In this study, a parametric analysis of the thermal performance of a nozzle vane cascade with a showerhead cooling system made of four rows of cylindrical holes was carried out by using the pressure-sensitive paint (PSP) technique. Coolant-to-mainstream blowing ratio (BR), density ratio (DR), main flow isentropic exit Mach number (Ma2is), and turbulence intensity level (Tu1) were the considered parameters. The cascade was tested in an atmospheric wind tunnel at Ma2is values ranging from 0.2 to 0.6, with an inlet turbulence intensity level of 1.6% and 9%, at variable injection conditions of BR = 2.0, 3.0, 4.0. Moreover, the influence of the DR on the leading-edge film-cooling performance was investigated: the testing was carried out at DR = 1.0, using nitrogen as foreign gas, and DR = 1.5, with carbon dioxide serving as a coolant. In the near-hole region, higher BR and Ma2is resulted in higher effectiveness, while higher mainstream turbulence intensity reduced the thermal coverage in between the rows of holes, whatever the BR is. Further downstream along the vane pressure side, the effectiveness was negatively affected by rising the BR but positively influenced by lowering the mainstream turbulence intensity. Moreover, a decrease in the DR caused a reduction in the film-cooling performance, whose extent depends on the injection condition.

(2020). A Parametric Investigation of Vane Showerhead Film Cooling by Pressure-Sensitive Paint Technique [journal article - articolo]. In JOURNAL OF TURBOMACHINERY. Retrieved from http://hdl.handle.net/10446/153902

A Parametric Investigation of Vane Showerhead Film Cooling by Pressure-Sensitive Paint Technique

Abdeh, Hamed;Barigozzi, Giovanna;Ravelli, Silvia;Rouina, Samaneh
2020-01-01

Abstract

In this study, a parametric analysis of the thermal performance of a nozzle vane cascade with a showerhead cooling system made of four rows of cylindrical holes was carried out by using the pressure-sensitive paint (PSP) technique. Coolant-to-mainstream blowing ratio (BR), density ratio (DR), main flow isentropic exit Mach number (Ma2is), and turbulence intensity level (Tu1) were the considered parameters. The cascade was tested in an atmospheric wind tunnel at Ma2is values ranging from 0.2 to 0.6, with an inlet turbulence intensity level of 1.6% and 9%, at variable injection conditions of BR = 2.0, 3.0, 4.0. Moreover, the influence of the DR on the leading-edge film-cooling performance was investigated: the testing was carried out at DR = 1.0, using nitrogen as foreign gas, and DR = 1.5, with carbon dioxide serving as a coolant. In the near-hole region, higher BR and Ma2is resulted in higher effectiveness, while higher mainstream turbulence intensity reduced the thermal coverage in between the rows of holes, whatever the BR is. Further downstream along the vane pressure side, the effectiveness was negatively affected by rising the BR but positively influenced by lowering the mainstream turbulence intensity. Moreover, a decrease in the DR caused a reduction in the film-cooling performance, whose extent depends on the injection condition.
articolo
2020
Abdeh, Hamed; Barigozzi, Giovanna; Ravelli, Silvia; Rouina, Samaneh
(2020). A Parametric Investigation of Vane Showerhead Film Cooling by Pressure-Sensitive Paint Technique [journal article - articolo]. In JOURNAL OF TURBOMACHINERY. Retrieved from http://hdl.handle.net/10446/153902
File allegato/i alla scheda:
File Dimensione del file Formato  
JTM_2019.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/153902
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact