A study was carried out to evaluate how the friction stir spot welding process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. An experimental campaign was performed by means of a CNC machine tool and FSSW lap joints on AA6060-T6 aluminum alloy plates were obtained. Five thermocouples were inserted into the samples to measure the temperatures during the tool plunging. A set of tests was carried out by varying the process parameters, namely rotational speed, axial feed rate, plunging depth and dwell time. Axial welding forces were measured during the execution of the experiments by means of a piezoelectric load cell. The mechanical properties of the joints were assessed by executing shear tests on the specimens. A correlation between process parameters and joints properties was found. The collected experimental data were also used to set up and to validate a simulative model of the process. The peculiarity of the developed FEM model is a 2D approach used for the simulation of a 3D problem, in order to guarantee a very simple and practical model able to achieve results in a very short time. The 2D FEM model, based on a specific external routine for the calculation of the developed thermal energy due to the friction between tool and workpiece, was set up using the commercial code Deform 2D. An index for the prediction of the joint shear resistance using FEM simulations was finally proposed and validated.

(2015). Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: experimental and FEM analysis [journal article - articolo]. In JOURNAL OF MANUFACTURING PROCESSES. Retrieved from http://hdl.handle.net/10446/32832

Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: experimental and FEM analysis

D'URSO, Gianluca Danilo
2015-01-01

Abstract

A study was carried out to evaluate how the friction stir spot welding process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. An experimental campaign was performed by means of a CNC machine tool and FSSW lap joints on AA6060-T6 aluminum alloy plates were obtained. Five thermocouples were inserted into the samples to measure the temperatures during the tool plunging. A set of tests was carried out by varying the process parameters, namely rotational speed, axial feed rate, plunging depth and dwell time. Axial welding forces were measured during the execution of the experiments by means of a piezoelectric load cell. The mechanical properties of the joints were assessed by executing shear tests on the specimens. A correlation between process parameters and joints properties was found. The collected experimental data were also used to set up and to validate a simulative model of the process. The peculiarity of the developed FEM model is a 2D approach used for the simulation of a 3D problem, in order to guarantee a very simple and practical model able to achieve results in a very short time. The 2D FEM model, based on a specific external routine for the calculation of the developed thermal energy due to the friction between tool and workpiece, was set up using the commercial code Deform 2D. An index for the prediction of the joint shear resistance using FEM simulations was finally proposed and validated.
articolo
2015
D'Urso, Gianluca Danilo
(2015). Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: experimental and FEM analysis [journal article - articolo]. In JOURNAL OF MANUFACTURING PROCESSES. Retrieved from http://hdl.handle.net/10446/32832
File allegato/i alla scheda:
File Dimensione del file Formato  
DUrso_Thermo-mechanical_characterization.pdf

Solo gestori di archivio

Descrizione: publisher's version - versione dell'editore
Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri
DUrso_2015_1.pdf

accesso aperto

Versione: draft - bozza non referata
Licenza: Licenza default Aisberg
Dimensione del file 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/32832
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact