The Minimum Path Cover (MinPC) problem on directed acyclic graphs (DAGs) is a classical problem in graph theory that provides a clear and simple mathematical formulation for several applications in computational biology. In this paper, we study the computational complexity of three constrained variants of MinPC motivated by the recent introduction of Next-Generation Sequencing technologies. The first variant (MinRPC), given a DAG and a set of pairs of vertices, asks for a minimum-cardinality set of (not necessarily disjoint) paths such that both vertices of each pair belong to the same path. For this problem, we establish a sharp tractability borderline depending on the ‘overlapping degree’ of the instance, a natural parameter in some applications of the problem. The second variant we consider (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum-cardinality set of (not necessarily disjoint) paths ‘covering’ all the vertices of the graph and such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The third variant (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a single path containing the maximum number of the given pairs of vertices. We show that MaxRPSP is W[1]-hard when parameterized by the number of covered pairs and we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree.

Covering pairs in directed acyclic graphs

DONDI, Riccardo;
2015-01-01

Abstract

The Minimum Path Cover (MinPC) problem on directed acyclic graphs (DAGs) is a classical problem in graph theory that provides a clear and simple mathematical formulation for several applications in computational biology. In this paper, we study the computational complexity of three constrained variants of MinPC motivated by the recent introduction of Next-Generation Sequencing technologies. The first variant (MinRPC), given a DAG and a set of pairs of vertices, asks for a minimum-cardinality set of (not necessarily disjoint) paths such that both vertices of each pair belong to the same path. For this problem, we establish a sharp tractability borderline depending on the ‘overlapping degree’ of the instance, a natural parameter in some applications of the problem. The second variant we consider (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum-cardinality set of (not necessarily disjoint) paths ‘covering’ all the vertices of the graph and such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The third variant (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a single path containing the maximum number of the given pairs of vertices. We show that MaxRPSP is W[1]-hard when parameterized by the number of covered pairs and we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree.
journal article - articolo
2015
Beerenwinkel, Niko; Beretta, Stefano; Bonizzoni, Paola; Dondi, Riccardo; Pirola, Yuri
File allegato/i alla scheda:
File Dimensione del file Formato  
Computer Journal2015.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 344.17 kB
Formato Adobe PDF
344.17 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/56198
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact