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Abstract

Extreme value theory is concerned with the study of the asymptotical distribution of
extreme events, that is to say events which are rare in frequency and huge with respect
to the majority of observations. Statistical methods derived from this theory have been
increasingly employed in �nance, especially in the context of risk measurement. The aim
of the present study is two-fold. The �rst part delivers a critical review of the theoretical
underpinnings of extreme value theory. The second part provides a survey of some major
applications of extreme value theory to �nance, namely its use to test between di�erent
distributional assumptions for the data, Value-at-Risk and Expected Shortfall calculations,
asset allocation under safety-�rst type constraints and the study of contagion and dependence
across markets under stress conditions.
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Introduction

Uncertainty and risk1 enter the economy and the global �nancial system at least in a two-fold
manner, both through the temporal component (with time accounting for any possible change
to the present state of nature) and through the cross-sectional dimension (mainly related to
imperfect knowledge of the states of nature themselves). This feature not just being merely of
theoretical concern is proved by many concrete events. During the last two decades several crises
have a�ected �nancial markets, e.g. the stock market crash of October 1987 (with the S&P500
index falling more than 20% on a single day, the Black Monday, October 19), the Asian �nancial
crisis of 1997-1998, the hedge fund crisis of 1998 and the credit crisis begun in 2007. Thus,
the problem of forecasting risk in order to prevent negative events to impact against one's own
investments, or, in a broader sense, the problem of managing risk, has become a major concern
for both �nancial institutions and market regulators. As a consequence, also due to a sharp
deepening of the theoretical framework and remarkable improvements in computational tools,
risk management is striving to assess itself as an independent scienti�c discipline, though naive
enthusiasm misinterpreting it is likely to fade away after the latest crisis2.

In order to pursue its aim, the �rst task of risk management is to try to quantify and measure
risk. Ideally, the best and most informative risk measure for the returns of some �nancial activity
is given by the whole tail of the distribution of the returns themselves. Anyhow, this distribution
is in general:

(a) unknown (we only know the time series of the returns and we can just guess the exact
distribution from it);

(b) di�cult to deal with (in the sense that it contains, in a certain sense, too much information,
while a tractable risk measure should make some synthesis of the richness of data that
characterizes the exact distribution).

As an answer to the latter issue, several risk measures have been adopted during the last
sixty years, the main ones being: volatility, in the framework of portfolio selection as depicted by
Markowitz (1952); Value-at-Risk (VaR, for short), �rst used after the 1987 crash, subsequently
developed and made public by J. P. Morgan in 1994 and now at the core of international regulation
as settled by the �rst pillar of the Basel II Accord; Expected Shortfall (ES), probably a better
risk measure rather than VaR, since it really takes into account the whole of the tail of the
distribution and, moreover, it ful�ls the properties required by a coherent risk measure, according
to the de�nition of Artzner et al. (1999).

1As it is well known, the two concepts do not necessarily coincide. Anyway, we will not discuss here the variety
of de�nitions and interpretations the notion of risk has undergone in the �nancial literature.

2Many people (among scholars, professionals and journalists) have addressed the issue of the failure of quan-
titative methods of �nance and risk management in adequately preventing, or at least forecasting, the crisis (see
Embrechts, 2009 for a defence of risk management and an attempt at clarifying the actual scope of its techniques).
In fact, it looks like �nance as a science is growing up: after the seminal success of its mathematical formulation
and fast developments of the discipline, a period of positivistic self-con�dence followed (misinterpreting the ac-
tual scope of the new techniques and underestimating the limitations implicit in the assumptions on which the
theory relies), which could now be downsized, after the new insights brought about by the crisis. This could be a
great opportunity for the growth of �nance as a science and for the development of an epistemologically mature
approach towards it (as it happened to other disciplines, like physics, for instance, which represents the prototype
of the modern western concept of science).
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Though many contributions question the e�ectiveness (or even the appropriateness) of these
three quantities (especially the �rst two) as risk measures, they are still the standard measures
one has to confront with. Compared to the tail of the distribution, they summarize all the
information contained in it in a single number. Therefore they are much easier to deal with and
provide a tool apt to decision making. Anyway, the former issue we have identi�ed above, i.e.
the lack of knowledge concerning the distribution of returns, leaves us with the problem of how
actually computing these measures.

The fact that VaR and ES only deal with extreme quantiles of the distribution3, disregarding
the centre of the distribution itself, suggests the use of extreme value theory (EVT, from now
on) as an e�ective tool for providing reliable estimates of them.

EVT is a well developed theory in the �eld of probability, that studies the distribution of
extreme realizations of a given distribution function, or of a stochastic process, satisfying suitable
assumptions. The foundations of the theory were set by Fisher and Tippett (1928) and Gnedenko
(1943), who proved that the distribution of the extreme values of an iid sample from a cumulative
distribution function F , when adequately rescaled, can converge (and indeed does converge, for
the majority of known cumulative distribution functions F ) to one out of only three possible
distributions4.

The most powerful feature of this result is the fact that, to some extent, the type of asymptotic
distribution of extreme values does not depend on the exact cumulative distribution function F
of returns. This allows one to neglect the precise form of F , following a non-parametric or a semi-
parametric method to estimate Value-at-Risk. This is particularly important, according to item
(a) above and according to the fact that, though it is known that �nancial time series usually
exhibit skewed and fat-tailed distributions, there is no complete agreement on what distribution
could �t them best.

Moreover, in principle EVT-based estimates of VaR could be more precise and reliable than
the usual ones, given that EVT directly concentrates on the tails of the distribution, thus avoiding
a major �aw of parametric approaches, whose estimates are somehow biased by the credit they
give to the central part of the distribution, thus underestimating extremes and outliers, which
are exactly what one is interested in when calculating VaR.

Finally, a third reason that makes EVT especially promising when trying to measure risk
is the possibility it provides to concentrate on each one of the two tails of the distribution
independently, thus allowing a �exible approach which can take skewness (a typical feature of
�nancial time series) of the underlying distribution into account.

These three main advantages of an EVT approach to risk management could be summarized
in the motto of DuMouchel (1983): �Letting the tails speak for themselves�, which is particularly
appealing as risk management is mainly focused on avoiding big unexpected losses and sudden
crashes rather than long sequences of medium-sized losses (this is mainly a consequence of the
market crises experienced in the recent past and the empirical observation that the �nal position
of a portfolio is more a�ected by a few extreme movements in the market rather than by the
sum of many small movements5).

3See section 7 below for the de�nition of VaR and ES.
4See section 1.1 below for a mathematically precise statement of this theorem.
5�Whilst it is hard to determine the holding period of an average investor, we know that portfolio performance,

and therefore the investor's outcomes, are dependent on a few days of trading. Average daily returns are near
zero but we know on any one day that extreme and large scale returns can occur.� (Cotter, 2007a, p. 1).
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Estimation of VaR and ES is nowadays the most popular application of EVT to �nance, but
it is not the only possible one. A critical (though not complete) survey of the main �nancial
applications of EVT is the goal of the present paper. The material is organized in two parts.
The �rst one is devoted to recall the basic elements of extreme value theory, highlighting its
theoretical assumptions and analysing the main issues concerning its translation into a set of
statistical methods. The second part reviews the application of these methods to empirical
research in �nance, showing how mathematical machinery elaborated in the �rst part can cast
new light on some relevant �nancial matters (the aim of this part is rather to put some order in
the growing literature on the subject, than to give a detailed account of each single contribution).
Since readers with di�erent backgrounds can be more interested in the former or in the latter
part, we premise the paper with a quite detailed non-technical overview that enables anyone to
focus directly on the paragraphs he/she is mainly interested in.
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Non-technical Overview

Part I � Basic Theoretical Tools and Methodological Issues

Section 1 � Di�erent Approaches to EVT

Given an unknown distribution F (think of returns on some �nancial activity, for instance),
extreme value theory (EVT) is interested in modelling the tail of F only, without committing
itself to making any speci�c distributional assumption concerning the centre of the distribution.

This goal can be attained by means of three di�erent approaches, two of which are parametric
in nature, while the third one is non-parametric.

The di�erence between the two parametric approaches is related to the dissimilar (though
complementary) meaning that they assign to the notion of �extreme value�.

Consider N iid random variables Xi, i = 1, . . . , N , representing positive losses.

(a) The �rst parametric approach, the block maxima method (see 1.2), divides the given N
observations sample into m subsamples of n observations each (n-blocks) and picks the
maximum Mk (k = 1, . . . ,m) of each subsample (a so-called block maximum).

−10

−8

−6

−4

−2

0

2

4

6

8

10

Block 1 Block 2 Block 3

Figure 1: The block-maxima method.

The set of extreme values of F is then identi�ed with the sequence (Mk) of block maxima
and the distribution of this sequence is studied. The main result of EVT states that, as m
and n grow su�ciently large (ideally, as m,n→ +∞, under some additional assumption),
the limit distribution of (adequately rescaled) block maxima belongs to one out of three
di�erent families. Which of them it actually belongs to, depends on the behaviour of the
upper tail of F , whether it is power-law decaying (the fat-tailed case, of major concern
to �nancial applications), exponentially decaying (e.g. if F is the normal distribution), or
with upper bounded support (the less relevant case for �nance).

7



The three asymptotic distributions of block maxima can be expressed in a uni�ed manner
by means of the generalized extreme value (GEV) distribution, a parametric expression
depending on a real parameter ξ, known as the shape parameter. The three cases we have
just mentioned correspond to ξ > 0 (called the Fréchet case), ξ = 0 (Gumbel) and ξ < 0
(Weibull), respectively.

(b) The second parametric approach, the threshold exceedances method (see 1.3), de�nes ex-
treme values as those observations that exceed some �xed high threshold u. The aim of
this method is therefore to model the distribution of the exceedances over u, that is to say,
the random variables Yj = Xj − u, for those observations (returns, in our case) Xj that
exceed u (i.e. such that Xj > u).
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Figure 2: The threshold exceedances method.

The main result of EVT following this approach is that, as the threshold u grows to in�nity
(or to the right end-point of the support of F , if that point is �nite), the distribution of the
positive sequence (Yj), appropriately scaled, belongs to a parametric family, the generalized
Pareto distribution (GPD), whose main parameter is the same shape parameter ξ of the
corresponding GEV distribution. That is to say that, for instance, �nancial returns whose
block maxima follow a GEV distribution with a certain value ξ0 > 0 of the parameter ξ
are such that, for a su�ciently high threshold u, the exceedances over u follow a GPD with
ξ = ξ0.

(c) Both previous approaches are parametric (or semi-parametric), as they �t a parametric
model (usually via maximum likelihood estimation) to the upper tail6 of the distribution,
though neglecting what happens at the centre of the distribution. Anyway, if one does not
want to �t a model to the tail either, the possibility exists to directly estimate the shape
parameter7 ξ, pursuing a non-parametric approach (1.1). Several estimators accomplishing
this task have been proposed, but the most frequently employed one is by far the Hill
estimator.

6Analogous results hold for the lower tail as well.
7In this context, when considering fat-tailed distributions, the inverse of ξ , namely α = 1/ξ , is often the

quantity of interest to be estimated. This quantity is known as the tail index of the distribution and is the
exponent of the power-law that governs the decaying of the tail.

8



Section 2 � Setting the Cut-o�

Any of the three approaches to EVT we have considered in the previous section entails the
choice of an adequate cut-o� between the central part of the distribution and the upper tail,
i.e. a point separating ordinary realizations of the random variable considered from extreme
realizations of the same variable. When working with threshold exceedances, the cut-o� is
induced by the threshold u, while, in the block maxima method, it is implied by the number m
of blocks (or the amplitude n of each block)8.

This is a very delicate issue concerning statistical methods of EVT, since it entails a trade-
o� between bias and variance of the estimates of the shape parameter ξ. Indeed, reasoning
for instance on threshold exceedances, if u is set too low (u3 in the �gure), many ordinary
data are taken as extreme ones, thus yielding biased estimates. On the contrary, an excessively
high threshold (as u1) leaves us with scant extreme observations, not enough to obtain e�cient
estimates. In both cases, the resulting estimates are �awed and may lead to erroneous conclusions
when assessing risk.
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Figure 3: Choice of the threshold u.

Four main solutions to this problem can be found in the literature:

(a) using common sense-based choices of the cut-o� (e.g., choose u in such a way that about
5%-15% of the data are thought of as extreme observations9);

(b) employing graphical methods (known as Hill plots when the Hill estimator is used), dis-
playing the estimated values of ξ as a function of the cut-o�, in order to �nd out some
interval of candidate cut-o� points that yield stable estimates of ξ (corresponding to a
horizontal line in the Hill plot);

8Analogously, also the Hill estimator entails setting a cut-o�, since it is based on order statistics and requires
an explicit choice of one of them, which works as a cut-o�.

9Notice that the very name of extreme value theory may be somewhat misleading on some occasions, given
that, in practice, when �tting an EVT model to data, one often considers also observations that are not �extreme�,
if compared to the whole time series (for instance, one could argue that a cut-o� yielding 10% of data as extreme
includes in the tail of the distribution also quite ordinary observations).
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(c) making Monte Carlo simulations and then choosing the cut-o� that minimizes a statistical
quantity (the mean squared error) that takes both bias and variance of the estimates into
account;

(d) implementing algorithms (based for instance on the bootstrap method) that endogenously
pick out the cut-o� that is most suited to the data at hand.

Section 3 � Dependence in the Data

The basic assumption of EVT is that data be iid, which however is not true for most �nancial
time series. Therefore, using EVT without properly considering the dependence structure of
the data, yields incorrect estimates, possibly resulting in unexpected losses, or in excessively
conservative positions (both to be avoided for risk management purposes).

To take dependence of the data into consideration, two main approaches are usually employed.

(a) If the time series is strictly stationary (as it is often assumed for �nancial time series), then
an additional parameter can be estimated, the extremal index ϑ, which accounts for the
clustering of extremal values due to dependence.

(b) Alternatively, one can explicitly model the dependence structure, �tting some GARCH-
type model to the data. If the standardized residuals exhibit a roughly iid structure, one
can then apply EVT to them, instead of directly to the data.

The latter method proved to work de�nitely well when using EVT for estimating quantile-
based measures of risk, such as Value-at-Risk or Expected Shortfall, and it seems to be su�ciently
robust to yield good estimates even in the case when the GARCH model is misspeci�ed to some
extent. A third method, based on a point process approach, can be employed to explicitly model
the behaviour of extremes within clusters.

Section 4 � The Multivariate Setting

When studying extremes of multivariate time series, the dependence between extreme values
of the di�erent components of the series can also play a very important role.

In this respect, two main cases may occur, namely asymptotically independent and asymp-

totically dependent time series (4.1). In the �rst case, reasoning for simplicity on a bivariate
time series, the two components of the series are not necessarily independent (and indeed they
usually are not), but, as we consider �su�ciently high� thresholds (i.e., growing to in�nity), the
occurrence of an extreme realization of the �rst random variable does not a�ect the probability
that we observe an extreme realization of the second variable as well. The opposite holds in the
case of asymptotic dependence.

Explicit modelling of multivariate time series via multivariate extreme value theory (MEVT)
can be accomplished by means of copula functions, according to an important result (see 4.2)
stating that the asymptotic distribution of multivariate extremes is the combination of:
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• the asymptotic distributions of extreme values of the margins, as derived in the univariate
framework (section 1);

• the asymptotic behaviour of the copula.

The latter is less well understood than the former and in practice one often uses some easy
way to implement copula to model extremal dependence, though it is not necessarily the correct
one.

Finally, notice that both the block maxima method and the threshold exceedances approach
can be generalized to the multivariate setting (4.2 and 4.3, respectively).

Section 5 � The Choice of the Data-Set

This section is devoted to a brief discussion of the issues concerning the frequency of the
data employed in empirical studies using EVT and the choice of an appropriate time window for
the observations. These topics can play a signi�cant role when applying EVT, because of the
dichotomy inscribed in its nature: on the one hand, EVT requires a lot of data, since its results
are asymptotical, but, on the other hand, it is necessarily faced with a scarcity of data, given
that it concentrates on the tails of the distribution and extreme events are, by de�nition, rare.

Part II � Financial Applications

Section 6 � Testing for Di�erent Distributional Assumptions

Tail fatness is a well documented feature of most �nancial time series, since the pioneering
studies of Mandelbrot (1963, 1967). Therefore, econometric and �nancial models based on an
assumption of normality may lead to serious underestimation of the probability of extreme events
to occur, i.e. those events that, because of their magnitude (in absolute value) pertain to the
tails of the distribution underlying the given time series.

As a consequence, a lot of research has focused on the appropriateness of fatter-tailed dis-
tributions, mainly the Student t distribution and non-normal stable laws. The main problem
is that the two distributions are not nested, so that the choice between one or the other is not
immediate.

In this context EVT o�ers a valuable contribution, providing a direct comparison between the
two families and thus allowing to test which of the two better suites to the data. This is possible
since both families have the same type of asymptotic distribution of threshold exceedances, but
with values of the shape parameter that range in two non-overlapping intervals (ξ ∈ ]0, 0.5[ for
the Student t and ξ > 0.5 for stable laws). Then, �tting a GPD to threshold exceedances from
the given data, the value of the estimated shape parameter provides evidence in favour of one
or the other of the two families of distributions. Overall, �ndings on this topic seem to support
the assumption that many �nancial data follow a Student t distribution and have �nite second
moment.
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Section 7 � Market Risk: VaR and ES Estimation

The main concern in employing EVT techniques in �nance is related to risk management. The
interest in accurately modelling the lower tail of the unknown distribution underlying observed
returns of a �nancial activity is deeply rooted in the very essence of risk management, which
aims to prevent one's own position to yield huge unexpected losses. Some key features of EVT
make it an ideal tool to assess risk, especially when using quantile-based measures of risk like
Value-at-Risk (VaR) or Expected Shortfall (ES).

(a) Standard parametric methods for calculating VaR �t a parametric distribution to the whole
amount of available data, thus incurring the risk of obtaining unreliable estimates, biased
because of the predominance of central observations over extreme ones (while VaR, by
de�nition, does not take into account central observations). EVT, on the contrary, only
considers the tail of the unknown distribution F , neglecting its central part. Therefore it
allows higher accuracy in modelling the occurrence of events belonging to the tail of the
distribution, compared to parametric approaches.

(b) On the same lines, not trying to �t a parametric model to the whole distribution reduces
the model risk related to parametric approaches to VaR calculation.

(c) Anyway, at the same time EVT still o�ers a parametric device (though restricted to the
tails of the distribution), thus providing the possibility of out-of-sample projections, even
for extreme quantiles (a possibility which is in turn denied to historical simulation methods,
if not enough data are available).

(d) Finally, EVT allows separate analyses of the lower and upper tails of the distribution. This
may be important in many applications, since several �nancial time series are asymmetric
(usually big losses are more likely to occur than big positive returns).

A remarkable amount of work has been done comparing EVT calculations of VaR to those
obtained via standard methods. A fairly agreed conclusion is that EVT computation of VaR
provides more accurate estimates than traditional methods, especially when we are interested in
very high quantiles, i.e. when we need to compute VaRα for α ≥ 0.99. Furthermore, when calcu-
lating conditional VaR, namely values of VaR based on past information, a GARCH pre�ltering
of data, as described in section 3, proves to be a valuable procedure.

Section 8 � Asset Allocation

The e�ectiveness of EVT to VaR calculation can be exploited when solving portfolio selection
problems on the basis of a mean-VaR trade-o� (instead of the usual mean-variance one). That
is to say, the problem of choosing an asset allocation yielding maximum returns, subject to a
constraint that limits the upper value of VaR that is tolerated; or, the other way around, the
problem of �nding the portfolio to which minimum risk is associated, among those guaranteeing
a given lower bound for the expected return.

This problem, strictly related to the notion of a safety-�rst investor studied by Roy (1952)
and Arzac and Bawa (1977), can be solved in a more accurate way when employing EVT to
calculate VaR, according to the evidence collected in section 7.
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Univariate EVT can be used when studying portfolio returns (see Bensalah, 2002, for in-
stance). An important result in this context is that EVT solutions to mean-VaR problems are
quantile-based (in the sense that the optimal allocation changes as the con�dence level α of VaRα
varies), at odds with solutions based on estimation of VaR via normal distribution, which are
independent of the value of α.

Multivariate EVT, on the other hand, o�ers the possibility of taking into account extremal
dependence among di�erent assets in the portfolio, which can diminish the bene�ts of diver-
si�cation. Anyway, the �ndings of Bradley and Taqqu (2004a, 2004b) provide evidence that
many �nancial markets are asymptotically independent (so that diversi�cation can e�ectively
reduce portfolio extreme risk) and that univariate EVT methods yield acceptable results for
ordinary quantiles (e.g., VaR0.95), thus being a viable approach, as they are by far simpler than
multivariate EVT methods.

Section 9 � Dependence Across Markets: Correlation and Contagion

A natural �eld of application of multivariate EVT is the study of dependence and contagion
among markets, either considered as dependence between di�erent countries for a given �nancial
sector, or as dependence between di�erent �nancial markets of the same country.

In the former sense, the very in�uential paper Longin and Solnik (2001) uses multivariate
EVT to test the common belief that correlation between stock markets increases in volatile
periods and concludes that, in fact, correlation is related to the market trend (increasing in bear
markets) rather than to volatility per se. EVT has been also applied to study contagion risk in
banking sector and during currency crises.

In the latter sense, di�erent analyses have been conducted, concerning for instance depen-
dence between stock and government bond markets, or stock and exchange markets, or contagion
between banking and real estate sectors (motivated by the credit crisis).

Section 10 � Further Applications

This section simply mentions other possible �nancial applications of EVT that have been
investigated in the literature, but that we have not presented here. Important areas of application
that have been analyzed quite extensively are the study of currency crises (detecting and dating
crises) and operational risk measurement.
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Part I

Basic Theoretical Tools and Methodological

Issues

In this �rst part of the paper we review the foundations of extreme value theory (EVT) as a
part of probability theory and the main statistical methods developed for it. The exposition is
organized in such a way as to point out some issues that are relevant to the application of EVT to
empirical analysis (this part will be fairly general, though we are only concerned with �nancial
applications, to which the second part is devoted). For a systematic and detailed account of
EVT and its applications many books are now available, namely: Beirlant et al. (2004); Coles
(2001); de Haan and Ferreira (2006); Embrechts et al. (1997); Falk et al. (2004); Finkenstädt
and Rootzén (2004); Galambos (1987); Kotz and Nadarajah (2000); Leadbetter et al. (1983);
Reiss and Thomas (1997); Resnick (1987). In our presentation of EVT, we will principally
follow Embrechts et al. (1997) and McNeil et al. (2005, Chapter 7) and we will always consider
univariate EVT, except in 4.

1 Di�erent Approaches to EVT

The �rst issue one is faced with when dealing with EVT is the choice of what approach
to follow. Indeed EVT provides several di�erent techniques upon which one can rely in order
to make estimates of the quantity of interest. The main option is related to the possibility of
either directly estimating the shape parameter (non-parametric approach; see 1.1 below), that
characterizes the behaviour of the tail of the distribution, or �tting a parametric distribution to
which the extremes of the underlying distribution eventually obey (parametric approach). The
latter approach, in turn, can be pursued in a two-fold manner, according to the de�nition of
�extreme value� one chooses: either taking as extremes the maxima of iid samples of the same
dimension (block maxima, 1.2), or setting a given high threshold u and considering as extreme
any observation exceeding u (threshold exceedances, 1.3).

The non-parametric approach, especially the one based on the Hill estimator, was probably
the most used in the �rst applications of EVT to �nance (roughly, during the Nineties). Later
on, also the parametric approaches have been successfully employed and there is evidence that,
in some applications, they can work even better10.

1.1 Non-parametric Approaches: Tail Index Estimators

Comprehensive reviews of di�erent non-parametric approaches can be found in Pictet et al.
(1996) and Panaretos and Tsourti (2003) and in the above mentioned books on EVT.

10A list of pros of using the GPD approach (1.3) instead of the Hill estimator (1.1) is provided by McNeil and
Frey (2000, p. 287), including greater stability with respect to the choice of the cut-o� and the possibility of
modelling any kind of extreme value distribution, not only the heavy-tailed ones.
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� Fisher�Tippett and Gnedenko Theorems

The main theorem of EVT is usually compared to the central limit theorem of probability. As
the central limit theorem states the convergence of the standardized sum of any sequence of iid
random variables (satisfying some technical assumptions) to a given distribution (the normal),
so the results from Fisher, Tippett and Gnedenko guarantee that the standardized maximum
of a sequence of iid random variables (again, under technical assumptions) converges to some
given distribution family. However, while the central limit theorem deals with sums of random
variables, EVT focuses on maxima. Moreover, the central limit theorem provides a unique limit
distribution, while EVT includes three di�erent families of asymptotic distributions.

More precisely, given n iid random variables11 X1, . . . , Xn, let Mn denote the maximum of
this collection, i.e.

Mn = max {X1, . . . , Xn} .

It is known that, if F is the cumulative distribution function of Xj , j = 1, . . . , n, the dis-
tribution function of Mn is given by Fn. Since the actual distribution F is not known, we are
interested in studying the asymptotic distribution of Mn. Anyway, directly taking the limit
would yield

lim
n→+∞

Fn(x) =
{

1, if
0, if

F (x) = 1
F (x) < 1,

i.e. a degenerate distribution12.

In order to obtain a non-degenerate limit distribution for the maxima, Fisher and Tippett
(1928) standardized the random variableMn by means of an a�ne transformation with a location
parameter dn and a positive scale parameter cn > 0, thus reducing themselves to study the
asymptotic distribution of

Mn − dn
cn

.

Assuming the existence of a whole sequence (dn, cn) of such parameters (norming constants,
for short) indexed by n, Gnedenko (1943) proved that the distribution of the sequence of stan-
dardized maxima converges to one of the following three non-degenerate types of distributions:

• Fréchet : Hξ(x) =
{

0, if

exp
{
−x−1/ξ

}
, if

x ≤ 0
x > 0,

ξ > 0;

• Gumbel : H0(x) = exp {− exp (−x)}, x ∈ R;

• Weibull : Hξ(x) =

{
exp

{
− (−x)1/ξ

}
, if

1, if

x ≤ 0
x > 0,

ξ > 0.

11In sections 1 and 2 we will always assume that the data be drawn from iid random variables. We will discuss
to what extent one can relax this assumption in section 3.

12A distribution function G is non-degenerate if there exists x such that G (x) ∈ ]0, 1[ .
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The previous three types of distributions are called extreme value (EV) distributions, while
ξ is called the shape parameter and accounts for the behaviour of the tail of the distribution. It
is now well known that:

• Fréchet type is the asymptotic distribution of the extremes of fat-tailed distributions, such
as stable laws (with index α < 2), Student t, log-gamma and Pareto distributions (roughly
speaking, distributions with power-like decaying tails);

• Gumbel family is the reference class for the extremes of distributions with (essentially)
exponentially decaying tails with �nite moments of any order, like the normal; other dis-
tributions in this family are the log-normal, gamma, chi-squared, Gumbel and standard
Weibull;

• Weibull type is the asymptotic distribution for short-tailed distributions, i.e. those with
�nite right end-point xF = sup {x ∈ R : F (x) < 1}, like the beta.

Notice that the existence of the sequence of norming constants13 (location and scale pa-
rameters) is not always guaranteed, though for virtually any textbook distribution it has been
proved.

Furthermore, when this sequence exists, it is not unique. Anyway, the value of the shape
parameter does not depend on the particular sequence chosen to standardize the maxima, that
is, ξ is determined by F in a univocal manner.

According to this remark, the following de�nition is justi�ed.

De�nition 1.1 If there exists a sequence of norming constants such that the asymptotic distri-

bution of the standardized maxima is of Fréchet (or Gumbel, or Weibull) type with shape parameter

ξ, we will say that F is in the maximum domain of attraction of the Fréchet (Gumbel, or Weibull,

respectively) distribution Hξ.

In symbols: F ∈MDA (Hξ).

� Fréchet Family and the Tail Index

We �rst recall the following de�nition.

De�nition 1.2 A positive, Lebesgue-measurable function L on ]0,+∞[ is slowly varying at
in�nity if

lim
x→+∞

L(tx)
L(x)

= 1, ∀t > 0.

13Adopting the notation F← (α) = inf {x ∈ R : F (x) ≥ α} , the norming constants can be chosen as follows
(Embrechts et al., 1997): for the Fréchet distribution, dn = 0 and cn = F←

(
1− 1

n

)
= nξL1(n) , with L1 a slowly

varying function (see the main text below for the de�nition); for the Gumbel distribution, dn = F←
(
1− 1

n

)
and

cn = a(dn) , where the function a can be chosen as a(x) =
∫ +∞
x

F (y)

F (x)
dy ; for the Weibull distribution, dn = xF ,

where xF = sup {x ∈ R : F (x) < 1} , and cn = xF − F←
(
1− 1

n

)
= 1

nξ
L1(n) , with L1 a slowly varying function.
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The prototypical example of a slowly varying function is L(x) = lnx.

One can prove (Embrechts et al. 1997, Theorem 3.3.7) that:

Theorem 1.3 F is in the maximum domain of attraction of a Fréchet distribution with shape

parameter ξ if and only if

F (x) = 1− F (x) = x−1/ξL(x), x > 0, (1)

where L is a slowly varying function.

Condition (1) means that the upper tail of F decays as a power function, multiplied by a
slowly varying function.

The Fréchet extreme value distribution is particularly important to �nance, since most �nan-
cial series are fat-tailed, thus displaying an asymptotic distribution of extremes that is of Fréchet
type.

The parameter α := 1
ξ > 0 is known as the tail index and is directly related to the tail

behaviour of the distribution. For instance, one can prove that:

• stable laws with index less than 2 satisfy (1) with α equal to their characteristic index, so
that α ∈ ]0, 2[;

• Student t distribution satis�es it with α equal to its degrees of freedom.

The interest in the applications is often related to the estimation of the tail index, given a
sample X1, . . . , Xn of iid data drawn from a distribution F satisfying (1).

Several estimators of the tail index have been studied in the literature. We present here the
main ones, among which the Hill estimator is by far the most used14.

The Hill estimator often outperforms other estimators as far as we are concerned in the
estimation of the tail index, i.e. in the case when our cumulative distribution function is in
the MDA of a Fréchet distribution. Otherwise the Hill estimator does not work and one has
to employ some other estimator. As already noticed, this is not usually a major issue, since
many �nancial time series have an extreme value distribution of Fréchet type15 and the strong
connection between the tail index and the parameters of stable laws and the Student t distribution
explains why the earliest applications of EVT to �nance were especially focused on estimating
the tail index.

� Hill Estimator

After considering the order statistics X1,n ≥ . . . ≥ Xn,n of the data16, one can write the Hill
estimator, �rst proposed by Hill (1975), as

14Some recent applied papers which use the Hill estimator are, for instance, Haile and Pozo (2006), Cotter
(2007b), Lestano and Jacobs (2007).

15Anyway, Longin and Solnik (1997), for instance, working on data from international equity markets, �nd that
not only Fréchet, but also Gumbel and Weibull distributions can be obtained.

16We are assuming to deal with positive losses, so that we can take the logarithms of the data.
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α̂Hk,n =

[∑k
j=1 (lnXj,n − lnXk,n)

k

]−1

,

i.e. the inverse of the average log-exceedance above the threshold17 lnXk,n.

The estimator thus depends on the parameter k = 1, . . . , n, which represents the cut-o�
between the observations considered as belonging to the centre of the distribution and those
pertaining to the upper tail, so that order statistics Xj,n with 1 ≤ j ≤ k can be considered as
extreme realizations.

The dependence of the Hill estimator on k is a critical issue for the application of the method
to empirical studies and we will discuss it in section 2.

On the other hand, the Hill estimator has undergone both deep theoretical study and intensive
application, displaying very good performance, competitive (and in some cases even superior)
with respect to other EVT approaches. From a theoretical viewpoint, the favourable considera-
tion18 towards the Hill estimator is justi�ed by its asymptotic properties, which are summarized
in Embrechts et al. (1997, Theorem 6.4.6):

• Weak consistency � if k → +∞ and k/n→ 0 for n→ +∞, then α̂Hk,n
P−→ α;

• Strong consistency � if k/n→ 0 and k/ ln lnn→ +∞ for n→ +∞, then α̂Hk,n
a.s.−→ α;

• Asymptotic normality � under additional hypotheses,
√
k
(
α̂Hk,n − α

)
d−→ N

(
0, α2

)
.

Remark 1.4 We have written the Hill estimator as an estimator of the tail index α, since this
was the quantity of interest in most applications at the beginnings of the employment of EVT
in �nancial studies. Anyway, ξ̂Hk,n = 1

α̂Hk,n
can be used as an estimator of the shape parameter ξ,

so that we will talk indi�erently of the Hill estimator as estimating either the tail index or the
shape parameter.

� Pickands Estimator

Studied by Pickands (1975), this estimator19, unlike the Hill estimator, can be used to esti-
mate the shape parameter of any of the three extreme value distributions and it reads:

ξ̂Pk,n =
1

ln 2
ln

Xk,n −X2k,n

X2k,n −X4k,n
.

The asymptotic properties of the Pickands estimator are studied in Dekkers and de Haan
(1989):

17The Hill estimator can be derived in several di�erent ways (see Embrechts et al., 1997, or McNeil et al., 2005).
18Simulation studies have reported evidence in favour of the Hill estimator. For instance, Kearns and Pagan

(1997), comparing the estimators proposed by Hill, Pickands, and de Haan and Resnick, conclude that the Hill
estimator is overall the best one.

19Pickands estimator is used in applied papers such as Longin (2005), which employs both Hill and Pickands
estimators, and Ho (2008).
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• Weak consistency � if k → +∞ and k/n→ 0 for n→ +∞, then ξ̂Pk,n
P−→ ξ;

• Strong consistency � if k/n→ 0 and k/ ln lnn→ +∞ for n→ +∞, then ξ̂Pk,n
a.s.−→ ξ;

• Asymptotic normality � under additional hypotheses,
√
k
(
ξ̂Pk,n − ξ

)
d−→ N (0, ν (ξ)), with

ν (ξ) depending on ξ in a highly non linear way20.

A major �aw of the Pickands estimator is its high volatility, as underscored by Kearns and
Pagan (1997) in their simulation study.

� Other Estimators

For the sake of completeness, we recall the de�nition of two more estimators, though they
are not as commonly employed in �nancial applications as the previous ones.

The Dekkers�Einmahl�de Haan (DEdH) estimator, or moment estimator, proposed by Dekkers
et al. (1989), is an extension of the Hill estimator intended to enable it to deal with any type of
extreme value distribution, not only the Fréchet family. The estimator is of the form

ξ̂DEdHk,n = 1 +H(1)
n +

1
2


(
H

(1)
n

)2

H
(2)
n

− 1


−1

,

where H(1)
n and H(2)

n represent empirical moments21.

The estimator proposed by de Haan and Resnick (1980), on the contrary, has a very simple
de�nition, given by

ξ̂dHRk,n =
1

ln k
(lnX1,n − lnXk,n) .

� A Tail Index Estimator for Small Samples

The nice asymptotic properties of the Hill estimator fail when dealing with small samples,
since the estimator is biased in this case. A modi�cation of the Hill estimator which results in
an unbiased estimator for the tail index in the case of small samples22 is provided by Huisman
et al. (2001).

The procedure proposed consists of estimating the shape parameter ξ̂Hk = 1
α̂Hk

for k = 1, . . . , κ,
for a given κ, and then running the regression

ξ̂Hk = β0 + β1k + εk, k = 1, . . . , κ.

20The exact value of ν (ξ) is
ξ2(22ξ+1+1)

(2(2ξ−1) ln 2)2
.

21Precisely, H
(1)
n =

∑k
j=1(lnXj,n−lnXk+1,n)

k
and H

(2)
n =

∑k
j=1(lnXj,n−lnXk+1,n)

2

k
.

22For instance, Pontines and Siregar (2008) employ this estimator with monthly data of exchange rates (for an
overall period of less than twenty years).
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The previous equation, for k approaching 0, provides an unbiased estimate of ξ equal to β0.
Thus, according to the authors, �applying this procedure solves the bias-variance trade-o� by
using the information from a whole range of conventional Hill estimates for di�erent values of k
to obtain an estimate for the tail index�23. Huisman et al. (2001) also show that the estimator
resulting from this procedure is a weighted average of the di�erent Hill estimators ξ̂Hk , with the
weights themselves depending on k.

1.2 Parametric Approach I: GEV and the Block Maxima Method

Jenkinson (1955) proposed a unitary framework for the extreme value distribution of max-
ima of iid random variables. The generalized extreme value (GEV) distribution24 (also called
Jenkinson−Von Mises representation of extreme value distributions) with location parameter µ
and scale parameter σ reads

Hξ,µ,σ (x) =

{
exp

{
−
(
1 + ξ x−µσ

)−1/ξ
}
, ξ 6= 0 and 1 + ξ x−µσ > 0

exp
{
− exp

(
−x−µ

σ

)}
, ξ = 0

and nests the three limiting distributions distinguished by Gnedenko, since:

• for ξ > 0, delivers the Fréchet family;

• for ξ = 0, the Gumbel EV distribution;

• for ξ < 0, the Weibull family.

Therefore, we can restate the results of Fisher�Tippett and Gnedenko25 as follows (McNeil
et al. 2005, Theorem 7.3).

Theorem 1.5 If F ∈MDA(H) for some non-degenerate distribution function H, then H must

be a GEV distribution.

In the following, we will use the shorthand Hξ (x) = Hξ,0,0 (x).

The �rst parametric approach to EVT we are going to consider, the so-called block-maxima

method, consists of �tting the GEV distribution to a particular set of �maxima� chosen in a given
sample of data.

Given a sample X1, . . . , XN of iid data drawn from an unknown distribution F :

23Huisman et al. (2001, p. 210).
24Notice that the GEV is continuous in ξ , since lim

ξ→0
Hξ,µ,σ (x) = H0,µ,σ (x) .

25As already mentioned, the norming constants for which one can conclude that F ∈ MDA(H) , for a fully
parametric GEV distribution H, are not unique. Anyway, di�erent choices for these constants yield the same
family of extreme value distributions (namely, the same shape parameter ξ ), the only di�erence being in the
corresponding location and scale parameters ( µ and σ , respectively).
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(a) divide the sample in m non-overlapping subsamples of n observations each (n-blocks), for
given integers m,n (0 < m < n < N), and denote by Mn,j the maximum of the jth
subsample;

(b) assuming that F ∈MDA(Hξ,µ,σ) for some ξ, µ, σ ∈ R, with σ > 0, �t the GEV distribution
to the sequence of block maxima Mn,1, . . . ,Mn,m, determining estimates ξ̂, µ̂ and σ̂ of the
parameters ξ, µ and σ.

The estimation can be done by means of ML, though the maximization of the likelihood
function is subject to the constraints

σ > 0 and 1 + ξ
Mn,j − µ

σ
> 0, for j = 1, . . . ,m,

dependent on the parameters to be estimated. Consistency and asymptotic e�ciency of the
resulting non-regular MLEs can be proved for ξ > −1

2 (Smith, 1985), thus virtually covering all
the cases of interest for �nancial applications.

Remark 1.6 Analogous results and methods can be employed to study the asymptotic distri-
bution of minima, taking the relation min {X1, . . . , Xn} = −max {−X1, . . . ,−Xn} into account.

A major pro of the block maxima method is its natural way of interpreting the problem one
is trying to solve, especially when it is intrinsically structured in blocks of observations (e.g.,
daily observations of returns of a �nancial activity can be naturally split into quarterly or annual
blocks).

On the contrary, the main �aw of this method is represented by its �waste of data�, since
many data in a single block could be regarded as extreme values, though they are not block
maxima.

1.3 Parametric Approach II: GPD and Threshold Exceedances

An even more natural way to de�ne extremes in a given sample is to set a �high� threshold
u and to consider as extreme any observation exceeding u. This approach allows in principle for
a more parsimonious use of data and hinges on theoretical foundations as solid as those of the
block maxima method, as shown by the results of Balkema and de Haan (1974) and Pickands
(1975).

In this case the distribution of interest is that of the exceedances over the threshold u,
conditional on the fact that u is exceeded. We call it the excess distribution over the threshold u.
By de�nition, the excess distribution over the threshold u corresponding to a random variable X
with cumulative distribution function F is

Fu(x) = P (X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
, 0 ≤ x < xF − u,
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where xF = sup {x ∈ R : F (x) < 1}.

The asymptotic distribution of Fu for most textbook probability distributions is the gener-
alized Pareto distribution (GPD)

Gξ,β (x) =

 1−
(

1 + ξ
x

β

)−1/ξ

, ξ 6= 0

1− e−
x
β , ξ = 0,

where

{
x ≥ 0, if ξ ≥ 0
0 ≤ x ≤ −β/ξ, if ξ < 0

and β > 0. We will call ξ the shape parameter, as in the GEV distribution, and β the scale

parameter.

A justi�cation of the previous statement and connections with GEV distributions for maxima
are provided by the following fundamental theorem.

Theorem 1.7 For any ξ ∈ R, there exists a positive measurable function β(u) such that

lim
u→xF

sup
0<x<xF−u

|Fu(x)−Gξ,β(u)(x)| = 0

if and only if F ∈ MDA (Hξ,µ,σ), where Hξ,µ,σ is a GEV distribution with the same shape

parameter ξ as Gξ,β(u).

Thus, those cumulative distribution functions whose excess distribution over the threshold u
converges (as u grows to the right end-point xF ) to a GPD with shape parameter ξ are exactly
the same ones which lie in the maximum domain of attraction of a GEV distribution with the
same shape parameter ξ.

The parametric approach to EVT provided by GPDs, analogously to the block-maxima
method, consists of two steps:

• given a sample X1, . . . , Xn of iid data, choose a threshold u and set Yj = X̃j − u, where
j = 1, . . . , Nu and X̃1, . . . , X̃Nu denote the data exceeding u;

• assuming that Fu(y) = Gξ,β(y) for 0 < y < xF − u and some ξ ∈ R, β > 0, �t the GPD
to the sequence Y1, . . . , YNu of exceedances, determining estimates ξ̂, β̂ of the parameters
ξ,β.

Again, we can employ a non-regular ML estimation procedure, performing a constrained
maximization with constraints

β > 0 and 1 + ξ
Yj
β
> 0, for j = 1, . . . , Nu.
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Remark 1.8 (a) Note that, in both parametric approaches to EVT, instead of using ML,
the estimation can be performed via probability-weighted moments (PWM) 26, a method
proposed by Hosking et al. (1985).

(b) Though the Hill estimator is acknowledged to be the most e�cient estimator of ξ, McNeil
and Frey (2000), on the basis of simulation studies, argue that it does not provide the most
e�cient estimates of quantiles (and consequently of VaR) and conclude that, especially for
very high quantiles, GPD provides better estimates.

1.4 Some Generalizations

� The Point Process Approach

Both parametric approaches presented in the previous sections can be subsumed in a uni�ed
framework, where the occurrence of exceedances over thresholds is modelled by means of point
processes.

Recall that, under some technical assumptions, the counter

N(A) =
n∑
j=1

I{Zj∈A}

of the number of elements Zj , j = 1, . . . , n, belonging to a region A of some state space (e.g. Rd,
d ≥ 1) de�nes a point process.

The reference point process model for iid data is the peaks-over-threshold (POT) model27,
essentially based on the assumption that, given regularly spaced random data X1, . . . , Xn and a
threshold u, the point process de�ned on the state space Ξ = ]0, 1]× ]u,+∞[ by the counter

N(A) =
n∑
j=1

I{(j/n,Xj)∈A}, A ⊆ Ξ,

is a Poisson process with intensity function

λ(t, x) =
1
σ

(
1 + ξ

x− µ
σ

)−1/ξ−1

.

In this way, the threshold exceedances follow a point process that jointly considers both the
magnitude of each exceedance, by means of the quantity Xj , and the �normalized time� j/n at
which it takes place, where the magnitude and time windows are given in the second and in the
�rst component of the set A, respectively.

The hypothesis that the point process be a Poisson process entails that:
26Most �nancial applications use MLEs. Anyway, Tolikas et al. (2007), for instance, use the PWM method, on

the basis that it is considered to be more e�cient than the ML estimation procedure.
27We follow here the intuitive presentation given by McNeil et al. (2005), where the details are fully covered.
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(a) for any A = [t1, t2] × [a, b], the probability of having exactly k exceedances falling in the
strip [a, b] during the time interval [t1, t2] is Poisson distributed with parameter Λ (A) =∫
A λ (t, x) dtdx;

(b) the numbers of exceedances occurring in disjoint time-magnitude windows are assumed to
be independent;

Finally, the assumption on the particular expression for the intensity function λ allows to
recover a GPD as the limiting distribution for the excess distribution over a threshold u.

As usual, the estimation of the model can be pursued via ML28. Moreover, a reparameteri-
zation of the model can be accomplished in order to split the log-likelihood function in the sum
of two terms involving di�erent sets of parameters and allow drawing separate inferences.

One main advantage of this approach is that, unlike in the GPD approach, when modelling
threshold exceedances the parameters of the POT model do not show theoretical dependence on
the chosen threshold u.

� The Box-Cox-GEV Distribution

Bali (2003b) introduces a new generalization of extreme value distributions, obtained by
applying to the GEV of Jenkinson (1955) the transformation proposed by Box and Cox (1964).
The resulting Box-Cox-GEV has cumulative distribution function

Bξ,µ,σ,λ(x) =
exp

{
−λ
(
1 + ξ x−µσ

)− 1
ξ

}
− 1

λ
+ 1.

Notice that the Box-Cox-GEV nests the GEV distribution and the GPD, since:

• for λ = 1, we immediately recover the GEV distribution, being Bξ,µ,σ,1(x) = Hξ,µ,σ(x);

• for λ → 0, we obtain29 Bξ,µ,σ,λ(x) → Gξ,µ,σ(x) = Gξ,σ(x − µ), i.e. the GPD (x − µ are
exceedances over the threshold µ).

Empirical studies on �nancial data in Bali (2003b, 2007) conclude that the Box-Cox-GEV
with some λ ∈ ]0, 1[ �ts the distribution of extreme values better than both the GEV distribution
and the GPD.

2 Setting the Cut-o�

Both parametric and non-parametric extreme value methods share a common drawback: the
estimates they provide are sensitive to the choice of the cut-o� parameter, that is to say the

28See Coles (2001) for the details.
29Using the limit lim

t→0

at−1
t

= ln a .
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number m of blocks in the block-maxima method, the threshold u in the threshold-exceedance
method, or the index k of the order statistic marking the frontier between the centre and the
tail of the distribution in non-parametric approaches.

The choice of the cut-o� parameter is thus a central issue to any application of EVT, since in
principle di�erent estimates of the shape parameter can lead to signi�cantly di�erent estimates
of the VaR, for example, or to di�erent conclusions concerning the distributional assumption
that better �ts the data under consideration30.

The determination of a �good� cut-o� is not easy, since it involves a trade-o� between bias
and variance. Reasoning for instance about the cut-o� for the Hill estimator, note that:

• if k is set too high, many data are included in the tail of the distribution, even if not
extreme, yielding biased parameter estimates;

• on the other hand, low values of k give fewer observations of extreme data, resulting in
ine�cient estimates of the parameters, with huge standard errors.

Several methods have been adopted in the literature to cope with this issue. We present here
the main alternatives, reasoning on the case of the Hill estimator, just to �x ideas.

� Conventional Choices

Many authors do not address explicitly the problem of the choice of the cut-o� for the data
they are handling, but simply follow either common sense choices or suggestions retrieved in
the literature, usually based on one of the methods that we are presenting in the following
paragraphs.

A widely used suggestion in this respect is that the number of data falling in the tail should
not be higher than 10-15% and a rule of thumb value of 5-10% is often used.

� Graphical Methods

When using the Hill estimator to estimate the tail index α of a given distribution, a very
common way to determine a good choice for the cut-o� k is given by the so-called Hill plots.
They are simply the graphical representation, in a coordinate system, of the set

{(
k, α̂Hk,n

)
: k = 2, . . . , n

}
,

i.e., they plot a graph of the estimates of the tail index as a function of the cut-o� k. Regions
of the plot that are approximately close to be horizontal lines indicate values of k for which the
estimate α̂Hk,n is essentially stable with respect to the choice of the cut-o�.

Analogously, Pickands plots can be employed when dealing with the Pickands estimator,

where the set
{(
k, α̂Pk,n

)
: k = 2, . . . , n

}
is now to be plotted31.

30Lux (2000), for instance, argues that contrasting conclusions in the literature concerning the behaviour of
German stock returns are due to di�erent a priori choices of the cut-o�.

31On the same lines, one can also construct Jenkinson plots, or Pareto plots.
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Another useful instrument is provided by mean excess plots. De�ning the sample mean excess
function as

en (u) =

∑n
i=1 (Xi − u) · I{Xi>u}∑n

i=1 I{Xi>u}
,

one can plot the set {(Xk,n, e (Xk,n)) : k = 2, . . . , n} in a coordinate system. If the data have
an excess distribution over high thresholds which is distributed according to a GPD, then the
resulting plot will be roughly linear (for the higher order statistics) and the slope of the line will
provide evidence concerning the sign of the shape parameter ξ (an upward line corresponding
to ξ > 0, i.e. the Fréchet case; an horizontal plot, to ξ = 0; a downward plot, to ξ < 0).

These graphical tools can be very helpful in the choice of k, subtracting it from the domain
of pure convention or common sense, though they are still far from a mathematical standard of
rigour and still allow for considerable degrees of arbitrariness. In practice, they are often used in
combination with other methods, in order to obtain a �rst delimitation of the region to sift for
determining the optimal k. In any case, exploratory data analysis (usually based on QQ-plots
or the mean excess function) is always in case before running EVT estimates.

� Monte Carlo Simulation and MSE Minimization

A largely used selection method for automatically obtaining the cut-o� between the centre
and the tail of the distribution is the one proposed by Koedijk et al. (1990), Jansen and de Vries
(1991) and subsequently employed in many papers concerning �nancial applications of EVT,
such as Longin and Solnik (2001), Haile and Pozo (2006), Vilasuso and Katz (2000).

This method sets the minimization of the mean squared error (MSE) as the optimality cri-
terion for the choice of the cut-o�, thus taking simultaneously into account both the bias and
the ine�ciency components characterizing the above mentioned trade-o�. Indeed, the MSE of
an estimator ϑ̂ is

MSE
(
ϑ̂
)

= E

[(
ϑ̂− ϑ

)2
]

=
[
E
(
ϑ̂− ϑ

)]2
+ V ar (ϑ) ,

so that minimizing MSE simultaneously implies the minimization of both bias and variance.

In practice, the selection of the optimal cut-o� is based on the following algorithm:

(a) simulate data via Monte Carlo from a known distribution F in the domain of attraction of
a Fréchet distribution with tail index α;

(b) compute the Hill estimator of α for di�erent choices of k ;

(c) choose the value of k for which the MSE is minimal.

The simulation from a known distribution is required in order to know the exact value of the
tail index to use in the evaluation of the MSE. The usual choice for F is that of a Student t,
which allows for di�erent degrees of tail fatness and is standard when modelling �nancial data.
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This method has two major �aws. The �rst one is the distributional assumption in step
(a), since it looks like somehow denying one of the most appealing features of EVT, that is the
possibility of modelling the tails without knowing the exact underlying distribution (in fact, one
of the main applications of EVT is precisely as a tool to determine the correct distributional
choice for the data; in this case the Monte Carlo method that we are considering would be faced
with a circularity issue). In any case, there is no guarantee that the optimal choice for k when
dealing with simulated data coincides with the optimal choice induced by real data, as we don't
know the distribution of the latter.

The second �aw is related to the very election of MSE minimization as an optimality criterion
(and therefore a�ects data-driven methods as well). The reason is two-fold. On the one hand,
Manganelli and Engle (2004) point out that the evaluation of the optimal cut-o� based on
this criterion yields a biased estimator and no theoretical inquiry has been done to quantify the
resulting bias when, for instance, estimating VaR (the EVT approach to VaR calculation involves
indeed a non-linear transformation of the estimated shape parameter). On the other hand, if the
iid hypothesis that we have assumed up to now fails, Kearns and Pagan (1997) show that actual
standard errors are greater than those predicted by the asymptotic theory for independently
distributed random variables. Therefore, when the data are not iid, an MSE based optimality
criterion is questionable.

� Data Driven Algorithms

To overcome the �aw of the requirement of a distributional assumption in the simulation
based MSE minimization, several algorithms have been proposed which endogenously generate
the selection of an optimal cut-o�, relying on the real data at hand.

A review and a comparative analysis of the main ones is provided by Lux (2000), to whom we
refer the reader. His analysis focuses on �ve methods, among which we bring to the attention the
method proposed by Hall (1990) and Daníelsson and de Vries (1997a), which employs a bootstrap
approach to estimating MSE, and the method by Beirlant et al. (1996), which is based on an
iterative regression approach.

3 Dependence in the Data

In the previous sections we assumed that our data were iid. However, since we are interested in
applying EVT to �nancial data, in many cases this assumption turns out to be highly unrealistic.

Two main ways of taking the dependence structure of the data into account have been pursued
in the literature. The �rst one relies on a pertinent extension of the theoretical framework of
EVT to strictly stationary time series that satisfy a certain hypothesis, including ARMA and
ARCH/GARCH processes. The second approach is a two-step procedure that �rst models the
correlation structure of the observations by �tting, e.g., a GARCH model to the data and then
performs the estimation of the GPD distribution (or the GEV) on the residuals of the �rst
regression, as they can be considered as roughly iid.

Finally, we will mention the approach proposed by Chavez-Demoulin et al. (2005), which
uses point processes to model the in-cluster behaviour of extremes.
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3.1 EVT for Strictly Stationary Time Series

The basic idea on which the extension of EVT to strictly stationary time series32 relies is
that of studying the associated iid process with the usual tools of standard EVT and check if a
link can be established between the asymptotic behaviour of the extremes of the time series and
those of the associated random process.

Consider then a strictly stationary time series (Xi), with stationary distribution F , and a

strict white noise process
(
X̃i

)
having the same cumulative distribution function. Denoting by

Mn and M̃n the maxima of the two blocks (X1, . . . , Xn) and
(
X̃1, . . . , X̃n

)
, respectively, we are

interested in studying those strictly stationary time series for which there exists ϑ ∈ ]0, 1] such
that, for some non-degenerate distribution H,

lim
n→+∞

P

(
M̃n − dn

cn
≤ x

)
= H(x) ⇔ lim

n→+∞
P

(
Mn − dn

cn
≤ x

)
= Hϑ(x), (2)

where dn and cn > 0 are norming constants, as usual. The real number ϑ is called the extremal
index of the given process33.

Since, as it can be easily veri�ed, for any GEV distribution Hξ, its power Hϑ
ξ is still a

GEV distribution with the same shape parameter ξ, equivalence (2) means that the asymptotic
distribution of the block maxima of the iid process is a GEV distribution with shape parameter
ξ if and only if the block maxima of the time series are asymptotically distributed according to
a GEV with the same shape parameter ξ (though, in general, with di�erent location and scale
parameters). Therefore, for a su�ciently high threshold u, the probability P (Mn ≤ u) can be

approximated by
[
P
(
M̃n ≤ u

)]ϑ
, which is known to be equal to Fnϑ(u), since the process is iid.

Thus, in this case the probability P (Mn ≤ u) will not be equal to Fn(u), as in the iid case, but
will be roughly approximated by Fnϑ(u), where nϑ ≤ n, given that ϑ ∈ ]0, 1], as a consequence
of our de�nition of the extremal index. When ϑ < 1, extreme values in the time series tend to
cluster and the quantity nϑ stands for the number of independent clusters, while ϑ−1 can be
interpreted as the mean size of the clusters.

This theoretical development of EVT is relevant to �nancial applications, since it has been
proved34 that ARMA, ARCH and GARCH processes, which are frequently employed in modelling
�nancial time series, satisfy (2). Thus we can extend to these processes all the useful tools
provided by EVT. Anyway, when �tting the model to the data, we have one more parameter
to estimate, the extremal index ϑ. Moreover, since in general ϑ < 1 (with the exception of
ARMA processes with Gaussian strict white noise innovations, for which ϑ = 1), one has to
take into account that convergence will be slower than expected in the iid case and a greater

32Recall that a time series (Xt) is strictly stationary if, for all n ∈ N\ {0} and t, t1, . . . , tn ∈ R , the ran-
dom vectors (Xt1 , . . . , Xtn) and (Xt1+t, . . . , Xtn+t) have the same joint distribution, i.e. if the distribution of
(Xt1 , . . . , Xtn) is invariant under time shift.

33See Leadbetter et al. (1983) and Embrechts et al. (1997) for a mathematically sound de�nition and study of
the extremal index. A recent work employing this approach when applying EVT to �nancial issues is Ho (2008).

34De Haan et al. (1989) and Mikosch and St ric  (2000) for ARCH(1) and GARCH(1,1) processes, respectively.
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number of data will be needed, since in any sample of n observations only nϑ clusters of them
will actually matter to the purpose of estimating the behaviour of extremes. Therefore, one can
still use EVT methods from the iid framework, but the estimators obtained may be less accurate
and neglecting this fact could lead to inadequate resolutions in order to cope with the risk of
occurrence of extreme events.

In practice, a common way to proceed is to decluster the data (there exist several methods,
but the issue of a precise de�nition of the boundaries of a cluster makes things quite fuzzy) and
then apply standard EVT methods.

3.2 Data Filtering and the Two-step Procedure

Another approach to manage dependence in the time series that has been successfully em-
ployed in the literature on �nancial applications of EVT is the one suggested by Diebold et al.

(1998) and implemented by McNeil and Frey (2000) 35.

The main intuition on which the method hinges is that, though �nancial data are not iid,
the standardized residuals obtained as a by-product of modelling the dependence structure of
the time series are roughly iid. To the extent to which this is true, one could hope to avoid the
problem of dependence in the data by applying EVT to the residuals instead of directly applying
it to the raw data.

This idea of a �ltering, or a pre-whitening, of the data yields then a two-step procedure that
acts in the following way. Given a strictly stationary time series (Xt), whose dynamics is driven
by Xt = µt + σtZt, with Zt a strict white noise process of unknown distribution:

(a) �t an AR(1)-GARCH(1,1) process to model the conditional mean and volatility; evaluate
forecasts for µt+1 and σt+1, based on the estimated model, and compute the standardized
residuals;

(b) model the tails of the unknown distribution of the standardized residuals by means of EVT.

Notice that estimation of the GARCH model at step (a) is performed by means of pseudo-
maximum likelihood (PML). This means that a GARCH(1,1) model with normal innovations is
estimated, though we do not really commit our belief to this distributional assumption. Anyway,
the use of PML is a sensible choice, since it yields a consistent and asymptotically normal
estimator.

The crucial point for the two-step approach to be a viable way to the solution of the issue
of dependence is the property that the residuals of the GARCH model �tted at the �rst step be
iid, in order to apply EVT at the second step.

However, a recent paper by Jalal and Rockinger (2008) shows that, even when the GARCH
model is misspeci�ed, GARCH �ltering followed by EVT modelling of the standardized residu-
als delivers good results, thus proving to be quite a robust approach (precisely, they check the

35The main reference regarding the two-step approach is McNeil and Frey (2000). An anticipation of this
approach is given in an example by Embrechts et al. (1997, Fig. 5.5.4., p. 270). Further applications can be
found in Bali (2007), Bali and Neftci (2003), Byström (2004, 2005), Cotter (2007a, 2007b), Krehbiel and Adkins
(2005), Kuester et al. (2006), Lestano and Jacobs (2007). See Dias and Embrechts (2003) for an application of
the method to the multivariate setting.
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consequences of applying it to either GARCH data with non-normal innovations, or data sim-
ulated by non-GARCH models). Anyway, a somehow contrasting result is found by Kuester et
al. (2006), who observe that better results in VaR estimation can be obtained with non-normal
innovations, thus suggesting that �distributionally nonparametric models do indeed depend on
the distribution assumed in the �ltering stage�36.

Possible variations and generalizations of the two-step procedure concern the following fea-
tures.

• The choice of the �ltering model. McNeil and Frey (2000) justify the choice of AR(1)-
GARCH(1,1) on the grounds of its parsimoniousness and e�ectiveness. Dias and Embrechts
(2003) use an ARMA-GARCH model, while, as just mentioned, Kuester et al. (2006)
criticize the AR(1)-GARCH(1,1) model as incapable of correctly specifying �nancial data
and improve on this point by considering skewed t innovations. Chan and Gray (2006)
use an AR-EGARCH model with t innovations to take into account weekly seasonality in
conditional volatility and leverage e�ects, while Bali (2007) uses a GJR-GARCH model
with skewed t innovations.

• Di�erent EVT techniques can be employed at step (b). While McNeil and Frey use GPD
and threshold exceedances, Cotter (2007b), for instance, uses the Hill estimator.

• Extension to a multivariate framework. The above cited paper Dias and Embrechts (2003)
applies the two-step procedure to model the marginal distributions of a multivariate time
series.

3.3 A Point Process Approach to In-cluster Behaviour Modelling

The two methods for dealing with the dependence structure of time series we described
above can work fairly well in practice, but they su�er from some drawbacks as well. The two-
step procedure crucially depends on the results of the �tting of a GARCH model in the �rst
step and could deliver inaccurate estimates if the model were misspeci�ed, while the extremal
index approach followed by declustering dismisses the task of modelling the short-run behaviour
of extremes and is faced by the di�culties related to practical identi�cation and treatment of
clusters.

This task, on the contrary, is explicitly undertaken by a point process approach introduced by
Chavez-Demoulin et al. (2005). The method is a modi�cation of the peaks-over-threshold model
we described in section 1.4, in order to relax the iid hypothesis and allow to deal with stationary
dependent time series. In this case, the occurrence of threshold exceedances is not modelled by
a homogeneous Poisson process; rather, a marked point process with a self-exciting structure for
the times of occurrence of excesses is employed, i.e. a point process in which the amplitude of
each event wj = Xj − u (mark) is considered and the intensity function depends on the time
elapsed since the last exceedances took place (self-exciting process). Typically, this dependence
is modelled by means of a function of both time and wj, that is monotonically non-decreasing in
time, so that the more recent an exceedance is, the more it contributes to the current intensity.

36Kuester et al. (2006, p. 84).
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The basic assumption under which the model is derived is that times and marks are inde-
pendent, conditional on the information available at the time of the previous exceedance37.

4 The Multivariate Setting

One major issue of EVT concerns its essentially univariate nature. The concept of a max-
imum, as well as that of a threshold excess, is based on the existence of an order relation.
When moving to a multivariate setting, order relations generally provide partial orderings only
and many of them can be legitimate candidates, thus somehow yielding even more arbitrariness
in the construction of a multivariate extreme value theory (MEVT) than can be found in the
univariate case. However, the most di�cult problem is related to the dependence structure of
extremes in a multivariate series and the choice of a proper copula to model it. As in the previous
section we were interested in modelling the dependence structure of a univariate series along its
temporal development, analogously we will now focus on dependence among extreme realizations
of di�erent components of a multivariate process.

Despite its pitfalls, the importance of a multivariate extension of EVT techniques is consider-
able, since in many applications we are faced with time series that are multivariate in nature and
the dependence structure of their extreme values has to be appropriately modelled and taken
into account. For instance, multivariate extreme value theory can be successfully employed
when performing portfolio selection or when testing the existence of contagion across di�erent
markets38.

In the following we will only reason on bivariate distributions. The extension to general
multivariate distributions can be theoretically conceivable, but it is often demanding from a
computational viewpoint (see section 8 below) and it is not always completely straightforward,
so that, in practice, most applications restrict to d -variate EVT with d = 2 or d = 3.

We �rst introduce the notions of asymptotic dependence and independence (4.1), then con-
sider the multivariate generalization of Fisher-Tippett and Gnedenko theorems and the analogue
of the block maxima method (4.2); �nally, we present the extension of the threshold exceedance
approach to the multivariate setting (4.3).

4.1 Tail Dependence

When considering the extremal behaviour of a multivariate distribution, it is important to
study the strength of dependence between the tails of di�erent components of the distribution
itself, in order to appropriately model the dependence structure. A useful measure of extremal
dependence can be de�ned as follows.

37We don't enter here the mathematical details of the theory, for which we refer the reader to Chavez-Demoulin
et al. (2005), or to the presentation of the method provided by McNeil et al. (2005).

38Ané (2006) makes an interesting and non-standard use of multivariate EVT, studying univariate Asian-Paci�c
stock indices via a two-component extreme value distribution: one component accounts for �ordinary� extremes,
while the other one stands for the outliers of the distribution, thus enhancing the accuracy of EVT in modelling
really extreme events.
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De�nition 4.1 Let X1, X2 be random variables with cumulative distribution functions F1, F2,

respectively. The coe�cient of upper tail dependence of X1 and X2 is

λu = lim
q→1−

P (X2 > F←2 (q) |X1 > F←1 (q)) ,

provided this limit exists and is �nite.

Thus the coe�cient of upper tail dependence39 measures the conditional probability that X2

exceed the qth quantile, given that X1 does, as q tends to 1. Loosely speaking, it measures
to what extent the occurrence of extreme realizations of the �rst random variable a�ects the
probability of observing extreme realizations of the second one.

If λu = 0, X1 and X2 are said to be asymptotically independent (in the upper tail); otherwise,
i.e. if λu ∈ ]0, 1], X1 and X2 are asymptotically dependent.

The extremal dependence structure is typically di�erent from the dependence we �nd at the
centre of the distribution, given that, for instance, asymptotical independence can be achieved
when the components of the distribution are not independent. For example, a bivariate nor-
mal variable with correlation ρ 6= 1 is asymptotically independent, though it is not linearly
independent, unless ρ = 0.

Taking extremal dependence into account is very important when using multivariate EVT. For
instance, Bradley and Taqqu (2004b) �nd that applying multivariate extreme value models for
asymptotically dependent variables to asymptotically independent ones can overstate portfolio
risk, thus leading to an excessively conservative position (see 8 below).

4.2 Multivariate Block Maxima

In the multivariate setting, �rst of all, we are interested in de�ning multivariate maxima and
�nding suitable normalizations under which they converge to some non-degenerate distribution,
exactly as in the univariate case (1.2).

Thus, given X1, . . . , Xn, iid random vectors in Rk with joint cumulative distribution function
F , denote by Mn,j = max {X1,j , . . . , Xn,j}, j = 1, . . . , k, the maximum of the jth component
of X1, . . . , Xn. The multivariate block maxima method looks for a limiting distribution of stan-
dardized componentwise block maxima Mn = (Mn,1, . . . ,Mn,k)

T . In particular, analogously to
the univariate case, if there exist random vectors cn, dn in Rk, where cn has positive components,
and a non-degenerate joint cumulative distribution function H such that

lim
n→+∞

P
(
Mn,1−dn,1

cn,1
≤ x1, . . . ,

Mn,k−dn,k
cn,k

≤ xk
)

= lim
n→+∞

Fn (cn,1x1 + dn,1, . . . , cn,kxk + dn,k)

= H (x1, . . . , xk) ,
39A version of this measure that is invariant with respect to the marginal distributions of the random vari-

ables considered can be obtained standardizing the marginal distributions themselves, e.g. replacing X1, X2

by −1/ lnFX1 (X1) and −1/ lnFX2 (X2), respectively. Moreover, a complementary measure was introduced by
Ledford and Tawn (1996) to evaluate extremal dependence in the case of variables that are asymptotically in-
dependent. See e.g. Poon et al. (2004) for a presentation of both measures and an application to dependence
between �nancial markets.
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then we say that F is in the maximum domain of attraction of H, in symbols F ∈ MDA (H),
and call H a multivariate extreme value (MEV) distribution and its copula C0 an extreme value

copula.

This construction is closely similar to that of the univariate block maxima method, since it
originates as an extension of that approach to the multivariate setting, but the relation between
multivariate and univariate EVT can be expressed in an even more precise way. To do this we
need one more de�nition, namely that of copula domain of attraction.

Given two copula functions C,C0, we say that C is in the copula domain of attraction of C0,
in symbols C ∈ CDA (C0), if

lim
t→+∞

Ct
(
u

1/t
1 , . . . , u

1/t
k

)
= C0 (u1, . . . , uk) ,

for all u ∈ [0, 1]k.

The relation between the limiting joint distribution of multivariate block maxima and the
limiting distributions of its margins is provided by the following theorem40.

Theorem 4.2 Let F (x) = C (F1 (x1) , . . . , Fk (xk)), where the marginal distribution functions

F1, . . . , Fk are continuous, and let H (x) = C0 (H1 (x1) , . . . ,Hk (xk)) be a multivariate extreme

value distribution. Then F ∈MDA (H) if and only if C ∈ CDA (C0) and Fj ∈MDA (Hj), for
all j = 1, . . . , k.

Therefore, in particular, the marginal distributions of F determine the margins of H, but
leave the extreme value copula una�ected; the latter, indeed, is only determined by the copula
of F .

When coming to estimation, the procedure is again similar to the univariate case, based on
two main steps. Given a sample X1, . . . , XN of iid vectors drawn from an unknown distribution
F :

(a) divide the sample in m blocks of n observations each, where 0 < m < n < N , and denote
by M i

n the componentwise maximum of the ith block;

(b) assuming that F ∈MDA(H) for some multivariate extreme value distribution

Hξ,µ,σ,η (x) = Cη (Hξ1,µ1,σ1 (x1) , . . . ,Hξk,µk,σk (xk)) ,

�t Hξ,µ,σ,η to the sequence of block maxima M1
n, . . . ,M

m
n , determining estimates ξ̂, µ̂, σ̂

and η̂ of the parameters.

As usual, the estimation can be done via ML. One can choose whether to perform a one-step
estimation or a two-step estimation, �rst �tting the marginal distributions and then estimating
the copula model.

40See Galambos (1987) and McNeil et al. (2005).
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The same critiques that could be made to the univariate block maxima method hold in the
multivariate setting as well. Moreover, a new issue arises, since we do not know the actual
copula C of the distribution F and we cannot know exactly which extreme value copula contains
C in its copula domain of attraction. Therefore, in practice one has to work with some suitable
parametric copula Cη solving a trade-o� between two requirements: on the one hand, that Cη be
a sensible choice for the data at hand (for instance, that it be a parametric family allowing for
asymptotic independence, if the data are asymptotically independent) and, on the other hand,
that Cη be easy to implement. A standard choice in the �nancial literature is the logistic model41,
that is quite easy to implement and for which there is some empirical evidence that, even though
it may be a theoretically incorrect model for the data at hand, it can yield a su�ciently accurate
description of the observed behaviour of the data42 (in the case of tail dependence).

4.3 Multivariate Threshold Exceedances

In this section we present an approach to multivariate EVT that extends the univariate
threshold exceedance method43 (see 1.3 above).

The main idea is to �t a multivariate distribution F̃ (x) = Cθ

(
F̃1 (x1) , . . . , F̃k (xk)

)
to the

data, where the margins F̃j , j = 1, . . . , k, are GPDs of the form

F̃j (xj) = 1− λj
(

1 + ξj
xj − uj
βj

)−1/ξj

,

Cθ is a suitable parameterized family of extreme value copulas and the maximum likelihood
estimates are calculated with censored data. This means that, when we set a high vector threshold
u = (u1, . . . , uk)

T , given a vector Xi = (Xi,1, . . . , Xi,k)
T , in general it will hold neither Xi ≤ u

norXi ≥ u, since some components ofXi will be greater than the corresponding components of u,
while some others will be smaller. For the sake of simplicity, let exactly the �rst h (1 ≤ h ≤ k)
components of Xi be those for which Xi,j > uj holds. The information carried by the other
components when studying threshold exceedances reduces to the fact that they are not above
the threshold, irrespectively of their actual value. Censoring of the data consists of taking this
fact into account. Precisely, it means that the contribution Li of the vector Xi to the likelihood
function is only determined by the �rst h components, namely

Li =
∂hF̃ (x1, . . . , xk)
∂x1 . . . ∂xh

∣∣∣∣∣
(x1,...,xk)=(Xi,1,...,Xi,h,uh+1,...,uk)

(3)

41The logistic (or Gumbel) copula model is Cγ,α,δ (u1, u2) = u1−α
1 u1−δ

2 exp
{
− [(−α lnu1)

γ + (−δ lnu2)
γ ]1/γ

}
.

42For a critical review of the main advantages and drawbacks of copula-based extreme behaviour modelling,
occasioned by the general disarray caused by the credit crisis, see Embrechts (2009). In particular, the intrinsically
static nature of the copula is highlighted as a prominent �aw, as �the subprime crisis made clear the shortcomings
of copula-based modeling with respect to sudden widening of credit spreads� (Embrechts, 2009, p. 36).

43The approach is substantially based on Ledford and Tawn (1996). We follow the presentation given by McNeil
et al. (2005). See also Balkema and Embrechts (2007) for a geometric approach to multivariate EVT in the spirit
of the Peaks over Thresholds (POT) method.
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In practice, for a bivariate distribution44, this amounts to partitioning R2 in four regions

A0,0 = ]−∞, u1[× ]−∞, u2[ , A1,0 = [u1,+∞[× ]−∞, u2[ ,

A0,1 = ]−∞, u1[× [u2,+∞[ , A1,1 = [u1,+∞[× [u2,+∞[

and computing the value of Li as

Li =



F̃ (u1, u2) , for Xi ∈ A0,0

∂F̃ (x1,x2)
∂x1

∣∣∣
(Xi,1,u2)

, for Xi ∈ A1,0

∂F̃ (x1,x2)
∂x2

∣∣∣
(u1,Xi,2)

, for Xi ∈ A0,1

∂2F̃ (x1,x2)
∂x1∂x2

∣∣∣
(Xi,1,Xi,2)

, for Xi ∈ A1,1,

according to (3).

5 The Choice of the Data-Set

In this section we brie�y summarize some problems concerning the choice and the preparation
of the data-set to which apply EVT methods. Though this choice can be ascribed to the analysis
of applications, we include it here since it represents a relevant methodological issue when using
EVT.

� Raw vs Log Data

Instead of considering either raw data or simple returns, it is customary in �nance to consider
either log prices or log returns on those prices, due to considerable advantages, such as nicer
statistical properties of the time series of log returns, compared to those of the time series
of raw data, and the additivity property for multiperiod returns induced by the logarithmic
transformation (see e.g. Tsay, 2005)45.

Statistical properties of the data and of their transformations are especially crucial to a
methodology, like that supplied by EVT, which is based on asymptotic properties but is neces-
sarily faced with scarcity of data (given that it deals with extreme values, which are rare events,
by de�nition).

44In addition to the above mentioned references, see also Longin and Solnik (2001, Appendix 2) and Bradley
and Taqqu (2004b) for a detailed derivation of the maximum likelihood function in the bivariate case.

45For instance, Longin (1999), approaching the problem of setting optimal margin levels for silver futures
contracts on COMEX via EVT, instead of �dollars per contract� (the unit measure adopted by margin committees)
uses percentage log returns, arguing that this de�nition is valuable, since: �It provides the econometrician with
a stationary time series; it is independent of the unit of measurement; and it is stable under time-aggregation.�
(Longin, 1999, p. 142).
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As the dichotomy between raw and log data is concerned, no general recipe is available, but
the decision has to be taken according to the speci�c data-set at hand. We only mention two
opposite situations that one could encounter. On the one hand, there are data which do not
clearly exhibit an asymptotic GPD of threshold exceedances, like the daily changes in the LIBOR
studied by Krehbiel and Adkins (2008). As shown by the authors, considering log changes makes
the data suitable to the use of EVT methods. On the other hand, when the data themselves
already display huge variations and many extreme values of considerable magnitude, like the
electricity prices on Nord Pool analyzed by Byström (2005), it is advisable not to work with log
prices46.

� Frequency of the Data

The literature on high frequency �nancial data has grown considerably in the recent past. In
principle, the issue of the frequency of data could matter signi�cantly to EVT, given the above
mentioned antinomy between the asymptotic nature of that theory and the actual scantness of
data. Anyway, in �nancial applications of EVT there is a great variety in this respect. Most
papers use daily data (especially when stock returns are concerned), but relevant work has been
done also with higher frequency data. For instance, Lux (2001) uses minute-to-minute changes
during trading hours at the Frankfurt Stock Exchange over a period of seven years (thus collecting
almost 300,000 observations), Werner and Upper (2004) study tick data (approximately covering
�ve years) of German Bund futures for a total amount of 13.4 million trades, while Hauksson et

al. (2001) consider 10 minute to biweekly returns of the foreign exchange market and conclude
that high frequency data can signi�cantly improve extreme value estimates.

Indeed, the choice of high frequency data provides a huge bulk of observations, thus enhancing
the possibility of performing accurate estimates of the parameters governing the tail behaviour
of the distribution, but put some problem forth as well. In particular, high frequency time series
usually exhibit seasonality as a considerable component. Thus, some preparation of the data is
often required.

In any case, the choice of the frequency should be coherent with the kind of data at hand
and with the purpose of the analysis. For instance, Ho (2008), applying EVT in order to date
currency crises, uses monthly data, since a component entering the index of exchange market
pressure (EMP) is only available at a monthly frequency, while Longin (2000), performing EVT
based estimates of VaR, relates the choice of the frequency to the liquid or illiquid nature of the
position one holds47.

46Obviously the question of the choice of suitable data does not restrict to that of raw versus log data. For
example, studying exchange rates, Koedijk et al. (1990) suggest that, in order to achieve stationarity, it is a more
sensible option to deal with exchange rate returns rather than exchange rates themselves. Hsieh (2001), on the
contrary, pursues stationarity by using log exchange rates. In some cases, another possibility to obtain better data
on a particular �nancial instrument is to consider futures contracts on that instrument, as proposed by Werner
and Upper (2004) studying the bond market.

47�The choice of the frequency should be related to the degree of liquidity and risk of the position. For a liquid
position,high frequency returns such as daily returns can be selected as the assets can be sold rapidly in good
market conditions. The frequency should be quite high as extreme price changes in �nancial markets tend to
occur during very short time-periods as shown by Kindleberger (1978). Moreover, low frequency returns may not
be relevant for a liquid position as the risk pro�le could change rapidly. For an illiquid position, low frequency
returns such as weekly or monthly returns could be a better choice since the time to liquidate the assets in good
market conditions may be longer. However, the choice of a low frequency implies a limited number of (extreme)
observations, which could impact adversely upon the analysis as extreme value theory is asymptotic by nature.�
(Longin, 2000, pp. 1104-1105).
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Finally, notice that there are at least three more ways in which one can enrich the data-set
in order to make EVT a viable approach.

• Expanding the time window as much as possible. For example, Bali (2007) uses daily index
levels of the Dow Jones Industrial Average (DJIA) from May 26, 1896 through December
29, 2000 (more than 28 thousand observations). This is the most obvious solution, but
not always a sensible one, since for forecasting purposes very old data could deteriorate
estimates rather than improve them.

• Jointly modelling both lower and upper extreme values. Though dismissing a signi�cant
feature of EVT (namely its capability of separately modelling the two tails of the dis-
tribution), this can be a sensible approach if the empirical distribution is approximately
symmetric.

• Pooling di�erent data series in a single one. This blend is done for example by Byström
(2007), who, studying the iTraxx Europe CDS index market and having only daily obser-
vations covering a period of one year and a half, merges all subindices into a single data
series.

The previous remarks suggest that the abundance of data per se is not always a su�cient
condition for having good EVT estimates. This is in agreement with the �ndings of Huisman
et al. (2001), who model approximately the same (not scanty, in principle) data-set of Loretan
and Phillips (1994) but obtain di�erent estimates, due to the use of a small sample adjusted Hill
estimator (see 1.1 above) instead of the standard one48.

48Huisman et al. (2001, p. 213).
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Part II

Financial Applications

Having discussed in the �rst part the main features of EVT and the main issues that can
arise when applying it to empirical studies, in this second part we review the main �nancial
applications of EVT.

6 Testing for Di�erent Distributional Assumptions

Pioneering studies by Mandelbrot (1963, 1967) and Fama (1963, 1965) questioned the ad-
equateness of the assumption of normality for �nancial time series, thus being either regarded
as heterodox (given the successful employment of the normality assumption in the theories of
Markowitz and Sharpe) or ignored (as in the Black and Scholes model for option pricing). There
is now a lot of evidence that the normal distribution is too thin-tailed to adequately �t �nancial
data from many di�erent markets. That is to say, extreme observations are much more likely to
occur than one would predict according to the normality assumption. This hints at the possibil-
ity that distributions with power-law tails be better suited to model real data than the Gaussian
exponentially decaying tail is.

A deep study of fat-tailed distributions49 has then been carried out, aiming to �nd appropriate
distributions to �t �nancial data. The main candidates considered in the literature are stable
laws and the Student t distribution. A considerable debate on the advantages of one or the other
has taken place:

• Student t distribution combines fat tails (observed in practice) with the existence of vari-
ance (assumed in many economic and �nancial models); skewed versions of the t distribu-
tion have also been proposed to take into account empirical evidence of skewness in several
�nancial time series;

• stable laws, �rst suggested by Mandelbrot as an appropriate modelling tool, allow for both
heavy tails and skewness; furthermore, for any �xed characteristic index α, they are a
closed family with respect to addition, but, on the other hand, non-normal stable laws
have in�nite variance.

Notice that, as a consequence, another way to state the problem is to determine the existence
of the moments of the distribution underlying the data. The issue is not merely of theoretical
concern, since di�erent distributional assumptions can lead to dramatically di�erent estimates
of expected risk50.

49A reference book on this topic is Rachev (ed.) (2003).
50Lux (1996) compares the expected frequency of daily returns exceeding 20% (in absolute value) for di�erent

estimates of the tail index α. For α = 1.7 (corresponding to a stable law), the expected frequency is of once
within seven years, while α = 3.0 (Student t) yields once within 75 years.
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Anyway, a comparative study of the two distributional assumptions is di�cult, since stable
and t distributions are not nested and thus a direct test rejecting one of them in favour of the
other seems di�cult to conceive.

Since these di�erent distributional assumptions are strictly related to the amount of heaviness
in the tails, EVT looks very promising. Indeed, EVT o�ers a remarkably elegant and e�ective
solution to the problem of a direct comparison of the two families, as EVT nests both models,
given that both stable laws and the Student t are in the maximum domain of attraction of a
Fréchet type extreme value distribution, with the tail index α equal to the characteristic index
of the stable law and to the degrees of freedom of the t distribution, respectively (1.1).

Therefore, in practice:

(a) assuming that the distribution of the data belongs to the domain of attraction of a Fréchet
type extreme value distribution, estimate the tail index α of the distribution (or estimate
the shape parameter, which immediately yields the tail index, as its inverse);

(b) if α is signi�cantly less than two, then conclude in favour of the stable law assumption; on
the contrary, if α is greater than two, the Student t assumption is more appropriate.

This EVT approach was �rst employed by Koedijk et al. (1990), trying to evaluate how
heavy-tailed are bilateral EMS foreign exchange rates. Using weekly data on spot exchange rates
of 8 di�erent currencies quoted against the US dollar, approximately during the period 1971-
1987, the authors �nd point estimates for α below two for most exchange rates and, at a 5%
signi�cance level, the hypothesis α < 2 is never rejected, while the hypothesis α > 2 is rejected
on few occasions. In any case, distributional assumptions of normal and of mixture of normal
distributions are de�nitely rejected. Moreover, they undertake a study of the stability of α with
respect to the creation of the EMS and of the e�ects of aggregation over time.

Lux (2000) uses this approach, based on the estimation of the tail index, in order to obtain
a de�nite conclusion about the �niteness of the second moment of the distribution of German
stock returns, since previous papers recorded diverging results, and concludes that, when using
algorithms for endogenous selection of the optimal cut-o�, there is evidence for heavy-tails with
�nite variance.

Vilasuso and Katz (2000) use daily aggregate stock-market index prices for several countries
ranging from 1980 to 1997 in order to assess the hypothesis that the returns follow a stable
distribution and they conclude that there is scant support for this assumption, while Student t
and ARCH processes seem to be more suitable models.

An analogous conclusion is drawn by Longin (2005), who applies the method to logarithmic
daily percentage returns on the S&P500 index for the period 1954-2003 and concludes that
both the normal and the stable law hypotheses are rejected, while the Student t distribution
and ARCH processes are not, thus providing reasonable tools for unconditional and conditional,
respectively, modelling of the US stock market51.

51These conclusions corroborate previous �ndings from Jansen and de Vries (1991) and Loretan and Phillips
(1994), who, analyzing US stock market returns, concluded for the existence of �nite second moments (possibly
�nite third and fourth moments as well, but not higher then the fourth one, in any case).
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7 Market Risk: VaR and ES Estimation

While testing for di�erent distributional assumptions has been the main concern of �nancial
applications of EVT during the �rst decade since EVT was recognized as a valuable tool for
�nancial studies (roughly, the Nineties of the past century), the new millennium de�nitely saw
Value-at-Risk (VaR) calculations as the pre-eminent topic in �nancial applications of EVT, due
to the combination of two main factors: on the one hand, the growing interest in risk management
and the emergence of VaR as the standard measure for risk, both con�rmed and strengthened
by the Basel Committee resolutions; on the other hand, the fact that both VaR and EVT are
concerned with the tails of the distribution, regardless of its central part, so that EVT seems a
very natural approach to VaR estimation.

In this section, we �rst review the de�nitions and main properties of VaR and Expected
Shortfall (ES), the main alternative to VaR (section 7.1), and recall how VaR and ES estimates
can be obtained via EVT (7.2). Then we concentrate on the comparison between EVT and
standard approaches to VaR calculation (7.3).

7.1 VaR and ES: De�nition and Main Properties

Standard references on VaR are the reviews by Du�e and Pan (1997) and Pearson and
Smithson (2002) and the books by Dowd (1998, 2002) and Jorion (1997). Signi�cant critiques to
VaR as an e�ective risk measure are moved by Daníelsson (2002) and by Artzner et al. (1999) and
Acerbi (2004), who propose more suitable measures (ES and coherent risk measures in general).

After the 1987 crash, in several companies risk measures similar to VaR were introduced,
until JP Morgan brought Value-at-Risk to the attention of a wide audience in the mid-Nineties
and the Basel II Accord established it as the basis for market risk measurement in �nancial
institutions.

VaR is by de�nition (the opposite of) the minimum loss that can occur at a given (high)

con�dence level, for a prede�ned time horizon. Regulatory norms set at ten days the time
horizon (the period in which a bank is supposed to be able to liquidate its position) and at 99%
the con�dence level.

In symbols, the VaR at the α · 100% con�dence level, where α ∈ ]0, 1[, for a time horizon of
1 time-unit (the same unit that determines the frequency of the data employed) is given by

V aRα (X) = − inf {x ∈ R : P (X ≤ x) ≥ 1− α} = −F←X (1− α) ,

where X is a random variable standing for some random return and F←X is the generalized
inverse52 of the cumulative distribution function of X. Notice that, due to the minus sign in its
de�nition, VaR represents losses as positive amounts. When directly considering a time series of
positive losses, the previous de�nition is replaced by

V aRα (Y ) = inf {y ∈ R : P (Y > y) ≤ 1− α} = inf {y ∈ R : FY (y) ≥ α} = F←Y (α) .
52F←X (α) = inf {x ∈ R : FX (x) ≥ α} .
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The main advantages of VaR are the following:

• it is easy to understand and interpret from a �nancial viewpoint, thus providing an e�ective
tool for management purposes;

• it focuses on the tail of the distribution only, thus capturing the occurrence of huge rare
losses.

Anyway, VaR has at least two considerable drawbacks:

• it deals more with the cut-o� between the centre and the tail of the distribution, rather
than with the tail itself, since it provides information about the minimum loss that will
occur with a certain low frequency 1 − α, completely disregarding what happens when
going farther in the tail;

• it does not seem to thoroughly behave as a sensible risk measure, given that examples can
be provided in which the VaR of a portfolio of investments is greater than the sum of the
VaRs of the single investments, thus contradicting the acknowledged role of diversi�cation
in lowering the level of risk (mathematically, this means that VaR is not a convex function,
i.e. it can happen that V aR(w1X + w2Y ) > w1V aR(X) + w2V aR(Y ) for some portfolio
weights w1 and w2).

A huge variety of approaches to VaR computation have been proposed in the literature. The
main alternatives can be roughly divided into three families53:

• non-parametric methods, the most outstanding being historical simulation;

• semi-parametric methods, like EVT and CAViaR;

• parametric methods, like RiskMetrics approach and GARCH models.

Historical simulation (HS) is based on the empirical distribution as obtained from the data:
the α ·100% VaR is identi�ed with the (opposite of) the 1−α empirical quantile. While avoiding
the problem of choosing a distribution for the time series we are considering, HS su�ers from
three heavy shortcomings54: it is unable to predict the occurrence of future extreme events, unless
they have some ancestor in the time series; it relies on an iid assumption, which is unrealistic
for �nancial data; it is unable to provide reliable estimates of high con�dence level VaR, since it
would require too many data.

On the contrary, fully parametric methods are based on an explicit distributional assumption
to model the time series. The model is �tted to the data and, by means of the estimated
parameters, allows one to calculate the VaR at any speci�ed con�dence level.

The main problem with this approach is that we do not know the actual distribution of the
data at hand (this is often a major problem we are in need to solve, as seen in the previous

53This classi�cation, up to minor taxonomical details, is quite standard. See for instance Manganelli and Engle
(2004) and Gençay and Selçuk (2004).

54Rachev et al. (2008, p. 188).
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section). Therefore, parametric methods can result in inaccurate estimates of VaR, potentially
yielding either severe losses (if the actual risk level is underestimated), or unfruitful conservative
positions (in the case of overestimation).

Semi-parametric methods try to address this issue, merging advantages of both non-parametric
and parametric methods. EVT, in this sense, can be regarded as a semi-parametric approach to
VaR, since it avoids imposing a given distribution to the whole set of data (thus reducing model
risk), but it focuses on the tail, trying to model its asymptotic behaviour (thus not incurring in
the main di�culties of non-parametric methods either).

Irrespectively of the approach chosen to calculate VaR, we cannot overcome the two �aws of
VaR mentioned above, i.e. the lack of control on what happens far away in the tail and the lack
of convexity (more precisely, the lack of the subadditivity property). To tackle these di�culties,
further risk measures have been proposed, the best known being Expected Shortfall (ES).

Expected Shortfall, also known as Conditional Value-at-Risk (CVaR), or Average Value-at-

Risk (AVaR), at the con�dence level α · 100%, is de�ned55 as the average of the VaRs which are

greater than V aRα, i.e.

ESα (X) =
1

1− α

∫ 1

α
V aRt (X) dt.

Therefore, by de�nition, ES at the con�dence level α ·100% takes into account what happens
in the tail, beyond the correspondent VaRα. Moreover, it can be shown that ES is subadditive,
thus standing as an interesting candidate for a sensible risk measure56.

7.2 An EVT Approach to VaR and ES Calculation

The de�nitions of VaR and ES are essentially concerned with extreme quantiles of the distri-
bution. Therefore, EVT provides a natural solution to the problem of their estimation.

A simple EVT estimate of VaR can be obtained57 applying the following algorithm:

(a) assuming that the data are in the maximum domain of attraction of a GEV distribution,
�x a high threshold u and �t the GPD to the exceedances over u, obtaining estimates ξ̂
and β̂ of the parameters ξ and β, respectively;

(b) estimate the tail probability by means of ˆ̄F (x) = Nu
N

(
1 + ξ̂ x−u

β̂

)−1/ξ̂
, where Nu

N is the

ratio between the number Nu of exceedances observed in the given sample and the size N
of the sample itself and stands for an estimator of F̄ (u);

(c) invert the previous formula to obtain an estimate of the α quantile, i.e.

55Expected Shortfall is well de�ned only for random variables X with �nite mean E |X| < +∞ (Rachev et al.,
2008).

56Indeed, ES is a coherent risk measure in the sense of Artzner et al. (1999), i.e. it satis�es the following four
axioms: monotonicity, positive homogeneity, subadditivity and translation invariance.

57See for instance McNeil et al. (2005, p. 283), or Gençay and Selçuk (2004, p. 298).
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V aRα (X) = u+
β̂

ξ̂

[(
N

Nu
· (1− α)

)−ξ̂
− 1

]
.

The estimator for the tail probability at step (b) can be justi�ed decomposing F̄ (x) = 1 −
F (x) = P (X > x) in the product P (X > u)P (X > x|X > u), according to the de�nition of
conditional probability, and exploiting the equalities P (X > u) = F̄ (u) and P (X > x|X > u) =
P (X − u > x− u|X > u) = F̄u(x− u).

From the given estimate of V aRα (X), one can obtain an estimate of ESα (X) as well, namely

ESα (X) =
1

1− α

∫ 1

α
V aRt (X) dt =

V aRα

1− ξ̂
+
β̂ − ξ̂u
1− ξ̂

.

The previous arguments rely on the application of a GPD-based approach, modelling thresh-
old exceedances. If, in turn, the other main parametric method is employed (the block maxima
method), one can estimate V aRα (X) by means of the αn ·100% con�dence level Value-at-Risk for
the block maximaMn, taking into account the asymptotic equality58 V aRα (X) = V aRαn (Mn).
Otherwise, if a non-parametric approach is pursued, using the Hill estimator, Value-at-Risk can
be estimated by means of59

V aRα (X) = Xk ·
[
N

Nu
· (1− α)

]−ξ̂Hk
,

where Xk denotes the kth order statistic (the same one chosen as a cut-o� when estimating the
shape parameter ξ with the Hill estimator) and α indicates here the con�dence level at which
Value-at-Risk is calculated (not the tail index, unlike in section 1.1).

The previous EVT approaches to VaR and ES estimation are unconditional, as they don't
take into account the dependence structure of the time series under consideration. When condi-
tional VaR has to be estimated, i.e. Value-at-Risk conditional on past information, considering
the possible heteroskedasticity of the data, the techniques considered in section 3 have to be in-
tegrated in the previous scheme. For instance, a common and e�ective approach is based on the
two-step procedure applied by McNeil and Frey (2000)60, which �rst �ts a GARCH-type model
to the data and then applies EVT to the standardized residuals (see 3.2 above). Value-at-Risk
is then computed for the standardized residuals according to the unconditional scheme we have
just presented and the conditional estimate of VaR is obtained by substituting the unconditional
quantile Zt in the equation Xt = µt + σtZt governing the dynamics of returns.

58See Longin (2000), where the explicit derivation of a GEV-based estimator of Value-at-Risk is provided, using
this equality.

59See Daníelsson and de Vries (1997a).
60See also Kuester et al. (2006).
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7.3 Comparative Studies

The �rst in�uential studies applying EVT to VaR computation are probably those of Pownall
and Koedijk (1999), Daníelsson and de Vries (1997b, 2000), Longin (2000), McNeil and Frey
(2000) and Neftci (2000).

Pownall and Koedijk (1999), studying the crisis of Asian markets, provide a conditional
approach to VaR calculation employing EVT and �nd that it yields an improvement in VaR
estimation, compared to the technique employed by RiskMetrics.

Longin (2000), estimating with data from the S&P 500 index, makes a comparison between
EVT and four standard methods for calculating VaR, namely historical simulation, modelling
with normal distribution, modelling with GARCH processes and the exponentially weighted
moving average (EWMA) process for the variance employed by RiskMetrics. This paper �rst
considers, in the computation of VaR in an EVT setting, both long and short positions, to which
the lower and the upper tail of the distribution, respectively, are of interest 61.

McNeil and Frey (2000) apply their two-step procedure62 to obtain conditional VaR and ES
estimates for S&P 500 and DAX indices, BMW share price, the US dollar/British pound exchange
rate and the price of gold. Comparing the estimates provided by the two-step method with
those coming from unconditional EVT, GARCH modelling with conditional normal innovations
and GARCH modelling with conditional t innovations, they conclude63 that, on the whole, the
conditional approach to VaR provided by EVT outperforms the others.

Neftci (2000) compares the EVT approach to VaR calculation to the standard one based on
the normal distribution, dealing with several interest rates and exchange rates. He concludes that
�the results, applied to eight major risk factors, show that the statistical theory of extremes and
the implied tail estimation are indeed useful for VaR calculations. The implied VaR would be
20% to 30% greater if one used the extreme tails rather than following the standard approach�64.

Much more research comparing EVT-driven estimates of VaR to other approaches (both
standard and new ones) has been done since these seminal papers appeared. See for instance
Bao et al. (2006), Bali (2007), Bekiros and Georgoutsos (2005), Brooks et al. (2005), Gençay
and Selçuk (2004), Ho et al. (2000), Kuester et al. (2006), Lee and Salto§lu (2002), Manganelli
and Engle (2004), Tolikas et al. (2007).

The overall impression emerging by an analysis of the literature is that consensus has been
reached on the following main conclusions:

• EVT based estimates of VaR outperform estimates obtained with other methodologies for
very high quantiles, namely for α ≥ 0.99;

• the farther one moves into the tails, i.e. the greater α, the better EVT estimates are;

61The calculation of VaR for both long and short positions has been performed later on also by Ané (2006),
Byström (2007), Marimoutou et al. (2009) and Ho et al. (2000), among others.

62See 3.2 above.
63�In 11 out of 15 cases our approach is closest to the mark. On two occasions GARCH with conditional t

innovations is best and on one occasion GARCH with conditional normal innovations is best. In one further
case our approach and the conditional t approach are joint best. On no occasion does our approach fail (lead to
rejection of the null hypothesis), whereas the conditional normal approach fails 11 times; unconditional EVT fails
three times� (McNeil and Frey, 2000, p. 290).

64Neftci (2000, p. 14).
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• when α < 0.99 (α = 0.95, typically), evidence is mixed and EVT can perform signi�cantly
worse than other techniques.

These conclusions invite us to somehow circumstantiate the absolute con�dence that some
preliminary studies bestowed on EVT methods and recognize both the actual advantages of EVT
and its limitations.

A signi�cant result in this sense was already established by Daníelsson and de Vries (2000),
who, comparing two di�erent EVT estimators with historical simulation and RiskMetrics on data
from U.S. stocks, stated that �for the 5th percentile, RiskMetrics performs best. The reason for
this is that at the 5 % level we are su�ciently inside the sample so that the conditional prediction
performs better than unconditional prediction. However, as we move to the tails, RiskMetrics
consistently underpredicts the tail, with ever larger biases as we move farther into the tails�65. In
other words, when estimating VaR0.95 we are not gone su�ciently far in the tails yet in order for
EVT to work e�ciently, while from the 99% con�dence level upward EVT is more appropriately
employed, since in this case we are really concerned with extreme events.

To a similar conclusion point also the results of Gençay and Selçuk (2004), who compare
EVT to historical simulation and normal and Student t distribution modelling, using daily stock
market data from several emerging economies around the world66. When studying the DAX index
also Tolikas et al. (2007) reach the same conclusion, though �nding that, when a su�ciently large
amount of data is available, historical simulation can yield comparable results (thus somehow at
variance with the current opinion on HS, as seen above).

An important re�nement to the previous conclusions is reported by Bekiros and Georgoutsos
(2008a). When studying market data as summarized by the Cyprus Stock Exchange general
index, their �ndings agree with the ones just mentioned. On the contrary, when turning to
daily returns on the US dollar/Cyprus pound exchange, the performance of EVT methods is
considerably worse than in other studies, de�nitely ruling out EVT as a viable candidate for
estimating �low� con�dence level (α < 0.98) VaR (even for higher con�dence levels, EVT is
comparable to other methods, not outperforming them). The authors explain this fact with the
relatively scant tail fatness of exchange returns, compared to stock market data.

The previous remark is interesting, as it stresses an important feature that should be un-
derscored in any comparative study, namely the (possible) dependence of the outcome of a
comparison on the particular kind of data employed. The vast majority of papers applying EVT
to �nance employ time series from the stock market. The second most relevant source of data
is probably represented by exchange rates, but there are studies dealing with almost any sort of
data, from equity returns and interest rates67 to energy and commodity market data68, up to

65Daníelsson and de Vries (2000, p. 254).
66�Again, at moderate levels of both tails, there is no clear winner. However, as we move towards the higher

quantiles, the GPD model is clearly better. [...] Especially at 99th and higher quantiles, the GPD model clearly
dominates others in terms of VaR forecasting in nine emerging markets we cover in this study� (Gençay and
Selçuk, 2004, p. 300).

67Bali (2003a) analyzes daily observations for the annualized yields on 3-month, 6-month, 1-year and 10-year
U.S. Treasury securities; Neftci (2000), as seen above, includes in his data-set three-month, two-year, �ve-year
and seven-year interest rates from the U.S.; while Werner and Upper (2004) study Bund futures returns.

68See e.g. Byström (2005) and Chan and Gray (2006) for electricity markets, Krehbiel and Adkins (2005) for
an application to the NYMEX energy complex and Marimoutou et al. (2009) for an application to the oil market.
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credit derivatives data69.

Notice that the previous conclusions roughly hold for both conditional and unconditional
VaR estimates. Kuester et al. (2006) state that unconditional models for VaR can actually
perform quite well if α = 0.99, while yielding unacceptable estimates for lower values of α (0.975
and 0.95). This is the case not only for EVT, but also for historical simulation and a skewed
t-based parametric approach, while normal and (symmetric) t distributions perform even worse.
These �ndings hint at the necessity of a conditional approach to VaR estimation. Comparing
thirteen conditional models on data from the NASDAQ Composite Index, the authors conclude
that the two-step EVT procedure and �ltered historical simulation (FHS)70, both with normal
and skewed t innovations for the GARCH �lter, �are always among the best performers among
all conditional models and for all values of 0 < λ < 0.1 [0.9 < α < 1, in our notation]. Moreover,
the ST-EVT delivers virtually exact results for all 0 < λ < 0.1 [0.9 < α < 1], while N-EVT is
competitive for 0 < λ < 0.025 [0.975 < α < 1] and then weakens somewhat as λ increases toward
0.1 [decreases toward 0.9]�71.

� Appendix: Backtesting

In this section, in order to keep things as straightforward as possible and to highlight common
paths and conclusions, we have omitted to address a relevant issue72, that we brie�y develop now
on its own. That is, studies comparing di�erent techniques for VaR estimation have to choose
some performance criterion on the basis of which they rank those techniques.

The most common criterion employed when using methods for unconditional VaR estimation
is the violation ratio73. A violation is said to occur at time t+ 1 if the observed realization xt+1

is greater74 than the estimated Value-at-Risk V âRt+1
α . A detailed description of the method is

provided by Kupiec (1995), Christo�ersen (1998), McNeil and Frey (2000) and Bali (2007). Tests
related to the violation ratio can be carried out for both in-sample and out-of-sample performance
of Value-at-Risk estimates. In the former case, one looks for violations in the same time window
used to estimate the parameters of the model, while in the latter case one focuses on a subsequent
period for backtesting. In practice, testing for instance for out-of-sample performance:

(a) consider a time window of n observations {xt−n+1, . . . , xt} and calculate V âRt+1
α on the

basis of this sequence;
69Byström (2007) uses data from the iTraxx Europe CDS index market in order to infer margin calculations

for an hypothetical exchange-traded CDS index futures market.
70Proposed by Barone-Adesi et al. (1998), FHS shares with the two-step procedure of McNeil and Frey (2000)

the �rst step, i.e. the GARCH �ltering of the data, but at the second step employs historical simulation rather
than EVT.

71Kuester et al. (2006, p. 79). The authors perform their analysis for di�erent time window sizes (1000, 500,
250) obtaining in any case evidence in favour of skewed t EVT and FHS approaches outperforming the other ones
(in particular for a time window of 250 observations), or being at least comparable with them.

72Another interesting path that can be followed in the literature on EVT-based estimation of VaR is the
problem of time aggregation and the square root scaling rule, suggested by the Bank of International Settlements
but criticized by some academicians. On this topic, see for instance McNeil and Frey (2000), who propose a
Monte Carlo simulation approach, and Jansen et al. (2000), who in turn discuss the use of a �tail index-root�
rule, rescaling through a root of the time horizon as in the square root rule, but with the index of the root given
by the tail index of the distribution. See also Diebold et al. (1998) and Daníelsson and de Vries (1997b).

73Interesting remarks on the main issues related to backtesting of VaR estimates can be found in Pearson and
Smithson (2002). Another comparison criterion that we do not present here, but which is sometimes used, is that
proposed by White (2000).

74For simplicity, we are assuming a sample of positive losses.
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(b) consider then the following p observations, {xt+1, . . . , xt+p}, and de�ne a counter of overall
violations occurred in this sample by V =

∑p
j=1 I{xt+j>V âRt+jα }; the violation ratio is then

de�ned as κ = V/p (number of violations occurred in a sample of p observations);

(c) test the null hypothesis that κ = 1 − α, exploiting the fact that, under this hypothesis,
the probability of observing V violations in a sample of p realizations can be computed by
means of a binomial distribution with parameters p and 1− α.

A suitable test, proposed by Kupiec (1995) to check if the equality κ = 1− α is statistically
tenable75, is the likelihood ratio statistic

LRuc = 2
{

ln
[
κV (1− κ)p−V

]
− ln

[
(1− α)V αp−V

]}
,

which is known as test for unconditional coverage and is asymptotically χ2 (1) distributed.

Since the unconditional coverage test is not su�ciently powerful when dealing with small sam-
ples and, more importantly, it does not take into account the volatility clustering characterizing
�nancial time series, it can be a misleading criterion for VaR estimate accuracy, if considered on
its own.

Another test, the test for conditional coverage developed by Christo�ersen (1998), considers
both unconditional accuracy and independence of violations (as unconditional VaR estimates
tend to exhibit a violation pattern which is �awed by clustering e�ects), since it reads

LRcc = LRuc + LRind,

where LRind stands for a second likelihood ratio statistic, devoted to test for the null hypothesis
of serial independence against the alternative hypothesis of Markov dependence of the �rst order.
Since LRind converges in distribution to a χ2 (1) as well, then LRcc converges to a χ2 (2).

8 Asset Allocation

A portfolio selection problem based on the maximization of returns subject to risk constraints
can be formally written as

max
w∈Rn

µTw

s.t. ρj (w) ≤ Rj , j = 1, . . . , J∑n
i=1wi = 1
wi ≥ 0, i = 1, . . . , n,

75Gençay and Selçuk (2004) argue that a violation ratio κ less than the expected value 1− α is not necessarily
better than a violation ratio exceeding that value, if we are not committed to policy purposes. To risk managers
the closeness to the value 1 − α should matter above all, since, if on the one hand κ > 1 − α is not a good
case (given that it indicates that we are underestimating the actual riskiness of our position), on the other hand
κ < 1− α is not a good scenario either, as it hints at an excessively conservative position.
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where wi are the unknown weights of the portfolio, µTw is the expected value of the portfolio,
ρj are risk measures and Rj are upper bounds on risk. When j = 1 and R1 (w) = wTΣw, we
recover the classical mean-variance framework of Markowitz (1952).

Anyway, as stressed by Bensalah (2002, p. 5), �there is no �nal answer or optimal measure
of risk�, the optimality of a given allocation being conditional on the actual correspondence of
its underlying assumptions to the risk preference of the investor. A plausible pro�le of risk
preference, alternative to that based on variance, is represented by the safety-�rst criterion, a
concept introduced by Roy (1952) and developed by Arzac and Bawa (1977), which is based
on a constraint limiting downside risk. As Jansen et al. (2000) argue, a similar pro�le is both
relevant in practice, given that practical circumstances can impose an asymmetric treatment of
upside and downside risk, and psychologically sensible, since a lot of experimental evidence for
loss aversion is available.

The safety-�rst approach to portfolio selection calls for accurate estimates of the failure
probability. In this sense, as far as failure can be considered a rare event, EVT may provide
suitable tools for accurate calculations. Indeed, it has been used in the context of portfolio
selection with limited downside risk by Jansen et al. (2000). Facing the problem of choosing
between investing in a mutual fund of bonds or a mutual fund of stocks, they �nd that an
assumption of tail fatness is plausible and employ EVT (precisely, the Hill estimator) to calculate
the risk associated to each possible portfolio. On the same lines, Susmel (2001) uses EVT to
model the tails of Latin American emerging markets and studies the e�ects of diversi�cation for
a US investor including those markets in his portfolio, based on a safety-�rst criterion.

This framework extends the use of EVT for VaR calculation to the problem of portfolio
selection76, i.e. problem (4) with risk measure ρ given by VaR. In this mean-VaR setting, Consigli
(2002), for instance, solves the asset allocation problem with data comprising the Argentinean
crisis of July 2001, evaluating downside risk by means of both EVT and a jump-di�usion model.
Both methods yield accurate estimates of the tail risk in the cases analyzed; the latter seems to
be more accurate, while the former provides more stable estimates, thus being more appropriate
for the determination of capital adequacy in which a regulator is interested.

A detailed analysis of the mean-VaR portfolio selection problem is given by Bensalah (2002),
who considers both the direct problem of maximizing return, subject to a constraint on the
VaR, that is problem (4) with j = 1 and R1 (w) = V aRα(w), and its dual, i.e. the problem of
minimizing Value-at-Risk, subject to a constraint which imposes a lower bound to the expected
return. Moreover, Bensalah makes a comparison between di�erent ways of calculating VaRα,
namely historical simulation, normal VaR and EVT. Considering a portfolio of two �xed-income
securities (a 1-year treasury-bill and a 5-year zero-coupon bond) and several highly conservative
values for the con�dence level α (0.99, 0.999, 0.9999), he concludes that historical simulation and
normal VaR yield the same allocation irrespectively of the given α, investing the whole capital
in the short-term security, both in the maximum return and in the minimum risk problem. This
is no more true when we consider EVT based calculations of VaR. Indeed, in this case two
important features appear:

• portfolio composition changes as the con�dence level α grows;

76The importance of VaR for asset allocation is detailed by Bali (2007), who derives a modi�ed version of the
CAPM, relating the downside risk of a portfolio, as measured by VaR, to the expected return of the portfolio
itself.
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• the riskier (in terms of duration) asset is given non-zero weight.

Precisely, the weight acknowledged to this asset is an increasing function of α. Moreover, its
weight is greater in the minimum risk than in the maximum return problem.

Thus Bensalah can conclude that an EVT approach, being tailored on extreme events and
di�erently responding to di�erent con�dence levels, seems to be better suited to regulatory
purposes and to cope with periods of market stress. In the latter circumstances, EVT could o�er
an alternative strategy to the ��ight to quality� strategy, thus reducing the behaviour risk (the
crisis could be exacerbated if everybody reacted the same way).

Finally, to make e�ective computation possible when dealing with multiple assets, Bensalah
(2002) proposes an algorithm. The problem that motivates its introduction is the relevance of
the dimensionality issue in portfolio selection, since, as the number of assets grows, a brute force
approach to the calculation of the optimal portfolio becomes soon intractable, even numerically
(for n assets and a precision of 1%, 100n−1 calculations are needed). The algorithm proposed
allows one to �x in advance the number m of portfolios among which to search and is based
on m iterations of the following step: randomly generate the weight w1 of the �rst asset from
a uniform distribution with support on the interval [0,1] and set77 w2 = 1 − w1; then, estimate
the extreme value distribution of the resulting portfolio and the corresponding risk and return.
After m iterations, one is endowed with m portfolios78 and can choose the optimal one in this
sample.

An improvement on this algorithm is provided by Bradley and Taqqu (2004a), who propose
a two-step procedure that, in the �rst step, uses the sampling algorithm of Bensalah to generate
a sensible starting point for the application of an incremental trade algorithm at the second step.
On the same lines of Bensalah (2002), Bradley and Taqqu (2004a) study the risk-minimization
problem comparing normal and extreme value distributions in the computation of VaR and ES
as risk measures. Making both simulation and empirical analyses, they �nd that:

(a) the optimal allocation is quantile-based, i.e. depends on α, con�rming the �ndings of
Bensalah (2002);

(b) at standard con�dence levels (α = 0.975, 0.99), the optimal allocation can di�er from that
obtained under the hypothesis of normal distribution, but the extra risk taken under the
normality assumption is not particularly large, thus making it a viable alternative to EVT,
especially given its easiness of implementation; however, when moving to extreme quantiles
(α = 0.999, 0.9999), the di�erence between the two approaches cannot be ignored anymore;

(c) in the simple case of two assets, as α changes, the weight given to each asset strictly
follows the ratio of marginal risks between the two corresponding markets; speci�cally,
under asymptotical independence, the optimal portfolio diversi�es more into the riskier
asset for very high con�dence levels α.

The latter point is related to the problem of diversi�cation and the issue of asymptotic
dependence, stating that the driving factor is rather the ratio of marginal risks than dependence.

77When considering n di�erent assets, w2 is randomly generated from a uniform distribution with support
[0, 1− w1], w3 from a uniform distribution with support [0, 1− w1 − w2] , and so on. Finally, one sets wn =
1− w1 − w2 − . . .− wn−1 .

78It is easy to program the algorithm in such a way that the portfolios generated be di�erent.
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Diversi�cation is widely acknowledged as a leading rule of portfolio selection (several hedge funds
successfully employ it), but the bene�t of diversi�cation can be seriously hampered when the
markets used to diversify risk away exhibit some form of dependence. Anyway, in accord with
Poon et al. (2004), the �ndings of Bradley and Taqqu (2004a) for twelve international equity
markets are that most of them are asymptotically independent and the few cases of asymptotic
dependence are related to each other by geographic proximity.

This explains why one can reasonably study a portfolio selection problem, which in principle
is a multivariate problem, by means of univariate techniques (applied to some functional of the
allocation vector, typically the portfolio return).

A direct comparison of the performance of univariate and multivariate techniques for an asset
allocation problem is the aim of Bradley and Taqqu (2004b), who conclude that multivariate EVT
yields accurate results if the copula employed allows for asymptotic independence, thus re�ecting
a chief characteristic of the data at hand, while multivariate EVT models with a dependence
function79 that prescribes asymptotic dependence overstate the risk of a properly diversi�ed
portfolio80. On the contrary, the use of a univariate approach, which is easier to implement,
seems to be advisable when we are not interested in particularly extreme quantiles.

9 Dependence Across Markets: Correlation and Contagion

The issue of dependence among �nancial time series we have mentioned when treating the
problem of portfolio selection can be speci�cally addressed when studying correlation and con-
tagion among markets. Two approaches have been adopted in this respect: on the one hand,
dependence between di�erent countries for a given �nancial sector has been studied; on the other
hand, dependence among di�erent �nancial markets of the same country is of interest as well.

A highly relevant example of the former approach is given by Longin and Solnik (2001), who
employ multivariate EVT to test the validity of the common belief that correlation between
stock markets increases during volatile periods. They use multivariate threshold exceedances,
modelling dependence by means of the e�ective, though parsimonious, logistic model, in which
a single parameter accounts for dependence and this parameter is related to correlation by a
simple formula. Fitting a bivariate model to couples of monthly equity index returns for the
U.S. and each of the other four countries of the G-5 (United Kingdom, France, Germany and
Japan), the authors �nd that extreme correlation is statistically di�erent from the correlation
estimated by means of a multivariate normal model. Furthermore, the correlation pattern of
threshold exceedances is asymmetric, since it depends on the chosen threshold both in size and
in sign. Indeed, correlation of exceedances is increasing in the absolute value of the threshold,
if the threshold itself is negative; otherwise, it is decreasing. Therefore, Longin and Solnik can
conclude that �[...] the probability of having large losses simultaneously on two markets is much

79Properly speaking, the copula and the dependence function of a multivariate extreme value distribution do
not coincide, though they are closely related. The de�nition of the latter can be found in most of the reference
books on EVT, e.g. Reiss and Thomas (1997).

80On the other hand, Poon et al. (2004, p. 601) conclude that �if asset returns are asymptotic dependent, the
risk estimation is not sensitive to the wrong assumption for the tail dependence and the methods used to estimate
large event risk�. This is a further justi�cation for the employment of simple but e�ective models such as, for
instance, the logistic one, when asymptotic dependence has been ascertained (see 4.2 above).
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larger than would be suggested under the assumption of multivariate normality. It appears that it
is a bear market, rather than volatility per se, that is the driving force in increasing international
correlation�81.

In a complementary way, Bekiros and Georgoutsos (2008b) study the correlation of extreme
returns between seven Asia-Paci�c stock markets and the U.S. They use a bivariate logistic
dependence function to model threshold exceedances, as Longin and Solnik (2001), in order to
produce a ranking of Asia-Paci�c countries in three broad categories of risk, to check whether
these countries form a distinct block, with respect to, for instance, Europe and the U.S. The
conclusion is in the negative, and U.S. investors can bene�t from diversifying their portfolios with
assets from Asian countries. This remains true even during crisis periods, given that a sensitivity
analysis conducted by estimating the model with two separated sets of data, one including the
1987 crash and the other subsequent to it, yields similar results. In particular, the fact that
these results are close to the correlation estimated via standard unconditional and conditional
(GARCH models) methods provides evidence against contagion having occurred during the crises
of the Eighties and of the Nineties.

Anyway, the choice of the previous articles to measure extreme dependence by means of the
correlation coe�cient is questionable. Poon et al. (2004), instead, use the coe�cient of upper tail
dependence (see 4.1 above) and a complementary measure developed by Ledford and Tawn (1996)
to assess dependence across markets. Precisely, they analyze daily returns on stock indices of the
G-5 countries, by means of bivariate EVT. Since nonzero estimates of the coe�cient are obtained
only for 13 out of 84 possible pairs of countries, the assumption of asymptotic dependence would
be inappropriate in the vast majority of cases, resulting in an overestimation of systemic risk in
international markets.

For policy purposes, a particular interest is attached to studies regarding currency crises
contagion and cross-country dependence in the banking sector.

The former issue is considered for instance by Haile and Pozo (2008), who apply EVT to
set appropriate thresholds that enable to discriminate between crisis and normal periods and
conclude that currency crises, as experienced in the Nineties are indeed contagious and that
the main way for contagion to occur is the trade channel. Moreover, regional proximity plays a
signi�cant role as well (neighbourhood e�ects channel). Similar results on the contagious nature
of currency crises are obtained by Garita and Zhou (2009), who indicate EVT as a suitable tool
to detect contagion. Using an exchange market pressure (EMP) index to measure currency crises,
as it is standard in the literature, they choose as a dependence measure a quantity introduced
by Embrechts et al. (2000) and �rst applied by Hartmann et al. (2004) (see below): namely,
the expected value of the number k of extreme events (the EMP index of k countries exceeding
a high Value-at-Risk threshold, in the case of Garita and Zhou), conditional on the fact that at
least one such event has occurred (k ≥ 1). The �ndings thus obtained rule out currency crises
contagion as a global phenomenon, con�rming it, on the contrary, as a regional one. Moreover,
the authors conclude that �nancial openness and a monetary policy aiming at price stability can
reduce the probability of currency crises.

As the latter issue is concerned, i.e. that of banking sector dependence, an interesting ref-
erence is represented by Hartmann et al. (2005), who study banking sector stability separately
considering daily returns on stock prices (during the period 1992-2004) of two groups of 25 major

81Longin and Solnik (2001, p. 670).
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banks of the U.S. and of the Euro area. The main tool of analysis is multivariate EVT (reduced,
with appropriate manipulation, to a univariate setting) and dependence is studied by means
of two di�erent measures: one that accounts for bank contagion risk, considering multivariate
extreme spillovers; the other measuring aggregate banking systemic risk, with reference to a
benchmark (e.g., stock market indices). The former indicator provides evidence of bank spillover
risk being lower in the Euro area than in the U.S., probably due to weak cross-boarder linkages
of European countries. The second measure, on the other hand, yields similar e�ects of macro
shocks on both European and American banking sector stability. Moreover, structural stability
tests detect an increase (very gradual, actually) in systemic risk, both for Europe and the U.S.,
in the second half of the Nineties.

Increasing cross-country interconnections during the �rst years of the new Millennium have
been detected by Chan-Lau et al. (2007) in their study on contagion risk related to the role of
London as a hub of worldly banking sector, though �home bias� still plays a crucial role, i.e. the
risk of contagion among local banks is high compared to cross-border risk. Based on a variant
of multivariate EVT, the authors provide a detailed account of contagion risk among the major
U.K. banks and with respect to foreign banks (e.g. Barclays is the most prone to contagion from
foreign banks, while HSBC provides the highest contagion risk towards them).

Still related to contagion in the banking sector is the work of Pais and Stork (2009), who,
motivated by the credit crisis, make an inquiry on contagion risk between Australian-New Zealand
banking and real estate sectors. Using EVT, they �nd that, as a consequence of the credit crisis,
the probability of extreme negative returns has increased in both sectors, as well as the probability
of inter-sector contagion.

We have thus come to consider the second aspect of dependence, namely dependence across
di�erent kinds of �nancial activities (cross-asset or inter-sector dependence). In this �eld, an
interesting insight is provided by Hartmann et al. (2004), who study contagion risk between
stock markets and government bond markets of the G-5 countries. Instead of estimating full-
sample correlation, which is biased towards normality and is not the actual quantity of interest,
they directly focus on the expected number of crashes in a given market (stocks or bonds),
conditional on the event that one crash has occurred. De�ning crash levels on a historical basis
(20% and 8% losses for stocks and bonds, respectively; weekly data over the period 1987-1999
are employed), the authors use a non-parametric approach to multivariate EVT to estimate the
conditional expected value they are considering. Extreme cross-border linkages within the same
asset class turn out to be stronger for stock markets than for bond markets, while bivariate stock-
bond cocrashes, though not displaying particularly high probabilities per se, are considerable
when compared to the unconditional univariate probabilities of crashes in a single market and,
in any case, they are higher than the probabilities of extreme comovements estimated with a
multivariate normal distribution.

Finally, a more restricted study concerning stock market index-foreign exchange rate depen-
dence is conducted by Bekiros and Georgoutsos (2008a), who concentrate on the particular case
of Cyprus. Using EVT to estimate extreme returns and correlation as an indicator for depen-
dence, they conclude that low correlation can be found between stock market daily returns and
exchange rates with U.S. dollar, even during crisis periods. Neither the bear market conditions
characterizing the period covered by the data employed for backtesting make any di�erence to
the estimated extreme correlation, thus suggesting that the results of Longin and Solnik (2001)
do not apply to this context.
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10 Further Applications

In the previous sections we have described four main applications of EVT to �nance. Though
we will not pursue our investigation farther, we want at least to record some more possible
applications.

We have mentioned in section 9 the topic of contagion concerning currency crises, though
indeed detecting and dating currency crises is itself a relevant issue. EVT has been employed to
this purpose by Pozo and Amuedo-Dorantes (2003) and Ho (2008), for instance. See also Pontines
and Siregar (2007, 2008) for relevant critical observations and Haile and Pozo (2006), who study
the connection between the exchange rate regime and the probability of currency crises to occur,
concluding that the announced regime has an impact, while the actually observed one does not.

Another important �eld of application to which growing attention is converging is that of
measuring operational risk, mainly due to its explicit consideration in the Basel II Accord. A
major pro of EVT in this respect is represented by its capability to model extreme events, such as
big unexpected losses due to human errors. On the other hand, a serious limitation is imposed
by the scarcity of data, that typically hinders asymptotical theories like EVT. Work in this
area can be found in Moscadelli (2004), Dutta and Perry (2006), Allen and Bali (2007), Jobst
(2007), Abbate et al. (2008), Chapelle et al. (2008) and Serguieva et al. (2009). A critique
to employment of EVT in quantifying operational risk is circumstantiated by Sundmacher and
Ford (2007).

Finally, we mention a few other analyses which cannot be subsumed in the previous taxonomy.
For instance, several articles are devoted to set optimal margin levels for futures contracts with
di�erent underlying, e.g. Longin (1999) (silver futures contracts traded on COMEX), Dewachter
and Gielens (1999) (NYSE composite futures), Cotter (2001) (stock index futures selected from
European exchanges), Byström (2007) (CDS index futures, as we have already seen). Byström
(2006) uses EVT to calculate the likelihood of failure in the banking sector, comparing his out-
comes with Moody's and Fitch ratings. Markose and Alentorn (2005) use the GEV distribution
to model risk neutral probability and obtain a closed form solution for the price of a European
option.
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Conclusions

We have presented extreme value theory from a double perspective: on the one hand, the
main elements of the probabilistic theory and the statistical methods related to it; on the other
hand, their applications to �nance.

The �rst part was intended as a critical resume of both the foundations of the theory and its
scope and limitations. From a theoretical viewpoint, EVT shows some considerable pros:

(a) it o�ers tools, with strong theoretical underpinnings, to model extreme events, which are of
great interest in many applications, pertaining to several di�erent �elds (in �nance, in par-
ticular, EVT is especially useful in the context of risk measurement, given the importance
of extreme events to the overall pro�tability of a portfolio);

(b) it provides a variety of such tools, ranging from non-parametric methods to point processes,
thus guaranteeing a �exible approach to the modelling of extreme events, that can be
adjusted to the particular features of the problem at hand;

(c) the fact that the vast majority of standard distributions, even though displaying consider-
ably di�erent tail behaviour, can be equally modelled by EVT also increases �exibility;

(d) furthermore, the �exibility and the accuracy of modelling are enhanced by the fundamental
characteristic of EVT, namely its exclusive consideration of the tail of the distribution of
the data, disregarding ordinary observations (the centre of the distribution);

(e) and they are also enhanced by the capability of EVT of independently modelling each tail
of the distribution;

(f) �nally, the availability of parametric approaches allows for projections and forecasting of
extreme events.

Some drawbacks emerged as well:

(a) the most problematic one is probably the dependence of the parameters on the choice of the
so-called cut-o� (i.e., the delimitation of the subsample employed to estimate the extreme
quantiles), given that there is not yet complete agreement on how such a choice should be
made;

(b) moreover, the basic theory of extreme values assumes that the data are not serially corre-
lated; when this assumption is violated, we have some alternative approaches at hand, but
there is no agreement on which of them is the most suitable one;

(c) multivariate EVT is admittedly not as straightforward as its univariate counterpart and
can still encounter severe computational limitations, in some applications;

(d) EVT is characterized by an unavoidable trade-o� between its asymptotical nature (always
in need for a huge amount of data) and its interest in extreme events (rare, by de�nition);
therefore, the choice and preparation of the data-set can be a crucial step in applying EVT.
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Coming to applications, we have only considered �nancial applications and mainly focused
on some of them. The most important one, both for its role in �nancial regulation and for the
amount of contributions to the research concentrating on it, is the employment of EVT for the
estimation of quantile-based risk measures, such as Value-at-Risk and Expected Shortfall. Many
papers deliver comparative analyses of the accuracy of di�erent methods for VaR calculation and
they agree in indicating EVT as a considerably valuable candidate when calculating VaR at high
con�dence levels (namely greater than or equal to 99%). The great degree of accuracy displayed
by EVT-based estimates of VaR for several di�erent markets probably makes the employment
of EVT in risk measurement one of the most relevant and better acknowledged contributions of
extreme value theory to �nance.

Related to the use of EVT for risk management is the role of EVT in asset allocation problems,
associated to the concept of �safety �rst investor�. The awareness of the importance of taking into
account the risk pro�le of the investor is permeating the �nancial practice and, for investors who
are particularly interested in avoiding extreme shocks, i.e. huge and rare losses, EVT provides a
suitable tool, given its accuracy in modelling such shocks.

Finally, portfolio selection naturally (though not necessarily) entails the consideration of a
multivariate setting. In this setting, another important problem is that of systemic risk and the
issue of contagion across markets in presence of extreme events. This topic, highlighted by the
credit crisis, deserves a particular attention, since the dependence pattern in a multivariate time
series can be di�erent in normal times and under stress conditions, i.e. extremal dependence can
di�er from ordinary correlation. This fact has an impact on diversi�cation e�ects and has to be
explicitly modelled and taken into account. Multivariate EVT o�ers statistical tools suited to
this aim.

The list of possible applications of EVT to �nance is longer, of course, but these examples may
su�ce to show the essence of the contributions that this theory brings to the �nancial literature
(and practice). Those contributions are based on the very de�nition of extreme value theory,
namely on its capability to accurately model the distribution of extreme events, which are the
main concern of modern risk management. Thus, in the end, we come back to the widely quoted
motto of DuMouchel we began with, which is key to EVT: �Let the tails speak for themselves�.
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