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Abstract 

The Lorenz dominance is a primary tool for comparison of non-negative distributions in terms of 

inequality. However, in most of cases Lorenz curves intersect and the ordering is not fulfilled, so 

that some alternative (weaker) criteria need to be to introduced. In this context, the second-degree 

Lorenz dominance, which emphasizes the role of the left (or right) tail of the distribution, is 

especially suitable for ranking single-crossing Lorenz curves. We introduce a new ordering, namely 

disparity dominance, which emphasizes inequality in both of the tails, and we show that, in turn, it 

is especially suitable for ranking double-crossing Lorenz curves. We argue that the two approaches 

are basically complementary, although in both cases the Gini coefficient is crucial for the ranking. 

Moreover, we can use some well-known results of majorization theory to obtain classes of 

functionals that are consistent with the aforementioned weak preorders, and that can therefore be 

used as finer inequality indices. 
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1. Introduction 

The Lorenz curve (LC), which has been introduced as a representation of inequality (e.g. income inequality), 

is generally used to rank distributions in terms of an order of preference, namely the Lorenz ordering, or 

dominance (LD). In fact, the LD conforms with the idea that the higher of two non-intersecting LCs (i.e. the 

corresponding distribution) should be preferred, in that it shows less inequality compared with the lower one. 

As well known, in an economic framework, the LD is coherent with the Pigou-Dalton condition (principle of 

transfers): that is, the higher of two non-intersecting Lorenz curves can be obtained from the lower one by a 

sequence of income transfers from “richer” to “poorer” individuals (the so-called elementary transfers or T-

transforms, see [25] p. 32, or progressive transfers, [33]). For this reason, the “coherence” with the LD 

represents a fundamental property of any inequality (or concentration) measure. Nevertheless, it may happen 

that Lorenz curves intersect or, equivalently, the LD is not verified, which implies that the Lorenz-preserving 

indices may disagree. In this case we can rank the distributions by relying on weaker orders of inequality. In 

the literature, this idea has been analysed in several works related to the concept of third-order stochastic 

dominance, which emphasizes the role of the left tail of the distribution [4,9,10,12,33]. Indeed, many authors 

agree that an elementary transfer should be more equalizing, the “lower” it occurs in the distribution. This 

principle has been named aversion to downside inequality [12]. A conceptually similar (but mathematically 

different) approach has been proposed by Muliere and Scarsini [26] based on the third-degree inverse 

stochastic dominance (3-ISD). Further studies in this direction has been carried out by Zoli [39,40] and, 

more recently, by Aaberge [1]. This idea has also been shown to be consistent with the criterion of the Yaari 

social welfare functions [34]. Using a terminology introduced by [1], we may say that the original idea of 

[26] is simply to move from first-degree to second-degree Lorenz dominance (2-LD) by cumulating LCs 

from the left (upward) or from the right (downward). This operation respectively obeys the concepts of 

downside (or upside) positional inequality aversion. In terms of income, in so doing it attaches more 

weighting to individuals at the bottom (or alternatively at the top) of the income scale. Indeed, while many 

authors in this field agree with the idea of downside inequality aversion, one may also take upside inequality 

into consideration [1,26], especially if one is interested in those variations occurring at the top of the income 

distribution (see e.g. [24]). The alternative approach proposed in this paper basically attempts to combine the 

main features of upside and downside inequality aversion into a single preorder. 

In section 4 we review and study the second degree Lorenz dominance. In particular, slightly generalizing a 

result of [39], we may observe that a sufficient condition for the 2-LD (upward or downward) is that the LCs 

cross once. In this case, we can identify the dominant distribution by comparing the values of the Gini index. 

It should be stressed that, in an economic context, single-crossing LCs occur in most practical cases, as 

highlighted by the empirical analyses of [4] and [11], whilst multiple-crossing LCs are very rare. 

Nonetheless, the case of multiple-crossing LCs has been analysed in the works of Zoli [39,40], Davies and 

Hoy [12] and Chiu [9], e.g. an especially interesting case of double-crossing LCs was obtained under the tax 

reform act of 1986 in the US (see [16]). In this paper we aim at analysing all possible situations, in order to 

understand and clarify the mathematical properties of the orderings considered. In this framework, we show 

that, under an hypothetical condition of maximum uncertainty (i.e. equal values of the Gini index), if the 

Lorenz curves cross an even number of times, then the 2-LD (upward or downward) is unable to provide a 

ranking. Consequently, in this special case the preorder is also unable to rank symmetric distributions. In this 

regard, we show that the 2-LD is related to the concept of symmetry; and in particular, under some 

conditions, that it can be interpreted as an ordering of skewness. It seems that the idea of an ordering of 

skeweness has been introduced independently by Van Zwet [35] and Frosini [15].  

Knowledge of the properties and features of the second-degree Lorenz dominance permits one to understand 

its possible “gaps” (by which are meant those situations where it cannot provide a ranking), and thereby 

introduce an alternative ordering criterion in order to fill them. In the second part of the paper we present the 

second-degree disparity dominance (2-DD), which is based on the cumulated difference between the upper 

and lower parts of the Lorenz curves. This ordering can serve a twofold purpose. First, the 2-DD is intended 

to emphasise both the tails of the distribution rather than one (left or right). Secondly, we show that it can 

rank distributions in those particular cases where the second-degree Lorenz dominance fails. Indeed, we find 

that the 2-DD is especially suitable to rank LCs that cross twice (once before 0.5 and once after), under some 

conditions. Also in this case the values of the Gini index are crucial for determining the dominant 

distribution. The 2-DD can be interpreted as complementary to the 2-LD, in that it can fill its gaps, and vice 
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versa. Moreover, we show that, just as the 2-LD can be related to skewness, so the 2-DD can be related to the 

concept of kurtosis (in particular tailweightness). 

In this paper we want to stress that many of the relations, orderings and results can be equivalently expressed 

in terms of the majorization preorder [2]. In particular, we can propose classes of inequality measures which 

are coherent with the orderings analysed, based on some well-known results of majorization theory. Hence, 

we believe that a few basic concepts and results of majorization theory may be helpful for the reader: a brief 

overview is provided in the following section. 

 

2. Preorders and majorization: a brief overview 

 

We recall that a preorder is a binary relation ≤ over a set 𝑆 that is reflexive and transitive. In particular, 

observe that a preorder ≤ does not generally satisfy the antisymmetry property (that is, 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 

does not necessarily imply 𝑎 = 𝑏) and it is generally not total (that is, each pair a, b in 𝑆 is not necessarily 

related by ≤). Then, given the preorder ≤ (defined over 𝑆), a mapping 𝑀:𝑆 → ℝ is said to be isotonic, 

consistent or order-preserving with respect to ≤ whenever, for every 𝑎, 𝑏 ∈ 𝑆 such that 𝑎 ≤ 𝑏, we obtain that 

𝑀(𝑎) ≤ 𝑀(𝑏). In this paper, given a preorder ≤ and 𝑎, 𝑏 ∈ 𝑆, we generally state that ≤ is unable to order (or 

rank) 𝑎, 𝑏 if neither or both of the conditions 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 hold true. 

Majorization ≺ is a preorder which may be used to compare vectors or functions in terms of “diversity” 

between their values [25]. Here we focus on continuous majorization, in particular we consider a preorder in 

the space of functions that are integrable with respect to the Lebesgue measure m on a set (0, 𝑥0).  
 

Definition 1. Let 𝑓, 𝑔 ∈ ℒ1(0, 𝑥0). We say that 𝑓 is majorized by 𝑔 and write 𝑓 ≺ 𝑔 if and only if 

1) ∫ 𝑓↓(𝑢)
𝑧

0
𝑑𝑢 ≤ ∫ 𝑔↓(𝑢)

𝑧

0
𝑑𝑢, ∀ 𝑧 ∈ (0, 𝑥0), 

2) ∫ 𝑓↓(𝑢)
1

0
𝑑𝑢 = ∫ 𝑔↓(𝑢)

1

0
𝑑𝑢, 

where 𝑓↓(𝑢) = (𝑚𝑓(𝑥))
−1 and 𝑚𝑓(𝑥) = 𝑚({𝑢: 𝑓(𝑢) > 𝑥}) (note that the function 𝑓↓ is referred to as the 

decreasing re-arrangement of 𝑓). 

 

When condition 2) does not hold, we rely on weaker definitions of majorization.  

 

Definition 2. Let 𝑓, 𝑔 ∈ ℒ1(0, 𝑥0). We say that 𝑓 is weakly majorized by 𝑔 from below and write 𝑓 ≺𝑤 𝑔 if 

and only if 

∫ 𝑓↓(𝑢)
𝑧

0
𝑑𝑢 ≤ ∫ 𝑔↓(𝑢)

𝑧

0
𝑑𝑢, ∀ 𝑧 ∈ (0, 𝑥0). 

We say that that 𝑓 is weakly majorized by 𝑔 from above and write 𝑓 ≺𝑤 𝑔 if and only if 

∫ 𝑓↑(𝑢)
𝑧

0
𝑑𝑢 ≥ ∫ 𝑔↑(𝑢)

𝑧

0
𝑑𝑢, ∀ 𝑧 ∈ (0, 𝑥0), 

where, similarly to 𝑓↓, 𝑓↑ denotes the increasing re-arrangement of 𝑓 (for the formal definition see for 

instance [22]). 

 

A key result of majorization theory [20] makes it possible to define classes of functionals that are isotonic 

with the strong and weak preorders [25]. 

 

Theorem 1. Let 𝑓, 𝑔 ∈ ℒ1(0, 𝑥0) and consider the inequality: 

 

∫ 𝜙(𝑓(𝑢))
𝑥0
0

𝑑𝑢 ≤ ∫ 𝜙(𝑔(𝑢))
𝑥0
0

𝑑𝑢                                                   (1) 

 

𝑓 ≺ 𝑔 iff (1) holds for every convex function 𝜙 such that the integral exists. 

𝑓 ≺𝑤 𝑔 iff (1) holds for every increasing and convex function 𝜙 such that the integral exists. 

𝑓 ≺𝑤 𝑔 iff (1) holds for every decreasing and convex function 𝜙 such that the integral exists. 
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3. Preliminaries 

Let ℱ be the space of non-negative distributions 𝐹 with finite expectation, ℱ = {𝐹: 𝐹(𝑧) = 0 ∀ 𝑧 < 0 ∧

 ∫ 𝑧𝑑𝐹 = 𝜇𝐹
∞

0
< ∞}. First, we recall that the (generalized) inverse of a distribution function 𝐹 ∈ ℱ is given 

by 

𝐹−1(𝑝) = inf{𝑧: 𝐹(𝑧) ≥ 𝑝}, 𝑝 ∈ (0,1)                                                 (2) 

 

If 𝐹 has finite expectation, 𝜇𝐹, then the Lorenz curve 𝐿𝐹: [0,1] → [0,1] is defined as follows [17]: 

 

𝐿𝐹(𝑝) =
1

𝜇𝐹
∫ 𝐹−1(𝑡)𝑑𝑡
𝑝

0
, 𝑝 ∈ (0,1).                                                 (3) 

 

Henceforth, let 𝑋 and 𝑌 be non-negative random variables, with finite expectations, with corresponding 

distribution functions 𝐹 and 𝐺, respectively. Some basic properties of the LC are as follows: i) 𝐿𝐹(𝑝) = 𝑝 iff 

𝑋 = 𝜇𝐹 (absence of inequality); ii) if 𝑌 = 𝑐𝑋 (𝑐 > 0) then 𝐿𝐹(𝑝) = 𝐿𝐺(𝑝), ∀ 𝑝 (scale invariance; indeed, by 

definition, LC determines the distribution up to a scale transformation); iii) if 𝑌 = 𝑐 + 𝑋 (𝑐 > 0) then 

𝐿𝐹(𝑝) < 𝐿𝐺(𝑝), ∀ 𝑝 (in particular 𝑝 − 𝐿𝐺(𝑝) = (𝑝 − 𝐿𝐹(𝑝))𝜇𝐹/(𝜇𝐹 + 𝑐)); iv) in an empirical context, the 

LC is also invariant to population replication [30], that is, if the frequencies are multiplied by the same 

integer and positive number, the LC remains unchanged. 

Let us also define the complementary Lorenz curve (see e.g. [13] or [25], pp. 728-730, and the references 

therein), 𝐿̅𝐹: [0,1] → [0,1], given by 

 

𝐿̅𝐹(𝑝) =
1

𝜇𝐹
∫ 𝐹−1(1 − 𝑡)𝑑𝑡
𝑝

0
= (1 − 𝐿𝐹(𝑝))↑ = 1 − 𝐿𝐹(1 − 𝑝), 𝑝 ∈ (0,1)                      (4) 

(note that if 𝑓(𝑡) is a decreasing function in [0,1] then 𝑓↑(𝑡) = 𝑓(1 − 𝑡)). Actually, for a given percentage 𝑡, 
𝐿𝐹(𝑡) represents the percentage of “total” possessed by the low 100𝑡% part of the distribution, while 𝐿̅𝐹(𝑡) 
represents the percentage of “total” corresponding to the top 100𝑡% part of the distribution. From a 

geometrical point of view, 𝐿̅𝐹(𝑝) is the 180° rotation of 𝐿𝐹(𝑝) with respect to the point (0.5,0.5).  
In what follows we shall also need the following curves.  

 

Σ𝐹(𝑡) = 𝐿̅𝐹(𝑡) + 𝐿𝐹(𝑡), 𝑡 ∈ [0,1/2],                                                        (5) 

 

∆𝐹(𝑡) = 𝐿̅𝐹(𝑡) − 𝐿𝐹(𝑡), 𝑡 ∈ [0,1/2].                                                        (6) 

 

Note that these curves are defined in [0,1/2] because their behaviour in [1/2,1] is equivalent up to 

symmetric transformations.  

The interpretation of ∆𝐹 is quite simple. As 𝐿̅𝐹(𝑡) ≥ 𝐿𝐹(𝑡) ∀𝑡 ∈ [0,1/2], the difference between the Lorenz 

curves expresses the disparity between the “higher” and the “lower” parts of the distribution. In terms of 

income distributions, ∆𝐹 equals the difference between the proportion of the society’s overall wealth that is 

held by the society’s top (rich) 100𝑡%, and the proportion of the society’s overall wealth that is held by the 

society’s low (poor) 100𝑡%. On the other hand, Σ𝐹 expresses the conformity between the two tails of the 

distribution, with respect to the 2𝑡 line, as we shall discuss in section 4.  

Curves that express disparity between the tails, like ∆𝐹, should be basically equivalent for distributions that 

present more (less) inequality in the left (right) tail and, “symmetrically” less (more) inequality in the right 

(left) tail. However, note that this vague idea of symmetry can be construed in different ways: indeed, 

observe that ∆𝐹 is based on a vertical distance between LCs but, as suggested by [13], we may alternatively 

consider similar disparity curves based on an horizontal distance or a perpendicular distance (to the line 1 −
𝑡), that is, respectively: 

 

∆𝐹
∗ (𝑡) = (𝐿𝐹)

−1(𝑡) − (𝐿̅𝐹)
−1(𝑡), 𝑡 ∈ [0,1/2]                                             (7) 

 

∆𝐹
∗∗(𝑡) = √2 (𝐾𝐹

−1(𝑡) − 𝐾̅𝐹
−1
(𝑡)), 𝑡 ∈ [0,1/2]                                           (8) 
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where 𝐾𝐹(𝑡) =
𝐿𝐹(𝑡)+𝑡

2
 and 𝐾̅𝐹(𝑝) =

𝐿̅𝐹(𝑡)+𝑡

2
 (for the proof see [13]) Clearly, we may similarly define two 

alternative versions for Σ𝐹.The three different approaches represented by (6), (7) and (8) yield different 

effects on the measurement of inequality: while (6) and (7) are basically equivalent from a mathematical 

point of view (for symmetry with respect to the line 𝑡), the distinction between (6) and (8) is more important. 

Indeed, it may be noted that ∆𝐹 is equivalent for LCs obtained by rank-preserving transfers, of fixed 

quantity, that may occur symmetrically (i.e. same “positional” distance from the median) in the left or right 

tail (see the definitions of downside and upside positional transfers, [1]): this does not hold for ∆𝐹
∗∗. On the 

other hand, ∆𝐹
∗∗ is equivalent for couples of LCs that are (mutually) symmetric with respect to the line 1 − 𝑡 

while, in this case, ∆𝐹 emphasizes the right tail compared to the left one.  

In this paper we focus on (6) because of its mathematical simplicity (similar results may be trivially obtained 

for (7) by symmetry) and temporarily overlook (8). We shall show that Σ𝐹 is related to an ordering of 

skewness, whilst ∆𝐹 is related to an ordering of kurtosis (tailweightness). Moreover, we shall propose a new 

ordering of inequality based on ∆𝐹. 

The Lorenz dominance (LD) ≤𝐿 is a pre-order defined over the space ℱ. It can be defined as follows.  

Definition 3. Let 𝐹, 𝐺 ∈ ℱ: we write 𝐹 ≤𝐿 𝐺 if and only if 𝐿𝐹(𝑝) ≥ 𝐿𝐺(𝑝), ∀ 𝑝 ∈ (0,1). 
 

It is well known that, in a discrete context, the LD is coherent with the principle of transfers, in that 𝐹 ≤𝐿 𝐺 

is equivalent to saying that 𝐹 can be obtained from 𝐺 by a sequence of (rank-preserving) progressive 

transfers (see e.g. [25] p. 7). Hence, any index that is isotonic with the LD is also consistent with this basic 

principle. 

Let 𝑙𝐹 = 𝐹
−1/𝜇𝐹 (note that if 𝐿𝐹 is differentiable 𝑙𝐹 = (𝐿𝐹)

′). We can express the relation between LD and 

majorization as follows [6] 

 

if 𝐹 ≤𝐿 𝐺 then 𝑙𝐹 ≺ 𝑙𝐺 .                                                              (9) 

 

This result makes it possible to define several classes of functionals that are isotonic with LD, based on some 

theorems of majorization theory: for a detailed review see [7]. 

In particular, if we apply Theorem 1 to 𝑙𝐹, we obtain that any functional of the form  

 

Υ(𝐹) = ∫ 𝜑(𝑙𝐹(𝑡))𝑑𝑡
1

0
,                                                                 (10) 

 

where 𝜑 is a continuous and convex function (such that the integral exists), is isotonic with ≤𝐿. Equation 

(10) defines a general class of functionals that may yield suitable inequality measures. Indeed, based on the 

properties i)-iv) of the LC described above, it is straightforward to verify that Υ(𝐹) fulfils some useful 

properties, such as: i) Υ(𝐹) attains its minimum when 𝑋 = 𝜇𝐹 with probability one (absence of inequality); 

ii) if 𝑌 = 𝑐𝑋 (𝑐 > 0) then Υ(𝐹) = Υ(𝐺) (scale invariance or mean independence); iii) if 𝑌 = 𝑐 + 𝑋 (𝑐 > 0) 

then Υ(𝐺) < Υ(𝐹); iv) invariance to population replication. 

Several well-known indices belong to the general family defined by equation (10) (see also [29]), among 

which we may note the class of additively decomposable measures of inequality [30]: 

 

𝐼𝑟(𝐹𝑛) =

{
 
 

 
 ∫ ln(1/𝑙𝐹𝑛(𝑡)) 𝑑𝑡

1

0
𝑟 = 0

1

𝑟(𝑟−1)
∫ {(𝑙𝐹𝑛(𝑡))

𝑟
− 1}𝑑𝑡

1

0
𝑟 ≠ 0,1

∫ 𝑙𝐹𝑛(𝑡)ln(𝑙𝐹𝑛(𝑡)) 𝑑𝑡
1

0
𝑟 = 1

,                                              (11) 

 

where 𝐹𝑛 is the empirical distribution function. We observe that 𝐼𝑟(𝐹𝑛) = 0 in case of absence of inequality, 

and a suitable normalization, i.e. 𝐼𝑟
𝑁(𝐹𝑛) = 𝐼𝑟(𝐹𝑛)/𝐼𝑟 (𝐹𝑛,𝜇𝐹𝑛

max ), yields 𝐼𝑟
𝑁(𝐹𝑛) = 1 iff 𝐹𝑛(𝑥) = 𝐹𝑛,𝜇𝐹𝑛

max (𝑥), 

where 𝐹𝑛,𝜇𝐹𝑛
max  is the distribution in case of maximum inequality, given the couple (𝑛, 𝜇𝐹𝑛):  

 

𝐹𝑛,𝜇𝐹𝑛
max (𝑥) = {

0
𝑛

𝑛−1

1

     

𝑥 < 0
0 ≤ 𝑥 < 1
𝑥 ≥ 𝑛𝜇𝐹𝑛

.                                                      (12) 
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More interestingly, 𝐼𝑟 also fulfils some additional attractive properties of an inequality index, in that it has 

been proved that it can be decomposed by population subgroups [30] and by sources (e.g. income sources) 

[31]. 

Clearly, also the coefficient of variation and the well-known Gini index [18] are consistent with the LD. We 

recall that the Gini index, which does not belong to the family defined by (10), is given by twice the area 

between the Lorenz curve and the 45° line: 

 

Γ(𝐹) = 1 − 2∫ 𝐿𝐹(𝑡)𝑑𝑡
1

0
.                                        (13) 

 

4. Second-degree Lorenz dominance: intersections and skewness 

 

When the Lorenz ordering is not fulfilled, i.e. when LCs intersect, we need to introduce some weaker criteria 

in order to obtain unambiguous rankings. Let ℱ𝜇 be the class of non-negative distributions with equal mean 

𝜇. Because, in ℱ𝜇, the LD is equivalent to the second-degree stochastic dominance (2-SD), which in turn is 

equivalent to the second-degree inverse stochastic dominance (2-ISD) [24], Muliere and Scarsini [26] 

suggest using the third-degree inverse stochastic dominance (3-ISD) to rank intersecting Lorenz curves. 

While the LD compares the percentages of total (wealth) corresponding to the low 100𝑡% parts of the 

distributions, by using the 3-ISD an integration is performed. Hence the comparison concerns the cumulated 

percentages of total corresponding to the low 100𝑡% parts of the distributions. In other words, by so doing 

we emphasize the left tail of the distribution (i.e. lower incomes). A parallel approach consists in cumulating 

LCs from the right: that is, attaching more weighting to top incomes. In this paper we find it more convenient 

to adopt the normalized (i.e. based on the LC) version of the 3-ISD: that is, the second-degree Lorenz 

dominance [1], defined as follows. Note that our definition slightly differs from Aaberge’s definition [1] in 

that, coherently with the literature and our definition of LD (Def. 3), we consider “dominant” the distribution 

that presents greater inequality. 

Definition 4. We say that 𝐺 second-degree upward Lorenz dominates 𝐹, and write 𝐹 ≤𝐿
2 𝐺 iff: 

∫ 𝐿𝐹(𝑝)𝑑𝑝
𝑡

0
≥ ∫ 𝐿𝐺(𝑝)𝑑𝑝

𝑡

0
, ∀𝑡 ∈ [0,1] (that is 𝐿𝐹 ≺

𝑤 𝐿𝐺). 

We say that 𝐺 second-degree downward Lorenz dominates 𝐹, and write 𝐹 ≤𝐿̅
2 𝐺 iff any of the following 

equivalent conditions is true: 

i) ∫ 𝐿̅𝐹(𝑝)𝑑𝑝
𝑡

0
≤ ∫ 𝐿̅𝐺(𝑝)𝑑𝑝

𝑡

0
, ∀𝑡 ∈ [0,1] 

ii) ∫ 1 − 𝐿𝐹(𝑝)𝑑𝑝
1

𝑡
≤ ∫ 1 − 𝐿𝐺(𝑝)𝑑𝑝

1

𝑡
, ∀𝑡 ∈ [0,1] 

iii) ∫ 𝐿𝐺(𝑝)𝑑𝑝
1

𝑡
≤ ∫ 𝐿𝐹(𝑝)𝑑𝑝

1

𝑡
, ∀𝑡 ∈ [0,1] (that is 𝐿𝐺 ≺𝑤 𝐿𝐹). 

 

In this paper, we generally state that the 2-LD holds when one (both) of the orderings ≤𝐿
2 and ≤𝐿

2 is (are) 

verified. Observe that 𝐹 ≤𝐿 𝐺 implies 𝐹 ≤𝐿
2 𝐺 and 𝐹 ≤𝐿̅

2 𝐺, but the converse is not necessarily true, i.e. 

𝐹 ≤𝐿
2 𝐺 and 𝐹 ≤𝐿̅

2 𝐺 do not imply the LD. Moreover, note that 𝐹 ≤𝐿
2 𝐺 implies that 𝐿𝐹 starts above 𝐿𝐺 and 

presents a larger (underlying) area: that is, a lower (or equal) value of the Gini index. Differently, 𝐹 ≤𝐿̅
2 𝐺 

implies that 𝐿𝐹 starts below 𝐿𝐺 but still has a lower (or equal) Gini. Hence it is apparent that in both cases the 

condition ∫ 𝐿𝐹(𝑝)𝑑𝑝
1

0
≥ ∫ 𝐿𝐺(𝑝)𝑑𝑝

1

0
 (i.e. Γ(𝐹) ≤ Γ(𝐺)) is necessary to establish a dominance. In particular, 

Zoli [39] argues that if Lorenz curves cross only once, the value of the Gini index is crucial for determining 

the (upward) second-degree Lorenz dominance (this result can be trivially extended to the downward 2-LD). 

Actually, we recall that this is a straightforward consequence of a theorem of Hanoch and Levi [19], with 

regard to stochastic dominance, or an earlier result of Karlin and Novikoff [21] in a more general context. 

Indeed, observe that the role of the Gini index for the (first or second-degree) LD is equivalent to the role of 

the mean for the (first or second-degree) stochastic dominance. Hence, because of the crucial function of the 

Gini coefficient, it is important to investigate the special case of Γ(𝐹) = Γ(𝐺). Although this particular 
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situation is clearly uncommon in practical cases, it should be stressed that, in order to understand the 

different orderings and their relations more deeply, it is especially meaningful to analyze and compare them 

under conditions of maximum uncertainty, to be understood, in our case, as LCs with equal areas (that is, 

Γ(𝐹) = Γ(𝐺)). Indeed, preorders only represent general rules for comparison of distributions based on 

particular preferences (e.g. aversion to inequality). Then, once the rules have been established, it is possible 

to obtain functionals that are isotonic with these rules. Observe that, if a given functional is isotonic with a 

particular ordering under conditions of maximum uncertainty, then this functional will clearly rank 

distributions coherently under sharper conditions; and, in particular, we expect that it will substantially 

reflect our preferences, in some sense, even in those situations where we cannot establish a dominance. For 

this reason, in what follows we shall pay particular attention to the case of Γ(𝐹) = Γ(𝐺). The following 

theorem generalizes the result of [39]. Since some of the results are stated in terms of the number of times a 

Lorenz curve intersects another, we provide the following formal definition (see also [9]). 

 

Definition 5. 𝐿𝐹 crosses 𝐿𝐺 k times first from above if there exist a set of points namely 𝑡1, … , 𝑡𝑘 (where 

𝑡1 < 𝑡2… < 𝑡𝑘) such that, if 𝑡0 = 0 and 𝑡𝑘+1 = 1, we have: (−1)i𝐿𝐹(t) ≤ (−1)
i𝐿𝐺(t) for 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1 and 

𝑖 = 0,… , 𝑘  and (−1)i𝐿𝐹(t) < (−1)
i𝐿𝐺(t)  for some  𝑡𝑖 ≤ 𝑡𝑖′ < 𝑡𝑖+1. Similarly, 𝐿𝐹 crosses 𝐿𝐺 k times first 

from below iff 𝐿̅𝐹 crosses 𝐿̅𝐺 k times first from above. 

 

Theorem 2.  

1. Let 𝐿𝐹 and 𝐿𝐺 cross once first from above. If Γ(𝐹) ≤ Γ(𝐺) then 𝐹 ≤𝐿
2 𝐺; if Γ(𝐹) ≥ Γ(𝐺) then 

𝐺 ≤𝐿̅
2 𝐹. 

2. Assume that Γ(𝐹) = Γ(𝐺) and 𝐿𝐹 and 𝐿𝐺 cross an even number of times. Then the conditions 

𝐹 ≤𝐿
2 𝐺, 𝐹 ≤𝐿̅

2 𝐺, 𝐺 ≤𝐿
2 𝐹, 𝐺 ≤𝐿̅

2 𝐹 cannot hold true. 

 

Proof 

1) In the specific context of the LC, this has been proved in [39] with regard to ≤𝐿
2. However, an alternative 

proof is as follows. Let us refer to the extended “distributional” version of 𝐿𝐹 by 

  

𝐿𝐹
∗ (𝑝) = {

0 𝑝 ≤ 0
𝐿𝐹(𝑝) 𝑝 ∈ (0,1)
1 𝑝 ≥ 1

. 

 

Then 𝐹 ≤𝐿
2 𝐺 is equivalent to 𝐿𝐺

∗ ≤𝑆𝐷
2 𝐿𝐹

∗ , where ≤𝑆𝐷
2  indicates the 2-SD, and 𝜇𝐿𝐻∗ =

Γ(𝐹)+1

2
 (for 𝐻 = 𝐹, 𝐺). 

Hence point 1), with regard to the ≤𝐿
2 dominance, is simply Theorem 3 of [19], which in turn can be seen as 

a special case of a result of [21]. The proof can be easily extended to ≤𝐿̅
2 with very similar arguments. 

2) Note that this result has been proved by [27] with regard to stochastic dominance.  

If 𝐿𝐹 crosses 𝐿𝐺 first from above (or below), it is obvious that 𝐺 ≤𝐿
2 𝐹 and 𝐺 ≤𝐿̅

2 𝐹 (or 𝐹 ≤𝐿̅
2 𝐺 and 𝐹 ≤𝐿

2 𝐺) 

cannot be true. 

Without loss of generality, suppose that 𝐿𝐹 crosses 𝐿𝐺 k times first from above (where k is even). Define 

𝐿𝐹(𝑧) − 𝐿𝐺(𝑧) = 𝛿𝐹(𝑧).  

Γ(𝐹) − Γ(𝐺) = ∫ 𝛿𝐹(𝑧)𝑑𝑧
1

0

= ∫ 𝛿𝐹(𝑧)𝑑𝑧
𝑡𝑘

0

+∫ 𝛿𝐹(𝑧)𝑑𝑧
1

𝑡𝑘

= 0 

thus ∫ 𝛿𝐹(𝑧)𝑑𝑧
𝑡𝑘
0

= −∫ 𝛿𝐹(𝑧)𝑑𝑧
1

𝑡𝑘
. By assumption 𝐿𝐹(𝑡) ≥ 𝐿𝐺(𝑡) for 𝑡 > 𝑡𝑘 (and 𝐿𝐹(𝑡) > 𝐿𝐺(𝑡) for some 

𝑡′ > 𝑡𝑘). Therefore ∫ 𝛿𝐹(𝑧)𝑑𝑧
𝑡𝑘
0

> 0 and ∫ 𝛿𝐹(𝑧)𝑑𝑧 < 0
1

𝑡𝑘
, which yields that 𝐹 ≤𝐿

2 𝐺 cannot hold (i.e. it 

exists at least one point 𝑡′′ such that ∫ 𝐿𝐹(𝑝)𝑑𝑝
𝑡′′

0
< ∫ 𝐿𝐺(𝑝)𝑑𝑝

𝑡′′

0
). Similarly we can prove that 𝐹 ≤𝐿̅

2 𝐺 

cannot hold true. 

 

For the sake of simplicity, in what follows we shall focus on ≤𝐿
2 and overlook ≤𝐿̅

2 in most of the cases. 

Clearly, all the results can be easily extended to ≤𝐿̅
2. 

From an intuitive point of view, the upward (or downward) 2-LD basically expresses a preference for right 

(or left) skewed distributions; that is, on equal values of the Gini, distributions that present less inequality in 

the left tail and consequently a “heavier” (to be understood as greater inequality) right tail. With the 
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following results and discussion we attempt further to analyze the second-degree Lorenz dominance, 

especially by showing its relation with the concept of skewness. In this context, the curve Σ𝐹 defined in 

section 3 turns out to be a fundamental tool for comparisons of distributions in terms of skewness. 

Theorem 3. Σ𝐹(𝑡) = 2𝑡, ∀𝑡 ∈ [0,1/2] iff 𝐹 is symmetric. 

Proof 

It is well known that 𝐹 is symmetric around the value 𝜇𝐹 = 𝐹
−1(1/2)  iff 𝐹(𝜇𝐹 − 𝑡) = 1 − 𝐹(𝜇𝐹 + 𝑡) for 

all 𝑡 in the support of 𝐹, which can be equivalently expressed as follows, in terms of the inverse distribution 

𝐹−1: 

𝐹−1(𝑝) + 𝐹−1(1 − 𝑝) = 2𝜇𝐹 for all 𝑝 ∈ [0,1/2 ] 
Observe that  

𝐿̅𝐹(𝑡) =
1

𝜇𝐹
∫ 𝐹−1(1 − 𝑝)𝑑𝑝
𝑡

0
, 

then 𝐹 is symmetric iff Σ𝐹(𝑡) =
1

𝜇𝐹
∫ (𝐹−1(𝑝)+𝐹−1(1 − 𝑝))𝑑𝑝 =
𝑡

0

1

𝜇𝐹
∫ 2𝜇𝐹 =
𝑡

0
2𝑡. 

 

In view of Theorem 3, we argue that the line 2𝑡 in the interval [0,1/2 ] can represent a watershed for the 

curve Σ𝐹(𝑡) and may therefore be used as a graphical tool for detecting asymmetry, that is somehow close to 

the idea of a skewness diagram, see Zenga [37]. The comparison between 2𝑡 and Σ𝐹(𝑡) makes it possible to 

recognize right and left asymmetric distributions, as stated in the following definition. 

Definition 6. Let 𝐹 ∈ ℱ0: 

1. 𝐹 is symmetric iff Σ𝐹(𝑡) = 2𝑡, ∀𝑡 ∈ [0,1/2] 

2. 𝐹 is right asymmetric iff Σ𝐹(𝑡) ≤ 2𝑡, ∀𝑡 ∈ [0,1/2] and Σ𝐹(𝑡) < 2𝑡 for some 𝑡 ∈ [0,1/2] 

3. 𝐹 is left asymmetric iff Σ𝐹(𝑡) ≥ 2𝑡, ∀𝑡 ∈ [0,1/2] and Σ𝐹(𝑡) > 2𝑡 for some 𝑡 ∈ [0,1/2] 

Hence, the function Σ𝐹(𝑡) expresses the form of the distribution in terms of skewness and therefore can be 

used to rank distributions by introducing a stochastic ordering of asymmetry (see e.g. [3,15,23,35]). In 

particular, according to Arnold and Groeneveld [3] we can argue that, if 𝐹, 𝐺 are “centered“ around the same 

value (that is, the median in [3], but we can take the mean as well), 𝐹 is more right asymmetric than 𝐺 if  

 

∫ (𝐹−1(𝑝)+𝐹−1(1 − 𝑝))𝑑𝑝
𝑡

0
≤ ∫ (𝐺−1(𝑝)+𝐺−1(1 − 𝑝))𝑑𝑝

𝑡

0
 for all 𝑡 ∈ [0,1/2 ]              (14) 

 

If the means of 𝐹, 𝐺 are equal, the above inequality is actually equivalent to 

 

Σ𝐹(𝑡) ≤ Σ𝐺(𝑡) for all 𝑡 ∈ [0,1/2 ]                                                  (15) 

 

(see the proof of Theorem 3).  

Note that, like the LC, Σ𝐹 is scale invariant but not location invariant. Hence its behavior determines an 

ordering of skewness which is suitable for distributions with equal means. In particular, we can introduce the 

following ordering of (right) skewness in both strong and weak (i.e. integrated) versions. 

Definition 7. Let 𝐹, 𝐺 ∈ ℱ𝜇. 

1. We say that 𝐺 is more right asymmetric than 𝐹 and write 𝐹 <𝑠 𝐺 iff Σ𝐹(𝑡) ≤ Σ𝐺(𝑡), ∀𝑡 ∈ [0,1/2]. 

2. We say that 𝐺 is weakly more right asymmetric than 𝐹 and write 𝐹 <𝑠
2 𝐺 iff ∫ Σ𝐹(𝑝)𝑑𝑝

𝑡

0
≤

∫ Σ𝐺(𝑝)𝑑𝑝
𝑡

0
, ∀𝑡 ∈ [0,1/2] .  

If 𝐹 <𝑠 𝐺 (or 𝐹 <𝑠
2 𝐺) 𝐹 is equivalently less left-skewed than 𝐺. From this discussion we may also argue 

that the orderings <𝑠, <𝑠
2 can be used to rank distributions with different means (and not necessarily positive) 

through the use of generalized Lorenz curves [32] and a suitable standardization. 

Assume that Γ(𝐹) = Γ(𝐺): it is possible to show that if 𝐹 and 𝐺 are symmetric they cannot be ranked 

according to the second-degree Lorenz dominance. Moreover, if Γ(𝐹) = Γ(𝐺) then the second-degree 
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Lorenz dominance implies the weak ordering <𝑠
2. Therefore in this case ≤𝐿

2 can also be interpreted as an 

ordering of skewness (stronger than <𝑠
2) within the class ℱ𝜇. 

Theorem 4. Assume that Γ(𝐹) = Γ(𝐺) 

1. Let 𝐹, 𝐺 ∈ ℱ𝜇. 𝐹 ≤𝐿
2 𝐺 implies 𝐹 <𝑠

2 𝐺. 

2. Assume that 𝐹, 𝐺 are symmetric. Then ≤𝐿
2 (as well as ≤𝐿̅

2) are unable to rank 𝐹, 𝐺. 

Proof 

As for 1), observe that ∫ 𝐿𝐹(𝑝)𝑑𝑝
𝑡

0
≥ ∫ 𝐿𝐺(𝑝)𝑑𝑝

𝑡

0
, for every 𝑡 in [0,1], and ∫ 𝐿𝐹(𝑝)𝑑𝑝

1

0
= ∫ 𝐿𝐺(𝑝)𝑑𝑝

1

0
 yield 

∫ 𝐿𝐹(𝑝)𝑑𝑝
1

𝑡
≤ ∫ 𝐿𝐺(𝑝)𝑑𝑝

1

𝑡
 which is equivalent to ∫ 𝐿̅𝐹(𝑝)𝑑𝑝

𝑡

0
≥ ∫ 𝐿̅𝐺(𝑝)𝑑𝑝

𝑡

0
, for every 𝑡 in [0,1]. Then by 

summing the first and the last inequalities we obtain the thesis. 

With regard to 2), it is evident that the Lorenz ordering cannot hold because ∫ 𝐿𝐹(𝑝)𝑑𝑝
1

0
= ∫ 𝐿𝐺(𝑝)𝑑𝑝

1

0
, 

unless 𝐿𝐹 = 𝐿𝐺. We shall prove the thesis by contradiction. Suppose that 𝐹 ≤𝐿
2 𝐺: in this case the Lorenz 

curves intersect in at least one point, say 𝑝′ ≠ 0.5 (otherwise the distributions are not symmetric). Then 

𝐿𝐹 , 𝐿𝐺 will also cross in 1 − 𝑝′, for symmetry. Thus, we can understand that 𝐿𝐹 , 𝐿𝐺  can only have an even 

number of crossing points. Therefore the thesis follows from Theorem 2. 

Theorem 2 (point 2) and Theorem 4 (point 2) are useful in order to understand the possible “blind spots“ of 

the second-degree Lorenz dominance. Indeed, they determine some conditions under which the orderings ≤𝐿
2 

and ≤𝐿̅
2 are not able to provide a ranking. In view of these results, in the next section we introduce an 

alternative ordering whereby we can easily rank double-crossing Lorenz curves and also symmetric 

distributions. 

 

5. A new preorder based on the difference between Lorenz curves 

  

As an alternative approach, we may combine the basic ideas (preferences) expressed by the ≤𝐿
2 and ≤𝐿̅

2 

orderings into a single preorder, which emphasizes inequality in both the tails of the distribution. This can be 

done by symmetrically cumulating the Lorenz curve from both sides. Suppose Γ(𝐹) = Γ(𝐺): in this case we 

might “prefer” (in terms of inequality measurement) 𝐹 to 𝐺 basically if 𝐿𝐹 is above 𝐿𝐺 in a neighborhood of 

0 and 1 (i.e. 𝐹 presents less inequality in the tails, while 𝐺 presents less inequality in the “body”). 

We consider the disparity curve ∆𝐹, described in section 3. Clearly, 𝐹 ≤𝐿 𝐺 implies that ∆𝐹(𝑡) ≤ ∆𝐺(𝑡) for 

every 𝑡 in [0,1/2] (∆𝐹(𝑡) = 0 iff 𝐿𝐹(𝑡) = 𝑡). Therefore this condition may be interpreted as a strong disparity 

dominance. If 𝐿𝐹 and 𝐿𝐺 cross, it can be reasonable to wish that ∆𝐹 is (uniformly) as small as possible: this 

concept can be expressed in terms of an integral inequality (i.e. weak majorization). We propose the 

following weak preorder of inequality based on the disparity curve. 

 

Definition 8. We say that 𝐹 second-degree disparity dominates (2-DD) 𝐺 and write 𝐹 ≤𝐷
2 𝐺 iff:  

  

∫ ∆𝐹(𝑝)𝑑𝑝
𝑡

0
≤ ∫ ∆𝐺(𝑝)𝑑𝑝

𝑡

0
 ∀𝑡 ∈ [0,0.5] (equivalently ∆𝐺≺

𝑤 ∆𝐹). 

 

Like 𝐹 ≤𝐿
2 𝐺, also 𝐹 ≤𝐷

2 𝐺 implies the condition ∫ ∆𝐹(𝑝)𝑑𝑝
1/2

0
≤ ∫ ∆𝐺(𝑝)𝑑𝑝

1/2

0
, which is equivalent to 

Γ(𝐹) ≤ Γ(𝐺) (∫ ∆𝐹(𝑝)𝑑𝑝
1/2

0
= ∫ (𝑝 − 𝐿𝐹(𝑝))𝑑𝑝

1

0
).  

Clearly, as a complementary approach (like ≤𝐿
2, ≤𝐿̅

2) we may emphasize the “body” of the distribution, rather 

than the tails, by integrating a suitable transformation of ∆𝐹 (that may be ∆𝐹(0.5) − ∆𝐹(0.5 − 𝑝) as will be 

shown in what follows), but for the sake of simplicity we shall not introduce another preorder in this paper.  

The main result of Theorem 5 below is that we can determine a sufficient condition for the 2-DD based on 

the number (and the positions) of intersections and the values of the Gini index (point 1). This is somehow 
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parallel to Theorem 2 with regard to 2-LD, and shows that the 2-DD may fill the main “gap” of the 2-LD, 

even when Γ(𝐹) = Γ(𝐺). Vice versa, for the sake of completeness, we show that when Lorenz curves are 

single crossing after 0.5 and Γ(𝐹) = Γ(𝐺) the 2-DD cannot hold, while the 2-LD certainly does so (upward 

or downward) for Theorem 2. We also observe that theorems 2 and 5 can justify the use of the Gini 

coefficient (which is isotonic with 2-LD and 2-DD) for ranking, respectively, single-crossing and double-

crossing LCs.  

Theorem 5. 

1. Assume that 𝐿𝐹 , 𝐿𝐺  cross twice first from above in 𝑝′, 𝑝′′ and Γ(𝐹) ≤ Γ(𝐺). If 𝑝′ = 1 − 𝑝′′, then 

𝐹 ≤𝐷
2 𝐺. If 𝑝′ > 1 − 𝑝′′ and ∄𝑝̅ ∈ (1 − 𝑝′′, 𝑝′) such that  ∫ 𝐿̅𝐹(𝑝) − 𝐿̅𝐺(𝑝)𝑑𝑝

𝑝̅ 

0
> 0, then 𝐹 ≤𝐷

2 𝐺. 

If 𝑝′ < 1 − 𝑝′′ and ∄𝑝̅ ∈ (𝑝′, 1 − 𝑝′′) such that  ∫ 𝐿𝐹(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝
𝑝̅ 

0
< 0, then 𝐹 ≤𝐷

2 𝐺. 

2. Assume that 𝐿𝐹 , 𝐿𝐺  cross twice in 𝑝′, 𝑝′′ (so that 𝑝′ < 𝑝′′ < 0.5 or 0.5 < 𝑝′ < 𝑝′′) and Γ(𝐹) =

Γ(𝐺). Then 𝐹 ≤𝐷
2 𝐺 cannot hold. 

3. Assume that Γ(𝐹) = Γ(𝐺) and 𝐿𝐹 , 𝐿𝐺 are single crossing in 𝑝′ > 0.5. Hence 𝐹 ≤𝐷
2 𝐺 cannot hold. 

Proof 

1) Assume, for the moment, that Γ(𝐹) = Γ(𝐺). Suppose also that 𝑝′ < 1 − 𝑝′′ (the proof can be 

symmetrically extended to the case of 𝑝′ > 1 − 𝑝′′, while in the case of 𝑝′ = 1 − 𝑝′′ it is trivial). We prove 

the thesis by contradiction. Suppose that there exists a point say 𝑝∗ such that ∫ 𝐿̅𝐹(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
𝑝∗ 

0
>

∫ 𝐿̅𝐺(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝
𝑝∗ 

0
, which is equivalent to ∫ 𝐿𝐺(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝

1 

1−𝑝∗
> ∫ 𝐿𝐹(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝

𝑝∗ 

0
. Clearly 𝑝∗ 

must belong to the interval (𝑝′, 𝑝′′). Thus the latter inequality is equivalent to 

 

∫ 𝐿𝐺(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
1−𝑝∗ 

𝑝′′

+∫ 𝐿𝐺(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
𝑝∗ 

𝑝′

> ∫ 𝐿𝐹(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝
𝑝′ 

0

+∫ 𝐿𝐹(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝 =
1 

𝑝′′

= ∫ 𝐿𝐺(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
𝑝′′ 

𝑝′

 

which contradicts the assumption Γ(𝐹) = Γ(𝐺). The thesis holds a fortiori when Γ(𝐹) ≤ Γ(𝐺). 

2) We prove the thesis only for the case in 𝑝′ < 𝑝′′ < 0.5 because in the other case it can be proved 

similarly. Observe that 

∫ 𝐿𝐺(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
𝑝′′ 

0

= ∫ 𝐿𝐺(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
𝑝′′ 

𝑝′

−∫ 𝐿𝐹(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝 =
𝑝′ 

0

∫ 𝐿𝐹(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝
1 

𝑝′′

 

It is therefore evident that ∫ 𝐿̅𝐹(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝
𝑝′′ 

0
> ∫ 𝐿̅𝐺(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝

𝑝′′ 

0
. 

3) The condition ∆𝐺≺
𝑤 ∆𝐹 is equivalent to ∫ 𝐿̅𝐹(𝑝) − 𝐿𝐹(𝑝)𝑑𝑝

𝑡

0
≤ ∫ 𝐿̅𝐺(𝑝) − 𝐿𝐺(𝑝)𝑑𝑝

𝑡

0
, or ∫ 𝐿̅𝐹(𝑝) −

𝑡

0

𝐿̅𝐺(𝑝)𝑑𝑝 ≤ ∫ 𝐿𝐹 − 𝐿𝐺(𝑝)𝑑𝑝
𝑡

0
. Denote with 𝑝′ the crossing point of 𝐿𝐹 , 𝐿𝐺. Note that 𝑝′ > 0.5 yields 

∫ 𝐿̅𝐹(𝑝) − 𝐿̅𝐺(𝑝)𝑑𝑝
1−𝑝′

0
= ∫ 𝐿𝐹 − 𝐿𝐺(𝑝)𝑑𝑝

𝑝′

0
. There consequently exists at least one point 𝑝′′ < 1 − 𝑝′ such 

that ∫ 𝐿̅𝐹(𝑝) − 𝐿̅𝐺(𝑝)𝑑𝑝
𝑝′′

0
> ∫ 𝐿𝐹 − 𝐿𝐺(𝑝)𝑑𝑝

𝑝′′

0
. 

In view of Theorem 5, we may easily argue that the 2-DD can be especially suitable for dealing with 

symmetric distributions, since in this case the number of crossing points must be definitely even.  

Another substantial difference between the 2-LD and the 2-DD is that the former is related to skewness (as 

shown in section 4) while the latter is related to the general idea of “kurtosis” (see [5]). Indeed, we show that 

∆𝐹 is strictly related to the spread function originally introduced by Bickel and Lehmann [8] and defined in 

[5] as: 

𝑠𝐹(𝑝) = 𝐹
−1 (

1

2
+ 𝑝) − 𝐹−1 (

1

2
− 𝑝)                                               (16) 
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Let 𝑆𝐹(𝑝) =
1

𝜇𝐹
∫ 𝑠𝐹(𝑡)𝑑𝑡
𝑝

0
. We can express 𝑆𝐹 in terms of the disparity curve ∆𝐹: 

𝑆𝐹(𝑝) =
1

𝜇𝐹
∫ 𝐹−1 (

1

2
+ 𝑡) − 𝐹−1 (

1

2
− 𝑡) 𝑑𝑡

𝑝

0

= 

=
1

𝜇𝐹
∫ 𝐹−1(1 − 𝑢)𝑑𝑢

1
2

1
2
−𝑝

−
1

𝜇𝐹
∫ 𝐹−1(𝑢)𝑑𝑢 =

1
2

1
2
−𝑝

𝐿̅𝐹 (
1

2
) − 𝐿̅𝐹 (

1

2
− 𝑝) − 𝐿𝐹 (

1

2
) + 𝐿𝐹 (

1

2
− 𝑝) = 

= ∆𝐹 (
1

2
) − ∆𝐹 (

1

2
− 𝑝)                                                           (17) 

(change of variables: 𝑢 =
1

2
− 𝑝).  

Note that, according to the literature, the spread function gives rise to an ordering of kurtosis (for some 

literature on this topic we mainly refer to [3,5,14], we also stress that the idea of measuring kurtosis based on 

LCs may be found in the kurtosis diagram [14, 28, 38], originally proposed by Zenga [36]). In particular, 

Arnold and Groeneveld [3] propose a list of possible orderings, not necessarily for symmetric distributions, 

among which one is based on the integrated spread curve (they also assume that the distributions are centered 

around the same value, but we can equivalently substitute this condition by dividing by the mean, which 

yields 𝑆𝐹). Since “kurtosis“ expresses the concepts of peakedness, tailweightness or, roughly speaking, “lack 

of shoulders“ [5], we argue that 𝑆𝐹 is related to peakedness (because it measures concentration around the 

median) whilst ∆𝐹 is related to tailweightness. Therefore 𝑆𝐹 and ∆𝐹 can be complementary tools for 

comparing distributions in terms of disparity, but also in terms of kurtosis (respectively understood as 

peakedness and tailweightness) within a suitable class of distributions, that is, ℱ𝜇. Indeed, note that ∆𝐹 is not 

location invariant, but kurtosis is in fact intended to be a location and scale-free concept. Therefore, similarly 

to Definition 7, we can propose strong and weak orderings of kurtosis (tailweightness) in the class of 

distributions with equal means, based on ∆𝐹. 

Definition 9. Let 𝐹, 𝐺 ∈ ℱ𝜇. 

1. We say that 𝐹 is less heavy tailed than 𝐺 and write 𝐹 <𝑘 𝐺 iff ∆𝐹(𝑡) ≤ ∆𝐺(𝑡), ∀𝑡 ∈ [0,1/2]. 

2. We say that 𝐹 is weakly less heavy tailed than 𝐺 and write 𝐹 <𝑘
2 𝐺 iff 𝐹 ≤𝐷

2 𝐺 .  

The application of theorems 2 and 5, as well as the “complementary” relation between the 2-SD and 2-DD 

(on fixed values of the Gini coefficient), can be shown by a simple theoretical example. Let us consider the 

following vectors, with equal means and equal numbers of elements: 

(0,10,20,30,40,50,60,70,80,90) 

(5,5,20,30,40,50,60,70,75,95) 

(5,5,15,35,40,50,55,75,85,85) 

 

and with corresponding empirical distribution functions 𝐹, 𝐺, 𝐻, respectively, such that Γ(𝐹) = Γ(𝐺) =

Γ(𝐻). As can be seen, 𝐹 is a symmetric distribution, 𝐺 presents less inequality in the left tail but 

(symmetrically, in terms of positions) more inequality in the right tail, whilst 𝐻 presents less inequality in 

both of the tails but more inequality close to the median value. With regard to the LCs, 𝐿𝐹 and 𝐿𝐺 cross once, 

𝐿𝐹 and 𝐿𝐻 cross twice and 𝐿𝐺 and 𝐿𝐻 cross once (after 0.5). We can verify that 𝐺 ≤𝐿
2 𝐹 (Theorem 2) and 

𝐻 ≤𝐷
2 𝐹 (Theorem 5). Moreover, we cannot rank 𝐹,𝐻 with the 2-LD, and similarly we cannot rank 𝐹, 𝐺 with 

the 2-DD. In other words, these couples of distributions are equivalent with respect to the orderings (note 

that Σ𝐹 = Σ𝐻 while ∆𝐹= ∆𝐺). As for 𝐺,𝐻 we obtain that 𝐺 ≤𝐿
2 𝐻 (Theorem 2) because 𝐺 presents less 

inequality starting from the left tail, while conversely we can verify that 𝐻 ≤𝐷
2 𝐺because 𝐻 presents less 

inequality starting from the two tails and greater inequality in the “body”. 

6. Some classes of isotonic functionals 
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In this section we propose some classes of functionals that are isotonic with the weak preorders 2-LD and 2-

DD, based on Theorem 1. 

In particular, with regard to the second-degree Lorenz dominance, we propose 

 

Φ(𝐹) = ∫ 𝜙(𝐿𝐹(𝑡))𝑑𝑡
1

0
,                                                               (18) 

 

where we assume that 𝜙(0) = 0 and ∫ |𝜙(𝐿𝐹(𝑡))|𝑑𝑡 < ∞
1

0
. Then, as straightforward consequences of 

Theorem 1, the following results hold. 

Corollary 1. 

If 𝜙 is decreasing and convex and 𝐹 ≤𝐿
2 𝐺, then Φ(𝐹) ≤ Φ(𝐺). 

If 𝜙 is decreasing and concave and 𝐹 ≤𝐿̅
2 𝐺, then Φ(𝐹) ≤ Φ(𝐺). 

 

For instance, we can obtain some inequality measures isotonic with ≤𝐿
2 if we set 𝜙(𝑡) = −𝑡𝑎 , 0 < 𝑎 < 1, or 

𝜙(𝑡) = −ln(𝑡 + 1). Moreover, if 𝐹𝑛 is the empirical distribution function, we can obtain a normalized 

version of Φ(𝐹𝑛) given by 

 

ΦN(𝐹𝑛) =
Φ(𝐹𝑛)

Φmin−Φmax(𝑛)
                                                            (19) 

 

where Φmin = ∫ 𝜙(𝑡)𝑑𝑡
1

0
 (min. inequality) and Φmax(𝑛) = ∫ 𝜙(−(𝑛 − 1) + 𝑛𝑡)𝑑𝑡

1
𝑛−1

𝑛

 (max. inequality). 

Clearly ΦN(𝐹𝑛) = 0 or ΦN(𝐹𝑛) = 1 respectively in the case of minimum or maximum inequality 

(concentration). 

We can use similar arguments in order to obtain inequality measures coherent with the 2-DD. Consider: 

 

Ψ(𝐹) = ∫ 𝜓(Δ𝐹(𝑡))𝑑𝑡
1/2

0
,                                                       (20) 

 

where we assume that 𝜓(0) = 0 and ∫ |𝜓(Δ𝐹(𝑡))|𝑑𝑡 < ∞
1/2

0
.  

Corollary 2. If 𝜓 is increasing and concave and 𝐹 ≤𝐷
2 𝐺, then Ψ(𝐹) ≤ Ψ(𝐺). 

In this case, we can still propose some inequality measures isotonic with ≤𝐷
2  by setting 𝜓(𝑡) = 𝑡𝑎 , 0 < 𝑎 <

1, or 𝜓(𝑡) = ln(𝑡 + 1). The degree of concavity of 𝜓 determines the weighting that we may attach to the 

tails of the distributions, i.e. the more concave is 𝜓, the more emphasis is given to the lowest and highest 

values.  

The corresponding normalized index for empirical data is as follows: 

 

ΨN(𝐹𝑛) =
Ψ(𝐹𝑛)

Ψmax(𝑛)
                                                             (21) 

 

where Ψmax(𝑛) = ∫ 𝜓(𝑛𝑡)𝑑𝑡
1/𝑛

0
 (note that Φmin = ∫ 𝜙(0)𝑑𝑡

1

0
= 0). Then ΨN(𝐹𝑛) = 0 or ΨN(𝐹𝑛) = 1 

respectively in the case of minimum or maximum inequality (concentration). 

Clearly, ΦN and ΨN also fulfil the elementary properties of inequality measures such as mean independence, 

invariance to population replication, and they decrease if the values are translated by a constant and positive 

quantity (these properties derive straightforward from the coherence with the LD and the basic properties of 

the LC described in section 3). 

 

7. Conclusion 

This paper has compared two conceptually complementary approaches to ranking intersecting Lorenz curves. 

The first approach is the so-called second-degree Lorenz dominance [1] or 2-LD, which is based on the 

third-degree inverse stochastic dominance as originally proposed by [26]. The second approach, namely the 

second-degree disparity dominance or 2-DD, is based on the integrated difference between the 
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complementary LC and the LC. Essentially, the 2-LD attaches more weighting to the right or left tail of the 

distribution, whilst the 2-DD emphasizes both of them. We have shown that the two criteria are basically 

complementary: in particular, the 2-LD and the 2-DD are especially suitable for ranking, respectively, single 

crossing and double-crossing Lorenz curves. In both cases, the value of the Gini index is crucial. Moreover, 

we have examined and compared the connection between these two dominance relations and the concepts of 

skewness and kurtosis. We have argued that the newly introduced order, i.e. the 2-DD, may serve a twofold 

purpose: i) it may provide unambiguous rankings in some situations when the 2-LD fails and; ii) it may be 

used in order to combine the two different approaches of the 2-LD, namely upward or downward, into one 

single preorder. We have stressed that the 2-LD is an especially useful criterion for economic applications 

(income distributions) because empirical studies have shown that single-crossing Lorenz curves occur very 

often [4,11] compared to the multiple-crossing case. Nevertheless, this paper has mainly focused on the 

statistical/mathematical aspects of inequality measurement because the results may not be limited to income 

distributions: in fact, they may be applied to a more general context.  

In the last section we proposed some classes of functionals that are isotonic with the aforementioned 

dominance criteria, based on some well-known results of majorization theory. Future work will involve 

applying the resulting inequality indices to real data, in order to show the usefulness of their properties from 

a practical point of view. Moreover, it would be interesting to propose and analyze similar orderings of 

“disparity” based on the alternative Δ-type curves defined in section 3. 
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