terms of bias and effi ciency.

5.1 Simulation of realistic data

Although different spatio-temporal structures could be simulated, we test the
method of the previous section in connection to the realistic case of air quality
modelling and mapping discussed in more detail by Fasso et al. (2009). This
is interesting not only because of the plausible parameters and correlations
involved but also because the size of the covariance matrices involved is rather
large and computational feasibility may become a relevant issue.

In particular, the application concerns dynamical mapping of the con-
centration of particulate matter (PM;jo) over the north-west part of Italy
depicted in Figure 1. The PM,y concentration is collected every day by
a ground level monitoring network, Spys, composed of 84 sites in area Ds,
360 x 220 km in size. Also see Bodnar et al. (2008).

The second variable considered is Aerosol Optical Thickness (AOT) which
is collected by remote sensing and is disposed on a 10 x 10 km regular grid
over area Dj resulting in a grid of |Saor| = 858 sites. The two variables,
P My concentration and AOT, are never observed at the same site, giving
an entirely heterotopic configuration.

Moreover, two known covariates are used, namely the meteorological vari-
able known as mixing height, acronymized by MH (see Dandou et al., 2002)
and land elevation, LE. With these data, the daily temporal frame considered
is given by the first T" = 240 days of year 2006.

Now, in order to define the model to be simulated with equations of
Section 2, we use the results of a preliminary analysis. This gives a model
setup characterized by a univariate latent temporal state Z, that is d = 1.

11



AOT and PM sites
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Figure 1: Study area with AOT grid (circles) and PM;, monitoring network
(stars).

The related transition matrix G is represented by a scalar g, satisfying the
condition |g| < 1, and matrix K is set to scalar 1.

Moreover, the linear coregionalization model for the latent random spatial
effect consists of one component (¢ = 1) and the correlation structure between
different sites is based on the exponential model, that is

p(h,6;) = exp _Gﬁ
1

Finally, the parameter vector denoted by ¥° and appropriate for stan-
dardized data is reported in Table 1.

Using this realistic setup, the subsequent simulations, which are condi-
tional on both the covariates and the site configuration, are obtained by
running model of Section 2 with conditional distributions given by (5) — (6)
and parameter vector given by W°,

5.1.1 Design of experiment

In order to study the EM algorithm effi cacy in estimating the parameter
vector W, the simulation campaign is based on 25 different simulation setups,
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denoted by 7;, and is reported in Table 3, where each simulation setup, 7,
has M = 100 Monte Carlo replications.

The main aspects considered are the dimension of area D, the number
of days T" and the variability of the starting values ¥, ;o, where i = 1,...,25
is the index of the simulation setup m; and j = 1, ..., M is the index of each
replication. Moreover, the exact solution and the approximated closed-form
solution are compared by evaluating their relative effi ciency defmed in (13).

We consider three different areas, which are reported in Table 2, char-
acterized by a different dimension and a different number of sites (also see
Figure 1). Moreover, we examine three temporal frames given by 7" = 60, 120
and 240.

For what concerns starting values, four cases are considered: starting
values equal to the simulation vector parameter (U; ;o = ¥°), starting val-
ues with random perturbation centred on the simulation vector parameter
(U; ;0 = W0+ §,), starting values with offset (¥;;o = ¥° + ¢) and both
starting values with offset and random perturbation (U; ;0 = ¥°+ 4, + ¢).

Each element of the vector ¢; is randomly generated from a uniform dis-
tribution U(0.7¢9, 1.3¢)%) where ¢? is the r — th element of ¥°. On the other
hand, elements of the vector ¢ are constant for each j = 1,..., M and their
values represent an either positive or negative offset having a magnitude of
20% of the value of the respective element of the vector WO,

5.1.2 EM estimation

Once the data set is simulated, the EM algorithm is triggered with particular
starting values depending on the simulation m; considered. The maximum
iteration number of the EM algorithm is set to 250 while the exit condition

wk+1) (k) B )
Te® ]| | < 5-107%. The solution

0,  is the j — th replication of the estimate of U" within simulation 7;. In

is based on the convergence criterion

particular, ¥, ,j denotes the result of the exact algorithm while 0, ,j denotes
the result of the approximate solution.

5.2 Simulation results
For each simulation 7; considered, the sets \ilz = {\TJM, ey \i/@ M} and U; =

{\Tfm, e \TJL M} are analysed in order to evaluate bias and variability. These
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are induced, on the one hand, from the estimation procedure of the EM
algorithm, and on the other, from the natural variability of the data sets
considered.

By considering V¥, as the arithmetic mean vector of 0, (\if for the approx-
imate solution), the bias is evaluated by the metric b; = ||; — ¥°|| / | ¥°||.

If s;, is the sample standard deviation of \Iﬂ" = {\Iffl, \If }, with \I/’”

the r — th element of the vector \Ili,j, then the average coeffi cient of variation
is CV; = %27{11 sir/ |¥7|, where W! is the r — th element of the vector ¥;
and R is the dimension of the parameter W°.

The relative effi ciency between the exact and the approximate solutions
for estimating the matrix V; is defined as

| & RMSE (¥7) 3
e i = = —_— 1
M=z ; RMSE (qf) 13)

Table 4 reports detailed simulation results for m7. Note that the bias is
small if compared to the value of the respective element of the vector WP,
Also note that standard deviations and RMSEs are higher for parameters
referring to the PM variable. This is a consequence of the different number
of sites over which the two variables are observed (|Saor| > |Spa])-

Concerning the DOE of Tab 3, aggregated results are reported in Table
5, 6 and 7 for T' = 60, 120 and 240 respectively.

The first point worth to be pointing out is the overall stability of both EM
algorithm solutions proposed, which is confirmed by the convergence for all
3’800 = M x 38 Monte Carlo simulations, irrespective on the initial values.

Secondly, as expected, the estimation error, as assessed by the total
RMSE, decreases with both geographic area and temporal frame sizes, |5)|
and T respectively. This convergence result seems not to be inflienced by
the starting value perturbation. Hence the proposal results to be robust with
respect to initial values.

Finally considering the approximate solution of equation (19), it is inter-
esting to note that bias and RMSE are generally speaking rather small in all
simulation setups. Moreover, the effi ciency with respect to the exact solu-
tion of equation (12) is stable, which confirms the idea that the approximate
solution gives a consistent estimate. The effi ciency value, for our realistic
simulation setup, has a lower bound close to 0.7.
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6 Conclusions

This paper develops the EM algorithm for the linear coregionalization model
(LCM) with dynamic components, which is useful for spatio-temporal mul-
tivariate data observed on non-collocated sites.

The extensive Monte Carlo simulations, based on a large realistic data
set, show that the method has good stability properties even with rather
large covariance matrices. Moreover it is quite robust with respect to initial
values.

In order to improve computational performance for large LCMS3, the ex-
act formulas are coupled with approximate closed-form formulas for the core-
gionalization matrices. According to our simulations, the approximate EM
gives estimates which are consistent though sub-optimal.

We then suggest to use the previous two algorithms in series. According to
this, the approximate approach is used at first and then the exact algorithm
is fed with the approximate results as initial values.

A Appendix

A.1 Kalman smoother

At the generic k—th iteration of the EM algorithm, the Kalman smoothed Z!
is used instead of the unknown state Z;, following the forward and backward
Kalman recursions whose formulas are given in this section.

Let Z7, P/ and P/, ; denote the mean, the variance and the lag-one
covariance of Z;, t = 1,...,T conditional on the observation matrix Y up to
time 7, respectively. The Kalman filter equations for the predicted values
are given by

zZi =Gzl

Moreover, the updating equations are given by

{ Zt=Z7'+ (Yo - X8 — KZ{) (14)

P} = (I - JK)P™
where the Kalman gain J; is

Jt — Ptt—lKl(KPtt—lKl + ZV_V)_l
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and Xy = Z;Zl ¥,. Above recursions are based on the initial values given
by Z§ = pg and P{ = 3z,.

With these results, the smoothed values are computed from the following
backward recursion formulas for t =T, ..., 1:

zl =22+ PLG (B 2] - 2 (15)
/
PLy = P+ PEG (R A - R (PG ()T) ()
where the initial values Z% and P} are the outputs of the previously defined
Kalman updating equations.

Moreover, the smoothed lag-one covariance is computed using the follow-
ing equation fort =7 —1,...,1

Pt:,,;:—l _ Ptt <Ptt__11G (Ptt—l)ﬂ)/ N
+ (PG (PLy) ") (PEy, - GRY) (PEfG (P )

and, for t =T, we have

Pg po=—JrK)GPL}

A.2 Latent spatial effect estimation

In this section, using the joint multivariate normality of W and Y, closed-
form formulas for W are given which generalize the corresponding formulas
of Zhang (2007) . To see this, note that, for a fixed ¢t € 7 = {1,...,T} and
for each p =1, ..., ¢, we have that

cov (Wy4,Yy) = cov(W,,, W) = &,

Moreover note that the expectation of W, ; conditionally on the observed
data Y may be written as

Wy = EW, | Y) = E[E(W,, | Y,Z) | Y]
If Z; is observed for each t € 7, then

EWp | Y, 2) = EWp | Yi, 1) (17)
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From the well known properties of the multivariate normal distribution, it
now follows that

EWp | Y1, Z:) = szil Y, - X\ — KZ,)
Conditioning on Y gives

Wl =E[SY' (Y, - X\p—KZ)|Y]
=355 (Y, - X8 - KZ])
In a similar way, given the observed data Y, the conditional variance of W, ;
is given by
A;}F,t = Var(W,, | Y)
=Var[E(W,. |Y,Z) | Y]+ E[Var (W, | Y, Z)|Y]

and
Var Wy, | Y, Z) = Var (W, | Vi, Z4) = 2, — 5,578,
AT, = Var [5,57 (V; - X8 — KZ) | Y] + [S, - £,57'%,]
=S, 'KP/K'ST'S, + [5, - 5,27'%,]
where

S =Var(¥;) =) %,
p=0

A.3 Expected log-likelihood derivatives

This section provides details about the expected log-likelihood derivatives
implemented in order to obtain closed-form estimation formulas for I’y and
Veop=1,...,c.

A.3.1 Derivation of () (\I/y, \I/(k))
The expected log-likelihood @) (\Ify, \If(k)) can be restated as follows

17



T
Q (Uy, TW) = Tlog|So| + > _tr [S5' (e + A + KPI'K')]

t=1
T
=Tlog|So| +tr |37 Y _ (ae; + Al + KP/K')
t=1
= T'log |So| + T'tr (Z5'Q2)

By assuming that € has uncorrelated components, the N x N matrix X
happens to be block diagonal and

q

ol = [T (369"

=1
q

r (5510) = 3 — tr ()
i=1 70

Then
q

1 _ ..
—tr (Y
z :,7” I'( )

=1 /0

q
Q (Ty, \If(k)) — TZ nilogye' + T
=1

Deriving @ (Uy, ¥®) with respect to vy i =1,...,q, yields to

0Q (y, ¥W)  Tn,  Ttr(Q)
0" W ()

and @) (\I/y, \I/(k)) is minimized by the ¢ X ¢ diagonal matrix [’y whose diagonal
elements are given by

cig A Fyii

Y = —tr (Q : )

n;

A.3.2 Derivation of @) (\IJWP, \Il(k))

As mentioned in Section 2, when partially or completely heterotopic settings
are considered, closed-form estimation formulas for 1}, cannot be easily ob-
tained since it is diffi cult to write theq x ¢ matrix V, in closed-form from
the N x N matrix 3,(V,, 6,, H). This section proposes a closed-form formula

18



for V,, based on unconstrained minimization of the expected log-likelihood
Q (\IJWP, \II(k)) and least square matrix approximation.
The @ (\I/Wp, \Il(k)) can be re-written in a more compact way as follows

Q (¥w,, ¥¥) =Tlog 3,

+ i tr {igl [A;:t + lejt <W1’ft)/] }
t=1

= Tlog‘f)p + tr

T
oy Z A+ Wy (ij:t)I]
t=1

= —Tlog ‘i;l + T'tr {f};lUp}

where ZN]p is a generic symmetric semi-positive definite matrix. The derivative
of Q (Ty,, ¥¥)) with respect to X! is given by

0Q (Tyy,, T)

o = -T%,+T0,
p

and ) (\Ipr, \Il(k)) is minimized at

¥, =0, (18)

The solution in (18) is not constrained, namely it does not refect the core-
gionalization structure described in Section 2. In particular, the matrix
¥,(Vp, 0, H) must respect the block structure of (4), in which case there
is, in general, no V), that satisfies the equation ¥,(V,,0,, H) = U,.

We ask for V,, that minimizes the difference between the matrix ,(V,,, 6, H)
and the matrix U,. A possible solution is to choose matrix ‘7p which mini-

mizes the Frobenius norm, namely

f/p:argn‘l/innzp(%,@p,[{) _UPHF (19)

Exploiting the block structure of X,(V,,0,, H) and U, (see eq. 10), the
minimization in (19) can be implemented by considering each element v77,
1,7 =1,...,q, of the matrix V,, separately:

~hJ ; i, (2% T4
Up = arg pera v pp(H™,0,) — U HF
D
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With the following substitutions v = v57 , p = vec(p,(H™,0,)), u = vec(UL7),
it is easily seen that
_pu
o'p
Now, from vec(A")vec(B) = tr(AB), it follows that

[S31

_ tr[pp(HY,0,)057)  tr [pp(H',0,)0,]

057

P el (HY, 02 (g (HY,6,)|I%

and, by collecting each @, within the matrix V,, the solution in (9) is ob-
tained.
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AOT,AOT _PM,PM

BAOT,MH BAOT,LE 5PM,MH ﬁPM,LE Yo Yo
-0.3 -0.5 -04 -0.6 0.6 0.6
g 03 U{lOT,AOT vaOT,PM UfM,PM 0,
0.8 0.2 1.0 0.6 1.0 60.0

Table 1: Value of the parameter vector WP,

Area  Width (km) Height (km) |Saor| |Spu|

D, 130 100 130 42
D, 190 160 304 60
Ds 330 260 858 84

Table 2: Configuration of the areas considered.

D T Random Offset | # D T Random Offset

7r
1 D; 60 no no 13 Dy 60 no no
2 Dy 60 yes no 14 Dy 60 yes no
3 Dy 60 no yes | 15 Dy 60 no yes
4 Dy 60 yes yes |16 Dy 60 yes yes
5 D; 120 no no 17 Dy 120 no no
6 D; 120 yes no 18 Dy 120 yes no
7 Dy 120 no yes |19 Dy 120 no yes
8 Dy 120 yes yes |20 Dy 120 yes yes
9 D; 240 no no 21 Dy 240 no no
10 Dy 240 yes no 22 Dy 240 yes no
11 Dy 240 no yes | 23 Dy 240 no yes
12 Dy 240 yes yes | 24 Dy 240 yes yes

25 D3 60 no no

Table 3: Simulation campaign. Legend: 7: simulation index; D: considered
area; T": considered temporal frame; Random: randomized starting values;
Offset: starting values with offset.

23



\IJO

v

bias std  RMSE  qoo2s q0.975
Baormn —03 —0301 —0.00L 0.010 0.010 —0.327 —0.278
Baorre —05 —0.500 +0.000 0.012 0.012  —0.526 —0.465
Bpyuan  —04  —0403  —0.003 0.027 0.028  —0.464 —0.346
Bpure  —06 —0.604 —0.004 0.037 0.038  —0.675 —0.532
JAOTAOT 4106 40597  —0.003 0.006 0.007  +0.583  +0.609
PMPM 106 40593  —0.007 0.015 0.017  +0.560  +0.620
g +0.8 40.776  —0.024 0.077 0.080  +0.598  +0.887
o2 +0.2  40.209 +0.009 0.047 0.048  +0.132  40.322
pOTA0T 110 41.000 +0.000 0.043 0.043  +0.927 +1.082
pOTPM 06 40596 —0.004 0.034 0.035  4+0.531  +0.654
of MPM 410 41.001  40.001 0.048 0.048  +0.915  +1.103
A +60.0 459.429 —0.571 3.228 3278  +53.203 +66.141

Table 4: Simulation results for m7 (D = Dy, T = 120).
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D1 D2

Of fset Of fset
absent present absent present
bias 0.048 0.010 bias 0.005 0.005
a Fzx cVv 0.127 0.149 Ex cVv 0.095 0.110
b RMSE  7.909 9.743 RMSE  5.334 5.605
S iter 37 68 iter 22 77
e bias 0.003 bias 0.022
R n cv 0.168 cVv 0.136
a t Ap RMSE 9910 Ap RMSE  9.288
n eff 0.792 eff 0.704
d iter 44 iter 40
0 bias 0.019 0.017 bias 0.012 0.007
m p Fx cv 0.145 0.159 FEx cv 0.119 0.130
r RMSE  7.502 8.042 RMSE  4.943 6.546
p e iter 57 72 iter 56 67
e s bias 0.005 bias 0.012
r e cv 0.194 cv 0.154
t n Ap RMSE 11.461 Ap RMSE  7.878
u t eff 0.771 eff 0.767
r iter 51 iter 45
b Dy
a Of fset
t absent present
i bias 0.004
o a FEzx cv 0.065
n b RMSE 3.278
s iter 16
e bias 0.014
n cv 0.102
t Ap RMSE 5.241
eff 0.697
iter 27

Table 5: Aggregated simulation results for 7' = 60 and different perturba-

tions on the starting values. Legend: Eux: exact solution; Ap: closed-form
approximated solution; bias: average bias; C'V: average coeffi cient of varia-
tion; RMSE: total RMSE; iter: average iteration number to convergence;

ef f: relative effi ciency between exact and approximated solution.
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D1 D2
Of fset Of fset

R absent present absent present
a bias 0.026 0.027 bias 0.009 0.006
n a FEx cv 0.085 0.102 FEx cv 0.062 0.083
d b RMSE  5.262 6.250 RMSE  3.641 3.773
0o s iter 29 80 iter 21 80
m € bias 0.033 bias 0.001

n cv 0.116 cv 0,087
p t Ap RMSE  7.502 Ap RMSE  4.895
e eff 0.771 eff 0.753
r iter 41 iter 34
t bias 0.029 0.015 bias 0.015 0.002
u p FEx cv 0.110 0.112 FEx cv 0.087 0.091
ror RMSE  6.017 6.980 RMSE  4.191 4.498
b e iter 62 76 iter 52 72
a s bias 0.027 bias 0.001
t e cv 0.135 cv 0.110
it n Ap RMSE 8201 Ap RMSE  5.588
o t eff 0.851 eff 0.824
n iter 50 iter 44

Table 6: Aggregated simulation results for 7" = 120 and different perturba-
tions on the starting values. Legend: see Table 5.
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D, D,

Of fset Of fset

R absent present absent present
a bias 0.018 0.019 bias 0.005 0.008
n a FEx cv 0.056 0.067 FEx cv 0.042 0.052
d b RMSE  3.404 3.727 RMSE 2431 2.626
0o S iter 24 83 iter 15 81
m e bias 0.013 bias 0.003

n cv 0.087 cv 0.062
p t Ap RMSE 6.125 Ap RMSE  3.704
e eff 0.703 eff 0.701
r iter 38 iter 29
t bias 0.032 0.015 bias 0.014 0.005
u p FEx cv 0.087 0.088 FEx cv 0.073 0.067
ror RMSE  4.538 4.297 RMSE  3.014 2.932
b e iter 62 75 iter 53 77
a s bias 0.005 bias 0.008
t e cVv 0.104 cv 0.089
i1 n Ap RMSE 5.710 Ap RMSE  4.220
o t eff 0.877 eff 0.844
n iter 50 iter 47

Table 7: Aggregated simulation results for T = 240 and different perturba-
tions on the starting values. Legend: see Table 5.
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