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Introduction

The last decade has seen a significant increase in usage of cloud services. This trend is not only
related to the low cost and high availability of cloud providers, but also to the ease of use of the
service and the reliability over time. Digital devices become rapidly obsolete and are subject to
failures, hence outsourcing data permits to reduce the risks linked to data loss.
Albeit there are advantages in uploading data to the cloud, there are also several security and
privacy challenges. The experience gained by the Research and Industry communities attest that
it is not enough to just change the visibility of data by applying a cryptographic transformation,
to ensure an adequate level of protection. A cloud-oriented architecture has a wide attack
surface, hence it is necessary to pay attention to the whole data lifecycle, from data collection
and sanitization, to storage and processing, and finally the release. This doctoral work analyzes
each of these stages, proposing solutions that push forward the current state of the art.
The first part of the work deals with the collection of data, in particular in the mobile scenario.
The mobile environment is especially relevant as smartphones are devices with limited storage,
that are connected to the network, and with the ability to sense and log confidential data and
Personal Identifiable Information. To access this information, an application must be granted
the proper permission. Yet, all the components running inside the application (either trusted or
included from third-parties) share the same execution environment, thus have the same visibility
and access constraints. This is a limitation of the current mobile Operating Systems. Focusing on
the Android, which is open source and available to researchers, we propose a set of modifications
to achieve internal application compartmentalization leveraging the Mandatory Access Control
(MAC) layer. With this approach, the developer can add a policy module to the application
to confine each component, effectively restricting access to the application internal storage, to
services, and to isolate vulnerability prone components.
After the data are collected, a user or a company may apply to it sanitization before being
uploaded to the cloud or being released to a consumer. Data sanitization (or anonymization)
is a process by which data are irreversibly altered so that a subject (referenced within the data)
cannot be identified, given a certain security parameter, while the data remain practically useful.
The second part of the work presents an approach based on k-anonymity and ℓ-diversity to apply
data sanitization over large collections of sensors data. The approach described can be applied
in parallel in a distributed environment and is characterized by a limited information loss.
The third part of the work investigates the storage and processing stages. In this scenario,
the cloud provider is typically considered honest-but-curious, which assumes that it will always
comply with the requests issued by the user, but may abuse the access to the information provided.
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Hence, the goal is to support the execution of queries over outsourced data with a guarantee
that the cloud provider does not have access to the data content. Unfortunately, the simple use
of deterministic encryption does not offer a real protection against a curious provider, as the
encrypted data maintain the same distribution of the original data. The approach presented
in this work is applicable to relational data, and enables the execution of queries involving
evaluation of equality and range conditions over attributes. The data is saved encrypted to the
server into equally large blocks containing a fixed number of tuples. The blocks are managed
by the server as single atomic units, and accessed through an encrypted multidimensional index
also stored by the server. By doing this, the cloud provider is unable to identify the single items
stored within each block. Local maps are saved by the client to search the index efficiently.
The approach proposed provides perfect indistinguishability to an attacker with access to the
stored data. This is achieved applying probabilistic encryption to the blocks storing the data,
and by destroying (i.e., flattening) the frequencies of the encrypted index. The index is built as
an evolution of the partitioning technique presented in the second part of the work to sanitize
the dataset.
The last part of the work addresses the data release stage. The goal is to provide a solution
that can be used to schedule the release of chunks or partitions of data at a future point in time.
Due to the confidential nature of data, we cannot rely on any honesty assumption. Hence, we
move to a decentralized environment in which the parties (i.e., the network nodes) are mutually
distrusting. In this setting, we model the parties as rational (or rather driven by pure economic
interest), and propose a solution that is only based on economic incentives and penalties.
All the technologies detailed in this work have been released under open source licenses and
can be readily integrated with real systems.
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Chapter 1. Presentation

The outsourcing of data to cloud providers is a growing trend. There are many facilitating factors
for that, including the low cost and high reliability over time. Moreover, after the data have been
uploaded to the cloud, they are immediately available to a number of different devices, with
almost no need for setup.
Despite there are clear advantages in uploading data to the cloud, there are also several security
and privacy challenges. Compared to a traditional client-server architecture, in which all
resources are internal to an organization and the security perimeter well defined, a cloud-
oriented architecture has a wider attack surface, hence a greater risk of data breach or exposure.
Unfortunately, the simple addition of a protection layer to data, for example with the application
of a generic cryptographic transformation, is not enough to ensure an adequate level of protection.
Attention must be payed to the collection of data and to its sanitization, storage and processing
must be carried out by trusted parties, and data release planned in advance. Thereby, a cloud-
oriented architecture relies on more complex policies and on an extensive collection of tools to
support the whole data lifecycle. This work aims to provide techniques to support each of these
stages.
The first part of the work deals with the collection of data, in particular in the mobile scenario.
The mobile environment is especially relevant, as smartphones are devices constantly connected
to the network, with the ability to log confidential data, and limited processing and storage
capabilities. Advancements in this area have an impact on a broad spectrum of users, with a
potential that goes even beyond the data collection process.
Currently, the access to cloud services is mostly achieved via applications (or simply apps).
Modern mobile Operating Systems (e.g., Android) isolate apps from each other and from the
system, implementing a dedicated sandbox for each app [141]. To be able to access confidential
information such as the location, or to execute privileged operations as connecting to the
network, the app must be granted the proper permissions [95]. However, all the components and
processes running inside the application sandbox share the same execution environment, to which
the permissions are assigned. This is a limitation that could compromise the confidentiality of
data even before they are shared or outsourced. Two examples of threat are the presence of
internal vulnerabilities (e.g., unprotected broadcast receivers), and the use of (untrusted) third-
party libraries. The goal is therefore to reduce the exposure of confidential data to internal app
components, and introduce further containment measures targeting third-party libraries.
Focusing on Android, which is open source and available to researchers, in Chapter 2 we propose
a set of modifications to achieve internal app compartmentalization leveraging the Mandatory
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Access Control (MAC) layer. To benefit from the additional security functions, a developer can
simply load inside the application archive a dedicated policy module. The policy module is
written in a Common Intermediate Language (CIL) [135] dialect, and allows the developer to
regulate the permissions associated with the components in a declarative way. Each component
can be confined to a dedicated SELinux domain [172], effectively restricting its access to the
internal storage, restricting the list of system services it can interact with, and finally denying to
the component the access to the network.

After the data are collected in a safe environment, a user or a company may apply to it sanitization
before being uploaded to the cloud or being released to a consumer. Data sanitization (or
anonymization) is a process by which data are irreversibly altered so that a subject (referenced
within the data) cannot be identified, given a certain security parameter, while the data remain
practically useful. There are many approaches to apply sanitization to data, in this work we focus
on the techniques based on generalization and suppression. Generalization involves replacing
a value with a less specific but semantically consistent one [167], while suppression involves
removing a datum from a data collection. These operations are usually applied in sequence until
a dataset satisfies a minimum privacy requirement. One of the most famous privacy requirements
is the concept of k-anonymity [68], that was introduced to address the risk of re-identification of
sanitized data through publicly available linkage datasets. To satisfy k-anonymity, a dataset is
transformed by the application of multidimensional partitioning algorithms as Mondrian [125].
Mondrian identifies the partitions with a top-down recursive approach. Once the partitions are
identified, generalization is applied to the them. The process is inevitably associated with a loss
of information, which can be quantified with metrics like the Normalized and Global Certainty
penalties, and the Discernability Penalty [192].

Data sanitization is a time and resource consuming task. In Chapter 3 of this work we propose
an approach based on Mondrian to sanitize large collections of sensors data. The approach
also ensures that the sanitized dataset satisfies the ℓ-diversity requirement [134], an extension
of k-anonymity which reduces the granularity of data representation. The proposed approach
is scalable, and it permits to apply sanitization in parallel, using an arbitrary number of nodes,
without compromising the quality (i.e., the opposite to information loss) of the anonymized
dataset.

The third part of the work investigates the storage and processing stages. Modern cloud providers
offer state of the art security when it comes to data protection. This gives guarantees against
external attackers that want to gain access to the data outsourced by a customer. The cloud
provider is instead considered honest-but-curious, which assumes that it will always comply
with the requests issued by the data owner, but may abuse the access to the information provided.
Just to give an example, the provider may be interested in understanding which are the users the
outsourced data refers to. Hence, the goal of the client is to support the execution of queries
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over outsourced data with a guarantee that the cloud provider does not have access to the data
content.

The solution typically used to try to solve this problem is to apply an additional protection layer
to the data. When choosing the encryption scheme to be used to transform the data, three key
aspects must be considered: i) the encrypted data must not leak information due to its distribution,
ii) the provider must be able to carry out computations over the encrypted data without requiring
access to a secret decryption key, and iii) the client should be able to access the data obfuscating
the access pattern. These are non-trivial requirements to be satisfied. Traditional cryptosystems
do not handle requirements i and ii, only Semi or Fully Homomorphic Encryption schemes
(FHE) [103] accommodates for that. Despite recent advancements in the field, for example with
the availability of libraries such as Microsoft SEAL [143], the cost of FHE, in terms of loss of
performance and memory consumption, may not suit all applications. An alternative way to
prevent the cloud storage provider to access the data content is the use of Oblivious Random
Access Memory (ORAM) protocols [78,175]. ORAM protocols accommodate for requirements
i and iii, but assume the computation to be executed in a safe environment (either at the client or
inside a Trusted Execution Environment) after the data of interest are pulled from the memory.
Yet, even in this case, the associated overhead may be too high [43].

The approach presented in Chapter 4 is applicable to relational data, and enables the execution
of queries involving evaluation of equality and range conditions over attributes. The approach
addresses requirements i and ii, and provides partial protection on requirement iii. In particular,
the data is saved encrypted to the server into equally large blocks containing a fixed set of
tuples. The blocks are managed by the server as single atomic units, and accessed through an
encrypted multidimensional index also stored by the server. By doing this, the cloud provider is
unable to identify the single items stored within each block (more details in the chapter). Local
maps are saved by the client to search the index efficiently. The approach proposed provides
perfect indistinguishability to an attacker with access to the stored data (requirement i). This is
achieved applying probabilistic encryption to the blocks storing the data, and by destroying (i.e.,
flattening) the frequencies of the encrypted index. The approach relies on both the client and
(partially) the server to resolve the query (requirement ii). The index was built as an evolution
of the partitioning technique used to sanitize the dataset presented in part two of the work.

The last part of the work explores the data release stage. In this scenario, we want to provide
a solution to schedule the release of a secret data to a future point in time. Conversely to the
idea envisioned by May in 1993 [140], we want to avoid the use of a cryptographic puzzle, as
it requires a receiving party to run a decryption procedure for a long time. Furthermore, we
want to ensure there is no need for the data owner for the disclosure to happen, and there is no
dependency on a trusted party (or service).
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The idea presented in Chapter 5 is to use the Blockchain to witness the elapse of time, and to split
the secret data among a group of users who have to cooperate to recover the secret information
using a pre-defined protocol. We program the protocol with a Smart Contract [176], and to
ensure the parties cooperate as intended we develop a set of economic incentives and penalty.
As we move to a decentralized environment in which the parties (i.e., the network nodes) are
mutually distrusting, the honest-but-curious assumption is refuted. The parties are instead
modeled as rational, or rather driven by pure economic interest. This permits to analyze the
protocol as an extended form game whose outcome can be determined based on participants’
expected utility.

1.1 Document structure
The work is organized in six chapters.

Chapter 1 illustrates the structure of the document and the publications that set the basis for
this work.

Chapter 2 describes SEApp [164], a set of modifications to the AOSP to extend the Mandatory
Access Control layer to Android apps. SEApp leverages SELinux to restrict access to the internal
storage, restrict access to services, and isolate vulnerability prone components. This is achieved
executing components on dedicated processes. A dedicated app policy module (written in CIL)
regulates the permissions associated with each process. The security measures introduced by
SEApp facilitate the isolation of third-party components running inside an application. This
is of particular importance in the development of secure frontends collecting confidential user
information.
The chapter is organized as follows.

• Section 2.1 presents the scenario and discusses the background.

• Section 2.2 introduces the techniques currently enforcing access control in Android.

• Section 2.3 presents the motivation for the introduction in Android of dedicated com-
ponents. A set of use cases is used to showcase the security measures introduced by
SEApp.

• Section 2.4 details the SEApp policy module, the policy module language and the policy
constraints.

• Section 2.5 illustrates the SELinux and SEAndroid policy configuration files.

6
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• Section 2.6 discusses the changes introduced by SEApp and our implementation.

• Section 2.7 presents the experimental evaluation, in which we measure both the installation
time and runtime overhead introduced by SEApp.

• Section 2.8 discusses the major differences between SEApp and other literature proposals.

• Section 2.9 concludes the chapter.

Chapter 3 describes a scalable and distributed approach to sanitize large collections of sensors
data [87]. This chapter also illustrates how sanitization can be applied in parallel with limited
information loss. The availability of such a tool is crucial for the outsourcing and the release of
data. An open source artifact based on the content of this chapter was implemented [84]. The
artifact was awarded as the Best Artifact at IEEE PerCom 2021.
The chapter is organized as follows.

• Section 3.1 presents the scenario and discusses the background.

• Section 3.2 discusses the architecture of the sanitization tool and the sanitization algorithm.

• Section 3.3 illustrates the experimental evaluation. To demonstrate the scalability of our
approach a centralized version (i.e., a portable, single core version) of the sanitization tool
was developed. Information loss in instead measured by the Discernability Penalty and
the Global Certainty Penalty.

• Section 2.9 concludes the chapter.

Chapter 4 describes SecIdx [85, 86], an approach to support point and range queries on
outsourced encrypted data. Data are stored by the server into equally large blocks, which are
indexed by a multidimensional encrypted stucture also stored by the server. Local maps are
saved by the client to search the index efficiently. Perfect indistinguishability of the information
outsourced to the server is guaranteed by the use of non-deterministic encryption for the blocks,
and by flattening the distribution of the values in the encrypted index. Runtime query resolution
involves a translation strategy based on the local maps, that permits to pull the blocks of interest
from the server to the client efficiently. An in-memory DB is used by the client to filter spurious
tuples.
The chapter is organized as follows.

• Section 4.1 introduces the rationale of the approach.

• Section 4.2 presents the basic concepts and formulates the problem statement.
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• Section 4.3 details the partitioning algorithm used by the multidimensional index to
organize the data into fixed sized partitions.

• Section 4.4 illustrates the construction of the encrypted index and the client-side maps.

• Section 4.5 explains runtime query translation.

• Section 4.6 details our implementation, separating operations into preprocessing and
runtime.

• Section 4.7 presents an extensive experimental evaluation in which we compare the per-
formance of relational and non-relational backends, under different configurations. The
experimental evaluation demonstrates the limited performance overhead associated with
our approach.

• Section 4.8 discusses the major differences between SecIdx and other literature proposals.

• Section 4.9 concludes the chapter.

Chapter 5 presents ITYT [46], a novel approach of implementing time-locked secrets. ITYT is
a primitive that can be used to schedule the release of chunks or partitions of data. The approach
proposed in the chapter permits to avoid the use of trusted third-parties and cryptographic
puzzles. Instead, it uses threshold cryptography to split the data among a group of peers, which
have to cooperate to recover the secret data using a pre-defined protocol programmed as a
smart contract. The blockchain is used to witness the elapse of time, and secure Multi-Party
Computation to avoid any single point of trust.
The chapter is organized as follows.

• Section 5.1 illustrates the scenario.

• Section 5.2 describes the background.

• Section 5.3 presents an overview of the ITYT protocol introducing the preliminary defi-
nitions, the roles of the participants, and the main functions.

• Section 5.4 provides an economic model to push rational participants to cooperate as
intended, strictly adhering the protocol.

• Section 5.5 illustrates how to implement ITYT leveraging existing frameworks.

• Section 5.6 discusses how ITYT ensures the methods to report misbehavior are not
bypassable, how denial of service (DOS) can be mitigated, and how deadlocks can be
prevented.
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• Section 5.7 presents our experimental evaluation.

• Section 5.8 discusses other proposals to enable time-locked secrets from literature.

• Section 5.9 concludes the chapter.

Chapter 6 draws the conclusions of the work and discusses future work.

1.2 Publications
The section lists the publications produced during the PhD course that set the basis for the work.

Papers in proceedings of international conferences

• Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco Rosa, and Stefano Paraboschi.
“SEApp: Bringing Mandatory Access Control to Android Apps.”. 30th USENIX
Security Symposium (USENIX Security 21), pp. 3613-3630. 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani,
Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati. “Scalable distributed
data anonymization”. IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 401-
403. IEEE, 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani,
Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati. “Artifact: Scalable dis-
tributed data anonymization”. IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom Workshops), pp.
450-451. IEEE, 2021.

• Enrico Bacis, Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Giovanni
Livraga, Stefano Paraboschi, Marco Rosa, and Pierangela Samarati. “Multi-provider
secure processing of sensors data”. 2019 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), pp. 349-351. IEEE,
2019.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani, Ste-
fano Paraboschi, Matthew Rossi, and Pierangela Samarati. “Multi-dimensional indexes
for point and range queries on outsourced encrypted data”. To appear in In 2021
IEEE global communications conference (GLOBECOM). IEEE, 2021.
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• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani,
Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati. “k-flat Secure Indexing
for Encrypted Databases”. Under submission.

• Enrico Bacis, Dario Facchinetti, Marco Guarnieri, Marco Rosa, Matthew Rossi, Stefano
Paraboschi. “I Told You Tomorrow: Practical Time-Locked Secrets using Smart Con-
tracts”. In Proceedings of the 16th International Conference on Availability, Reliability
and Security (ARES), pp. 1-10. 2021.
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Chapter 2. Data collection
SEApp: restricting access to in-app confidential data

The first part of this work investigates the collection of data, in particular in the mobile environ-
ment. The mobile environment is especially relevant, as smartphones are devices with access to
a huge amount of personal and confidential information.
Operating Systems (OS) play a strategic role in protecting access to confidential information.
Whenever an application (or simply app) tries to access a resource deemed sensitive, the OS
intervenes making sure the app is acting on behalf of the user. Should the user grant the proper
permission, then the request is authorized.
The OS has great success in restricting access to confidential information. However, access
granularity is only at app level. This is a limitation of the current mobile operating systems.
Focusing on Android which is open source, we identified three major weaknesses: i) all app
components have full access to the internal storage, ii) third-party libraries may abuse the
privileges granted by the user to the whole app, and iii) vulnerability prone components are not
easy to isolate.
This chapter presents an approach to overcome these limitations, giving developers the power
to define ad-hoc Mandatory Access Control policies for their apps, supporting the internal
compartmentalization of app components. This guarantees stronger protection of the data
collected by the app as, for example, third-party components included in the app can be prevented
to access to them. Also, it permits to implement a finer control on the information accessible
to the app from the system services, selectively restricting inter-process communication on an
internal compartment basis.
The approach is a natural evolution of the security mechanisms already available in Android, and
the results of this part of the work have a potential that is even more general than the data collection
phase. However, its realization requires to consider that the security of system components must
be maintained, the solution must be usable by developers, and the performance impact should be
limited. This proposal meets these three requirements. The proposal is supported by an open-
source implementation, which has also passed the 30th Usenix Security Symposium artifact
evaluation process.
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2.1 Introduction

Security in operating systems has greatly evolved and has been able to address many of the
threats originating by an extensive and varied collection of adversaries.
The mitigation of security threats is particularly important for mobile operating systems, due to
their wide deployment and the confidential information they hold.
Both Android and iOS have seen significant investments toward the realization of advanced
security techniques, which have led to a great increase in the level of protection offered to
users [141]. The strength of security and the value of protected resources is testified, for
instance, by the payouts associated with working exploits in markets like Zerodium [194], where
the payouts for mobile operating systems are the highest1.
A peculiar threat that characterizes mobile operating systems is the need to balance on one side
the high sensitivity of the information, and on the other hand the need for users to install into
the system a large number of applications (called simply apps in this domain) often produced by
unknown developers, which may hide malicious functions. A first level of protection is offered,
both in iOS and Android, by a preliminary screening of apps before they are made available
on the platform market [12] or installed to a device, but this approach cannot provide a strong
guarantee. Security mechanisms internal to the operating system are needed in order to constrain
the apps to only operate within the boundaries specified by the device owner at installation time.
The approach used in the design of mobile operating systems considers as the first requirement the
protection of system resources. Focusing on Android, which is open source and more accessible
to researchers, we notice a significant evolution in its internal security architecture. This
architecture is quite rich and consists of many security measures [95,141]. In this environment,
we specifically look at the role of SELinux. SELinux implements the Mandatory Access Control
(MAC) mechanism, which relies on a system-level policy to declare the operations that a process
can execute over a resource based on the security labels associated with them. Compared to
classical Discretionary Access Control (DAC), still used in Android in an extensive way, MAC
is more rigid and provides stronger guarantees against unwanted behaviors. When SELinux was
introduced into Android 4.3 in 2013 (see Figure 2.1), it used a limited set of system domains
and it was mainly aimed at separating system resources from user apps. In the next releases,
the configuration of SELinux has progressively become more complex, with a growing set of
domains isolating different services and resources, so that a bug or vulnerability in some system
component does not lead to a direct compromise of the whole system.
The introduction of SELinux into Android has been a clear success. Unfortunately, the stronger
protection benefits do not extend to regular apps which are assigned with a single domain

1At the time of writing, US$2.5M and US$2M are paid for a zero click solution able to subvert the security of
Androd and iOS, respectively.
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Before
Android 4.3

Android 4.3 -
Android 8

Since
Android 9

Our
Proposal

system servicessystem servicessystem servicessystem services

     app          app      app          app      app          app      app          app1 2 1 2 1 2 1 2

Figure 2.1: Evolution of the MAC policy in Android. Before 4.3, MAC was not used.
Starting with 4.3, MAC protects system components. Since 9, categories offer rigid MAC
protection for apps. Our proposal offers flexible MAC protection to apps.

named untrusted_app. Since Android 9, isolation of apps has increased with the use
of categories, which guarantees that distinct apps operate on separate security contexts. Our
proposal, SEApp, builds upon the observation that giving app developers the ability to apply
MAC to the internal structure of the app would provide more robust protection against other
apps and internal vulnerabilities.

2.2 Android security for apps

One of the major requirements considered in the design of mobile operating systems is the
need to constrain the ability of apps to manipulate the execution environment. Apps may hide
functions that are meant to gain system privileges or capture valuable information from other
apps. Compared to classical desktop operating systems, there is greater reliance on the use of
apps to access resources or get services, with more attention paid to limit the ability of apps to
operate in the system. Advancements in this context can have an impact on how security for
applications is managed in other domains [8].

The basic principle adopted to manage the threat introduced by apps is the design of a sandbox,
a restricted environment for app execution, where anomalous actions by the app are not able to
access resources beyond what has been authorized at app installation time. The sandbox can be
considered a realization of the “least privilege” security principle.
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The construction of the app sandbox is based on three access control mechanisms: Android
permissions [24, 95, 96], Discretionary Access Control (DAC) [65], and Mandatory Access
Control (MAC) [169]; each of them roughly aligning with how users, developers, and the
platform grant consent, respectively.

Permissions restrict access to sensitive data and services. In theAndroidManifest.xml [26],
each app statically lists the Android permissions needed to fully operate. Not all of them may be
granted; depending on the threat they pose from a security and privacy standpoint, they may be
granted as part of the installation procedure, or prompted to the user when the app needs them.

DAC restricts access to resources based on user and group identity. By assigning each application
a unique UNIX user ID (UID) and a dedicated directory, Android isolates apps from each other
and from the system. However, UID sandboxing has a number of shortcomings. As an example,
processes running as root are not subject to these restrictions. For this reason, when such a
process is misbehaving, for instance due to a bug, it can access private app data files. DAC
discretionality itself is a problem. Indeed, as apps and system processes could override safe
defaults, they are more susceptible to dangerous behavior, such as leaking files or data across
security boundaries via IPC or fork/exec. Despite its deficiencies, UID sandboxing is still the
primary enforcement mechanism that separates apps from each other, establishing the foundation
upon which further sandbox restrictions have been built.

MAC dictates which actions are allowed based on the security policy defined by the system.
Specifically, only actions explicitly granted by the policy are permitted. To decide whether to
permit or deny an action, a set of policy rules concerning the security contexts (i.e., collections
of security labels that classify resources) of the involved parties is evaluated.

In Android, MAC is implemented using SEAndroid, a set of kernel modifications part of
the Linux Security Module (LSM) framework [190]. Since its first introduction with the
Security Enhanced Android (SEAndroid) project [172], SELinux has been extensively applied
to protect system components. Initially, it was used to assert the security model requirements
during compatibility testing, then its usage grew further at each release. In the current version
Android 11, SELinux is also used to isolate the rendering of untrusted web content (by the
isolated_app domain), to restrict ioctl system calls [120], thus limiting the reachability
of potential kernel vulnerabilities, and to support multi-user separation and app sandboxing
with SELinux categories. This last aspect permits to enforce app separation both at DAC and
MAC. Android dynamically assigns categories to apps during app installation, so that: (i) an app
running on behalf of a user cannot read or write files created by the same app on behalf of another
user (since Android 6 [19]); and, (ii) an app cannot read or write files created by another app
(since Android 9 [21]). Before Android 9, this separation was only enforced at DAC level. This
overlap of security measures is of extreme relevance to the enforcement of the Android Security
Model and our proposal moves in the same direction. To bypass these protections, a process
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should be granted root permissions, DAC_OVERRIDE or DAC_READ_SEARCH, and run as
SELinux mlstrustedsubject; only a few critical system services run in this configuration.
Android restricts the SELinux implementation to the policy enforcement, ignoring most policy
management functions. The motivation is that the system policy only changes between releases,
therefore support to runtime changes is not needed.

2.3 Motivation
As discussed above, SELinux and the MAC support have been a crucial factor in the realization
of a secure design and the construction of a robust app sandbox. A limitation of the current
design is that this is the only way that apps can benefit from MAC support. There is currently
no option to let the app developer control the use of the MAC level, as only platform, vendor,
ODM and OEM developers are allowed to introduce new policy segments [34]. Our solution
overcomes this limitation, giving the application developer the power to specify new SELinux
types and associated permissions.

Use cases

We envision several scenarios that justify the use of SEApp. Many of them have been pre-
viously considered by researchers as motivations for the introduction in Android of dedicated
components [49, 88, 117].
In this section, we give a tour of SEApp capabilities using a showcase app2. The architecture
of the showcase app is shown in Figure 2.2. Our description is based on three use cases: fine-
granularity in access to files, fine-granularity in access to services, and isolation of vulnerability
prone components. Each of the use cases emphasizes the intra-app security features introduced
by SEApp. A dedicated description, along with policy files that show concretely how to enforce
these use cases, appears in the Appendix A; we provide there a technical demonstration of
how SEApp can provide protection against a number of common security problems in Android
apps [107] that were implemented in the showcase app.

Fine-granularity in access to files

Android apps can collect data from multiple sources, and the system provides many op-
tions to store it. The default one is Internal Storage: a filesystem region, located at
/data/data/packageName, reserved to each package. Its content is available to all app’s
internal components and inaccessible to any other app. Since data can be extremely sensitive,
the developer may be interested in restricting its visibility to only some internal components,

2The showcase app is available in the SEApp repository along with the set of modifications to the AOSP.
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Figure 2.2: Security Enhanced App

labeling sensitive and non-sensitive data with distinct SELinux types (use case 1). Yet, in the
current Android security model, apps do not have the option to assign distinct MAC labels
to different resources, as all internal files are labeled app_data_file. SEApp allows the
developer to introduce dedicated types, and to organize the app’s structure with a separation
between components managing non-sensitive data and those requiring access to sensitive data.
The sensitive components will be associated with a more stringent MAC domain. Figure 2.2
shows an example in which the confidential files are made accessible to :core_logic processes
and inaccessible to any other process.
In Appendix A.1 we give a demonstration of how confidential files are made inaccessible to
non-confidential components in the presence of a path traversal vulnerability.

Fine-granularity in access to services

Often developers introduce into their applications code coming from external sources, which
they do not fully trust [82, 97, 150]. For instance, a common need of app developers is to get
revenue from their apps and a simple approach is to include an Ad delivery library within the
app. The library is a relatively complex piece of code, with local computation necessities and
the need to manage a dialogue with remote servers. The app developer is clearly interested
in supporting the execution of the library, but may want to have guarantees that the library
cannot abuse the access privileges granted by the user to the whole application sandbox (use
case 2). A common concern is preventing access to system services such as location. These
requirements can be managed by SEApp with the definition of a separate MAC domain for
the library. The process managing the delivery of Ads will be associated with this domain,
which will provide only the necessary privileges to access the dedicated resources needed for
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the library execution. SELinux will then guarantee the confinement of the library, preventing
access to the location service even if the ACCESS_FINE_LOCATION permission is granted to
the app. Figure 2.2 shows an example in which the :adlibrary process is granted access to the
network but is prevented from accessing location service.

In Appendix A.2 we give a demonstration of how the showcase app can support the execution of
the Unity Ads [183] framework with a dedicated SELinux domain. We also describe in detail
how SEApp prevents a malicious component, which was deliberately injected by us into the
library process, to capture the device location.

Isolation of vulnerability prone components

App developers often have to consider that the input provided to the app can come from untrusted
sources. A typical example is the rendering of complex Javascript code performed by WebView.
The solution currently offered by Android is to execute these potentially dangerous actions
within a sandbox using isolatedprocess, i.e., a special process that is isolated from the rest of
the system and has no permissions of its own [16]. It runs under a dedicated UID and SELinux
domain, and it can only interact with a restricted number of services [18].

A common need of app developers is to take advantage of complex media or processing libraries,
components that are not considered malicious, but due to their size and complexity are more
likely to have security bugs. The developer is then interested in isolating these potentially
vulnerable components (use case 3). Isolatedprocess offers a high protection level in Android,
however, its use imposes several restrictions on the developers. For instance, isolatedprocess
cannot perform many of the core Android IPC functions, and the only way to interact with it is
through the bound service API [17]. Also, isolatedprocess can only access already open app files
received over Binder. Another shortcoming is that each invocation of an isolatedprocess requires
the creation of a new process. If a series of requests are made by the app, the performance
impact can be significant. SEApp offers an easier way to do this compared to isolatedprocess,
as it permits to assign a domain to the process in which the component is executed, and then
configure the required permissions at MAC level. In terms of performance, the management of
multiple requests does not require the system to activate a new process with a new UID and a
dedicated SELinux category. Figure 2.2 shows how to confine the :media component.

In Appendix A.3 we give a demonstration of how the showcase app can support the execution of
media components relying on a native library in a dedicated process. We also describe how the
developer can leverage SEApp to prevent the code of the library from the execution of unwanted
or unintended operations, like opening a network connection.
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Modular app compartmentalization

The motivations presented above become more frequent as apps increase their size and com-
plexity, and several important apps see a continuous increase in these parameters. For instance,
Facebook Messenger version 285 contains more than 500 components and WhatsApp Messen-
ger version 2.20 more than 300. This increase in size and the need to manage it is testified by
the development of App Bundles [14], Android’s new, official publishing format that offers a
more efficient way to build and release modular applications.
In these large and modular apps, developers find it difficult to fully control which components of
an app are using sensitive data3. The availability of a solution such as SEApp can greatly reduce
such risk. A better compartmentalization can reduce the impact of internal vulnerabilities in
modular apps, since each module can be associated with a dedicated policy fragment. From
a security and software engineering standpoint, SEApp permits to separate the activities of
security policy maintenance and development of new features.

Compatibility with Android design

Looking at the evolution of Android, it is clear that our proposal is consistent with the evolution
of the operating system and the desire of its designers to let app developers have access to
an extensive and flexible collection of security tools. The major obstacles, as perceived by
OS developers, on offering to app developers the use of MAC services are: weakening of the
protection of system components; performance impact; usability by app developers. The work
we did solves these concerns: our approach guarantees that app policies do not have an impact
on the system policy (Section 2.4); the app policy can be specified declaratively and attention
has been paid to let developers adopt the approach in a convenient way (Section 2.5); and,
experiments demonstrate the acceptable performance impact, with a quite limited overhead at
app installation time, and a negligible runtime impact (Section 2.7).

Compatibility with other proposals

As presented in Section 2.3, SEApp by itself provides protection against a broad spectrum
of attacks (see Appendix A), but its merit does not end there. As multiple literature proposals
(e.g., [51,117,191]) build upon process isolation and use it to accomplish separation of privileges
at the application layer, SEApp could be used as building block to enforce such restrictions at the
MAC layer too, enabling defense in depth. Moreover, SEApp could also work in conjunction with
other solutions that work at MAC level such as FlaskDroid [59], to benefit of its Userspace Object

3The topic was explicitly considered in [41], an interview with Android’s VP of Engineering.
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Managers (USOMs) coverage of the Android system services and provide finer granularity in
access to services.

2.4 Policy language

To support the use cases presented in Section 2.3, we want the developer to have control of the
SELinux security context of subjects and objects related to her security enhanced app. To each
of them is assigned a type (also called domain when it labels processes). As types directly relate
to groups of permissions, the evaluation of security contexts is the foundation of each security
decision. Since apps may offer many complex functions, the policy language has to provide the
flexibility of defining multiple domains with distinct privileges so that the app, according to the
task it has to do, may switch to the least privileged domain needed to accomplish the job.

Policy module syntax
blockStmt → (block blockId cilStmt∗)
cilStmt → typeStmt | typeAttrStmt | typeAttrSetStmt | typeBoundsStmt | typeTransStmt |

macroStmt | allowStmt
typeStmt → (type typeId)
typeAttrStmt → (typeattribute typeAttrId)
typeAttrSetStmt → (typeattributeset typeAttrId (⟨typeId | typaAttrId⟩+))
typeBoundsStmt → (typebounds parentTypeId childTypeId)
typeTransStmt → (typetransition sourceTypeId targetTypeId classId [objectName] default-

TypeId)
macroStmt → (call macroId (typeId))
allowStmt → (allow ⟨sourceTypeId | sourceTypeAttrId⟩ ⟨targetTypeId | targetTypeAttrId |

self⟩ classPermissionId+)

Table 2.1: Application policy module CIL syntax

The app policy is specified in a module, provided by the app to describe its own types. The policy
module is processed at app installation time by a component of the system, called SEApp Policy
Parser, responsible to verify that the policy is correct and does not introduce vulnerabilities into
the system. The addition of a policy module is managed by combining the new module with
the platform policy and the previous installed ones, producing after policy compilation a single
binary representation of the global policy.

In this section, we provide a description of the SEApp policy language and the restrictions each
module is subject to. Policy configuration is detailed in Section 2.5, while policy compilation
and runtime support are discussed in Section 2.6.
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Choice of policy language
SEAndroid supports two languages for policies, Type Enforcement (TE) [181] and Common
Intermediate Language (CIL) [135]. TE was the language available in the early implementa-
tions of SELinux, while CIL was later introduced to offer an easy to parse syntax that avoids
the pervasive use of general purpose macro processors (e.g., M4 [99]). Another aspect that
differentiates them is that, in Android, TE representations are internally converted into CIL
before being compiled into the SELinux binary policy. To avoid the additional translation step
being performed at each policy module installation, we decided to use CIL over TE.

Definition of types and type-attributes
CIL offers a multitude of commands to define a policy, but only a subset has been selected for
the definition of an app policy module. This was done to control the impact of the policy module
on the system and it may, as a side effect, facilitate the work of the app developer writing the
policy.
The syntax is described in Table 2.1. To declare a type, the type statement can be used. This
permits to declare the types involved in an access vector (AV) rule, which grants to a source
type a list of permissible actions over a target type. AV rules are defined through the allow
statement.
When writing a policy, there is frequently the need to assign the same set of authorizations to
multiple types. To avoid the repetition of multiple allow declarations, it is convenient to refer
to multiple types using a single entity, the type-attribute. Using the typeattributeset
statement we associate with a typeattribute a set of types and type-attributes. Each type-
attribute essentially represents the set of types that is produced by the (possibly multi-step)
expansion of its definition. The semantics is that each of the types that directly or indirectly
(using type-attributes) appears as the source of an allow rule will be authorized to operate with
the specified permission on each of the types directly or indirectly appearing as the target. This
improves the conciseness and readability of the policy.
After defining the domains with the least group of permissions necessary to fulfill the task, the
developer can also configure the domain transitions using the typetransition statement.
By doing so, it is possible to ensure that important native processes run in dedicated domains
with limited privileges, leading to intra-app compartmentalization.

Policy constraints
The introduction of dedicated modules for apps raises the need to carefully consider the inte-
gration of apps and system policies. The first requirement is that an app policy must not change
the system policy and can only have an impact on processes and resources associated with the
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app itself. To preserve the overall consistency of the SELinux policy, each policy module must
respect some constraints. Since Android supports the side-loading of apps [13], we cannot rely
on app markets to verify app policies. Therefore, the enforcement of constraints is done on the
device, by both the SEApp Policy Parser and the SELinux environment. If any of these compo-
nents raises an exception, during the verification or compilation of the policy, app installation is
stopped.

To ensure that policy modules do not interfere with the system policy and among each other,
a first necessity is that policy modules are wrapped in a unique namespace obtained from the
package name. This is done through the block CIL statement, which prevents the definition of
the same SELinux type twice, as the resulting global identifier is formed by the concatenation of
the namespace and the local type identifier. Also, the use of a namespace specific for the policy
module permits to discriminate between local types or type-attributes TA (namespace equal to
the current app package name), types or type-attributes of other modules TA′ ̸=A (namespace
equal to some other app package), and system types or type-attributes TS (system namespace).
At installation time, the SEApp Policy Parser determines the origin of each type, with an explicit
prohibition for policies to refer to types or type-attributes defined by other policy modules, while
use of system types or type-attributes is subject to restrictions.

With regard to the allow statement, a dedicated analysis is performed by the SEApp Policy
Parser. For each rule, the global origin of source and target types is determined. We refer to
system origin S, when the type is directly or indirectly associated with a system type in the
expansion of its definition, while to local origin A otherwise. Based on the origin of source and
target of each rule, there are four cases. The case AllowSS, i.e., a permission with system origin
both as source and target, is prohibited, as it represents a direct platform policy modification.
The case AllowAA is always permitted, as it only defines access privileges internal to the app
module. The cases AllowAS and AllowSA are more delicate.

An AllowAS originates when a local type needs to be granted a permission on a system type.
A concrete example is shown in Section 2.3, where the :media process needs access to the
camera_service. The case cannot be decided locally by the SEApp Policy Parser, therefore
it is delegated to the SELinux decision engine during policy enforcement. This crucial postponed
restriction depends on the constraint that all app types have to appear in a typebounds

statement [48], which limits the bounded type to have at most the access privileges of the
bounding type. As Android 11 assigns to generic third-party apps the untrusted_app

domain, this is the candidate we use to bound the app types. If the AllowAS rule gives to the
local type more privileges than those associated with untrusted_app, and at runtime these
privileges are used, the SELinux decision engine identifies the policy violation and prohibits the
action.
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Macro Usage
md_appdomain to label app domains
md_netdomain to access network
md_bluetoothdomain to access bluetooth
md_untrusteddomain to get full untrusted app permissions
mt_appdatafile to label app files

Table 2.2: SEApp macros to grant permissions to local types

AllowSA rules are the key to regulate how system components access internal types. To be
compliant with Android, the local types introduced by the app policy module must ensure
interoperability with system services crucial to the app lifecycle. As an example Zygote [39],
the native service which spawns and configures new app processes, can only execute processes
labeled with the type-attribute domain, which is assigned by default to untrusted_app.
However, giving app developers the freedom to directly define AllowSA rules would lead to
two major issues: (i) the rules would depend on system policy internals, leading to a solution
with limited abstraction and modularity; (ii) explicit AllowSA rules could lead to violations of
the security assumptions of a system service, with the risk of introducing vulnerabilities (e.g.,
leading to a confused deputy attack [58]). For these reasons we prohibit their explicit use. To
limit system types to only those already dealing with untrusted content and simplifying the
policy, we rely on CIL macros, a set of function-like statements that, when invoked by the
SEApp policy module, produce a predefined list of policy statements. This approach permits to
retain control on the rules produced, ensuring no violation of the default system policy. Also, it
makes the work of the developer easier, by abstracting away system policy internal details. To
preserve the interoperability with system services, third-party app functionality has been broken
down into the CIL macros listed in Table 2.2. This list has been identified looking at the internal
structure of the untrusted_app domain. With this design philosophy, the developer can
grant a basic set of permissions to a type (by calling one or more macros), and then add to it
fine-grained authorizations with AllowAS rules.

With regard to thetypeattributeset statement, the SEApp Policy Parser uses a verification
strategy similar to the one used for allow rules. First, the global origin of the type-attribute and
of the set expression of types and type-attributes is determined. All statements that directly or
indirectly relate to system types are blocked. This avoids implicit permission propagation from
system and local types.

Similarly, for the typetransition statement, the SEApp Policy Parser verifies the origin of
the types involved, with a prohibition for all the statements that relate to system types, as they
may lead to an escalation of privileges.
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2.5 Policy configuration
In this section, we explore the structure of application policy modules. Before describing the
content of SEApp configuration files, we give a short description of how SEAndroid defines
the security contexts of processes, files and system services. There are strong similarities
between the structure of system and app policies. Indeed, we designed our solution as a natural
extension of the approach used to protect the system. Also, our design maintains full backward
compatibility. Developers who are not interested in taking advantage of MAC capabilities do
not have to change their apps.

SEAndroid policy structure

Compared to a traditional Linux implementation, Android expands the set of configuration
files where SELinux [28] security contexts are described, because a wider set of entities is
supported. SEAndroid complements the common SELinux files (i.e., file_contexts and
genfs_contexts) with 4 additional ones: property_contexts,service_contexts,
seapp_contexts and mac_permissions.xml. Also, the implementation of the
SELinux library (libselinux) [182] has been modified introducing new functions (to assign
domains to app processes and types to their dedicated directory). We concisely describe the role
of SEAndroid context files.

Processes

With reference to app processes, Android assigns the security context based on the class
the app falls in. The specification of the classes and their security labels are defined in the
seapp_contexts policy file. Most classes state two security contexts: one for the process
(domain property) and the other one for the app dedicated directory (type property). A number
of input selectors determine the association of an app with a class. Among these, seinfo filters
on the tag associated with the X.509 certificate used by the developer to sign the app. The map-
ping between the certificate and the seinfo tag is achieved by the mac_permissions.xml
configuration file. Since the enumeration of all third-party app certificates is not possible a
priori, all third-party apps are labeled with the untrusted_app domain by default.

Files

SELinux splits the configuration of security contexts of files between file_contexts and
genfs_contexts, with the former used with filesystems that support extended file at-
tributes (e.g., /data), while the latter with the ones that do not (e.g., /proc). To apply
file_contexts updates, two approaches are available: either rebuild the filesystem image,
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or run restorecon operation on the file or directory to be relabeled (this is the default method
used by permissioned system processes). Conversely, to apply genfs_contexts changes,
a reboot of the device or a sequence of filesystem un-mount and mount operations has to be
performed.

Services

Unlike what happens for system processes, a system service requires the assignment of a security
context to both its processes and its Binder [27], to be fully compliant with SEAndroid. The
Binder is the lightweight inter-process communication primitive bridging access to a service.
Its retrieval is enabled by the servicemanager, a process started during device boot-up to
keep track of all the services available on the device. Based on the labels specified in the
service_contexts file, it is then possible to control which processes can register (add)
and lookup (find) a Binder reference for the service, and therefore connect to it. However, since
Binder handles resemble tokens with almost unconstrained delegation, denying a process to get
the Binder through the servicemanager does not prevent the process from obtaining it by other
means (e.g., by abusing other processes that already hold it). Furthermore, preventing a process
from obtaining a Binder reference prevents the process from using any functionality exposed by
the service.

SEApp policy structure

Developers interested in taking advantage of our approach to improve the security of their
apps are required to load the policy into their Android Package (APK). A predefined directory,
policy, at the root of the archive, is where the SEApp-aware package installer will be looking
for the policy module (see Figure 2.3). Inside this directory, the installer looks for four files
(which we refer to as local), that outline a policy structure similar to the one of the system.
Specifically, the developer is able to operate at two different levels: (i) the actual definition
of the app policy logic using the policy language described in Section 2.4 (in the local file
sepolicy.cil), and (ii) the configuration of the security context for each process (in the
local files seapp_contexts and mac_permissions.xml) and for each file directory (in
the local file file_contexts).

Processes

SEApp permits to assign a SELinux domain to each process of the security enhanced app. To
do this, the developer lists in the local seapp_contexts a set of entries that determine the
security context to use for its processes. For each entry, we restrict the list of valid input selectors
to user, seinfo and name: user is a selector based upon the type of UID; seinfomatches
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Figure 2.3: SEApp policy structure

the app seinfo tag contained in the local mac_permissions.xml configuration file; name
matches either a prefix or the whole process name. The conjunction of these selectors determines
a class of processes, to which the context specified by domain is assigned. To avoid privilege
escalation, the only permitted domains are the ones the app defines within its policy module and
untrusted_app. As a process may fall into multiple classes, the most selective one, with
respect to the input selector, is chosen. An example of valid local seapp_contexts entries
is shown in Listing 2.1, which shows the assignment of the unclassified and secret domains to
the :unclassified and :secret processes, respectively.

In Android, developers have to focus on components rather than processes. Normally, all
components of an application run in a single process. However, it is possible to change
this default behavior setting the android:process attribute of the respective component
inside the AndroidManifest.xml, thus declaring what is usually called a remote compo-
nent. Furthermore, with the specification of an android:process consistent with the local
seapp_contexts configuration, we support the assignment of distinct domains to app com-
ponents. To execute the component, the developer is only required to create the proper Intent
object [31], as she would have already done on stock Android for remote components. The
assignment to the process of the correct domain is handled by the system. This design choice
allows us to support Android activities, services, broadcast receivers and content providers,
while avoiding changes to the PackageParser [156], as there are no modifications to the manifest
schema.
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Files

The developer states the SELinux security contexts of internal files in the localfile_contexts.
Each of its entries presents three syntactic elements, pathname_regexp, file_type and
security_context: pathname_re-
gexp defines the directory the entry is referred to (it can be a specific path or a regular
expression); file_type describes the class of filesystem resource (i.e., directory, file, etc.);
security_context is the security context used to label the resource. The admissible entries
are those confined to the app dedicated directory and using types defined by the app policy mod-
ule, with the exception of app_data_file. Due to the regexp support, a path may suit more
entries, in which case the most specific one is used. Examples of valid local file_contexts
entries are shown in Listing 2.2: the first line describes the default label for app files, second
and third line respectively specify the label for files in directories dir/unclassified and
dir/secret.

In SELinux, the security context of a file is inherited from the parent folder, even though
file_contexts might state otherwise. Since, for our approach, it is essential that files are
labeled as expected by the developer, we decided to enforce file relabeling at creation. Therefore,
a new native service has been added to the system (see Section 2.6). We then offer to the developer
an alternative implementation of class java.io.File, named android.os.File, which
sets file and directory context upon its creation, transparently handling the call to our service.

System services

To support any third-party app, the untrusted_app domain grants to a process the permis-
sions to access all system services an app could require in the AndroidManifest.xml. As
an example, in Android 11, the untrusted_ap-
p_all.te platform policy file [38] permits to a process labeled with untrusted-
_app to access audioserver, camera, location, mediaserver, nfc services and
many more.

To prevent certain components of the app from holding the privilege to bind to unnecessary sys-
tem services, the developer defines a domain with a subset of the untrusted_app privileges
(in the local sepolicy.cil file), and then she ensures the components are executed in the
process labeled with it. Listing 2.3 shows an example in which the cameraserver service is
made accessible to the secret process.

1 user=_app seinfo=cert_id domain=package_name.unclassified name=package.

name:unclassified
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2 user=_app seinfo=cert_id domain=package_name.secret name=package.name:

secret

Listing 2.1: seapp_contexts example
1 .* u:object_r:app_data_file:s0

2 dir/unclassified u:object_r:package_name.unclassified_file:s0

3 dir/secret u:object_r:package_name.secret_file:s0

Listing 2.2: file_contexts example
1 (block package_name

2 (type secret)

3 (call md_appdomain (secret))

4 (typebounds untrusted_app secret)

5 (allow secret cameraserver_service (service_manager (find)))...)

Listing 2.3: Granting cameraserver access to secret domain

2.6 Implementation
In this section, we describe the main changes introduced in Android by SEApp. We first
analyze the modifications required to manage policy modules, both during device boot and at
app installation. We then describe how the runtime support was realized.

Policy compilation

Boot procedure

Since the introduction of Project Treble [20], policy files are split among multiple partitions,
one for each device maintainer (i.e., platform, SoC vendor, ODM, and OEM). This feature
facilitates updates to new versions of Android, separating the Android OS Framework from the
device-specific low-level software written by the chip manufacturers. Yet, each time a partition
policy (i.e., a segment) changes, an on-device compilation is required.
The init process divides its operations in three stages [29]: (i) first stage (early mount), (ii)
SELinux setup, and (iii) second stage (init.rc). The first stage mounts the essential partitions (i.e.,
/dev, /proc, /sys and /sys/fs/selinux), alongside some other partitions specified as
early mounted (since Android 10 using an fstab file in the first stage ramdisk, in Android
9 and lower adding fstab entries using device tree overlays). Once the required partitions are
mounted, init enters the SELinux setup. As the name suggests, this is the stage where init
loads the SELinux policy. As the /data partition, where policy modules are stored, is not yet
mounted, it is not yet possible to integrate them with the policy of the system. Then, as last
operation of the SELinux setup stage, init re-executes itself to transition from the initial kernel
domain to the init domain, entering the second stage. As the second stage starts, init parses
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the init.rc files and performs the builtin functions listed there, among them mounting the
/data partition. Now, the policy modules are available, and we can produce with secilc [36]
(the SELinux CIL compiler) the binary policy consisting of the integration among the system
policy, the SEApp macros and the app policy modules. To trigger the build and reload of the
policy, we implemented a new builtin function, and modified the init.rc to call this function
right after /data is mounted. The policy is considered immediately after the /data partition
is available and this ensures that the policy modules are loaded far before an application starts,
making the policy not bypassable.
Even though most Android devices supporting Android 10 were released with Treble support
and, therefore, execute their SELinux setup stage on the sepolicy.cil fragments scattered
among multiple partitions, init still supports the use of a legacy monolithic binary policy. For
compatibility towards devices using a monolithic binary policy, additional changes are required,
as SEApp needs the system policy written in CIL to be compiled alongside with app modules.
To this end, we modified the Android build process to push the sepolicy.cil files onto
the device even for non-Treble devices. New entries in the device tree were added to make the
policy segments available during init SELinux setup stage [32].
As previously mentioned, we decided to store the policy modules in the /data partition; even
if this choice required us to adapt the boot procedure of the device, it smoothly integrates
SEApp with the current Android design. In fact, the /data partition is one of the few writable
partitions, it is dedicated to hold the APK the user installs, as well as their dedicated data
directories and, therefore, it represents the best option to contain also the app policy modules.
Moreover, whenever a user performs a factory reset, Android automatically wipes the /data
partition, removing the customization the user made to the device configuration, including the
apps. By placing the app policy modules and the apps into the same partition, a factory reset
removes the policy modules as well.

App installation

As introduced in Section 2.5, the developer willing to define its own policy module is expected
to load it in the app package. At app installation, the PackageManagerService [33] inspects the
APK to identify whether or not the current installation involves a policy module, by looking for
the policy directory at the root of the archive. When the app has a policy module attached to it
(see Figure 2.4), the PackageManagerService extracts it ( 1 ) and uses our PolicyModuleValidator
to verify the respect of all the constraints on sepolicy.cil (through the SEAppPolicyParser,
Section 2.4) and on the configuration files (Section 2.5). In case of a violation of the constraints,
the app installation stops. Otherwise, the policy module is stored within /data/selinux, in
a dedicated directory identified by the package name ( 2 ). Then, the PackageManagerService
invokes installd [30] through the Installer to trigger the policy compilation with an exec call to
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Figure 2.4: Installation process

the secilc program ( 3 , 4 ). Secilc reads the system sepolicy.cil fragments, the SEApp
macros and thesepolicy.cil fragments of the app policy modules in the/data/selinux
directory ( 5 ), and builds the binary policy ( 6 ). When the secilc execution returns and no
compilation errors have been raised, the binary policy is then read by installd ( 7 ) and loaded
with selinux_android_load_policy, which writes the sys/selinux/load file ( 8 ).
To load the policy files after init, the implementation of SELinux in Android has been slightly
modified. In particular, we modified the policy loading function within libselinux (function
selinux_android_load_policy), and changed the system policy to allow installd to load the app
policy module.
As for the policy configuration files, some changes were introduced to load the applica-
tion file_contexts, seapp_contexts and mac_permissions.xml. SELinux-
MMAC [37], i.e., the class responsible for loading the appropriate mac_pe-
rmissions.xml file and assigning seinfo values to apks, was modified to load the
new mac_permissions.xml specified within the app policy module. The loading of
file_contexts and seapp_contexts was configured to treat system and app configura-
tion files apart. So, SEApp-enhanced applications will load exclusively their configuration files,
whereas the loading of system’s and other apps’ configuration files is not needed since their use
is prohibited. System services and daemons, instead, load the base system configurations once,
and then load the app policy module specific configuration files as they are needed. An example
of this are Zygote and restorecon services, which need to retrieve at runtimeseapp_contexts
and file_contexts, respectively (see Section 2.6).
Our implementation also supports the uninstallation of SEApp apps. The regular uninstallation
process is extended with a step where the global policy is recompiled, in order to remove the

29



Dario Facchinetti

impact of old modules on the overall binary policy. With reference to application updates, the
native installd runs with the necessary permission to remove and apply new file types based on
the content of the file_contexts.

Runtime support
In addition to the steps described above, other aspects have to be considered in order to extend
SELinux support at the application layer.

ActivityManagerService

1. StartActivity 
    (Intent)

Zygote

2. Process.start()

Initialization
set GID

setup seccomp filter
set UID read

set SELinux context
/data/selinux/packageName/

seapp_contexts

Activity Thread

packageName:process

looper.loop()

App class

New Activity
3. fork()

4. BIND

5. LAUNCH

SEApp modification

Stock OS

Figure 2.5: Application launch

Processes

Android application design is based on components. Each of them lives inside a process, and
can be seen as an entry point through which the system or the user can enter the app.
To activate a component, an asynchronous message called intent, containing both the reference
to the target component and parameters needed for its execution, has to be created. The intent is
then routed by the system to the ActivityManagerService [22] via Binder IPC. Before delivering
the intent request to the target component, the ActivityManagerService checks if the process in
which the target component should be executed is already running; if not, the native service called
Zygote [39] is executed. Its role is to spawn and correctly setup the new application process.
To achieve this, it first replicates itself by performing a fork, then, using the input provided by
the ActivityManagerService (namely, package name, seinfo, android:process, etc.), it
starts configuring the process GID, the seccomp filter, the UID and finally the SELinux security
context. We adapted the final configuration step, forcing Zygote to set the security context
based on the seapp_contexts located at /data/selinux/packageName (i.e., the one
provided by the developer for her app). Process name is used to assign the proper context to the
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process when it starts, before the logic of the process kicks in. In case the developer did not
specify a domain, then Zygote uses the system seapp_contexts as fallback. After the correct
labeling, the ActivityManagerService finishes the configuration by binding the application class,
launching the component, and finally delivering the intent message. Figure 2.5 details the
process.
This implementation design offers several benefits, including backward compatibility, support
for all components, and ease of use. Indeed, a developer who wants to use our solution only
has to configure some files; changes in the application code are reduced to a minimum, thus
facilitating the introduction of SELinux in already existing apps.
In our study we have also explored other design alternatives, in which the developer could
explicitly state a domain transition in the code, wherever she needs it. Although this category
of solutions would give the developers more control over domain transitions, it also has some
drawbacks. First, the developer would be expected to enforce the isolation among source and
target domains managing the multi-threaded scenario, and second, this design implies granting
too many permissions to the app (e.g., dyntransition, setcurrent and read/write access
to selinuxfs). Moreover, such solution would introduce a new Android API, that would be
quite delicate and, if not used correctly, it might be difficult to control.

Files

Android applications aiming to create a file can use the java.io.File abstraction. Each
file creation request that is generated is captured by the Android Runtime (ART) [25], and then
converted into the appropriate syscall. The result is the creation of the target file, to which a
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security context inherited from the parent directory is assigned (see flow A , B of Figure 2.6).
Since Android 9, the separation between files of different apps is enforced at MAC level (a
unique context based on UID and SELinux category is assigned); however, all the files stored in
the same app folder are labeled with the app_data_file type.
To make the most out of SELinux, SEApp complements Android with the implementation
of a new service, which we called restorecon (to recall the SELinux restorecon.c tool). The
restorecon service is spawned by init at boot, and works in its own SELinux domain. Its role
is to create and label files as specified by the developer in the local file_contexts. To
ease development, we implemented the new android.os.File abstraction, which exposes
an interface equal to that of java.io.File, and transparently handles the call to our service.
Figure 2.6 details the new control flow. A component running in a SEApp-enhanced process
(highlighted in green in Figure 2.6) invokes android.os.file, and triggers a new file
creation request ( 1 ). The new API first interacts with the ServiceManager ( 2 ) to get a handle
of the restorecon service ( 3 ), then it interacts with the service using the AIDL [15] interface we
defined for it, informing the restorecon of the target path ( 4 ). The restorecon service verifies
whether the caller is the legitimate owner of the path, it reads the file_contexts file located
at /data/selinux/packageName ( 5 ), and finally it creates the target file enforcing the
correct labeling ( 6 ).
We also investigated three other implementation approaches: (i) change of the default security
context inheritance behavior for the ext4 filesystem, (ii) execution of the SELinux restorecon
operation by the app, once the file is successfully created, and (iii) use of restorecond [35]. The
first option would change the default behavior system-wide. As it might cause compatibility
issues, we decided not to choose it. The second option is not ideal from a security standpoint, as it
requires to grant the application too many permissions (e.g., relabelfrom, relabelto, as
well as read/write access toselinuxfs to check the validity of the SELinux context). The third
option refers to the use of restorecond, a system daemon that watches (inodes of) a configurable
list of files and checks that they are labeled as stated in the system file_contexts. Although
it may realize the control, restorecond was meant for a few system files, therefore its performance
would hardly scale, especially considering that SEApp needs to manage all files created by
SEApp-aware apps. Another major issue is that this approach is exposed to race conditions,
because there is a delay between file creation and its relabeling.

2.7 Experimental results

We now present a performance evaluation of SEApp. The experiments have been conducted on
both Android 9 and 10, each with Linux kernel v4.9. However, all the measurements shown
refer to Android 10 (release android-10.0.0_r41). The device used to run the tests is a Google
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Figure 2.7: Installation time overhead for apps with different complexity

Pixel 3 (blueline), in which the four gold cores frequency was set to 2.8 GHz, while the four
silver ones were disabled. The change in CPU configuration has been performed to reduce the
variability of measures. The confidence intervals provided have an associated confidence level
of 99%.

App installation

The introduction of dedicated app policies implies further steps to be executed at app installation
time, as each SEApp module has to be validated, compiled, and loaded. To evaluate the impact
on performance, we wrote dedicated tests to stress the installation procedure with multiple
application samples.
To build representative samples of a typical consumer scenario, we first downloaded the 150
most popular free apps from Google Play (retrieved in October 2020) [108]. The apps were
subsequently divided into three buckets: basic, ordinary and huge apps, according to the
weighted normalized average of the .apk size, the number of Android activities and the number
of services. Based on the bucket, each app was equipped with one of the following policy
configurations: (i) basic, 1 domain and 1 type per policy module, (ii) ordinary, 10 domains
and 25 types, and (iii) huge, 20 domains and 100 types. The rationale is that larger apps can
gain considerable benefit from the use of a large policy. The basic configuration mimics how
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Figure 2.8: Cumulative install time overhead when installing the top 100 free apps on
Google Play Store with our policies

third-party apps are currently handled, but with some key improvements, as it permits to define
the subset of services the domain can use, and it permits to enforce app isolation, not only based
on MAC category, but also through the specification of its own type. The ordinary and huge
policy configurations are meant to take full advantage of intra-app isolation and flexibility via
the definition of multiple domains. Each test was repeated five times, measuring the time each
package took to install. The measurements were done with the *nix date utility.
Test I. To measure the overhead caused by the presence of the policy module, we performed on
device installation of each of the previously described app buckets (basic, ordinary and huge)
via Android Debug Bridge (adb) [23].
The results of Test I are illustrated in Figure 2.7. In detail, it shows in blue (i.e., the lower part
of the bar) the time required by the system to install the current package without the dedicated
policy module, while in orange (i.e., the top of the bar) the overhead caused by the presence
of the policy module. The data report that a limited overhead is associated with apps with
huge policies, at most 3.59 ± 0.04s, while basic and ordinary policy configurations exhibit a
negligible slowdown, never exceeding 1.22± 0.02s.
Test II. To evaluate the overall impact of SEApp in a typical consumer scenario, we performed
a test evaluating cumulative installations. At first, we repeated the installation of the top 100
apps on Google Play Store with the same policy configuration as in Test I (see Figure 2.8). In
this case, we measured an overhead of 20.98± 1, 31% on total installation time.
As explained in Section 2.6, each time a new application is installed, all policy fragments stored
in the device have to be recompiled to produce the new binary policy. The installation time
overhead then grows with the increase in the number of installed policy modules. To further
analyze this aspect, we repeated the installation of the top 100 free apps adding to all the packages
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in three separate experiments the same basic, ordinary, and huge policy configurations. The
experimental results illustrated in Figure 2.9, show that only the use of huge policy modules
introduces a non-negligible overhead (45.35± 2.44% on total installation time). However, this
policy configuration simulates an edge case, as we do not expect to find 100 of them in a real
scenario. To give a comparison, the huge policy declares 100 types; public/file.te, i.e.,
the file used to define all the file types of the system, declares 314 types in Android 10.
In Table 2.3 we report the sizes of the overall policies for the three scenarios considered in this
experiment. We report the number of MAC types, the number of produced AV rules, and the
overall size in KBytes of the binary policy.

policy #types #avrules KB
system 1536 29228 596
system + 100 basic 1836 47028 867
system + 100 ordinary 6036 213228 3512
system + 100 huge 15536 417228 7064

Table 2.3: Policy size

Runtime performance
We now evaluate the runtime overhead for an app taking full advantage of SEApp. We focus
on the creation of processes and files, as they are the entities directly affected by the changes
made in the implementation. The data shown refer to the creation time of each resource. The
measurements have been acquired via System.nanoTime and have been repeated 100 times for
each test. Also, all outliers diverging more than 3 standard deviations from the mean have been
suppressed.
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Processes

As discussed in Section 2.6, in SEApp the creation of a process is originated from the request
of execution of an Android component. Thus, the slowdown occurs between the request for
the component and the execution of the method onCreate, which is the time interval subject to
measurement. Our evaluation is limited to activities and services, as these are the components
most used by developers. Our analysis showed identical behavior for broadcast receivers and
content providers, the other two components supporting the android:process attribute in
the manifest.
Separate test cases have been identified based on the type of process that supports the component.
We refer to Local, Remote, Isolated or SEApp components when we run components respectively
in the current process, in another process, in another process with the isolated_app domain
(using the isolatedprocess we described in Section 2.3), or in a package specific domain (declared
in the app policy module). Furthermore, we cover cold and warm start scenarios. The cold start
corresponds to the first time the application brings up the component, and the warm start to the
subsequent times the app reuses a previously instantiated one.

Cold start (ms) Warm start (ms)

Component Stock OS SEApp Stock OS SEApp
µ σ µ σ µ σ µ σ

LocalActivity 39.102 1.094 38.689 0.980 21.052 6.046 18.685 5.001
RemoteActivity 123.468 3.176 124.649 3.526 15.722 2.682 15.933 3.256
SEApp Activity - - 127.356 3.542 - - 15.188 2.394
LocalService 19.164 1.444 18.835 1.392 1.399 0.208 1.328 0.208
RemoteService 105.467 2.800 106.935 2.565 2.617 0.879 2.676 0.593
IsolatedService 103.923 2.425 104.260 3.727 - - - -
SEApp Service - - 106.925 3.774 - - 2.528 0.675

Table 2.4: Cold and warm start performance for activities and services

The results shown in Table 2.4 demonstrate that the performance of a stock version of the
OS and SEApp are equivalent. Also, we observe that apps willing to benefit of the intra-app
isolation feature get from the use of SEApp the same performance they would get from the
use of remote components. Our approach also proves to outperform the IsolatedService, as the
isolatedprocess option forces the creation of a new process every time an IsolatedService that
was previously unBind-ed is activated. This introduces a slowdown of 102± 1ms compared to
the SEAppService warm start, which instead benefits from the system caching mechanism.

Files

Alongside the usual creation method, SEApp introduces in Android the possibility of creating
files with a security domain defined by the app dedicated file_contexts. Table 2.5 shows
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the time required to create a file, for each of the methods discussed. We observe no overhead
on direct file creation, but the overall execution time becomes larger due to the invocation, as
described in Section 2.6, of the restorecon service, which requires approximately 374 ± 30µs.
This overhead only occurs at file creation and every subsequent operation on the file does not
exhibit any performance degradation.

File creation
Test µ (µs) σ (µs)
Stock OS 57.077 5.174
SEApp 60.696 6.782
SEApp + 431.472 109.494restorecon

Table 2.5: File creation performance

2.8 Related work

In traditional desktop operating systems significant effort has been spent in retrofitting legacy
code for authorization policy enforcement leveraging MAC. An approach is to place reference
monitor calls to mediate sensitive access locations through the use of static and dynamic anal-
ysis [101, 144]. An evolution of this solution is the multi-layer reference monitor [114], in
which the MAC policy is enforced at different levels (e.g., application, OS, Virtual Machine
Manager). Another approach is to identify integrity-violating permissions through the use of
information-flow analysis [171]. The use of capabilities and traditional access control mecha-
nisms to introduce further isolation features in runtimes has instead being studied in [5–7].
Android’s open source nature and popularity made it the target of careful security investigations
(e.g., [8, 93, 94, 98]) and several proposals aiming at strengthen its security properties. In the
following we discuss the ones that try to address app isolation and modularity, underlining the
key differences with our methodology.
Our approach presents similarities with Secure Application INTeraction (Saint) proposed by
Ongtang et al. in [146], in which the authors also try to address the issue of allowing developers
to define policies that can be verified at both installation time and runtime, to better specify the
permissions for each component of their app. However, since the paper has been published in
2010, Saint could not leverage SEAndroid [172], which was introduced later, thus the authors
had to define their own Android security middleware, which would not fit into the current
Android architecture [141].
FlaskDroid [59] defines a versatile middleware and kernel layer policy language. It is based on
Userspace Object Managers (USOMs), which control access to services, intents and data stored
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in Content Providers. However, FlaskDroid does not focus on intra-app compartmentalization,
a central aspect in our proposal.
ASM [113] and ASF [50] promote the need for a programmable interface that could serve as a
flexible ecosystem for different security solutions. The generality of these solutions, however,
requires to introduce several changes to the current Android security model.
AppPolicyModules [47] is another proposal that allows app developers to create dedicated pol-
icy modules. The authors focus more on how apps could use SEAndroid to better protect their
resources from the system and from other apps, paying limited attention to internal compart-
mentalization.
DroidCap [79] is a recent contribution proposed by Dawoud and Bugiel, in which the authors
propose to replace Android’s UID-based ambient authority (DAC) with per-process Binder
object capabilities. The proposal is interesting as it permits to achieve security compartmen-
talization between different app components. To introduce capability-based access control on
files, DroidCap had to integrate Capsicum for Linux [106] in Android. Overall, DroidCap is a
nicely engineered solution, which shares similar objectives with ours, and the two could work in
parallel as they do not interfere with each other. However, as our proposal relies on SELinux and
SEAndroid, which are already part of the Android security framework, our architecture appears
to be more aligned with the natural evolution of the Android ecosystem.
Boxify [51] is a virtualization environment for Android apps, which could be used to achieve a
higher level of privacy and better control over app permissions. The authors also describe how
their solution could be used to compartmentalize Ads libraries to reduce the risk of sensible
information leakage. Yet, since the virtualization environment acts as a mediator between the
applications and the system, it extends the set of trusted components the app has to rely on.
AFrame [191] and CompARTist [117] propose to compartmentalize third-party libs from their
host app using a separate process with a dedicated UID. In AFrame the Android Manifest is
modified with the introduction of library ad-hoc permissions, while CompARTist uses compile
time app rewriting. Both proposals do not extend the protection at the MAC level.
To summarize, the main differences that characterize our proposal are: (i) we propose a natural
extension of the role of SELinux to apps leveraging what is already used to protect the system
itself, thus minimizing the impact on it, and (ii) we empower the developers while limiting the
amount of changes an application must undergo in order to take advantage of our solution.

2.9 Conclusions
This chapter proposed an extension to the current MAC solution (SELinux) already available
in Android. Developers can use SELinux to define domains that are internal to their apps, in
such a way that it is possible to leverage the modules that are already providing protection to
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the system. By mapping SELinux domains to activities and services, developers can limit the
impact that a vulnerability has on the app processes and files. We described in the chapter
the changes that we introduced into Android, and our experimental evaluation shows that the
overhead introduced by our proposal is compatible with the additional security guarantees.

Availability
The implementation source and artifacts produced for the evaluation of our proposals are freely
available at this URL: https://github.com/matthewrossi/seapp
The work in this chapter was supported in part by the EC within the H2020 Program under
projects MOSAICrOWN, and by the 2015 Google Faculty Research Award Program.
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Chapter 3. Data sanitization
SDS: scalable distributed data sanitization

Data sanitization (or anonymization) follows to the collection. Sanitization irreversibly alters the
data so that a subject (referenced within it) cannot be identified, given a certain security param-
eter, while data remain practically useful. While sanitization is known to be a computationally
demanding process, we aim at providing a solution for enabling a distributed anonymization
over large collections of data.
There are many techniques to sanitize a dataset. Examples are k-anonymity [68],
ℓ-diversity [134], and Differential Privacy [71]. In this chapter, we focus on the ones that
apply sanitization through generalization and suppression. Before replacing the datum with a
less precise but semantically consistent version, these approaches cluster the data records into
partitions based on their values. Intuitively, grouping similar values into the same partition
permits to reduce the information loss induced by the generalization process. Our idea is that
the same intuition can be used to identify an initial number of partitions, each subsequently
sanitized by a dedicated network node. As this approach avoids data shuffling between the
nodes, we expect a more predictable reduction in the total sanitization time when the number
of nodes increases, with a limited degradation of the dataset produced in terms of quality (i.e.,
information loss).
We implement our solution as a multi-container application deployed with Docker. The experi-
mental evaluation confirms that the approach is scalable with limited impact on information loss,
even when the initial set of partitions is determined based on a sample of the dataset. The open
source solution implementing this approach was awarded as the Best Artifact at IEEE PerCom
2021.
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3.1 Introduction
Almost every object we use in our everyday life already is or is going to be smart, and equipped
with sensors that constantly collect information about ourselves and the environment where
we live (e.g., smart cars monitor the position of the car, engine configuration, tire pressure,
etc.) [45]. Such data are valuable and may need to be shared with others (e.g., to design better
solutions for autonomous driving) without, however, violating the privacy of the individuals to
whom they refer.
Guaranteeing privacy in datasets containing possible identifying and sensitive information re-
quires not only refraining from publishing explicit identities, but also obfuscating data that can
leak (disclose or reduce uncertainty of) such identities as well as their association with sensitive
information. k-anonymity [68, 167], extended with ℓ-diversity [134], offers such protection.
k-anonymity requires generalizing values of the quasi-identifier attributes (i.e., attributes that
leak information on respondent’s identities exploiting linkage with external sources) to ensure
each quasi-identifier combination of values to appear at least k times. ℓ-diversity considers each
sensitive attribute in such operation so to ensure each combination of quasi-identifier values to
be associated with at least ℓ different values of the sensitive attribute (see Figure 3.1(c)).

Age Country TopSpeed
25 Italy 132
25 Italy 132
30 France 128
42 Italy 110
50 France 115
43 Canada 115
38 USA 126
38 USA 127
38 USA 140

Age Country TopSpeed
[25-30] Europe 132
[25-30] Europe 132
[25-30] Europe 128
[42-50] World 110
[42-50] World 115
[42-50] World 115

38 USA 126
38 USA 127
38 USA 140

(a) (b) (c)

Figure 3.1: An example of a dataset (a), its spatial representation and partitioning (b), and
a 3-anonymous and 2-diverse version (c), considering quasi-identifier Age and Country
and sensitive attribute TopSpeed

While simple to express, k-anonymity and ℓ-diversity are far from simple to enforce, given the
need to balance privacy (in terms of the desired k and ℓ) and utility (in terms of information
loss due to generalization). Also, the computation of an optimal solution requires evaluating
(based on the dataset content) which quasi-identifying attributes generalize and how, and hence
demands complete visibility of the whole dataset for operating the generalization steps. Hence,
existing solutions implicitly assume to operate in a centralized environment. Such an assumption
clearly does not fit pervasive systems where the amount of data collected is huge (there are widely
circulating estimates that a smart car will upload to the cloud 25GB per hour). While scalable
distributed architectures can help in performing computation on such large datasets, their use
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in computing an optimal k-anonymous solution requires careful design. In fact, a simple
distribution of the load among workers would affect either the quality of the solution or the
scalability of the computation (requiring expensive synchronization and data exchange among
workers [44, 83]).
In this chapter, we detail our scalable, efficient, and effective approach for the distributed
enforcement of k-anonymity and ℓ-diversity requirements on large datasets. The solution is
based on an adaptation of Mondrian [125], revised to operate without requiring knowledge of
the complete dataset. Mondrian is a multidimensional algorithm that has established itself as
an efficient and effective approach for achieving k-anonymity. Mondrian leverages a spatial
representation of the data, mapping each quasi-identifier attribute to a dimension and each
combination of values of the quasi-identifier attributes as a point in such a space. Mondrian then
recursively cuts the tuples in each partition (the whole dataset at the first step) based on their
values (lower/higher than the median) for a quasi-identifying attribute chosen at each cut. The
algorithm terminates when any further cut would generate sub-partitions with less than k tuples,
at which point values of the quasi-identifier attributes in a partition are substituted with their
generalization. Figure 3.1(b) shows the spatial representation and partitioning of the dataset in
Figure 3.1(a), where the number associated with each data point is the number of tuples with
such values for the quasi-identifier in the dataset.
We have extended Mondrian designing a solution for partitioning data for distribution to workers
without requiring knowledge of the whole dataset. We have implemented such an approach
providing parallel execution on a dynamically chosen number of workers. The design of our
partitioning approach aims at limiting the need for workers to exchange data, by splitting the
dataset into as many partitions as the number of workers, which can independently run a revised
version of Mondrian on their portion of the data. The experimental evaluation shows that our
solution provides scalability, while not affecting the quality of the computed solution.

3.2 Distributed anonymization
This section illustrates the architecture and working of our open source system (available at this
link), supporting the distributed anonymization of large datasets.

Architecture
Figure 3.2 illustrates the architecture of our system, which includes two clusters: an Hadoop
Distributed File System (HDFS) cluster, a well known and widely used solution for data storage
and management, and a Spark cluster for data processing. Data are split in smaller blocks stored
at datanodes. A namenode in the HDFS cluster manages the data stored at the datanodes and
the access requests to them. For data processing, we have opted for Spark because it is a widely

43



Dario Facchinetti

used engine for big data analytics that is fully compatible with the HDFS cluster. Among the
nodes in the Spark cluster, one acts as Spark Cluster Manager and coordinates the work of the
other nodes in the cluster, acting as workers.
The distributed SPARK anonymization application has been developed in Python to leverage
the Pandas framework, which can be conveniently used for managing large data collections.
The application is associated with a Spark Driver. The Spark Driver, which runs on the Spark
Cluster Manager, is responsible for converting the application into a set of jobs that are then
divided into smaller execution units, called tasks. The tasks are allocated to workers by the
Spark Cluster Manager.

HDFS Spark cluster

Namenode

Datanodes

...

Cluster Manager

Driver

Workers

n
1

n
1Indexes

0, 2, 5, ...

Partitions

TopSpeed

132
...

140

Country

Italy

USA
...

Age

25
...

0

m

...

38

TopSpeed

132
...

128

Country

Italy

France
...

Age

25
...
30

TopSpeed

132
...

128

Country

Europe

Europe
...

[25 - 30]

Age
[25 - 30]

...

Figure 3.2: Architecture and working of the distributed anonymization system

Distributed anonymization algorithm

The application operates in three steps (Figure 3.2): pre-processing, which partitions the dataset
and distributes tasks to workers; anonymization, which anonymizes the dataset; wrap-up, which
computes the information loss and collects other information related to the anonymization
process.
Pre-processing. The first problem addressed consists in deciding how the dataset can be
partitioned by the Spark Driver among then available workers, in such a way that each worker can
independently apply the anonymization algorithm on the portion of data assigned to it, without
incurring in too much information loss. We first observe that, while a random partitioning of
the dataset would work, it may increase the information loss. We therefore apply a strategy
similar to the strategy used by the original Mondrian for creating sub-partitions: we first select
an attribute of the quasi-identifier on which to partition the dataset and then create n partitions
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(one for each worker) depending on the values of the selected attribute. The attribute can be
selected by applying different metrics (the tool supports maximum entropy, minimum entropy,
and maximum span) that, however, require to have the dataset in main memory to determine the
distribution of the quasi-identifying attributes’ values. To overcome this problem, we operate
on a sample of the dataset (whose size is a configuration parameter of the tool) that fits into the
main memory of the Spark Driver. Based on the randomly extracted sample, the Spark Driver
determines the most suitable attribute, and partitions the tuples in the dataset according to the
n-quantiles. We note that, as confirmed by the experimental results (Section 3.3), operating on
a sample of tuples for performing the first partitioning of the dataset does not affect the quality
of the solution.
Anonymization. The Spark Cluster Manager assigns the task of anonymizing each partition
determined in the pre-processing step to a worker, depending on different factors (e.g., the
workload, the datanode where data are stored). To make the system scalable, our implementation
forces each partition to be assigned to a different worker. Each worker then downloads from the
HDFS datanodes its portion of the dataset, and runs a revised version of Mondrian, without the
need of interacting with the other workers. Our revised version of Mondrian differs from the
original one in two aspects: 1) the attribute selected for partitioning is determined by applying
the same metric used in the pre-processing step; 2) the partitioning is performed considering both
the k-anonymity and ℓ-diversity requirements. When the partitions cannot be further divided
without violating k-anonymity nor ℓ-diversity, the tuples in each partitions are generalized. Our
tool implements different generalization strategies, suited for different kinds of data (e.g., ranges
for numeric attributes, user-defined generalization hierarchies for categorical attributes). Before
storing the anonymized portion of dataset back at the datanodes, each worker computes the
information loss on its portion of the dataset and sends the result to the Spark Driver (see next
step).
Wrap-up. To assess the quality of the anonymized dataset, the Spark Driver computes the
information loss produced by our distributed anonymization algorithm. To this end, the Spark
Driver combines the values of the information loss received from the workers. Such a com-
bination is done depending on the information loss metric adopted. The tool supports two of
the most common metrics, that are, the Discernibility Penalty (DP) and the Global Certainty
Penalty (GCP) [192].

3.3 Experimental results

To assess the scalability of the approach and its limited impact on information loss, we have
tested it over the IPUMS USA dataset [166], which has become a de-facto benchmark for
anonymization solutions. The dataset includes 500,000 tuples. We assume the quasi-identifier
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Figure 3.3: Execution time of the centralized version and distributed version varying the
number of workers

to include attributes State FIP Code, Age, Education Number, Occupation, and
the sensitive attribute to be Income. We have simulated a distributed environment using a
single server through Docker containers. Each node in the architecture in Figure 3.2 runs in a
different Docker container. The server is a 12 cores (24 threads) AMD Ryzen 3900X CPU, with
64 GB RAM and 2 TB SSD, running Ubuntu 20.04 LTS, Apache Spark 3.0.1, Hadoop 3.2.1,
and Pandas 1.1.3. The distributed algorithm operates over workers equipped with 2GB of RAM
and 1 CPU thread each. The centralized algorithm is single core, with no limitation on the use
of the RAM.

The experiments aim at comparing 1) the execution time and 2) the information loss of our
distributed approach with those of the centralized version of Mondrian.

Execution time. Figure 3.3 illustrates the execution time (in seconds) for computing a 3-
anonymous and 2-diverse version of the IPUMS USA dataset. The figure shows the execution
time of our distributed (Spark-based) Mondrian varying the number of workers between 2 and
20. The execution time of the distributed Mondrian decreases, as expected, when the number
of workers grows with a saving with respect to the execution time of the centralized Mondrian
that ranges from 46% to 85% when using more than 3 workers. This confirms the scalability of
our distributed approach. It is interesting to note that the centralized Mondrian is more efficient
than the distributed one when the number of workers is low (2 or 3 in our experiments). This is
due to the constant initialization time paid by the distributed implementation for setting distri-
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100% 0.01% sampling
(centralized) 5 workers 10 workers 20 workers

DP 1.24e7 1.23e7 (±4e5) 1.26e7 (±4e5) 1.33e7 (±1e5)
GCP 6.44 6.47 (±0.08) 6.49 (±0.07) 6.46 (±0.10)

Table 3.1: DP and GCP information loss with 100% and 0.01% sampling

bution and interoperation among workers, and by the different libraries used by the centralized
implementation (NumPy) and by the distributed implementation (Spark APIs).

Information loss. We first observe that the information loss caused by distribution can be
impacted by: 1) the number of workers (and hence of partitions), and 2) the size of the sample
used to partition the dataset. Table 3.1 illustrates the average information loss (and its variance)
obtained in 5 runs of the centralized and distributed (with 5, 10, and 20 workers) Mondrian for
computing a 5-anonymous and 2-diverse version of the IPUMS USA dataset, assuming 0.01%

and 100% sampling. In the table, 100% sampling corresponds to the centralized Mondrian,
hence in our experiments the information loss is substantially not affected by distribution.

The results we obtained confirm that, as expected, information loss grows with the number of
workers (i.e., values in DP and GCP lines in Figure 3.1 grow when moving from left to right),
but the impact is negligible. Also, the results show that sampling has a very limited impact on
information loss (i.e., values obtained with 0.01% sampling are slightly higher than the values
obtained with 100% sampling). For instance, GCP increases of less than 2% when passing
from the centralized version with 100% sampling to the distributed version with 20 workers and
0.01% sampling. DP has a similar trend.

We can then conclude that parallelization provides high scalability at a limited cost in terms of
information loss.

3.4 Conclusions

This chapter proposed a distributed version of Mondrian that provides scalability without af-
fecting information loss and leveraging an arbitrary number of independent workers.

Appendix B details the working of our distributed Spark anonymization application. Parameter
settings, work distribution, and anonymization results are conveniently controllable via a web
interface. The interface enables setting the parameters for privacy (i.e., k and ℓ) and distribution
(i.e., number of workers) and provides a visual representation of the system working, as well as
of the privacy and utility guarantees for different information loss metrics.
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Availability
The implementation source of our proposals is freely available at this URL: https:

//github.com/mosaicrown/mondrian

The work in this chapter was supported in part by the EC within the H2020 Program under
projects MOSAICrOWN and MARSAL, by the Italian Ministry of Research within the PRIN
program under project HOPE, and by JPMorgan Chase & Co under project “k-anonymity for
AR/VR and IoT/5G”.
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Chapter 4. Data storage & processing
SecIdx: k-flat encrypted indexes for encrypted databases

In this chapter, we bring into focus the storage and processing stage. The goal is to enable
provider-side evaluation of queries with guarantees that an honest-but-curious storage provider
cannot access to the data content.
In this scenario, we concentrate on relational data and provide an approach that supports the
evaluation of point and range conditions on multiple attributes. The approach we propose
involves packing the tuples into blocks, which are subsequently stored to the cloud provider.
To guarantee that the cloud provider cannot access to the data inside the blocks, a probabilistic
encryption layer is applied. Blocks are indistinguishable for the cloud provider, and access to
them is performed via a set of indexes. Protection against inferences from indexes is guaranteed
by clustering tuples in blocks that are then mapped to the same index values, so to ensure
collisions for individual attributes as well as their combinations. To produce such a clustering,
while at the same time ensuring efficient query execution, we provide a spatial-based tuple
partitioning algorithm. Query translation and processing require the client to store a compact
map. The map is used to search the indexes efficiently.
To validate our approach, we conduct a series of experiments evaluating the query response time
and client-storage requirements. The experiments confirm the effectiveness associated with our
approach. The degradation of query response time, compared to a configuration where the
data are stored in plaintext on a remote database, is very low, especially when the network link
bridging the client and server is affected by at least 10 ms latency, and has a transmission rate
of 100 Mbps.
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4.1 Introduction

A lot of research has been dedicated in the past twenty years to the investigation of how cloud
service providers can support the management of data with a guarantee that the cloud provider
does not have access to the data content. The model that is often used in this scenario is the
honest-but-curious [168] server, which assumes that the cloud provider correctly executes all
the data access and manipulation operations issued by the customer, but may abuse the fact that
it observes the data to have access to the customer information.

The classical solution to this threat is represented by the use of encryption, so that the control
of the physical representation of the data does not give access to the information content, as
long as the cloud provider does not have access to the encryption key. Unfortunately, a simple
use of encryption may not offer real protection against the curious cloud provider. When direct
deterministic encryption is applied, the encrypted data maintain the same distribution of the
original data, and this allows an adversary to reconstruct the original values by comparing the
distribution to that of known public data (e.g., first names, last names, zip codes).

The research and industry communities have dedicated significant effort to solve this problem,
considering different lines of investigations. Possible approaches include: i) the use of searchable
encryption (e.g., [54, 55, 151]), supporting the evaluation of conditions on encrypted data; ii)
the use of trusted hardware components (e.g., Intel SGX [118]) and Oblivious Random Access
Memory (ORAM) [78, 175] protocols at the server, offering a trusted execution environment
residing at, but not accessible by, the server; iii) the use of Fully Homomorphic Encryption
(FHE) schemes [100,103,143]. All these approaches represent valid alternatives, but in general,
they suffer from a significant overhead (e.g., [43]), making them still not applicable in many
practical scenarios.

The approach described in this chapter specifically targets relational data. To support the
evalution of conditions, we propose the association with the encrypted data of metadata working
as indexes. However, indexes may suffer from a possible exposure to inferences, as they might
leak information on the values behind them. The vulnerability of indexes typically resides
in the frequencies of their occurrences, which can bear relationship with the plaintext values.
Frequencies of both individual attributes values as well as combinations of them can be exposed
to inference. We address these problems proposing a multidimensional index that guarantees
perfect indistinguishability to an adversary with access to the data. This means that all the
values of the attributes in the index (and their combinations) will appear in the index with the
same number of occurences. To offer protection against an attacker monitoring the access to the
data content, we cluster tuples into equally large unintelligible blocks (or groups) so that tuples
referenced by the same index value are indistinguishable from one another (so are queries over
them).
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The consequence for such a protection is that tuples can only be retrieved by the client with the
granularity of blocks. It is therefore important to carefully group tuples for indexing so to limit
the degradation in query response time. While this can be trivial when only one attribute is
to be indexed, it is far from being so (it is an NP-hard problem) when multiple attributes need
to be indexed. The approach for index construction employs a spatial-based representation of
tuples to be outsourced and an algorithm performing recursive cuts on such space, resulting
in a partitioning of tuples for indexing. As confirmed by the experimental results detailed in
Section 4.7, the proposal provides for effective and efficient query evaluation, enjoying limited
overhead and limited storage requirements at the client side.

4.2 Basic concepts and problem statement

The work proposed in this chapter is framed in the context of relational database systems. We il-
lustrate our approach with reference to the outsourcing of a relation r over schemaR(a1, . . . , am),
with each attribute aj defined over a domain d(aj), j = 1, . . . ,m. Since our assumption is a
honest-but-curious server, clearly tuples need to be encrypted for storage, the idea is to specify
indexes over attributes and evaluate conditions on queries over such indexes. The problem is the
definition of privacy-preserving indexes for enabling execution of queries involving evaluation
of conditions over attributes, considering equality (i.e., =) conditions as well as range (i.e.,
>,≥, <,≤) conditions. As a running example, we consider the problem of outsourcing the
relation in Figure 4.1(a), where queries may need to evaluate condition over attributes State
(with domain the two-letter codes for states within the USA), and Age. A query we want to
support is, for instance, “select Name, Age from r where State= Ca ∧ Age>38”, aimed
at retrieving name and age of people older than 38 living in California.

Name Age State
t1 Abe 34 Ne
t2 Bud 34 Tx
t3 Coy 40 Ne
t4 Doc 34 Wy
t5 Edd 37 Ca
t6 Fox 40 Ak
t7 Gus 43 Ca
t8 Hae 46 Ca
t9 Isa 49 Oh
t10 Jim 55 Wy
t11 Ken 46 Mi
t12 Luc 52 Tx

(a)

iAge iState enctuple
ϵ α t1
ϵ α t2
ϵ α t3
ζ β t4
ζ β t5
ζ β t6
η γ t7
η γ t8
η γ t9
θ δ t10
θ δ t11
θ δ t12

(b)

Figure 4.1: Plaintext relation (a), and its encrypted and indexed version (b)

51



Dario Facchinetti

Indexing the relation for external outsourcing while protecting confidentiality of its content
means providing some coding for the attributes on which conditions need to be supported, so to
enable evaluation of conditions while not exposing actual values to the storing server. Indexing
must however be done carefully to ensure it does not leak information. For instance, while the
coding protects actual value, a one-to-one correspondence between plaintext values and indexes
clearly makes indexes exposed to frequency-based attacks (e.g.„ in our example, California is the
only state with three occurrences and a one-to-one indexing would maintain such a property).
Also, an order-preserving index to support range queries would maintain the order of values
in the indexing, hence again leaking information which can enable reconstructing the values
behind the indexes. Hence, indexes should not leak, in their values, any order.
Frequency-based attacks can be counteracted by destroying the frequency-based correlation
between values and indexes. The extreme case for this is a 1-to-many correspondence (hence
mapping different occurrences of the same value to multiple indexes) with no index values
appearing more than once (e.g., the three occurrences of California would be mapped to three
different indexes). While destroying frequencies in the index, such an approach would clearly
introduce a significant overhead in query execution. An alternative approach to confuse frequen-
cies is through collision, mapping different plaintext values to the same index, but the presence
of high-occurring values would however still be exposed. A solution to the problem above is to
provide indexing while ensuring a complete flat occurrence of index values through both mul-
tiple index values for the same plaintext as well as collision, which is through a many-to-many
correspondence between plaintext values and indexes. To provide effective protection, not only
individual attributes, but also any combination of them, should enjoy a flat profile. Besides
providing protection against static inference attacks, that can no longer exploit frequencies of
index values or combination thereof, such a flattening provides protection also against dynamic
observations from the storage provider, since tuples with the same index are indistinguishable
from one another. The level of protection to dynamic observations is directly proportional to the
number of tuples referenced by the same combination of index values. Figure 4.1(b) shows an
example of such an indexing for the relation in Figure 4.1(a), where index values are represented
with Greek letters, and the encrypted tuples are represented with a gray background. Indexes
and combinations thereof enjoy a completely flat occurrences and therefore no static inference
can be made of the values behind them. The challenge is producing a flattened index over
multiple attributes.

4.3 Partitioning

Our approach for the construction of index values is based on a partitioning of the tuples in
the original relation into groups with fixed cardinality. All tuples in the same group are then

52



Data storage and processing

associated with the same combination of index values. The number of tuples that must be
included in each group, denoted k, is a parameter that can be arbitrarily set. A larger k provides
more protection against dynamic observations, but also increases the potential query execution
overhead (see Section 4.7).
The first step of our approach is the clustering of tuples in groups of the same size, k. Since
the cardinality of the relation may not necessarily be a multiple of k, we need to account for
the remainders, which we accommodate by allowing clusters to include at most one tuple more
than the k requested (as needed to fully cover the sets of tuples to be partitioned). Our definition
of k-flat partition captures the partitioning of tuples, to produce a maximal flattening of groups
with cardinality k as follows.

Definition 4.3.1 (k-flat partition). Let r be a relation. A k-flat partition of r, denoted P, is a
partition P = {G1, . . . , Gp} of tuples in r such that:

1. ∀G ∈ P, k ≤ card(G) ≤ k + 1;

2. p = ⌊card(r)/k⌋.

In Definition 4.3.1, the first condition expresses the requirement on the cardinality of the groups
(allowing groups to have either k or k + 1 tuples, this latter being needed to accommodate
remainders), and the second condition dictates the number of groups to be the maximum among
those that satisfy condition 1, or - equivalently - the number of groups with k + 1 tuples to
be minimum. By dictating the number of groups in the partition, condition 2 forces exactly
h = card(r)mod k of the groups to have k+1 tuples, while all the others will have k tuples. In
other words, the condition rules out from consideration partitions which do not enjoy maximum
flattening, or rather that have a number of groups of cardinality k + 1 larger than the number
of remainders to be accommodated. For instance, assume card(r)=231 and k=10. Condition 2
would accept only a partition composed of 23 groups (one of which composed of 11 tuples, all
others being of 10 tuples) ruling out of consideration partitions composed of 22 groups (eleven
of which composed of 11 tuples) or 21 groups (all with 11 tuples), which - although satisfying
condition 1 - do not maximize the required flattening of k = 10.
Clearly, for a relation r to have a k-flat partition, the number of remainders to be accommodated
(i.e., the extra tuples to allocate to groups) must be not greater than the number of groups
composing the partition. For instance, trivially, no k-flat partition for k = 10 can exist for a
relation with 23 tuples. In other words, with h = card(r) mod k and p = ⌊card(r)/k⌋, it must
be that h ≤ p, which is also a sufficient condition for a k-flat partitioning to exist, as stated by
the following theorem.

Theorem 1 (Existence of a k-flat partition). Let r be a relation such that card(r)≥k. A k-flat
partition P of r exists iff h ≤ p, with h=(card(r) mod k) and p=⌊card(r)/k⌋.
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Proof. See Appendix C.2

Given a relation r and an integer k, we say that r is valid wrt the k-flat partitioning problem if a
k-flat solution exists for r. This is captured by the following definition.

Definition 4.3.2 (Validity). Relation r is said to be k-valid for k-flat partition iff h ≤ p, with
h=(card(r) mod k) and p=⌊card(r)/k⌋.

While the observation in Theorem 1 may seem a non issue for the problem to be solved, where
the cardinality of r is extremely large and k very small, it is an important aspect to take into
account in the partitioning process, which, if not done properly, may easily degenerate. Our
approach to compute a k-flat partition is via a process recursively cutting a relation in two groups
at each step, until a k-flat partition is reached. To ensure that our recursive process terminates
with the computation of a k-flat partition, we force the cut at each step to produce only k-valid
relations and to not increase the number of groups with cardinality higher than k. We then
introduce the notion of cut validity as follows.

Definition 4.3.3 (Cut validity). Let r be a relation and k be an integer. A cut (rl,rr), partitioning
r in two groups, is valid iff both rl and rr are valid (Definition 4.3.2) and h = hl + hr, with
h=(card(r) mod k), hl=(card(rl) mod k), and hr=(card(rr) mod k)

Intuitively, a cut is valid if the two relations resulting from it are k-valid, that is, a k-flat partition
exists for them, and the total number of groups of cardinality k + 1 is not increased by the cut.
For instance, consider a relation composed of 233 tuples. A cut partitioning it in two relations
of 23 and 200 tuples, respectively, is not valid due to the non validity of the first relation (which
cannot have a 10-flat solution). Also, a cut partitioning it in two relations of 117 and 116 tuples,
respectively, is not valid since, their k-flat solutions, having respectively seven and six groups
of 11 tuples, cannot represent a k-flat solution for the original relation.
Since our problem is to group tuples for index construction, it is important not only to partition
tuples as a k-flat partition to ensure flat indexing, but also to have indexes that perform well with
respect to query execution. In general, a partitioning maintaining same or close values within the
same group as much as possible behaves better, meaning it introduces less performance overhead
in query execution, than an approach scattering such values in different groups. However, as
already noticed, with multiple attributes involved, the problem is far from being trivial.
In the next sections we first describe how we take into consideration the values within tuples so
to provide a partitioning performing well for query execution, and then we describe its tweaking
to enforce partitioning to ensure k-flatness.
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Recursive partitioning

Our approach to partitioning is based - at a very high level - on an algorithm similar to the one used
by the Mondrian anonymization algorithm [126], while bearing some important differences. The
similarity is the representation of the dataset in a multidimensional space and the enforcement
of partitioning through recursive cuts. The differences, to accommodate the fact that we need to
cluster tuples to produce flat indexing performing well for query evaluation (in contrast to cluster
tuples for semantically meaningful generalizations), are mainly in the way cuts are determined,
and the forcing on groups to provide flattening as per Definition 4.3.1. Our partitioning process
works then in a multidimensional space, with one dimension for each attribute to be indexed,
and where each tuple is the point in such a space where its coordinate values meet. The space
appearing at the top in Figure 4.2 is the multidimensional representation of attributes State
and Age for the tuples in Figure 4.1(a). We distinguish attributes to be indexed in two categories:

• continuous attributes (e.g., Age in Figure 4.1(a)), characterized by a total order relation-
ship on their domain hence supporting range conditions;

• nominal attributes (e.g., State in Figure 4.1(a)), which do not have an order in their
domain and thus supporting equality conditions only.

While the spatial representation conveys an order of values along a dimension, we maintain
such an order fixed, and corresponding to the order dictated by the domain, only for continuous
attributes, so that partitioning will cluster together same or close values. By contrast, we adjust
the order in our spatial representation of nominal attributes as best suited for the process, as we
elaborate next.
The partitioning process works cutting at each step the tuples along one dimension (attribute) in
the space and recursively calling itself on each of the two produced subspaces. At each iteration,
the dimension along which a cut is to be performed is chosen to be an attribute that enjoys the
highest support (i.e., number of distinct values). If the attribute is a continuous attribute, the cut
divides the tuples in two groups depending on their value wrt the median: values lower than or
equal to the median in one group and values higher than the median in the other group. Should
the median correspond to the maximum value for the attribute in the relation, the values equal to
the median will be put in the second group (which would otherwise be empty) instead than the
first one. If the attribute is a nominal attribute, the cut divides the tuples in two groups with a bin
packing strategy, considering values of the attribute in decreasing order of their occurrences and
placing tuples that have the value under consideration in the group that is smaller. Figure 4.2
illustrates the working of the partitioning process for our running example. The first cut operates
on attribute Age (whose support is 8), splitting tuples in two groups, the left group has the
tuples with age lower than or equal to the median (which is 41.5) and the right group has the
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Figure 4.2: Graphical representation of the cuts performed by procedure Cut over the
relation in Figure 4.1(a)

tuples with age higher than the median. On each of the two spaces, the subsequent cut operates
on attribute State, diving tuples in two groups with a bin packing strategy, considering state
values in decreasing order of occurrences and placing tuples with such values in the group that
is smaller. In the figure, the order of values in the state dimension has been rearranged (starting
from the origin, they always appear in decreasing order of occurrences), to better graphically
represent the cut. The resulting groups, reported at the bottom of Figure 4.2, have all cardinality
of 3, and hence no further cut needs to be performed (as k is equal to 3 in the running example).

Computing a k-flat solution

Our approach to compute a k-flat solution comprises three procedures: Partition, Cut, and
Check. These are illustrated in Figures 4.3, 4.4 and 4.5 respectively.
Partition. Procedure Partition (Figure 4.3) performs the partitioning recursively calling itself
and calling procedure Cut for performing the described cutting process, eventually determining
the sets P composing the groups of the k-flat partition. When called, Partition(r) first evaluates
the cardinality of r (line 1). If such a cardinality is no greater than k + 1 (meaning it is either k
or k + 1), no further cut needs to be performed and r is added to P. Else, if all the tuples in r

have the same values (line 2), it simply splits the tuples in ⌊card(r)/k⌋ groups each containing
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INPUT: (r, k) /* relation r to partition; global variable k */
OUTPUT: P /* k-flat partition P */
PARTITION(r)
1: if card(r) ≤ k + 1 then P := P ∪ {r}
2: elseif support(r) = 1 then /* all tuples over A are equal */
3: p := ⌊card(r)/k⌋
4: h := card(r) mod k
5: Let {G1, . . . , Gp} be a partition of r in h groups of k+1 tuples
6: and p−h groups of k tuples
7: P := P ∪ {G1} ∪ . . . ∪ {Gp}
8: else
9: Choose a ∈ A s.t. support(r[a]) is maximum
10: (rl, rr) := cut(r,a)
11: partition(rl)
12: partition(rr)

Figure 4.3: Algorithm for computing a k-flat partition

CUT(r,a) /* cut relation r over attribute a and produces two valid relations rl and rr */
1: if a is continuous then
2: med := median(r[a]) /* compute the median of a */
3: if med = max(r[a]) then
4: rl := {t∈r | t[a]<med}; rr := {t∈r | t[a]≥med}
5: else rl := {t∈r | t[a]≤med}; rr := {t∈r | t[a]>med}
6: m := check(r,rl.rr)
7: case m of /* move |m| tuples to produce two valid relations rl and rr */
8: > 0: Move m tuples with values for a closest to med from rl to rr
9: < 0: Move |m| tuples with values for a closest to med from rr to rl
10: else /* a is nominal */
11: ∀v ∈ r[a], cv := count(r[a]=v) /* count cv to be priority of v */
12: Let Q be a max priority queue with the distinct values in r[a]
13: rl := ∅; rr := ∅
14: while notempty(Q)
15: v := pop(Q)
16: if card(rl) < card(rr) then rl := rl ∪ {t∈r | t[a] = v}
17: else rr := rr ∪ {t∈r | t[a] = v}
18: m := check(r,rl.rr)
19: case m of /* move |m| tuples to produce two valid relations rl and rr */
20: > 0: Move m tuples with the minimum count from rl to rr
21: < 0: Move |m| tuples with the minimum count from rr to rl
21: return rl,rr

Figure 4.4: Algorithm for cutting a k-flat partition
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CHECK(r,rl.rr) /* r: original relation; rl,rr: left,right partition of r */
1: p := ⌊card(r)/k⌋; h := card(r) mod k
2: pl := ⌊card(rl)/k⌋; hl := card(rl) mod k
3: pr := ⌊card(rr)/k⌋; hr := card(rr) mod k
4: if (hl ≤ pl) ∧ (hr ≤ pr) ∧ (hl+hr=h) then return 0
5: if pl < 1 then mrl := [(k−hl) + max(0,h−(p−1))]; return −mrl

6: if pr < 1 then mlr := [(k−hr) + max(0,h−(p−1))]; return mlr

7: if hl ≤ h then /* hl+hr=h */
8: if hl > pl then /* rl is not valid */
9: mlr := hl − pl
10: if pr = 1 then return mlr

11: else mrl := k−hl + max(0, h−(pr−1))
12: else /* rr is not valid */
13: mrl := hr − pr
14: if pl = 1 then return −mrl

15: else mlr := k−hr + max(0, h−(pl−1))
16: else /* hl+hr>h */
17: mlr := hl − min(pl,h)
18: mrl := hr − min(pr,h)
19: if mlr < mrl then return mlr else return −mrl

Figure 4.5: Algorithm for checking the validity of a cut

either k or k + 1 tuples (as per Definition 4.3.1). Otherwise (line 8) it picks an attribute a with
the highest number of distinct values and calls procedure Cut to split the tuples in the relation
along a’s dimension, then recursively calling itself on the two partitions returned.

Cut. Called with a relation r and attribute a as parameters, procedure Cut (Figure 4.4) partitions
the tuples in r based on the values of a, enforcing the process described in Section 4.3 depending
on whether a is continuous (line 1) or nominal (line 10). After producing the two partitions rl
and rr, it calls procedure Check, which checks if the cut is valid (if m > 0) or viceversa (if
m < 0) to make the cut valid (it returns 0 if the cut is already valid). To maintain the quality
of the computed cut, tuples to be moved from one partition to the other are those close to the
median (if the cut was on a continuous attribute), or those with lower number of occurrences (if
the cut was on a nominal attribute).

Check. Procedure Check (Figure 4.5) checks the validity of a computed cut and, in case the cut
is not valid, returns the number of tuples to be moved from a partition to the other to make the
cut valid while minimizing the number of tuples to be moved. The sign (+ or −) of the returned
number indicates the direction of the movement: a positive number indicates that tuples need to
be moved from rl to rr, while a negative number indicates that tuples need to be moved from rr

to rl. Procedure Check, called with the original relation r and the partitions rl and rr resulting
from the cut as parameters works as follows. First, it computes the number of groups (p, pl, pr,
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Figure 4.6: Examples of partitions for different cases of the Check procedure, k=10

resp.) and remainders (h, hl, hr, resp.) for each of them. (Note that, as per modulo theory,
h = (hl + hr) mod k and hl ≤ h ⇔ hr ≤ h.) It then considers the different cases that can
occur. In their illustration, we point to their occurrences in the examples of Figure 4.6. First,
it consider the particular cases, when the cut is already valid or one of the two relations does
not have a sufficient number of tuples to form a group (i.e., it has less than k tuples). If the cut
is valid (line 4, Figure 4.6(a)) then no tuple needs to be moved and 0 is returned. If the left
relation does not have cardinality sufficient to form a group, that is, pl = 0 (line 5), it returns the
number of tuples to be moved to it to reach cardinality k and ensure validity of the cut. This is
k− hl, if the number of original remainder h to be accommodated is no higher than the number
of groups (p− 1) remaining in the right partition (e.g., Figure 4.6(a)); it is k− hl +1, otherwise
(e.g., Figure 4.6(b)). Note that k − hl + 1 comes from the formula in line 5 due to the fact
that, since r is valid, h cannot be greater than p. If the right relation does not have cardinality
sufficient to form a group, that is, pr = 0 (line 6), the number of tuples to be moved from rl

is computed analogously. If none of the cases above occur (i.e., the cut is not valid and both
partitions have at least a group), the algorithm proceeds considering each of the conditions that
can make the cut not valid, and computes the minimum number of tuples to be moved from
rl to rr (mlr) or from rr to rl (mrl) to make the cut valid. If no extra remainders have been
generated, that is hl + hr = h (line 7), then either hl>pl or hr>pr. If hl>pl (line 8), the number
mlr of tuples to move from rl to rr to make rl valid is hl−pl (line 9). If rr has only one group,
this is the only possible move, which is then returned (line 10, Figure 4.6(c)). Else (line 11,
Figure 4.6(d)), the alternative move mrl of tuples to move from rr to rl is computed as k−hl

+ max(0, h−(pr−1)). Here, k−hl is the number of tuples for the cardinality of rl to become
multiple of k and h−(pr−1) the possible extra tuples to be assigned to it since otherwise rr

would not be valid. The case where hr>pr (line 12), is treated analogously (lines 13-15). If
condition in line 7 evaluated false, then (line 16) extra remainders have been generated, that is,
hl+hr>h. The procedure then determines the (minimum) number of tuples to be moved from
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rl to rr or viceversa to make the cut valid. Note that, in this case, pl + pr = p − 1, and rl and
rr might be valid or not. The number mlr of tuples to be moved from rl to rr is hl − min(pl,h)
(line 17, Figure 4.6)(e)). Intuitively, this is due to extra remainders generated with respect to the
original h in rl and/or remainders that cannot be accommodated in rl (if hl > pl). The number
mrl of tuples to be moved from rr to rl is computed analogously (line 18, Figure 4.6)(f)). With
the possible moves for the different cases computed, the procedures returns then the value among
mlr and mrl that is lower, changing sign (−) if mrl is to be returned to signal the direction of
the movement.

4.4 Indexing
At the end of the partitioning process, each group in the k-flat partition contains (k or k + 1)
tuples, that must be mapped to the same combination of index values. For instance, Figure 4.7(a)
shows, in the multidimensional spatial representation, the four groups (G1, G2, G3, G4) resulting
from the partitioning process in Figure 4.3.

34 37 40 43 46 49 52 55
Ne
Tx
Mi
Wy
Ak
Ca
Oh

G1

G2

G3

G4

Map
Gid Age State
g1 [34,40] NeTx
g2 [34,40] AkCaWy
g3 [43,49] CaOh
g4 [46,55] MiTxWy

(a) (b)

Figure 4.7: Spatial representation of the running example and corresponding Map

To define indexes to associate with encrypted tuples in groups supporting evaluation of condi-
tions, we first introduce the coverage of an attribute in a group as the set of values of the attribute
covered by the group.

Definition 4.4.1 (Coverage). Let P be a k-flat partition of a relation r, a ∈ A be an attribute to
be indexed, and and G be a group in P. The coverage of a in G, denoted G[a], is defined as:

• G[a]=[vl,vu], with vl=min{t[a] | t∈G} and vu=max{t[a] | t∈G}, if a is a continuous
attribute;

• G[a]={t[a] | t∈G}, if a is a nominal attribute.
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The set of groups, together with their coverage for the different attributes to be indexed represents
the Map of the partition, which we formally define as follows.

Definition 4.4.2 (Map). Let r be a relation, A = {a1, . . . , an} be a set of indexed attributes,
and P={G1, . . . , Gp} be a k-flat partition of r. The Map of P is the set of p tuples of the form
⟨Gi[gid],Gi[a1],. . . ,Gi[an]⟩ such thatGi[gid] is the identifier of partitionGi∈P, and ∀aj ∈ A,
Gi[aj] is the coverage of aj in Gi, i = 1, . . . , p.

In the following, we use notation Map[a] as a shorthand for the multiset
Sp

i=1 Gi[a] and Map[gid]
to denote the set of all gid of the groups in P. For instance, Figure 4.7(b) show the Map related
to our running example. Here, Map[Age] = ⟨[34,40], [34,40], [43,49], [46,55]⟩, and Map[gid]=
⟨g1, g2, g3, g4⟩.
Before outsourcing relation r, the tuples in r must be encrypted. Since our indexing approach
associates the same combination of index values to all tuples belonging to the same group in
P, meaning that queries are supported at the level of a single group and not at the level of a
single tuple, it is natural to physically store all tuples belonging to the same partition as a single
encrypted block (see Section 4.6 for a description of the encryption process). Each encrypted
block is then associated with a unique combination of index values, meaning that different
encrypted blocks have different index values. Intuitively, this implies that for each indexed
attribute a∈A and for each group G∈P, G[a] will be mapped to the same index values. Since
we want index values for different groups to be different, the generation of indexes must be done
through a set of different indexing functions, one for each attribute on which we can define an
index, such that they satisfy the following definition.

Definition 4.4.3 (Map indexing). Let Map be a map over a k-flat partition P of relation r, and
A be a set of indexed attributes. A map indexing over Map is a set F={ιpid, ιa1 , . . . , ιan} of
functions such that:

1. ∀x ∈ {A ∪ gid}, ιx:Map[x]→ Ix;

2. ∀x, y ∈ {A ∪ gid}, x ̸= y ⇒ Ix ̸= Iy;

3. ∀x ∈ {A ∪ gid} and ∀c, c′ ∈ Map[x], ιx(c)̸=ιx(c′).

According to this definition, we have to define an index function for each index attribute a in A

and for the gid attribute (condition 1). To guarantee that different groups in P are associated
with different index values for all attributes of interest, the index functions must be defined over
different co-domains (condition 2), and the same coverage of an attribute a in different groups
must be associated with different index values (condition 3).
Two different strategies can be adopted for generating index values with index functions that
satisfy Definition 4.4.3: gid-based strategy and value-based strategy.
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With a gid-based strategy, we need only a single index function over attribute gid. In this case,
each group in P is associated with a unique index value. The association between each group
Gi and the value gi must be stored by the client.
The value-based execution strategy is more complex, as we need to ensure that condition 3 is
valid for different occurences of the same coverage of an attribute a. Even in this case, we
associate to each occurence a unique index value, but we refer to it as a token. The peculiarity
of tokens is that, contrary to the gid-based strategy, the association between each token value
and coverage occurence must not be memorized by the client. In Section 4.6, we described how
the client can deterministically retrieve all the tokens at runtime starting from a seed and the
number of coverage occurences.
Figure 4.8 illustrates the encrypted and indexed relation corresponding to the relation in Fig-
ure 4.1(a).

GidiAge iStateencblock
g1 ϵ α t1t2t3
g2 ζ β t4t5t6
g3 η γ t7t8t9
g4 θ δ t10t11t12

Figure 4.8: Physical representation of the relation in Figure 4.1(a)

4.5 Query translation
In the previous section, we have shown how an encrypted and indexed relation is created through
a gid-based or a value-based indexing function. We now describe how a query formulated over
the original plaintext relation can be translated into a query over the encrypted and index relation
by transforming the conditions appearing in the original query into conditions on indexes. To
this purpose, a client first maps the plaintext values into the corresponding index values, and
then, after having computed this mapping, rewrites the original conditions into conditions that
operate over the index values previously determined.

Mapping
The mapping of plaintext values into the corresponding index values depends on the indexing
function used in the creation of the encrypted and indexed relation. Given a plaintext value v,
called target value, for attribute a, the client identifies the groups containing the tuples associated
with the target value for attribute a, and determines the index values associated with these groups.
Intuitively, the target partitions are those for which value v is included in the coverage of a, and
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mapAge
[34,40]
[43,49]
[46,55]

(a)

mapState
Ak AkCaWy
Ca AkCaWy, CaOh
Oh CaOh
Mi MiTxWy
Ne NeTx
Tx MiTxWy, NeTx

Wy AkCaWy, MiTxWy
(b)

Coverage Gid
[34,40] {g1,g2}
[43,49] {g3}
[46,55] {g4}

(c)

Coverage Gid
AkCaWy {g2}
CaOh {g3}
MiTxWy {g4}
NeTx {g1}

(d)

Figure 4.9: Information stored at the client-side for representing functions
mapAge/id.mapAge (a)-(c) and mapState/id.mapState (b)-(d)

the corresponding index values are determined considering their coverages or gids, depending
on whether the client has used a value-based or a gid-based approach, respectively. Formally,
the coverages or gids are determined though the following mapping functions.

Definition 4.5.1 (Mapping functions). Let Map be a map over a k-flat partition P of relation r,
and a∈A be an indexed attribute. A mapping function for attribute a is a function:

• mapa : d(a)→2Map[a] such that ∀v ∈ d(a), mapa(v) = ⟨c∈Map[a] | v∈c⟩ (value-based);

• id.mapa : d(a)→2Map[gid] such that ∀v ∈ d(a), id.mapa(v) = {id∈Map[gid] | v∈Gid[a]}
(gid-based);

According to this definition, the client uses two different mapping functions. Function mapa

for attribute a is used when the indexes have been generated through a value-based approach.
The function maps a value v in the domain of a to the multiset of coverages that include it. For
instance, consider the relation in Figure 4.1(a) and suppose that we are interested in retrieving
all people of 39 years old. According to the Map in Figure 4.9(b), mapAge(39) = ⟨[34,40]⟩,
meaning that the target tuples can be included in the groups with coverage [34,40] for attribute
Age. Function id.mapa for attribute a is used when the indexes have been generated through
a gid-based approach. The function maps a value v in the domain of a to the set of gids of
the groups whose coverages of a include v. For instance, with respect to the previous example,
id.mapAge(39) = {g1, g2}. Note that whenever mapa(v) (id.mapa(v), resp.) returns the empty set,
we can immediately conclude that relation r does not have any tuple with value v for attribute
a. The information that a client has to store to implement these mapping functions is therefore
the information that allows the efficient retrieval of all the coverages including the target value
and their gids.
The index values corresponding to the target groups are generated by the client through the
application of the same index function adopted for producing the encrypted and indexed relation.
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More precisely, let Ia(v) be the set of index values associated with v ∈ d(a). Formally, Ia(v) is
defined as:

• Ia(v)=
S

c∈mapa (v)
ιa(c) (value-based) or

• Ia(v)=
S

id∈id .mapa (v)
ιgid(id) (gid-based).

For instance, with respect to the previous example, we have that Ia(39) is equal to the token
representations {ϵ, ζ}, with a value-based approach, and Ia(39) is equal to {g1, g2}, with a
gid-based approach and assuming, for simplicitly and without loss of generality, that the gids
are also used as index values.

Map structures

To efficiently perform search operations over the map during query translation, we support
different structures for the creation of maps.
For continuous attributes, a first solution consists in representing the support of Map[a] as a list
of elements [vl, vu] ordered with respect to the lower limit vl or the upper limit vu, depending
on whether we also aim at efficiently supporting conditions of the form a ≤ v or a ≥ v,
respectively. In fact, for efficiently evaluating a condition a ≤ v, the coverages including v

are those sequentially accessed until a coverage with the lower limit greater that v is found.
Analogously, for efficiently evaluating a condition a ≥ v, the coverages including v are the
coverages that follow those sequentially accessed and with an upper limit that is lower that v.
Note that if both types of conditions need to be efficiently supported, two copies of the ranges
ordered as described can also be maintained. For instance, in Figure 4.9(a) three coverages are
ordered in increasing order with respect to both their lower and upper limit.
An alternative solution for continuous attributes consists in using an interval tree, that is a
balanced binary tree where each node stores at least one of the coverages to be represented.
Being a balanced binary tree, the interval tree ensures that searches have a logarithmic cost in
the number of coverages represented in the tree. Moreover, an interval tree is far more efficient
compared to the solution based on two ordered lists for the evaluation of conditions of the form
vl ≤ a ≤ vr, as it doesn’t rely on a sequence of two sequential scans followed by an intersection
to determine the resulting list of coverages (details in Section 4.6).
For each nominal attribute a ∈ A instead, the client has to store, for each actual value v in the
domain d(a) of attribute a, the coverages including it. At the logical level, this information can
be seen as a set of entries of the form {(v,{c}) | c ∈ Map[a] and v ∈ c}. Then , like for continuos
attributes, the client stores the association between the coverages and their gids. For instance,
Figures 4.9(b)-(d) illustrate the logical representation of the information stored at the client for
implementing the map functions for attribute State. Figure 4.9(b) shows seven rows, one for
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each of the distinct values of attribute State appearing in the twelve tuples of the original
relation in Figure 4.1(a). Figure 4.9(d) shows the correspondence between the coverages in
Figure 4.9(b) and their gids.
Like for continuous attributes, we have implemented different solutions for representing the
mapping function of nominal attributes. The first solution consists in using a bitmap, with a
row for each nominal value and a column for each set in the support of Map[a]. If a value vi

is included in the j-th coverage, the entry (i, j) of the bitmap is set to 1; 0, otherwise. Bitmaps
can efficiently identify, for each value, the coverages including it. Another solution consists in
using a roaring bitmap, which is a compressed representation of a bitmap. This representation
is particularly convenient when bitmaps are sparse, meaning that several entries are 0 (which
may happen frequently in our scenario since coverages are small compared to the size of the
attribute domain).

4.6 Implementation
In the previous sections we have presented our proposal from a high level perspective. In
this section, we detail our open-source implementation. Operations have been separated into
preprocessing and runtime. Preprocessing operations involve transforming the initial dataset
into a k-flat relation, encrypting it, and sending it to the storage provider. Runtime operation are
instead associated with the translation and resolution of queries.

Preprocessing
Preprocessing is organized into four steps: 1) construction of the k-flat relation, 2) construction
of the maps, 3) dataset wrapping, and 4) dataset outsourcing.
Construction of the k-flat relation. The construction of the k-flat relation is performed by a
distributed application leveraging Apache Spark [40], and deployed with Docker [89]. The
app is implemented in Python and starts on the master node. The master node cooperates
with a configurable number of workers (each of them running in a dedicated container). This
permits to efficiently execute the k-flat indexing algorithm on large datasets. Tuple shuffling is
reduced to a minimun, as each of the workers processes a dedicated chunk of the initial relation.
To speedup the Spark app we rely on Pandas [148], an open source data analysis library,
and Arrow [179], a cross-language development platform for in-memory analytics providing
a language-independent columnar memory format. To automatically build, install and run the
application we instead leveraged Docker Compose [90].
A set of composable Python utilities implements steps 2, 3 and 4. The user can customize each
intermediate step through a json file. Several options are available to the user. As example, the
user can select the map to use to index each attribute a, and whether to use a gid-based (group-id
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map) or a value based (token map) indexing strategy. Moreover, the user can select the type of
server-side backend. We elaborate more on this in the description of step 4.

Construction of maps. Starting from the k-flat relation, the client builds the local maps.
For continuous attributes, range and interval-tree [60] maps are available; while for nominal
attributes, set, bitmaps and roaring-bitmaps [177] maps can be used. The maps are characterized
by different storage cost and runtime performance. For instance, our implementation of the
range map occupies approximately a third of the space occupied by the interval-tree map, but
the interval tree map is far more efficient when a closed range query is evaluated. Given N the
number of ranges in the map, and M the number of ranges in the interval requested by a query,
the range map needs O(N) memory to retrieve the M ranges in the result, while the interval-tree
map needs only O(M). The maps are then completed storing the group-ids or the token seeds.
As last operation in the construction of maps, the local maps are made persistent. Pickle [158] is
used to serialize the maps to different bytestrings, then the bytestrings are encrypted, and finally
transferred to file.

Dataset Wrapping. After the maps have been produced, the initial relation is prepared to be
outsourced to the storage provider. For each attribute in the index, a group-id and/or a token is
retrieved. Group-ids (the gids, e.g., g1) are simply looked-up in the maps, while tokens (e.g.,
{ζ, ϵ}) are derived starting from the seed. The seed is expanded to 16 bytes and used as input
to the AES symmetric encryption cipher configured in Cipher Block Chaining (CBC) mode. A
16 bytes salt (unique per-attribute), is used as Initialization Vector, and a robust key derivation
function (Argon2id [4]) is used to retrieve the 16 bytes key. Multiple tokens can be produced
at each encryption round, as each of them is extracted truncating the output of the cipher. The
process is deterministic, and associated with a collision probability that can be approximated
with the birthday-paradox, and that can be reduced increasing the length of the tokens (i.e., each
token can be seen as a fixed length bit sequence, and compactly stored as an unsigned integer).
Immediately after the group-ids or tokens are retrieved, the initial relation is transformed into
a dataframe. The records in the dataframe have the following schema: (gid, i1, ..., im, b) where
gid is the group-id, i1, ..., im is the sequence of index values represented with tokens (if requested
by the user), and b is the list of plaintext tuples in the group.
Each block b is then replaced with B, the unintelligible physical representation of the block.
Encryption is applied according to the following procedure. b is serialized into a binary object
using Pickle, it is padded so that the blocks are physically indistinguishable in length, and after
that it is encrypted through a non-deterministic Authenticated Encryption cipher. To encrypt
the blocks we used XSalsa20-Poly1305, an Authenticated Encryption cipher implemented by
Libsodium [130]. The use of a Message Authentication Code (Poly1305 [72]) permits to
verify the integrity and authenticity of the blocks, as any attempt to tamper with a block (or a
portion of it) is detected with decryption. Again, the 32 bytes key used by the cipher is derived
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using the Argon2id key derivation function. A unique 24 bytes high-entropy nonce is used for
each block. Please notice that, since the blocks have been wrapped with a PRF (XSalsa20 [73]),
and that they are indistinguishable in length, an adversary with a copy of the storage of the
cloud provider learns nothing on the relation between blocks and index values (e.g., the attacker
cannot infer which of the blocks are likely to be related to an index value).
Since tokens can be pre-computed, and group-ids are read-only, indexing and wrapping are
executed in parallel up to the number of cores available to the client. This is achieved using the
multiprocessing [157] Python library.
Dataset Outsourcing. We provide a separate container for the server. Based on the backend
selected by the user, a container running PostgreSQL [180] or Redis [161] will be automatically
deployed using Docker Compose. Hence, the indexed relation is outsourced to the server. Based
on the setup selected by the client (i.e., the backend type and the group-ids or token based maps)
there are four setup alternatives (or simply configurations):

• PostgreSQL with group-ids, the server stores a relation with the following schema (gid, B);

• Redis with group-ids, the server stores a hash set with gid as the key and B as the value;

• PostgreSQL with tokens, the server stores a relation with the following schema
(i1, ..., im, B);

• Redis with tokens, the server stores a primary hash set with gid as the key and B as the
value, and a set of m secondary hash sets (i.e., auxiliary indexes), each with Ii as the key
and gid as the value.

A representation of the information stored on the server based on the configuration selected by
the user is illustrated in Figure 4.10.

Runtime

At runtime, the user deploys the container running the server and starts our client application,
providing the master key as an input. The master key is used to decrypt and load the local maps
from storage to memory. Immediately after that, an empty SQLite [173] in-memory database is
initialized. At this point, the local environment is setup, and the user can submit queries to the
client application.
Upon receiving a query, the client uses sqlparse [3] to parse it. Maps are used to translate each
point or range value for all the attributes in the predicate list. Based on the setup and on the type
of query (i.e., single or multi-column), the client can use different server execution strategies.
With PostgreSQL, the query is simply rewritten and sent to the server using SQLAlchemy [52];
with Redis, the server is queried with Redis-py [142] in two ways:
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gid B

1 t1,t2,t3
2 t4,t5,t6
3 t7,t5,t6
4 t10,t11,t12

(a)

iState iAge B

α ϵ t1,t2,t3
β ζ t4,t5,t6
γ η t7,t8,t9
δ θ t10,t11,t12

(b)
gid B

1 t1,t2,t3
2 t4,t5,t6
3 t7,t5,t6
4 t10,t11,t12

(c)

gid B —iAgegid—iStategid
1 t1,t2,t3 α 1 ϵ 1
2 t4,t5,t6 β 2 ζ 2
3 t7,t5,t6 γ 3 η 3
4 t10,t11,t12 δ 4 θ 4

(d)

Figure 4.10: Server-side representations: (a) Relational DBMS with GIDs, (b) Relational
DBMS with Tokens, (c) Key-value store with GIDs, and (d) Key-value store with Tokens.

1. group-id maps: the client queues a sequence of get operations to a pipeline, which is
then run on the server only once;

2. token maps: the client submits to a server-side Lua script (registered during deployment) a
hashmap mapping the attributes and tokens targeted by the query. The script first performs
multiple lookups in the secondary hash sets to determine the targeted gids, then it looks
up the gids in the primary hash set and returns the blocks to the client.

In both cases (i.e., PostgreSQL and Redis), predicate intersection on the same attribute is solved
at client-side, to reduce the data exchanged between client and server. When group-id maps
are used, the intersection is evaluated on the client-side even when the query is on multiple
attributes.
After the blocks are pulled from the server, the are decrypted (integrity and authenticity are
verified by the cipher suite) and the padding removed. Then, the plaintext memory is de-
serialized using Pickle (thus obtaining a list of tuples), and written to the SQLite in-memory
DB with SQLAlchemy. Finally, spurious tuples are filtered executing the initial query on the
SQLite instance.

4.7 Experimental results

The architecture proposed considers as critical resources the amount of storage used by the client
to save the maps, and the performance impact that affects query execution due to the clustering
of tuples. This section investigates these two aspects. Appendix C details how to use our open
source solution to fully reproduce the experimental results presented.

68



Data storage and processing

Storage

The solution proposed permits to outsource an encrypted and indexed version of a relation to a
storage provider. The ability to query the relation is untouched, as long as the client stores the
maps locally. Hence, a first aspect to investigate is the resulting saving in storage.
The size of the maps is affected by three factors: i) the relation used, ii) the indexing strategy, and
iii) the number of tuples in each block k. The nature of the relation (i.e., the number of tuples,
the attributes, the value distribution of the attributes, and whether each attribute is continuous
or nominal) cannot be changed, while we provide alternatives for ii) and iii).
With regard to ii), the indexing strategy, we described two alternatives:

1. the gid-based strategy, in which the mapping between each coverage and the related list
of gids is materialized inside the map;

2. the value-based strategy, in which the map materializes only the starting seed and the
number of token occurrences, for each coverage.

To evaluate the size of client-side maps we indexed three datasets extensively used in literature:
the usa2018 [184], the usa2019 [185] and the transactions [121] dataset. The datasets
collect 0.5M, 3.5M and 30M tuples, respectively. The number of tuples in the block k was
set to 25. As we can see from the results shown in Table 4.1, our approach permits to limit
client-side storage to 4.51%, 2.05% and 1.40% respectively of the original dataset size. Savings
in storage further increase if we consider that, compared to a client-only solution, the client
is no longer required to store locally additional resources as the DBMS installation files, the
metadata, and the auxiliary DBMS indexes. We also observe that runtime token generation
produces significant storage saving compared to the materialization of gids.

Dataset Size k Tokens Group-ids
usa2018 12 MB 25 4.51% 6.66%
usa2019 65 MB 25 2.10% 3.60%

transactions 1.5 GB 25 1.40% 2.10%

Table 4.1: Relative size of the client-side maps given the size of the initial dataset

We then conducted some experiments varying the number of tuples in each block k, to evaluate
case iii). The results are shown in Figure 4.11. We observe significant reductions in the size
of the maps as k increases. However, the optimal value of k is obtained by considering the
trade-off between storage requirements and runtime performance. We elaborate more on this in
Section 4.7, showing how much the value of k affects query execution time.
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Figure 4.11: Map size for each sample of usa2019

Runtime

For users a crucial aspect in the adoption of the proposed approach is its performance. The
clustering of tuples inevitably leads to an increase in the size of the results returned by a query.
This increase does not directly map to a corresponding increase in query response time. Many
elements come into play and experiments will show that in most cases the impact is limited; in
some configurations we even see an improvement compared to a classical configuration where
the data are stored in plaintext on a remote database.
Taking into account the two approaches to create the maps and index the relation (one with
gids, and the second with tokens), and the two backend alternatives (PostgresSQL and Redis),
we get four configurations. The aim of the runtime experiments is to evaluate the performance
of each of them. The performance is always compared with the one of the baseline, which is a
lightweight configuration used to execute the queries over the plaintext dataset. In this case, the
server runs an instance of PostgreSQL, where the dataset is stored as a table. The client directly
submits the query to the server (withouth performing any rewriting), the server executes the
query, and the result is sent back to the client. No security protection is available when using
the baseline.
We conducted several tests. Each test performs in sequence a sample of queries over the dataset.
The dataset used is the usa2019. The queries used to build the sample are randomly extracted
from a pool that globally contains 5,000 queries. The pool groups queries with the same
selectivity, i.e., the fraction of tuples in the dataset that are part of the query result. In the
experiments we consider queries with a selectivity of 10% of the dataset or less.

Single-column queries

In the first experiment we measure the performance of queries over a single column (WAGP).
Network latency between the client and the server is set to 10 ms, and the transmission rate to 1
Gbps. The experiment is repeated 5 times (i.e., the 4 setups + the baseline), and for k equal to
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(a) Global execution time of point queries
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(b) Server-side execution time of point queries

�� �� �� �� ���

�������������������

���

���

���

���

���

���

�
��

�
��
�
�

��������

�����������������

����������������������

��������������������

�������������������������

(c) Global execution time of range queries
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(d) Server-side execution time of range queries

Figure 4.12: Average execution time of queries on WAGP column with a 10 ms latency.

10, 25, 50, 75, 100. The results are shown in Figure 4.12. We use the same color and marker for
each setup across all experiments; a dashed line always represents the baseline. Each point in
the plot represents the average execution time of the queries in the sample; standard deviation is
not shown, because in most cases it is smaller than the size of each marker. In the left column
(cases a and c) we show the global execution time, while in the right column (cases b and d)
we show the server-side execution time. The global execution time measures the time required
to get the result of the query (the SQL query is submitted to the client-side query executor, the
query is parsed, index values are retrieved from the maps, the query is rewritten with gids or with
the tokens, the query is submitted to the server, the query is executed on the server to retrieve
the blocks, the blocks are sent to the client, block encryption is removed, plaintext tuples are
serialized into a SQLite DB, and finally spurious tuples are filtered by re-submitting the initial
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query); the server-side execution time measures only the time required by the server to run the
query and then retrieve the blocks, i.e., the time from when the (rewritten) query is sent to the
server until the result is received.
Several properties can be deduced from the analysis of the results in Figure 4.12. The most
important one is that the global execution time (for each of the four setups) is comparable to
(and sometimes smaller than) the baseline. Looking at cases 4.12b and 4.12d, which show the
comparison between the server-side execution time of the various setup alternatives, we can see
that the server execution times are aligned or well below the baseline for all the setups. On the
other hand, if we compare cases b and d against a and c, we see that the server-side execution time
of the baseline covers approximately the whole global execution time (as it should be expected,
as the client in the baseline has no further processing to do). For the other setups, rewriting,
decryption and the filtering of spurious tuples occupy most of the global time, leading those
setups to offer in general a (slight) decrease in performance compared to the baseline.
Another aspect is that the setups with gids are consistenly faster than the ones using tokens.
This is shown by the delta between on one side the blue-circle and green-triangle curves, and on
the other side the orange-triangle and the red-diamond ones. The difference in speed between
the setups relying on the tokens and the ones using gids decreases when the size of the blocks
increases, as larger blocks imply a smaller number of tokens.
We also observe that the global and server-side execution time decreases with larger blocks. With
k = 100 we see most of the times the minimal execution time (a larger value of k corresponds
to a smaller size of local maps), however large values of k increase the bandwidth requirements
(more details about this in the following).
Lastly, we notice that point queries exhibit lower query processing times compared to the range
ones, but this is justified by the larger size of the query results of range queries. The main focus
of our analysis will be the comparison with the execution time of the baseline, rather than the
absolute times.

Multi-column queries

In the second series of experiments we measure the performance of multi-column queries
(selecion predicates on attributes OCCP and WAGP, a nominal and a continuous). Again, the
network latency between client and server is set to 10 ms, and the transmission rate to 1 Gbps
(as in the previous experiment). We observe two distinct trends.
With point queries we observe significant improvements compared to the results shown for single-
column point queries. This can be clearly seen comparing Figure 4.12a-b and Figure 4.13a-b.
In both cases, the server-side execution time has identical behavior, but the global time is much
smaller. There are two factors that cause this performance improvement: i) a smaller number of
tokens is generated, and ii) the amount of data transmitted is lower. Factor (i) is proved by the
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(a) Global execution time of point queries
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(b) Server-side execution time of point queries
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(c) Global execution time of range queries
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(d) Server-side execution time of range queries

Figure 4.13: Average execution time of queries on both OCCP and WAGP columns with
a 10 ms latency.

difference between the setups using gids and those with token maps. Factor (ii) is proved by the
fact that server-side execution time dominates the global time for setups that use the group-ids
map (this means that the time required to transfer the data between the client and the server is
negligible compared to the server-side query execution time). This confirms that our approach is
particularly effective for highly selective queries, like the queries considered in this experiment
(the queries combine predicates over the two columns with a logical AND).

With regard to multi-column range queries, we observe similar performance between the baseline
and the setups using group-ids maps (Figure 4.13c), while we notice a slight deterioration of
performance when tokens are generated (overhead is approximately 2 for k ≥ 75). Comparing
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Figure 4.13c and Figure 4.13d we notice that all the four setups spend a non negligible amount
of time to delete spurious tuples (we will evaluate bandwidth degradation in the following).

Impact of latency

In most data outsourcing scenarios latency is a crucial parameter, with a direct impact on
performance and usability. Geographical distance between client and server inevitably causes
relatively high latency in the dialogue. To quantitatively measure the impact of latency, we
repeated the previous tests (in this case the single-column query execution) varying the latency.
The latency values used to conduct our experiments are 25, 50, 75, and 100 ms, corresponding to
round-trip-times (RTTs) equal to twice the latency.1 The transmission rate in these experiments
is 1 Gbps. These latency values have been selected to mimic a variety of configurations, with
the server located in the same geographic region or farther from the client. Group size k was
instead set to 50. The experimental results are shown in Figure 4.14, which also depicts the
results in terms of the ratio between the execution time of each setup and that of the baseline.
We observe that for both point and range queries, the performance ratio improves with the
increase of latency. This is clearly expected when the ratio is greater than 1, as the addition
of latency can be expected to create an additional fixed cost for all the setups and this reduces
the impact of the overhead introduced by client-side processing. The experiments also show
an improvement for configurations using Redis, with an increase in execution time that directly
grows with the increase in latency, whereas all the configurations using PostgreSQL (including
the baseline) exhibit a large impact of latency. This derives from the protocol used to access
PostgreSQL in the server. Overall, the experiments demonstrate that the approach is particularly
interesting when there is relatively high latency.
Similar behavior is exhibited by the same experiment run on multi-column queries, shown in
Figure 4.15. In all these experiments we see that the performance ratio improves with the
increase of latency, especially for the setups with Redis and the use of gids.

Data overhead

A natural consequence of using groups of tuples as an atomic entity in the dialogue between
client and server is an increase in the amount of data returned in query execution. In Figure
4.16 we report the overhead introduced by the execution of the query workload, for point and
range queries, when executing queries on the single column WAGP. Figure 4.17 reports the same
measure for the multi-column queries considered before, on attributes OCCP and WAGP. As
shown by the experiments, the data overhead is significant. This proves to have a limited impact
on high-bandwidth (1 Gbps) configurations like those used in the previous experiments, but it

1The delay is set using tc [178], a utility bundled with iproute2 [119] that permits to control the Kernel
packet scheduler.
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(a) Execution time of point queries
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(b) Performance ratio of point queries
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(c) Execution time of range queries
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(d) Performance ratio of range queries

Figure 4.14: Execution time and performance ratio of queries on WAGP column with the
addition of latency.

may have an economic and performance impact depending on the scenario where the technique
is used. Many cloud providers monitor and make customers pay for the data they transfer outside
of the cloud infrastructure. We expect that in some cases the security requirements are going to
be the major need and the additional data transfer cost can be considered negligible. In scenarios
where instead this data transfer cost is critical, the approach proposed in the paper meets some
obstacles and it can only be used with relatively small k values. This overhead is significant
only for point queries, which return a compact result. For range queries the overhead is a lot
smaller, thanks to the organization of the groups in a way that keeps together tuples with similar
values of the attributes.
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(a) Execution time of point queries
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(b) Performance ratio of point queries
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(c) Execution time of range queries
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(d) Performance ratio of range queries

Figure 4.15: Average global execution time and performance ratios of queries on both
OCCP and WAGP columns with the addition of latency.

With respect to the impact on performance of the increase in data transfer, we run a dedicated
set of experiments reducing the bandwidth between client and server. Figure 4.18 and Figure
4.19, respectively for single-column and multi-column queries, report the execution times for
configurations with varying values of k and bandwidth of 1 Mbps, 10 Mbps, 100 Mbps and 1
Gbps. The evolution of network technology is making available in most scenarios communica-
tion channels with bandwidth above 100 Mbits, but there are domains where limited bandwidth
may still be a concern. The experiments confirm that on broadband network connections, the
impact of the increased data transfer is limited, whereas for limited channels (around 1 Mbps)
the size of the transferred data becomes the factor dominating the performance.
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(a) Size of punctual queries
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(b) Size of range queries

Figure 4.16: Overhead in the number of tuples downloaded with queries on the WAGP
column.
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(a) Size of punctual queries
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(b) Size of range queries

Figure 4.17: Overhead in the number of tuples downloaded with queries on both OCCP
and WAGP columns.

4.8 Related work

Several research efforts have addressed the problem of supporting queries on outsourced en-
crypted data through the definition of indexing techniques (e.g., [77, 110, 115, 116]). The
definition of efficient solutions that are robust against inferences often depends on the specific
queries to be supported (e.g., [186]). While sharing with our approach the goal of supporting
queries over encrypted data, these solutions operate on a single attribute. Our approach instead
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(c) Execution time of range queries

� �� ��� ����

����������������

���

���

���

���

���

���

���

�
�
�
��
�
�
�
�
�
�
��
�
�
��

��������

����

����

����

���� �����

(d) Performance ratio of range queries

Figure 4.18: Execution time and performance ratio of queries on WAGP column with a
latency of 10 ms and, varying K and bandwidth.

is based on a multidimensional interpretation of the dataset that allows the definition of indexes
over multiple attributes. The problem of indexing multidimensional datasets has been already
considered and resulted in the definition of multidimensional indexes for supporting queries
with conditions on multiple attributes (e.g., [188]). These solutions, however, differ from our
since they define a single index for the whole set of attributes considered. Our approach instead
defines an index with a component for each attribute.

Another approach to support the execution of queries over encrypted data involves the use of
Searchable Symmetric (SSE) [56, 81, 152] and Order Preserving (OPE) [54, 154] Encryption.
SSE is a form of deterministic encryption that permits to outsource data to a cloud storage
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(a) Execution time of point queries
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(b) Performance ratio of point queries
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(c) Execution time of range queries
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(d) Performance ratio of range queries

Figure 4.19: Execution time and performance ratio of queries on both OCCP and WAGP
columns with a latency of 10 ms and, varying K and bandwidth.

provider, while maintaining the ability to selectively search over it. OPE is again a kind
of deterministic encryption, but that preserves the numerical ordering of the plaintext data.
Although these techniques bear some advantages (e.g., OPE enables the execution of functions
like MIN, MAX, COUNT directly on encrypted data with a relatively low overhead), they must be
applied with care due to the inevitable information leakage.

A recent solution that permits to perform computations on encrypted data without first decrypting
it is represented by Fully Homomorphic Encryption (FHE) [103, 143] schemes. The resulting
computations are left in an encrypted form which, when decrypted, results in an identical
output to the one produced performing the proper operation on the unencrypted data. Fully
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homomorphic encryption schemes are a promising solution. However, they result in an overhead
too large to be considered practical in many scenarios. This does not impact only the processing
time, but also the size of the encrypted data compared to the plaintext values. An increase in
the size of data may be inconvenient if the user pays for the bandwidth consumed.
To completely revoke access to the data content to the cloud storage provider, researchers have
also proposed to use Oblivious RAMs (ORAM) [104,105,147]. The schemes developed through
this technique (e.g., [43,64,78,175]) ensure optimal security guarantees, as the cloud provider
no longer has the ability to access to the data, nor to monitor the access pattern. Unfortunately,
the ability to answer queries depends on the availability of a safe environment, that could reside at
but is not accessible by the cloud provider (e.g., Intel SGX [118]), or reside at the client. Despite
the strong security guarantees, these solutions are characterized by a significant overhead.
Lastly, with regard to the relational database world, one notable implementation is CryptDB [155].
In CryptDB the data is wrapped applying multiple encryption layers (deterministic, order pre-
serving, symmetric searchable, and finally probabilistic), an approach commonly referred to as
onion encryption. Depending on the relational operator or the function to be executed on the
data, each of the layers can be removed. A proxy is instead used to translate the queries so that
they are compatible with the encrypted data, and the result of the queries is decrypted at client
side. Despite this solution is characterized by a limited overhead, the proposal suffers from the
drawbacks associated with the previous approaches (e.g., information leakage, the need to share
decryption keys between the client and the server to remove some of the layers).

4.9 Conclusions

This chapter addressed the problem of outsourcing encrypted data to external providers and
defining indexes over the data for enabling query execution. The multidimensional technique
used to construct the index guarantees protection against inferences, while providing efficient
query execution, with support for both point and range conditions. Our experimental evaluation
on publicly available datasets confirms the the effectiveness of the approach.
Further details on the open source solution described in this chapter can be found in Appendix C,
which details the command line user interface and how to fully reproduce the results shown in
the chapter.

Availability

The implementation source of our proposals is freely available at this URL: https:

//github.com/unibg-seclab/secure_index
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Chapter 5. Data Release
ITYT: scheduling the release of data at a future time

In the last part of this work we investigate the data release stage. In particular, we aim at
providing a method to confidentially schedule the release of data to a future point in time. This
primitive is commonly referred to as a Time-Lock in literature.
The solution typically adopted to implement a Time-Lock (or simply, TL) involves the use of
cryptography. The data to be released (i.e., the secret) are often concealed into a cryptographic
puzzle by a sender (i.e., the owner). The puzzle is then handed to a receiver, which needs to find
a solution to recover the secret. Solving the puzzle requires to run a decryption procedure for a
very long time. However, as resolution time is affected by many factors, puzzles may not suit
all scenarios.
To overcome this limitation we propose a novel way of implementing a TL. The basic idea is
to split the secret data into shares, each handed to a different user (i.e., a decentralized network
node). After the disclosure time set by the owner, the users cooperate according to a predefined
protocol to recover the secret. The outcome of the protocol (as any attempt to tamper it) can
be verified by a smart contract, which relies on the blockchain to measure the elapse of time.
Security no longer follows from the trust for a single third-party, nor on any honesty assumption,
but from the behavior of the users, whom are simply assumed to be rational.
To evaluate the approach we implement a prototype on top of the Ethereum blockchain. The
prototype leverages secure computation protocols to avoid any single point of trust. Resiliency to
attacks is analyzed with the help of economic game theory, in the context of rational adversaries.
The experimental results demonstrate the low cost and limited resource consumption associated
with this approach.
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5.1 Introduction

Many real-world scenarios require disclosing a secret at a specific future point in time. For
instance, this happens when we vote for elections or when we dispose our inheritance by will.
In these circumstances we typically entrust a notary to keep a secret private until a future time,
and then to publish it so that we are no longer needed for disclosure to happen. This however
requires that the owner of the secret completely entrusts a single third-party (i.e., the notary).
Early proposals bound the recovery of the secret to the recovery of a key [160], which was split
among a number of peers, distributing trust among many parties instead of entrusting a single
one.
To completely remove the dependence on one or more trusted third-parties, cryptographers have
been working on timed-release cryptography [140] proposing schemes that effectively replace
notaries with Time-Locks (TL). Time-Lock puzzles [53,136,163] bind the recovery of the secret
to the solution of a cryptographic puzzle. In this setting, a sending party (i.e., the secret’s owner)
can encrypt the secret so that the receiving party is required to perform multiple decryptions
to recover it. Given the assumption that each decryption round takes the same amount of time,
and that the number of rounds can be tuned by the sender during the encryption process, it is
possible to protect a secret for arbitrarily long periods of time.
The first puzzle proposed by Rivest et al. [163] uses a trapdoor function so that anyone willing
to recover the secret had to undergo a computing effort that was orders of magnitude larger
compared to the one of the sending party. Also, since the authors imposed the decryption
process to be executed in an inherently sequential order, their approach is the first example of a
Proof of Sequential Work (PoSW) [69, 137].
An alternative to trapdoor functions is using weak hash-chains [57], by requiring anyone willing
to obtain the secret to brute-force a chain of weak hashes. The use of a chain, rather than a single
stronger hash, permits to reduce the variance of the decryption runtime. However, the decryption
process remains parallelizable and, thus, the estimated disclosure time far less reliable. These
approaches are often classified as Proof of Work (PoW) [92] algorithms.
Cryptographic puzzles avoid the need for a trusted party, yet two aspects make them impractical.
First, the sending party has to make assumptions on future computing power. This is far from
trivial. As an example, Rivest’s LCS35 time capsule [162], released in 1999 with an estimated
decryption time of 35 years, was opened in 2019 after a decryption process of only 2 months on
dedicated hardware [70]. Second, TL puzzles require the receiving party to run the decryption
procedure for a long time, which poses a question about economic incentives.
The development of blockchains gives us new opportunities to implement time-locks. Indeed,
a blockchain intrinsically defines the concept of time, which was one of the main reasons
that led to the creation of cryptographic puzzles. It can also be used to persistently disclose
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secrets, as it is designed to resist modification of its data. However, the blockchain alone
is not enough to deploy a TL because it does not offer any mechanism to keep information
confidential. Recent proposals address the problem of dealing with secret data on public
blockchains [1, 124] by splitting information among multiple users who have to cooperate to
recover the secret information using a pre-defined protocol. The protocol is often programmed
as a smart contract [176], which permits to verify the correctness of its outcome and to detect
any undefined behavior. Although this approach could resemble the early implementations of
timed-release cryptography, the security no longer follows from a single strong trust assumption
(i.e., the trust to the notary or to a certification authority) but from the behavior of the users that
take part to the protocol. If the users cooperate as intended, the outcome of the protocol will
be successful, the secret will be recovered, and the TL function achieved as a consequence. To
ensure that users cooperate as intended, several proposals (e.g., [129, 133]) reward them with
economic incentives. This permits to analyze the protocols as extended form games whose
outcome can be determined based on participants’ expected utility.

In this chapter, we propose I Told You Tomorrow (ITYT), a practical and generic framework
to implement time-locks using smart contracts that is based neither on trust assumptions nor
on cryptographic puzzles. The basic idea of our approach is to first split a secret into shares
using threshold cryptography (using Shamir’s Secret Sharing [170]), and assign them to users
so that no one can recover the secret unless k-of-n shares are available. To ensure the TL
behavior, we rely on economic incentives and penalties enforced by a smart contract. The
contract rewards users for revealing their share only after the disclosure time and penalizes
any other misbehavior. As rewards and penalties are associated with the correct management
of the shares, ITYT leverages secure Multi-Party Computation (sMPC) [193], which ensures
confidentiality and avoids the need for trusted users (including the owner of the secret).

Here we summarize our main contributions. We define a protocol that deploys Time-Locked
secrets on the blockchain by leveraging an economic model in which every user (or coalition
of them) has an expected negative payoff associated with possible misbehavior. We address
the problems that arise when combining secure Multi-Party Computation and protocols based
on economic incentives and penalties (e.g., use secure Multi-Party Computation protocols to
break the protocol bypassing the smart contract’s hashlocks). We implemented the protocol
based on the Ethereum blockchain [189] and the FRESCO secure Multi-Party Computation
framework [74], characterized by low overhead and limited cost of execution. Finally, we
compare ITYT with other existing solutions, discussing the key advantages associated with our
approach.
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5.2 Background
We describe here a few concepts that are used in the design of the protocol.

Threshold cryptography Threshold cryptography [170] enables the owner of a secret to share
it among a group of users. In a k-of-n threshold scheme, n shares of the secret are created and
distributed among the parties. To reconstruct the secret, at least k different shares have to be
combined. Hence, the advantages of threshold cryptography are (i) distribution of trust, and (ii)
fault tolerance.

Secure Multi-Party Computation A secure Multi-Party Computation (sMPC) protocol [187,
193] is a cryptographic protocol that allows multiple parties to jointly compute a function over
their inputs while keeping them private. Current sMPC frameworks can execute binary or
modular arithmetic algorithms computed among several parties (even with dishonest majority)
by leveraging semi-homomorphic encryption [75, 123] and oblivious transfer [122, 159].

Smart contracts A blockchain is an append-only list of blocks linked together via crypto-
graphic properties. The blocks are non-mutable and keep a permanent history of transactions.
Smart contracts [176] are programming frameworks built on top of blockchains. A smart
contract permits to program tamper-proof protocols whose outcome is verifiable by the whole
network. We rely on smart contracts to pay incentives, trigger penalties, and enforce the correct
execution of our scheme without relying on a trusted party. Specifically, our approach makes
use of the time and hash primitives, to conditionally execute actions based on time and submit-
ted data (e.g., reward users participating in a successful execution of the protocol at protocol
termination time).

Rational adversaries A malicious adversary [112] is someone who is willing to perform any
action to attack a protocol. A rational adversary [109], instead, subverts the protocol only if
it is economically convenient. Modeling the participants as rational enables the use of game
theory concepts to analyze cryptographic protocols [11, 42, 61]. ITYT models each participant
as rational.

5.3 The ITYT protocol
In this section, we overview the ITYT protocol, introducing the preliminary definitions, the roles
of the participants, and the main functions.
ITYT is an instance of the TL abstraction: a mechanism that keeps a secret S private until
its disclosure time td and publishes it afterward. ITYT implements TL by splitting the secret,
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provided by the owner, among several users named shareholders (each obtaining a share h), so
that none of them can recover S before the disclosure time. To ensure that (i) each user keeps its
share secret until td, and (ii) each user publicly discloses its share immediately after td, ITYT
introduces a set of economic incentives and penalties. Thus, the TL function is achieved as a
consequence of the rational economic behavior of the involved parties (see Section 5.4).

Definitions

Principals

We denote by U the set of users that take part in an instance of ITYT. Additionally, we denote by
SC the set of the smart contract identifiers. We then denote by P the set of principals consisting
of U ∪ SC.

Wallets

Each principal p ∈ P is associated with a wallet wlt(p), accessible only by p, that can be used
to receive or issue payments.

Protocol parameters

In the following table we report the definition of all the parameters that characterize an instance
of ITYT.
S secret
V economic value assigned to the secret
n number of shareholders
k number of shares needed to reconstruct S
hi share of the secret issued to the i-th shareholder
td disclosure time
tterm termination time
FO fee deposited by the owner to use the service
BH bid deposited by the shareholder to get a share
RH reward paid to the shareholder in case of success
Wh reward paid when whistleblowing a share
WS reward paid when whistleblowing the secret

Smart contract state

The ITYT smart contract keeps track of the protocol status through the following data structures.
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[shares] array of shares submitted to the contract
CS commitment of the secret (i.e., its hash)
[Ch] array of share commitments
state global state of the protocol
[states] array of states for each share
num_pending count of the pending shares
num_disclosed count of the disclosed shares

Primitives

We now define the primitives used by the smart contract.

• time(): returns the current time as witnessed by the blockchain (generally defined in
terms of block height).

• hash(d): returns the result of the application of a chosen cryptographic hash function
over the data d.

• pay(p1, p2, v): transfers the amount v from wlt(p1) to wlt(p2).

• initialize_sc([params]): instantiates an ITYT smart contract, and deploys it to
the blockchain. The primitive is executed by the owner and returns the smart contract
identifier sc ∈ SC.

• generate_shares(S, [users]): generates shares h1, . . . , hn and securely distributes
them to the parties. The primitive guarantees that (i) the i-th shareholder is the only
principal who learns the share hi, and (ii) the owner learns only the commitment hash(hi),
for each share. We discuss in Section 5.5 how our prototype implements this primitive by
leveraging sMPC and secret sharing.

Roles
In ITYT, each user u ∈ U plays one of the following roles: owner, shareholder, and whistle-
blower.

Owner.

An owner O delegates the disclosure of a secret S to a time-lock at disclosure time td. The
owner O configures and deploys the TL providing all the required parameters. In particular, O
sets (i) the total number n of shares h of S, (ii) the number k of shares needed to recover S, (iii)
the disclosure time td, and (iv) all the bids and the rewards that define the instance.
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Shareholder.

A shareholder H is entrusted by the owner O to keep a share h of the secret S confidential
until td, and to publicly disclose it afterward. In exchange for her service, H receives a reward
RH paid by the smart contract whenever the following two conditions hold: (i) her share h is
disclosed only after td, and (ii) the secret S is not revealed before td.

Whistleblower.

A whistleblower W reports user misbehavior in return for payment. Whenever W captures a
share h or the secret S before td, W can submit it to the contract and receive a reward.

Setup
In the early stage of ITYT, the owner initializes and deploys a smart contract sc on the blockchain
using the initialize_sc() primitive. Along with the protocol parameters, she writes to
the sc the identifiers of all the shareholders, which the owner has selected beforehand1, that will
take part in the TL instance. She also deposits to the contract the amount FO, a fee that will be
used to pay the rewards at protocol termination time tterm.
Next to contract deployment, owner and shareholders jointly execute thegenerate_shares()
primitive. As a result, the owner gets the hash of the secret and the hash of each share (i.e.,
the commitments), while each shareholder H gets her share along with the hash of the secret.
The owner submits to the sc contract the commitments (Algorithm 5.1). Then, each share-
holder reads the contract and checks whether her commitment matches what received from
generate_shares(). If so, she agrees and deposits her bid BH (Algorithm 5.2).
As soon as each shareholder has committed, the TL is activated (i.e., the global state is set to
LOCKED). If any party refuses to commit, the funds already deposited are returned to their
proprietaries and the instance setup aborts (as discussed in Section 5.5).
The reader may have noticed that in this setup, the secret shares are exposed to the shareholders
prior to the activation of the TL (i.e., the shares are distributed before the state is set to LOCKED).
In Section 5.5 we show how to overcome this issue using a key instead of the actual secret. We
also point out that the verification of protocol parameters (especially the economic ones) can be
done by the shareholders at commit time, as their values are publicly available in the contract.

Actions
When the TL is active, the actions performed by users determine the status of the protocol.
Each action is perfomed executing a smart contract function whose effects are public. Four

1 How to randomly choose competing players in adversarial settings such as blockchains has been addressed
in many literature works (e.g., [91, 145])
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[params] protocol parameters of the ITYT instance
S secret
O user identifier of the owner
[H1, . . . ,Hn] list of shareholder identifiers

1: procedure Init([params],S,O, [H1, . . . ,Hn])
2: sc ← initialize_sc([params]) /* Create sc */
3: pay(O, sc, sc.FO) /* Transfer owner’s fee to sc */
4: Ch ← generate_shares(S, [O,H1, . . . ,Hn])
5: sc.CS ← hash(S) /* Set secret commitment */
6: sc.state ← PENDING
7: for i ← 1, n do /* Set share commitments */
8: sc.Ch[i] ← Ch[i]
9: sc.states[i] ← PENDING

10: end for
11: sc.num_pending ← n
12: sc.num_disclosed ← 0
13: return sc /* The smart contract identifier */
14: end procedure

Figure 5.1: Protocol initialization algorithm (executed by the owner).

sc smart contract identifier
Hi user identifier of the i-th shareholder
precondition: Hi checks that hash(hi) = sc.Ch[i]

1: procedure Participate(sc,Hi)
2: if sc.state = PENDING and sc.states[i] = PENDING then
3: pay(Hi, sc, sc.BH)
4: sc.states[i] ← BID
5: sc.num_pending − = 1
6: if sc.num_pending = 0 then
7: sc.state ← LOCKED
8: end if
9: end if

10: end procedure
Figure 5.2: Shareholder commitment algorithm

actions are available to users: WhistleblowShare, WhistleblowSecret, Disclose,
and Withdraw, with the last two reserved to shareholders.

WhistleblowShare: This action (Algorithm 5.3) enables the whistleblower W to report
the misbehavior of a single shareholder. Whenever W obtains a share hi, she submits it to
collect a reward. If the commitment sc.Ch[i] matches, the share whistleblow reward Wh is paid
to the whistleblower and the shareholder Hi loses her reward RH. Additionally, if the number
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sc smart contract identifier
hi the i-th share to be whistleblown

1: procedure WhistleblowShare(sc, hi)
2: if sc.state = LOCKED and time() < sc.td then
3: if sc.states[i] = BID and hash(hi) = sc.Ch[i] then
4: sc.shares [i] ← hi

5: sc.states[i] ← WHISTLEBLOWN
6: sc.num_disclosed + = 1
7: if sc.num_disclosed = sc.k then
8: sc.state ← FAILED
9: end if

10: pay(sc, caller, sc.Wh)
11: end if
12: end if
13: end procedure

Figure 5.3: Share whistleblow algorithm

of whistleblown shares equals k, then the TL is marked as FAILED (i.e., no further actions
allowed).
WhistleblowSecret: This action (Algorithm 5.4) enables the whistleblower W to prove
the possession of the secret ahead of the disclosure time td, thereby reporting the misbehavior
of a group of at least k shareholders. In detail, W submits the secret S ′ to the contract. If
the commitment sc.CS matches, then the TL is marked as FAILED and the secret whistleblow
reward WS is paid to the whistleblower. Moreover, all the shareholders lose their bid, and the
remaining smart contract funds are destroyed.

sc smart contract identifier
S the secret to be whistleblown

1: procedure WhistleblowSecret(sc,S)
2: if sc.state = LOCKED and time() < sc.td then
3: if hash(S) = sc.CS then
4: sc.state ← FAILED
5: pay(sc, caller, sc.WS)
6: end if
7: end if
8: end procedure

Figure 5.4: Secret whistleblow algorithm

Disclose. After the disclosure time td, each shareholder Hi is required to publicly reveal its
share hi to enable the retrieval of the secret. The submission is successful if (i) the TL was not
previously marked as FAILED, and (ii) hash(hi)matches the commitment sc.Ch[i], otherwise
submission fails (as shown in Algorithm 5.5).
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sc smart contract identifier
hi the i-th share

1: procedure Disclose(sc, hi)
2: if time() ≥ sc.td and time() < sc.tterm then
3: if sc.state = LOCKED and sc.states[i] = BID then
4: if hash(hi) = sc.Ch[i] then
5: sc.shares [i] ← hi

6: sc.num_disclosed + = 1
7: sc.states[i] ← DISCLOSED
8: end if
9: end if

10: end if
11: end procedure

Figure 5.5: Share disclose algorithm

sc smart contract identifier
hi the i-th share

1: procedure Withdraw(sc, hi)
2: if time() ≥ sc.tterm and sc.num_disclosed ≥ sc.k then
3: if sc.states[i] = DISCLOSED then
4: sc.states[i] ← WITHDRAWN
5: pay(sc, caller, RH)
6: end if
7: end if
8: end procedure

Figure 5.6: Reward withdraw algorithm

Withdraw. Conditionally to the outcome of the TL instance, and immediately after the
termination time tterm, the shareholders are authorized to claim their rewards. Rewards are paid
to all shareholders that correctly completed the disclosure procedure. Algorithm 5.6 illustrates
how shareholders can request to withdraw their reward.

5.4 Economic model

ITYT models each participant as rational. The interest of the involved parties in the secret is
represented by an economic value V associated with it. The use of an economic value permits
to analyze the behavior of the parties involved in the protocol, under the assumption that each
wants to maximize her reward. In this section we illustrate how to constrain the economic
parameters to push rational actors to strictly adhere to the protocol, hence achieving the desired
TL function. Since the participants could form alliances, we focus on the behavior of groups
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of users, considering a generic coalition M of users that team up to recover the secret ahead of
disclosure time.
We provide a description of the structure, the strategy and the collective payoff users can gain as
members of M. To ensure that breaking the TL is not profitable, we develop a set of constraints
guaranteeing that the attack cost is greater than the maximimun achievable payoff. To this end,
we focus on the best attack scenario, that is, the one in which a coalition ideally completes its
entire strategy, maximizing the payoff, with no interference by other groups of users.

Single-user constraints. Before going into details, we set some constraints to discourage
misbehavior of single users. As the shareholder takes part to the protocol to get a payoff, her
expected rewardRH has to be greater than the bidBH paid to get the share. Moreover, the reward
Wh paid to a share whistleblower has to be lower thanBH, as each shareholder is expected to keep
her share confidential before td. Then, to incentivize each shareholder to report misbehavior,
WS has to be greater than RH. Furthermore, since the owner is a priori able to perform the
WhistleblowSecret action, the owner’s fee to get the service FO must be greater than the
secret whistleblow bonus WS (since the owner is considered rational). Inequality 5.1 captures,
in a single expression, all the considerations made so far.

Wh < BH < RH < WS < FO (5.1)

In the following, we address how a coalition of shareholders could try to break the TL behavior
based on when the recostruction of the secret is performed. For the sake of clarity, Section 5.4
does not take into account the WhistleblowShare action, which is discussed separately in
Section 5.4. Finally, Section 5.4 addresses how to constrain the fee paid by the owner.

Prevent the reconstruction of the secret
Rational shareholders will consider if it is worth breaking the TL ahead of td or not. To perform
a successful attack, a shareholder has to team up with other k − 1 shareholders to recover S . In
such an event, the coalition M would earn the most by monetizing S and then by performing
the WhistleblowSecret action, getting an expected payoff of V +WS .2 The alternative,
i.e., M does not break the TL and submits the k shares after td, would lead to an expected payoff
equal to the sum of the rewards. To make the second alternative more advantageous, we could
require: k ·RH > V +WS . Yet, in order to earn the rewards, the coalition M should wait until
termination time, whereas V +WS could be collected earlier. For this reason, we use a stricter
formulation of the constraint based on the cost already paid by M to participate in the protocol:

k · BH > V +WS (5.2)
2The coalition M could setup an additional external contract with the buyer to be sure to gain both V and WS .
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Constraint (5.2) addresses secrecy (time t < td), however, when the disclosure time expires, the
constraints are used to promote the release of the secret. However, a coalition of n − k + 1

shareholders could wait for k − 1 others to submit the shares and then lead the TL instance to a
stall by refusing to submit their own shares. To prevent them from waiting for a buyer of S and
distribute the collective payoff, we introduce the constraint:

(n− k + 1) ·RH > V (5.3)

Here the contribution of the term WS disappears, as the role of whistleblower is no longer
admissible after td. Inequality 5.3 promotes the disclosure of the shares, as shareholders are
rewarded only in case the TL terminates successfully (i.e., at least k shares have been submitted
succesfully before termination time tterm).

Impact of share whistleblowing action
The WhistleblowShare action increases the number of available strategies. Indeed, a
coalition could maximize the payoff by submitting to the contract some of the share it holds
before performing the WhistleblowSecret action. However, as share whistleblowing
implies writing to the blockchain, the public event may trigger strategies of other participants.
Thus, the extra revenue Wer = jo ·Wh can be gained, where jo stands for the optimal number
of shares to be submitted that do not enable other coalitions’ strategies. To address this case, we
formulate a stricter version of Inequality (5.2):

k · BH > V +WS +Wer (5.4)

The optimal number of shares a coalition M could submit before incurring into penalties or
favor other participants, is function of the economic amounts BH, V and WS , and parameters
n and k. There are two cases: (a) multiple coalitions are able to recover the secret, and (b)
independently from the ratio between the economic amounts there is only one coalition holding
at least k shares.
In the first case (a), when i shares have been whistleblown by coalition M, a quiescent coalition
M′ formed by k − i shareholders would gain the ability to recover the secret having paid only
(k − i) · BH to get its shares. Therefore, the coalition M performing the submissions needs
to determine the optimal number of shares jo to be whistleblown so that M′ does not end up
having a positive payoff. To compute it M can solve:

joa = max
i

{i|(k − i) · BH > V +WS , i ∈ 1, . . . , k − 1}

In the second case (b), the k-shareholders coalition M is the only one able to recover the secret,
since k > ⌊n/2⌋. This condition holds until 2k − n − 1 shares are submitted to the contract.
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Note this number of submissions could be smaller compared to the one identified in case (a).
So, M can compute jo by:

job = max {2k − n− 1; joa}
In both cases, under the assumption of rational agents, the coalition M can submit jo shares
while still being sure that no other smaller coalition will break the TL. Inequality (5.4) ensures
this strategy is associated with a negative payoff.
A graphical representation of the constraints is shown in Figure 5.7.

Inequality
 3

In
eq

ua
lit

y 
2

n > 
k

Legend

Avoid collusion 
before 

Avoid collusion 
after 

No secret 
sharing possible

Valid ITYT 
instances

Figure 5.7: Ityt constraints representation

Rewards and bonuses
Now that we have introduced how to constrain the amounts to prevent misbehavior, we discuss
some additional requirements to consider an instance of the ITYT protocol well-formed.
In the typical scenario, rational users will strictly adhere to the protocol. To accommodate for
this case, the fee paid by the owner has to be enough to remunerate the shareholders:

FO ≥ n · (RH − BH) (5.5)

In case of failure (i.e., the secret has been recovered before td), at least k − 1 shares and the
secret have been submitted to the contract. To ensure the smart contract has enough currency to
pay the whistleblower bonuses, we impose the following constraint:

FO + n · BH ≥ (k − 1) ·Wh +WS (5.6)
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Figure 5.8: State machine representing the valid state transitions of the ITYT protocol.
Each transition name maps to an action (an Ethereum smart contract function) that can
be invoked by participants to update the state. Square brackets state additional conditions
that must be met to consider the transition valid

In case less than k − 1 shares are submitted to the contract before disclosure time, inequalities
(5.5-5.6) still hold, since BH > Wh.
The constraints (5.1-5.6) must all hold for any well-formed ITYT instance. They determine
the acceptance area for the economic amounts. The owner may desire to minimize the fee FO,
while the shareholders may desire to maximize the profit RH −BH. In Table 5.1 we show three
sample configurations obtained by constraint programming. We highlight that the fee paid by
the owner is less than the value of the secret, which is a desirable property.

V k n Wh BH RH WS FO
1 10 20 0.0031 0.1122 0.1153 0.1184 0.1216
1 15 30 0.0013 0.0717 0.0730 0.0743 0.0756
1 20 50 0.0006 0.0527 0.0533 0.0538 0.0544

Table 5.1: Sample configurations (economic amounts are expressed as ratio of V)

5.5 Implementation
In this section, we illustrate how to implement ITYT leveraging existing frameworks. Specifi-
cally, Section 5.5 details the ITYT smart contract, while Section 5.5 explains how to use sMPC
to implement the share generation primitive.

Smart contract implementation
We designed ITYT as a finite state machine (FSM) within an Ethereum smart contract whose
functions match the actions available to users. If successful, each action entails a write to
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the blockchain and possibly a change of the global state. The FSM state regulates the actions
available to users. Additionally, some actions are reserved to the owner. Figure 5.8 depicts a
simplified version of the state machine that shows only valid transitions. It can be divided into
five macro phases: (i)setup, in which the owner has to deploy the contract and the shareholders
subscribe to it; (ii) share generation, that involves off-chain operations (i.e., not directly
performed by smart contract functions) to confidentially split the secret; (iii) activation,
in which the shareholders attest they have received their shares and give their go-ahead; (iv)
lock, in which the shareholders keep the shares confidential; and (v) termination, where
the secret is finally disclosed.

Setup Initially, the owner deploys a smart contract instance of ITYT to the Ethereum
blockchain [189]. Then, she calls the contract initialization primitive, transfers FO to the
contract, and specifies all the parameters as detailed in Section 5.3. This advances the global
state to PRE_INITIALIZED. Afterwards, each shareholder subscribes to the contract by de-
positing the proper amount of Ether that corresponds to the bid BH and invoking the contract
function participate, as part of Algorithm 5.2. After all the shareholders have deposited the
bid, the owner executes the startMPC function, which advances the state to INITIALIZED.

Share generation At this point, owner and shareholders cooperate to generate the shares.
Since the economic penalties have not been activated yet, a random key K is used in place of
the secret. From the shareholder’s perspective there is no difference, as rewards and penalties
are now associated with the management of K, but from the owner perspective, the use of K
avoids the exposure of S until TL activation (see Figure 5.9). Only after that, the owner will
write to the contract an encrypted version (i.e., the ciphertext) of the secret, CT = EncK (S).
The share generation primitive returns to the owner the commitment of the key CK, along with
the commitments of all the shares {C1, ..., Cn}; while each shareholder gets her share hi and the
commitment of the key. Further details on the sMPC primitive are reported in Section 5.5.

Activation The owner calls the functionfinalizeMPC and updates the contract with the out-
put received from the shares generation primitive, turning the global state to PRE_COMMITTED.
Each shareholder verifies the share commitment value written to the contract, if it matches the
one obtained from the sMPC (i.e., the owner did not tamper it), then she invokes the commit
function. After all the participants have given their go-ahead, the owner executes enforce,
activating the TL (i.e., LOCKED state). The economic incentives and penalties are activated as
a consequence.

Lock Before disclosure time td, it is only possible to: (i) whistleblow a share, and (ii) whistle-
blow the keyK. To whistleblow a single share, a user can callWhistleblowShare submitting
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h′ (Algorithm 5.3). If the commitment matches, then Wh is immediately paid to the whistle-
blower. The whistleblow of a share is permitted only k times, as the k-th submission leads to
the global state FAILED. To whistleblow the key, a user can call the WhistleblowSecret
function submitting K′ (Algorithm 5.4). If its commitment matches CK, then WS is paid to the
whistleblower, and the protocol is marked as FAILED. When the protocol fails, the remaining
amount is no longer withdrawable.

Termination If protocol is not marked as FAILED at time td, the shareholders can invoke the
disclosure function to submit their share (Algorithm 5.5). The disclosure is successful if
the share matches the corresponding commitment and it was not published before. The reward
can be withdrawn by each shareholder that correctly disclosed her share after the protocol
has terminated successfully. To claim the reward, the user can call the function withdraw

(Algorithm 5.6). We remark that there is no need to materialize K in the contract, as all the valid
shares will be permanently accessible. Anyone can recover K just by assembling the shares
(e.g., using Lagrange’s interpolation in the case of secret sharing).

Share generation and distribution

In this section, we describe how to implement the generate_shares function by using
secure Multi-Party Computation frameworks.
In the sMPC setting, each party joins the protocol as a network host. Each ITYT user is then
provided with a virtual machine containing an application able to communicate via network
following a pre-defined protocol. The application is implemented using FRESCO [10, 74],
a FRamework for Efficient and Secure COmputation that aims to ease the development of
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prototypes based on secure computation. FRESCO offers several secure computation techniques,
referred to as suites. Depending on the model of computation, each of them is classified
into binary or arithmetic. The arithmetic suites permit to efficiently perform additions and
multiplications on values that are defined over a finite field, a desirable feature for protocols like
ITYT that rely on Secret Sharing. SPDZ [76] is the arithmetic suite we selected. In addition to
high performance, SPDZ also ensures protection against active adversaries that can deviate in
arbitrary ways. This grants ITYT the ability to securely open (i.e., release) partial results of the
computation only to some of the parties executing the sMPC protocol, enabling us to send each
share only to the legitimate shareholder. To further increase performance, MASCOT [122] was
used as SPDZ pre-processing strategy.
To execute the share generation primitive, owner and shareholders start the sMPC application.
The owner inputs the random 128 bits key K, together with the total number of shareholders n,
and the reconstruction threshold k. Each shareholder, instead, submits only a random 128 bits
seed. The sMPC selects k of the n seeds received, using it as the a1, . . . , ak coefficients of the
Shamir Secret Sharing polynomial [170], whileK is interpreted as a0. Then, the sMPC generates
n random x values of 128 bits and computes the associated y coordinates using the Horner’s
method, which permits to evaluate a polynomial of degree k with only k multiplications and k

additions. Each i-th share is built as the concatenation of the xy coordinates hi = xi||yi. To
compute the commitments of the key and the shares, we used MiMC [9], a cryptographic prim-
itive characterized by low multiplicative complexity implemented by FRESCO and compatible
with SPDZ. Finally, dedicated output is opened to the parties: the owner gets the commitment
Ci of any share generated, while each shareholder gets her share hi, the commitment of the key
CK, n and k.

5.6 Discussion
In this section, we discuss how ITYT ensures the methods to report misbehavior are not
bypassable, and how ITYT mitigates denial of service (DOS) and prevents deadlocks.

Misbehavior detection
The economic penalties ITYT relies on are triggered when there is a user that is able to prove
someone else’s misbehavior, and this happens for example when a share is released improperly.
Up to now, we have considered secure Multi-Party Computation as a mean to securely deliver
dedicated output to users that take part in the ITYT protocol (i.e., to generate and distribute the
shares confidentially). However, sMPC can also be used to subvert the protocol, as it enables
a group of parties to jointly compute a function while keeping their input confidential. Indeed,
a coalition of shareholders could use it to recover the secret ahead of disclosure time without

99



Dario Facchinetti

leaking any share nor the key, thus bypassing smart contract commitments. This is an interesting
scenario as it applies to most protocols played by rational users that involve rewards and penalties
(e.g., [153]).
In our setting this happens when there is a coalition that is able to recover S without releasing K,
thus preventing anyone to perform the WhistleblowSecret action. To do that, the coalition
inputs to the sMPC protocol k shares along with the ciphertext CT (which is publicly available
as it is written to the contract by the owner). Then, the protocol performs the reconstruction of
the Shamir polynomial, recovers K, and extracts the secret by S = DecK (CT ), opening it to
the parties as the only result.
There are two alternatives to prevent this attack: (i) use an encryption scheme vulnerable to the
Known Plaintext Attack, and (ii) use an encryption scheme that is practically incompatible with
the sMPC setting. As an example of (i), with the One-Time Pad, given two among {CT ,S,K}
the third is implied; then, a coalition of shareholders cannot avoid to release K by recovering S .
The drawback of using OneTimePad is that |S| = |K| by construction. This limitation can be
overcome by selecting an encryption scheme that satisfies (ii).

DOS and deadlock prevention

A denial of service attack is performed by users that participate in multiple ITYT instances and
refuse to deposit their bids, to commit, or to correctly execute the sMPC protocol. To mitigate
these kinds of disruptions it is possible to introduce a reputation system. However, this requires
to discriminate with high accuracy between misbehaving users and users that follow the protocol
as intended. Therefore, we decided to include an additional step in the FSM setup phase, in
which all participants (including the owner) are required to pay an additional small service pawn
that will be returned only at activation time. It has been proven that the introduction of a small
fee to access a service can mitigate many DOS attacks [132,138].
Any other misbehavior, malfunction, or network error could result in a failure to meet the setup
time threshold set by the owner. The deadlock, to which the protocol leads to, can be managed
introducing the final state EXPIRED (see Figure 5.8). In this state, all the participants are
allowed to withdraw their funds locked by the contract, except for the small service pawn (as the
TL was never activated).

5.7 Experimental results
Our experimental analysis is organized into: (i) smart contract deployment and testing, and (ii)
simulation of sMPC network protocols. The tests have been executed on a dual Intel Xeon E5
server with 256 GB memory and 512 GB SSD drive running Ubuntu 20.04 LTS. The size of the
shares was set to 256 bits.
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Smart contract A preliminary version of the smart contract was built with FSolidM [139],
a tool that automatically generates Ethereum smart contracts code from high-level Finite State
Machine representations. To deploy, test, and debug the contract generated, we relied on
Brownie [111], a Python framework that allows us to create wallets, inspect transactions and
automatize tests. To provide such functionalities, Brownie interacts with Ganache [2]: a personal
Ethereum blockchain used to facilitate development.
The experiments mainly focused on estimating the execution cost of each ITYT instance. The
cost is measured in gas, the unit that measures the amount of computational effort required
to execute specific operations on the Ethereum network. Table 5.2 shows, depending on the
number of participants, the gas required to run each ITYT function.

Function Gas
n = 2 n = 5 n = 10

participate 89545 90308 100207
startMPC 50399 50399 50399
finalizeMPC 122096 191666 307617
commit 56834 59597 69496
enforce 50425 50425 50425
loadSecret 51367 51367 51367
WhistleblowShare 125492 125676 125715
WhistleblowSecret 121587 121587 121587
terminate 29657 29657 29657
disclose 125492 125676 125715
withdraw 42634 48709 62451

Table 5.2: Gas cost for each smart contract function with k = 2

sMPC First, we implemented a sMPC protocol compliant with the description in Section 5.5.
We refer to this version as single-phase. Each party was provided with a different application
acting either as client or server, and the network communication round trip time (RTT) was
set to 10 ms. As it is illustrated in Figure 5.10a, strictly adhering to this protocol leads to a
sudden performance degradation when the number of shareholders increases. This is because
computing the MiMC primitive among several participants is highly affected by network latency
(the parties have to exchange several messages to carry out even simple operations in the sMPC
setting). To improve performance, we implemented a two-phase algorithm composed by two
sMPC protocols: Step 1 and Step 2.

Step 1. An n-to-n sMPC is jointly executed by all participants. The owner inputs the random
128 bits key K, together with n and k. Each shareholder submits only a 128 bits seed.
As detailed in Section 5.5, the sMPC selects the coefficients to generate the Shamir
polynomial and computes the shares. Finally, the output is opened to the parties: the
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owner gets the polynomial coefficients of f (x), while each shareholder gets her share hi,
n and k.

Step 2. A 1-to-1 sMPC is computed between the owner and each i-th shareholder. The owner
inputs f (x), while the shareholder inputs her (xi; yi) coordinate. If (xi; yi) belongs to
f (x), commitments are produced. The owner gets the commitment of the share Ci, while
the shareholder gets the commitment of the key CK.

The difference between the single-phase and the two-phase sMPC lies in the evaluation of
the MiMC primitive. Unlike the single-phase version, the two-phase solution separates the
generation of the shares from the production of commitments. It follows that the first step can
be carried out even in scenarios with several participants, as it is not computationally intensive,
whereas the second step, which instead is computationally intensive, is always performed among
two users. The comparison between the two sMPC protocol variants is shown in Figure 5.10a.
More details about the two-phase execution time and memory consumption for each participant,
in case of polynomial of higher degree, are illustrated in Figures 5.10b and 5.10c, respectively.
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Figure 5.10: sMPC protocol time and memory consumption: (a) Single-phase vs two-phase
sMPC execution, (b) Two-phase time consumption, (c) Two-phase memory consumption
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5.8 Related work

The use of cryptography to solve the problem of unveiling private data at a specific time in the
future was first envisioned in 1993 by Timothy May [140]. Since then, many researchers have
proposed solutions to this problem. Based on the assumptions and technologies used, we can
classify the proposals into four main categories.

Trust and Honesty — Chan et al. [63] and Cheon et al. [67] proposed single point of trust
schemes, in which the owner encrypts the secret using public-key cryptograpyhy, and relies on
a trusted time-server to release the private decryption key in the future. Rabin et al. described
Time-Lapse Cryptography [149, 160] that overcomes the single point of trust assumption by
splitting the single authority into a group of users that have to cooperate to release the keys. Li
et al. [128] proposed a solution that relies on Distributed Hash Tables to route the secret among
peers. However, these proposals entail the peers to be honest as they do not consider the possible
economic benefits that the parties would obtain by colluding.

Time-Lock Puzzles — They require the recipient to solve an inherently sequential mathematical
puzzle to prove the elapse of time. Starting from Rivest et al. seminal work [163], many other
puzzles have been proposed [53, 69, 136]. All these techniques require to run the decryption
procedure for a long time, and to make assumptions on future computing power.

Smart Contracts — Similarly to our proposal, the third category leverages smart contracts [176]
to replace the trusted party. Kimono [62] and Keep Network [133] rely on threshold cryptography
to split the secret among participants that can earn a remuneration by keeping their shares private
until disclosure time. However, they do not introduce security deposits, thus failing at preventing
misbehavior. Li et al. proposal [129] overcomes some of these limitations by modeling the
protocol as an extensive-form game with imperfect information [127]. Yet, as each peer is a
single point of failure, and as the owner has perfect information about the shares, they require
every participant to pay a security deposit that exceeds the value of the secret, limiting the
applicability of the protocol. Compared to our solution, all the proposals in this category do not
consider that coalitions of users can reconstruct the secret ahead of disclosure time inside an
sMPC protocol without exposing the shares, thus effectively avoiding penalties and safeguarding
remunerations.

Witness Encryption — This category of solutions leverages witness encryption [102], in which
the sender can encrypt a message so that it can only be opened by a recipient who knows a
witness to an NP relation. Liu et al. [131] showed how to construct a computational reference
clock from large public computations, such as those made by the Bitcoin network, and couple it
with witness encryption to achieve a TL encryption mechanism. Yet, this proposal relies on the
availability of a practical witness encryption scheme.
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Other Contributions — Several recent proposals address the problem of dealing with secret
data on public blockchains. Enigma [195] and Hawk [124] leverage sMPC to allow multiple
actors to execute an algorithm on private inputs and store the proof of correct execution on
the blockchain. However, these proposals require the data holder to actively participate in
the computation, thus they cannot be used to solve the problem of data disclosure at a future
point in time. Proof of Elapsed Time (PoET) is a network consensus algorithm often used in
permissioned blockchains, like Hyperledger Sawtooth [1,66], that avoids wasting computational
resources by using a fair lottery system run inside a Trusted Execution Environment (TEE), such
as Intel SGX. Each participant runs an algorithm in the TEE that waits for a random amount of
time, thus proving the elapse of time without the need of PoW. Even if this approach resembles
ITYT, as it prevents cheating on the chosen time, it is not able to store secret data. Another
recent contribution, Bitcoin Lightning Network [153], shows how economic constraints enforced
by TL primitives can be successfully integrated with blockchains. Lightning Network can be
used to instantly exchange bitcoins among peers by using off-chain transactions while effectively
preventing misbehavior.

5.9 Conclusions
This chapter presented I Told You Tomorrow (ITYT), a practical framework that leverages
the rationality assumption to deploy Timed-Locked secrets on the blockchain. In contrast to
other Time-Lock mechanisms, ITYT does not rely on a trusted third-party, neither it requires
a receiving party to run a decryption algorithm until disclosure time, nor it demands guessing
about future computing power. The implementation and experimental evaluation show the low
cost and limited resource consumption associaced with our approach.
Further details on the open source solution described in this chapter can be found in Appendix D.
There, we provide information on how to solve the economic model presented in Section 5.4 by
using constraint programming, how to test the implementation of the smart contract, and finally,
how to run the generate_shares primitive between many parties using sMPC.

Availability
The implementation source of our proposals is freely available at this URL: https:

//github.com/unibg-seclab/ityt

The work in this chapter was supported in part by the EC within the H2020 Program under
project MOSAICrOWN.
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Chapter 6. Conclusions and future work

In this work, we presented novel techniques to support the secure collection, sanitization, storage,
processing and release of data.
With regard to the data collection stage, we proposed an approach to strengthen the security
of mobile applications. Thanks to the additional security functions introduced in the Android
Open Source Project, an application developer can compartmentalize the application to reduce
access to confidential files, and to implement the least privilege principle on a per-process basis.
This also permits to reduce the impact of a number of common app security vulnerabilities.
With reference to sanitization, we proposed an approach that enables the anonymization of large
collections of sensors data. Based on the needs of the user, anonymization can be applied in
parallel on a varying number of network nodes. While a large number of nodes greatly reduces
the total sanitization time, the experimental evaluation reported very limited degradation on the
quality of the results.
To support the storage and processing stages, we proposed an approach to execute point and
range queries over encrypted data. The technique proposed ensures perfect indistinguishability
to an attacker that gains access to the data (i.e., an attacker able to perfom a dump of the
memory). It also offers protection against an attacker able to monitor the access to the memory,
in a measure directly proportional to the parameter k, the number of records stored within the
block. The experimental analysis showed that our solution exhibits a low overhead (in terms of
overall query execution time) compared to the one that operates on plaintext data (which runs
without any confidentiality guarantee), when the network latency is greater than 10 ms, and
the transmission rate is at least 100 Mbps. This is a common situation when the cloud service
provider is located in the same regional area of the client.
Finally, we presented an approach to deploy Time-Locked secrets on the blockchain and schedule
the release of data. The proposal leverages an economic model which ensures that breaking
the TL is not profitable. This is used to push rational actors to strictly adhere to the protocol,
hence achieving the desired TL fuction. Our proposal operates without the need for a Trusted
Third-Party.

6.1 Future Work

We conclude the work with a discussion of the future work that can be done in the four areas
presented.
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Data collection – Chapter 2 illustrated an approach to enable internal app compartmental-
ization. A potential obstacle to the adoption of SEApp is the usability by app devel-
opers. Although the use of macros greatly simplifies the development of the policy
module, the sepolicy.cil file still needs to be written by hand. The availability
of an Android Studio plugin that derives the policy module from a set of pre-defined
AndroidManifest.xml flags can further facilitate the developer. The plugin could
also be used to inspect the policy module and enforce part of the checks executed by the
PolicyModuleValidator.

Data sanitization – Chapter 3 presented a scalable approach to apply sanitization to large
collections of sensors data. As a future work, we plan to extend the set of criteria used to
perform the cut and determine the partitions. With the availability of new cut criteria we
expect to have a slight performance degradation but at the same time to reduce information
loss.

Data storage & processing – Chapter 4 detailed an approach to support the execution of point
and range queries over encrypted data. As a future work, we plan to implement a block
rotation strategy to support the insertion, deletion and update of records. The challenge
is to keep the index balanced and the client-side maps compact, without significantly
increase the average number of spurious tuples pulled from the server to solve a query.

Data release – Chapter 5 presented a novel way to implement Time-Locked secrets. As a
future work, we plan to devise a strategy to increase the size of the key. To do that, we are
considering the use of homomorphic encryption for the share generation primitive.
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Figure A.1: MainActivity

This chapter gives a technical demonstration of the security mea-
sures introduced by SEApp. The description is based on the
showcase app presented in Section 2.3. We show that: (1) the
showcase app can operate without a policy module; in this mode,
its vulnerabilities can be exploited; (2) the showcase app can
also operate with the policy module listed in Appendix A.4 and
use the services offered by SEApp; in this mode, the internal
vulnerabilities are no longer exploitable.
The showcase app has a minimal structure. Its entry point
is the MainActivity (Figure A.1), which is associated with the
core_logic process. From the MainActivity it is possible to
send a startActivity intent to one among UseCase1Activity, Use-
Case2Activity and UseCase3Activity; the entry points of use
cases 1, 2 and 3, respectively. For each entry point Zygote
starts a dedicated process and, according to the content of the
seapp_contexts (in Listing A.1), assigns its specific do-
main (user_logic_d to UC#1, ads_d to UC#2, media_d
to UC#3). A dedicated description of each use case follows.

A.1 Use case 1
In this use case we demonstrate how an app could benefit from the fine-granularity access to files.
In particular, we show how the UseCase1Activity, suffering of a path traversal vulnerability, can-
not be exploited when the app is associated with a properly configured policy module. According
to the Google Play Protect report on common application vulnerabilities [107], unsanitized path
names that lead to path traversal are a primary source of problems in applications.
UseCase1Activity is quite simple: it displays the content of a file given its relative path through
an intent (Figure A.2a). While this may be fine when the intent comes from trusted compo-
nents, the activity supports also implicit intents coming from untrusted sources. This makes
the vulnerability easily exploitable by an attacker targeting the confidential files written by the
core_logic components. In our setup phase, we leverage MainActivity to create an internal
directory structure by using the android.os.File abstraction, which sets file and direc-
tory context upon its creation (see Section 2.6). Two directories are created: user/ and
confidential/; inside both folders a file data is saved. To test this use case, we first start
UseCase1Activity, then we send an intent to “confuse” UseCase1Activity into showing us the
content of confidential/data. This can be done via ADB with the command:
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adb shell am start

-n com.example.showcaseapp/.UseCase1Activity

-a "com.example.showcaseapp.intent.action.SHOW"

--es "com.example.showcaseapp.intent.extra.PATH" "../confidential/data"

When the policy module is not availableg, all app internal files are flagged withapp_data_file
and every app component executes within the untrusted_app domain, which holds read ac-
cess to app_data_file. As a consequence the vulnerability is successfully exploited and
UseCase1Activity shows the content of the confidential/data file (Figure A.2b).
Instead, when the policy module is available, the file confidential/data is flagged with
confidential_t, as indicated in line 2 in file_contexts (see Listing A.2). Since no
permission is granted on confidential_t in the sepolicy.cil to user_logic_d,
any access to the file confidential/data by UseCase1Activity is blocked by SELinux
(Figure A.2c). The following denial is written to the system log: denied search to
user_logic_d domain on confidential_t type (Figure A.3). The confidential
directory cannot then be accessed despite the exploitation of the path traversal vulnerability.

(a) (b) (c)

Figure A.2: Use case 1 views

Figure A.3: Use case 1 logcat
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A.2 Use case 2
In this use case we show how to confine an Ad library into an ad-hoc process, with guarantees
that it cannot abuse the access privileges granted to the whole application sandbox by the user.
To do that, we deliberately inject, in the same process the library is executed, a malicious
component (which is directly invoked by the library) that tries to capture the location when the
permission ACCESS_FINE_LOCATION is granted to the app. The Ad library used is Unity
Ads [183], which according to [174] in 2020 was used by 11% of apps that show ads.

(a) (b) (c)

Figure A.4: Use case 2 views

In this case the library is invoked by UseCase2Activity (Figure A.4a), and according to line 3 of
theseapp_contexts, both the activity and the components created by the library are executed
by Zygote in a process labeled with ads_d. To interact with the Ad library, UseCase2Activity
instances a UnityAdsListener. After the Ad initialization (including the registration of
the listener) and displaying the Ad to the user (Figures A.4b-c), the Ad framework invokes
the listener callback method onUnityAdsFinish, which executes the malicious routine
captureLocation. The routine probes the app permissions; if ACCESS_FINE_LOCATION
is granted to the app, the malicious component retrieves through the servicemanager a handle to
the LocationManager, and registers to it an asynchronous listener to capture GPS location
(Figure A.5).
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We show that when the policy module is enforced by SEApp, the malicious component cannot
access the GPS coordinates. This is because the component is executed in the same process of
the library, which is labeled with ads_d. If we look at the sepolicy.cil (lines 43-50),
ads_d is not granted access to the SELinux type location_service, so the malicious
routine cannot retrieve and therefore connect to the location_service. The following denial
is written to the system log: denied find on location_service to the ads_d domain
(Figure A.6). As a result, the malicious component is terminated by the ActivityTaskManager
(Figure A.7).
The Ad library was included in the app as an .aar archive. To confine it, no modification was
necessary, only the use of AndroidManifest.xml and sepolicy.cil was required.

Figure A.5: Use case 2 exploit

Figure A.6: Use case 2 logcat - SELinux denial

Figure A.7: Use case 2 logcat - Activity termination
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A.3 Use case 3
In this use case we show how to confine a set of components, which rely on a high performance
native library written in C to perform some task. Our goal is to demonstrate that the context
running the native library code is prevented to access the network, even when the permissions
INTERNET and ACCESS_NETWORK_STATE are granted to the app sandbox.

(a) (b) (c)

Figure A.8: Use case 3 views

The native library is invoked by UseCase3Activity (Figure A.8a), which, according to line 4 in
the seapp_contexts, is executed in a process labeled with media_d by Zygote. The call to
the library is performed via JNI. Its job is to connect to the camera_service and take a picture.
Since the app is granted the CAMERA permission, the native library code (legitimately, line 53
in the sepolicy.cil) connects to the CameraManager.
Since the native library performs image processing, we do not want it to access the network.
However, the permissions INTERNET and ACCESS_NETWORK_STATE are granted to the app,
as they are required by the Ads framework. Thus, when the policy module is not available, the
native library can connect to the ConnectivityManager and successfully bind the current
process to the network (Figure A.8b). Instead, when the policy module is enforced by SEApp,
since media_d was granted only the basic app permissions (line 11 in sepolicy.cil), the
connection to the network is forbidden (Figure A.8c). This happens because binding a process to
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the network is associated with opening a network socket, an operation not permitted by SELinux
without the required permissions. The following denial is written to the system log: denied
create on udp_socket to media_d domain (Figure A.9).

Figure A.9: Use case 3 logcat - SELinux denial

This use case, besides showing how SEApp confines a native library, also demonstrates the power
and simplicity of the macro, as adding the line (call md_netdomain (media_d)) to
the policy module grants to media_d the needed permissions to access the network. The
application developer is thus not required to know or understand the internal SELinux policy in
order to leverage this functionality.
The isolation properties introduced by SEApp applies also to other common security problems
presented in [107]. Just to mention one, SEApp can mitigate the impact of incorrect sandboxing
of a scripting language.

A.4 Showcase app policy module
Here are reported the showcase app policy module files.

1 user=_app seinfo=showcase_app domain=com_example_showcaseapp.core_logic_d

name=com.example.showcaseapp:core_logic levelFrom=all

2 user=_app seinfo=showcase_app domain=com_example_showcaseapp.user_logic_d

name=com.example.showcaseapp:user_logic levelFrom=all

3 user=_app seinfo=showcase_app domain=com_example_showcaseapp.ads_d name=

com.example.showcaseapp levelFrom=all

4 user=_app seinfo=showcase_app domain=com_example_showcaseapp.media_d name=

com.example.showcaseapp:media levelFrom=all

Listing A.1: showcase app seapp_contexts

1 .* u:object_r:app_data_file:s0

2 files/confidential u:object_r:com_example_showcaseapp.confidential_t:s0

3 files/ads_cache u:object_r:com_example_showcaseapp.ads_t:s0

Listing A.2: showcase app file_contexts

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <policy><signer signature="SIGNATURE">

3 <package name="com.example.showcaseapp">

4 <seinfo value="showcase_app"/></package>

5 </signer></policy>

Listing A.3: showcase app mac_permissions.xml
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1 (block com_example_showcaseapp

2 ; creation of domain types

3 (type core_logic_d)

4 (call md_untrusteddomain (core_logic_d))

5 (type user_logic_d)

6 (call md_appdomain (user_logic_d))

7 (type ads_d)

8 (call md_appdomain (ads_d))

9 (call md_netdomain (ads_d))

10 (type media_d)

11 (call md_appdomain (media_d))

12 (typeattribute domains)

13 (typeattributeset domains (core_logic_d user_logic_d ads_d media_d))

14 ; creation of file types

15 (type confidential_t)

16 (call mt_appdatafile (confidential_t))

17 (type ads_t)

18 (call mt_appdatafile (ads_t))

19 ; bounding the domains and types

20 (typebounds untrusted_app core_logic_d)

21 (typebounds untrusted_app user_logic_d)

22 (typebounds untrusted_app ads_d)

23 (typebounds untrusted_app media_d)

24 (typebounds app_data_file confidential_t)

25 (typebounds app_data_file ads_t)

26 ; grant core_logic_d access to confidential files

27 (allow core_logic_d confidential_t (dir (search write add_name)))

28 (allow core_logic_d confidential_t (file (create getattr open read write))

)

29 ; grant ads_d access to ads_cache files

30 (allow ads_d ads_t(dir(search write add_name)))

31 (allow ads_d ads_t(file(create getattr open read write)))

32 ; minimum app_api_service subset

33 (allow domains activity_service (service_manager (find)))

34 (allow domains activity_task_service (service_manager (find)))

35 (allow domains ashmem_device_service (service_manager (find)))

36 (allow domains audio_service (service_manager (find)))

37 (allow domains surfaceflinger_service (service_manager (find)))

38 (allow domains gpu_service (service_manager (find)))

39 ; grant core_logic_d the needed permissions

40 (allow core_logic_d restorecon_service (service_manager (find)))

41 (allow core_logic_d location_service (service_manager (find)))

42 ; grant ads_d access to unity3ads needed services

43 (allow ads_d radio_service (service_manager (find)))

44 (allow ads_d webviewupdate_service (service_manager (find)))
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45 (allow ads_d autofill_service (service_manager (find)))

46 (allow ads_d clipboard_service (service_manager (find)))

47 (allow ads_d batterystats_service(service_manager (find)))

48 (allow ads_d batteryproperties_service (service_manager (find)))

49 (allow ads_d audioserver_service (service_manager (find)))

50 (allow ads_d mediaserver_service (service_manager (find)))

51 ; grant media_d the needed permissions

52 (allow media_d autofill_service (service_manager (find)))

53 (allow media_d cameraserver_service (service_manager (find))))

Listing A.4: showcase app sepolicy.cil

116



Appendix B. SDS documentation

This appendix details the artifact associated with the approach presented in Chapter 3, and how
to reproduce the experimental results.

B.1 Requirements
The deployment of the artifact requires a machine having a CPU with at least one physical core
and at least 2 GB of RAM for each worker. The install procedure was tested on Ubuntu 20.04
LTS, with the default packages installed:
make, git, zip, gzip, python3, python3-venv, gnuplot .
Install the required depencencies according to the following procedure:

• Install and set up docker and docker-compose
sudo apt install docker

sudo apt install docker-compose

• Add the current user to the docker group
sudo usermod -aG docker <USER>

• Reboot the system
• Check that the following commands run without root privileges
docker run hello-world; docker-compose -version

B.2 Deployment
To deploy the artifact execute the following steps.

1. Clone the repository
git clone -depth 1 \

-branch percom2021_artifact \

https://github.com/mosaicrown/mondrian.git

2. Verify that all the software requirements illustrated previously are installed
make

3. Pull and build a copy of the Docker images necessary to the artifact
make start

Table B.1 lists the docker containers started by the artifact.
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Container URL
Hadoop Namenode http://localhost:9870
Hadoop Datanode http://localhost:9864

Spark History Server http://localhost:18080
Spark Cluster Manager http://localhost:8080

Table B.1: Docker containers and URLs associated

B.3 Usage
The artifact implements the centralized and the distributed version of the Mondrian algorithm.
The artifact is complemented with a web UI that can be deployed running command make ui.
The web UI is available at http://localhost:5000 and can be used to run customized ex-
periments. This section details the use of the artifact and the steps to reproduce the experimental
results presented in [80].
The experiments in Chapter 3 used a sample from the IPUMS USA dataset [165]. The dataset is
available athttps://ipums.org/, together with a detailed guide for its download. To extract
the sample to anonymize please go to IPUMS website https://usa.ipums.org/usa/ and
click on “Get Data”. Then, select the attributes of interest (harmonized variables State
FIP Code, Age, Education Number, Occupation, and Income in our experiments)
and add them to the cart. For your convenience, you can use the direct links at https:
//github.com/mosaicrown/mondrian#usa-2018-dataset (each variable name
is a link that redirects to the page at ipums.org that permits to add the variable to the cart). Select
the sample of interest (among USA samples, 2018 ACS in our experiments) and create your
data extract. To customize the sample size, set parameter Persons (in the experiments Persons
is set to 510, to obtain a dataset with at least 500,000 tuples). Among the formats available for
downloading the dataset, select the csv format and save the downloaded gzip archive in the root
folder of the project, with name usa_<extract_number>.csv.gz.
The procedure to run the experiments has been automated and can be started running command
make artifact_experiments from the root folder of the project. The procedure operates
as follows:

1. it cleans the test environment stopping every Docker container that is still running and
removing from HDFS the results produced by the previous runs;

2. it extracts the sample of IPUMS USA dataset to be anonymized from the archive and
copies it to the Spark Driver volume;

3. it runs the centralized and distributed version of the Mondrian algorithm (see below), and
measures the execution time and information loss, storing the results with the following
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directory structure:
mondrian/

|- percom_artifact_experiments/

|- |- results/

|- |- |- runtime_results_<TIMESTAMP>/

|- |- |- loss_results_<TIMESTAMP>/

4. it shuts down all the containers except the Spark History Server, which remains available
to keep track of the previous runs of the artifact.

Centralized version. The centralized version of Mondrian corresponds to the baseline of the
experimental results in Chapter 3. The execution of the algorithm can be monitored through the
messages showed on the terminal, which reports:

1. the schema and the first few tuples of the input dataset;

2. each decision taken by Mondrian to cut the dataset;

3. the schema and the first few tuples of the anonymized dataset;

4. a summary of the information loss measures and the execution time of the algorithm.

The anonymized dataset is in folder local/anonymized.

Distributed version. Given a numbern of workers available in the distributed system, the artifact
performs the following steps to execute the distributed version of the Mondrian algorithm:

1. start all the Docker services, initialize HDFS, and submit to the Spark Driver our Spark
Application;

2. recover the dataset from HDFS and show its structure;

3. retrieve the n-quantiles of the best-scoring attribute of the dataset, showing the score used
to decide the optimal cut and the size of the partitions;

4. show the first few tuples of the dataset, complemented with a new attribute containing the
id of the quantile to which each tuple belongs and hence the worker to which the tuple is
assigned;

5. anonymize the dataset;

6. show the first few tuples of the anonymized dataset, with a summary of the execution time.

The anonymized dataset is in folder distributed/anonymized.
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B.4 Results
This section details the results presented in Chapter 3. To reproduce the results, the artifact has
to be deployed on a machine equipped with a CPU with 20 logical cores, 40 GB of RAM, and
15 GB of free disk space on an SSD.
Execution time. This experiment measured the execution time when computing a 3-anonymous
and 2-diverse version of a sample of the IPUMS USA dataset. The results of the experiments are
stored in folder runtime_results_<TIMESTAMP>. First, the artifact runs the centralized
version of the Mondrian algorithm. The results are saved in file centralized_results.csv. Then,
the artifact runs the distributed (Spark-based) version of the Mondrian algorithm, varying the
number of workers from 2 to 20. The results are saved in file spark_based_results.csv. Besides
generating the .csv files with the execution time of the centralized and distributed versions of the
algorithm, the artifact plots these results generating file comparison.pdf. Note that the absolute
times obtained running our artifact may slightly differ from the ones in Figure 3.3 of Chapter 3,
due to the differences in the hardware of the machine used.
bf Information loss. This experiment measured the information loss when computing a 5-
anonymous and 2-diverse version of a sample of the IPUMS USA dataset. The results of the
experiments are stored in folderloss_results_ <TIMESTAMP>. The artifact first runs the
centralized version of the Mondrian algorithm, storing the results in file centralized_results.csv.
Then, it runs the distributed version (with 5, 10, and 20 workers), using a sample including
0.01% of the dataset to determine the most suitable attribute and compute the n-quantiles (with
n = 5, n = 10, and n = 20, respectively) for partitioning the dataset among the workers.
The results obtained from five runs of the distributed version of the algorithm are stored in
file spark_based_results.csv. The artifact also generates file loss_table.csv, which reports the
average and the variance (in the form µ± σ) of the results in file spark_based_results.csv. Note
that, since the sample of IPUMS USA dataset is randomly extracted at each download, it may
be different from the one used in our experiments and consequently the results might be slightly
different from the ones in Table 3.1 of Chapter 3. We expect the results to have a similar trend,
confirming the limited impact of sampling on information loss.
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This chapter provides further details on the implementation of SecIdx. It also gives the proofs
of the theorems reported in Chapter 4.

C.1 Artifact
SecIdx is a Python library implementing the approach detailed in Chapter 4. The library provides
several utilities. The utilities permits to: 1) build a k-flat relation, 2) construct the encrypted
index with flat distribution and the client-side maps, and 3) translate and resolve queries at
runtime. In the repository, the user can also find a complete system showing how to leverage
SecIdx to store encrypted databases on PostgreSQL and Redis, and how to query them. The
system is implemented as a multi-container Docker application. A dedicated set of Makefile
targets is used to interact with it.

Requirements
To deploy the artifact we recommend a machine having a CPU with at least one physical core
and 2 GB of RAM for each container. The install procedure was tested on Ubuntu 20.04 LTS,
with the default packages installed: make, git, python3, python3-venv .
Install the required depencencies according to the following procedure:

• Install and set up docker and docker-compose
sudo apt install docker

sudo apt install docker-compose

• Add the current user to the docker group
sudo usermod -aG docker <USER>

• Reboot the system
• Check that the following commands run without root privileges
docker run hello-world; docker-compose -version

Submodules setup

To build the k-flat relation, SecIdx relies on an evolution of the approach presented in Chapter 3.
The artifact detailed in Appendix B is automatically imported as a submodule of the SecIdx
repository (i.e., the main module). By default, a git clone of the main module doesn't fetch
the additional material provided by the submodules. Thus, after the main repository is cloned,
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the submodules must be downloaded and configured properly. In the Makefile we provide
a target named submodule_setup to automatically pull the submodule and checkout to a
fixed commit in its history. On top of that commit, a patch containing the changes introduced
to build the k-flat relation properly is applied. This is achieved with a second target named
apply_patch, which is also provided in the Makefile.

Workflow

To enable the k-flat secure indexing of an encrypted dataset, the user is required to perform four
steps:

1. invoke the enhanced submodule to transform the original dataset into a k-flat relation;

2. build the encrypted index and the client-side maps on top of the k-flat representation;

3. wrap the k-flat representation with probabilistic encryption and enumerate the blocks;

4. outsource the encrypted relation and the index to a cloud storage provider (this is performed
sending the relation to the proper container via network).

Upon sending a query to the backend, the client:

• parses the query converting it into an AST representation;

• uses the local maps to rewrite the query;

• sends the query to the server leveraging different execution strategies, based on the current
setup.

When receiving the response, the client:

1. decrypts the encrypted blocks pulled from the server, retrieving the original plaintext
rows;

2. streams the rows into a temporary table saved in a local SQLite instance;

3. filters spurious tuples by re-running the initial query using SQLite;

4. returns the results of the query to the user as if it was run against a plaintext database.
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Deployment and usage

Artifact deployment is automatically performed when one of the utilities provided by the library
is used. This means that, each time the user runs a Makefile target, the local environment in
which the library is deployed, is automatically installed (or updated) by a number of Makefile
prerequisites. This also applies to the containers; if the container is not available locally, a
prebuilt container image is immediately downloaded from the network, customized installing
the required dependencies, and finally deployed with docker-compose, just before the test
requested by the user is performed. In the following, we demonstrate each of the steps described
in the workflow section.

Construction of the k-flat relation

A prerequisite to construct the k-flat relation is to configure the submodule as explained pre-
viously. Running the command make usa2018 from the terminal, the pums 2018 dataset
is downloaded from the census.gov website, unzipped and transformed into a k-flat rela-
tion using the submodule. In detail, the tool builds and installs the container images required
to run the submodule, the containers are started and the number of instances scaled with
docker-compose, the indexing algorithm run, and finally the k-flat relation saved locally, in
a csv format file. Figure C.1 shows the differences between the k-flat and the original relation.

Figure C.1: Differences between an initial dataset and its 25-flat representation

Construction of the encrypted index and the client-side maps

After the k-flat relation has been computed, the user can start building the encrypted index, the
client-side maps, and the encrypted k-flat relation. To demonstrate this workflow, the user must
run the preprocess target. The user can customize its behavior editing the Makefile variables
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INPUT, OUTPUT, TYPE, MAPPING, and ANONYMIZED. The TYPE variable is the most impor-
tant one, and allows the user to specify, for each column in the dataset, the structure to use when
creating the local maps, and whether to use tokens (i.e., the value-based strategy). As an example,
running the command make preprocess TYPE=config/usa2018/runtime.json,
runs a test on the default pums 2018 dataset, with runtime token generation, and the bitmap,
range, roaring and range maps for the columns STATEFIP, STATE, OCC, and INCTOT, respec-
tively. Figure C.2 shows the log of the test.

Figure C.2: Example of construction of the encrypted index, the client-side maps, and the
encrypted k-flat relation
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Outsourcing the relation to the storage provider

To conclude the preprocessing stages, the user has to upload the encrypted index and the
encrypted k-flat relation to the storage provider. This can be done with the upload target.
The default backend alternative is PostgreSQL, to select Redis instead, the user can run the
upload_kv target. If not available locally, the selected backend alternative is immediately
installed in a dedicated container. The container is deployed and the data uploaded to it via
network. Figure C.3 details the upload to the containerized PostgreSQL DBMS.

Figure C.3: Dataset upload to the storage provider

Runtime tests

To demonstrate how the system works at runtime, the user can run the query target. In this case
a set of test queries is submitted to the client-side backend. The queries are translated leveraging
the local maps, and the blocks of interests are pulled from the containerized server. Finally,
the plaintext rows are extracted from the blocks, the spurious tuples filtered by an in memory
SQLite DB, and the result of the query sent to the user. The process is detailed in Figure C.4.

Reproducibility and visualization

The results reported in the experimental evaluation (Section 4.7) can be reproduced running the
command make test. Running the experiments takes a few days on our hardware. However,
the user can recreate all the figures shown in Chapter 4 starting from the data attached to the
repository. This can be done running the make visualization command. As an example,
Figure C.5 compares the theoretical and experimental token collision probability measured in
our test.
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Figure C.4: Translation and resolution of a runtime query
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Figure C.5: Theoretical versus experimental token collision probability varying the num-
ber of tokens and their size

C.2 Proofs

Theorem 2 (Existence of a k-flat partition). Let r be a relation such that card(r)≥k. A k-flat
partition P of r exists iff h ≤ p, with h=(card(r) mod k) and p=⌊card(r)/k⌋.
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Proof.
k-flat partition P =⇒ h ≤ p

By assumption, P={G1, . . . , Gp}, with p = ⌊card(r)/k⌋. Let nk+1 be the number of parti-
tions in P with k+1 tuples. Then, 0≤nk+1≤p. By definition of k-flat partition, card(r) =
k·(p−nk+1)+(k+1)·nk+1 = k·p+nk+1. By the quotient remainder theorem, when we divide
card(r) by k, there exists unique integers p, h s.t. card(r)=k·p+h and 0 ≤ h < k. Then,
nk+1=h.
k-flat partition P ⇐= h ≤ p.
Let card(r)=k·p+h. Tuples in r can be partitioned in p groups of k tuples each. Then, since by
assumption h ≤ p, each of the remaining h tuples can be inserted into h of these p partitions,
one tuple for each partition. In this way, by construction we have a partition with p groups in
total s.t. p−h groups have k tuples each, and h groups have k+1 tuples each. The partition is
then a k-flat partition of r.
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This chapter provides further details on the implementation of ITYT. It also gives some instruc-
tions to fully reproduce the results presented in the experimental evaluation (Section 5.7).
ITYT repository is structured into three directories:

• model, that provides the implementation of a Z3-based solver of the economic model
presented in Section 5.4;

• contract, that provides the implementation of the smart contract presented in Sec-
tion 5.5 (with some extensions) alongside with some scripts to facilitate simulation with
Brownie;

• smpc, that provides the implementation of three secure Multi-Party computation protocols
based on FRESCO.

D.1 Model

This directory contains a Python script that can be used to find a solution to the ITYT Economic
Model. To this end, the script leverages Z3, a theorem prover from Microsoft Research. To
install the required dependencies and run the tool just navigate the filesystem to the current
directory and run the make command. Custom input can be specified overriding the variables
N, K and V. The process is detailed in Figure D.1.

Figure D.1: Solving the model from command line using the Z3 solver

Table D.1 reports a list of mappings that bind each solver variable to the related economic
amount, as described in Chapter 5.
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Solver ITYT Description
V V economic value assigned to the secret
N n number of shareholders
K k number or shares required to reconstruct the secret
Rh RH shareholder reward
Bh BH shareholder bid
Fo FO fee paid by the owner to get the service
Ws WS reward paid when whistleblowing the secret
Wh Wh reward paid when whistleblowing a share

Table D.1: Parameters and economic amounts constrained by the solver

D.2 Contract
This directory provides the implementation of a smart contract compatible with the ITYT
framework. The implementation relies on MiMC to produce the commitments. To compile the
smart contract with Solidity, a library implementing the MiMC primitive needs to be included in
the directory contracts as a file named MiMC.sol. An example of such library implementation
can be found at this link.

Dependencies
The following install procedure has been tested on Ubuntu 20.04.

• Install solc:
sudo snap install solc

• Install ganache-cli:
sudo apt install nodejs

sudo apt install npm

sudo npm install -g ganache-cli

• Install Python dependencies and the required Solidity compiler:
python3 -m venv venv

source venv/bin/activate

pip install -r requirements

python -c “import solcx; solcx.install_solc(‘v0.5.6’)”

Test
To deploy, test, and debug the contract generated the tools uses Brownie, a Python framework
that allows to create wallets, inspect transactions and automatize tests. Running brownie
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test the script test_proto_exec.py is executed. Based on the (n, k) values specified,
the script runs multiple smart contract simulations. The -G option can be used to display the
gas consumed by each call to function. A simulation of the decentralized protocol is shown in
Figure D.2.

Figure D.2: Simulation of the decentralized protocol using Brownie

D.3 sMPC
This directory provides the implementation of the secure Multi-Party Comupation protocol
designed in the ITYT framework. The protocol comes in two flavors:

• the single-phase version, which permits to compute the shares and the commitments in a
single round jointly executed by the Owner and the n Shareholders;

• and the two-phase version, which separates the production of shares and commitments in
two steps (step 1 and step 2, respectively). Step 1 is jointly executed by the Owner and the
n Shareholders, while step 2 is executed 1-to-1 by the Owner and each Shareholder.

Dependencies
On Ubuntu 20.04, the only prerequisite is the project management tool maven. It can be
installed running on the console: sudo apt install maven

Compile and run
The functions are exposed to the user as Make targets. Running each of the available targets
(listed below), the additional libraries are automatically downloaded by maven, the tool is
compiled, installed and run. Here a brief description of the execution workflow.
Each Party is represented by a server. To each server a dedicated port (starting from 8080)
is associated. The application, logfiles, and results related to each server are stored in the
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dedicated folder server/serverX, where X stands for the identifier of the server (X=1 is
always associated with the Owner). Please note that the content under server can be wiped at
each run (do not edit or create the directories related to the server, they are automatically created
at runtime).
Table D.2 lists the targets available.

Target Description
runSP Simulates the single-phase version of the protocol
runTPs1 Simulates the two-phase step 1 version of the protocol
runTPs2 Simulates the two-phase step 2 version of the protocol

Table D.2: List of targets available

Each simulation can be customized overriding the variables in the Makefile accordingly.
Table D.3 details each variable.

target Description
N The nof users running the n-to-n protocol
K The degree of the polynomial + 1

ARGS Common input supplied to the mpc by multiple parties
ARGS[i] Input to the mpc supplied by the i-th party

Table D.3: Variables to customize the sMPC experiment

Figure D.3 shows the output received by parties 1 (i.e., the Owner) and 2 (i.e., the first share-
holder) executing the single-phase protocol version. The Owner gets the commitment of the
shares and of the key, while the shareholder gets her share and the commitment of the key.
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Figure D.3: Single-phase protocol execution for N = 2

133





List of figures

2.1 Evolution of the MAC policy in Android. Before 4.3, MAC was not used.
Starting with 4.3, MAC protects system components. Since 9, categories offer
rigid MAC protection for apps. Our proposal offers flexible MAC protection
to apps. 13

2.2 Security Enhanced App 16
2.3 SEApp policy structure 25
2.4 Installation process 29
2.5 Application launch 30
2.6 File relabeling 31
2.7 Installation time overhead for apps with different complexity 33
2.8 Cumulative install time overhead when installing the top 100 free apps on

Google Play Store with our policies 34
2.9 Install time overhead for the three policy sizes 35

3.1 An example of a dataset (a), its spatial representation and partitioning (b), and
a 3-anonymous and 2-diverse version (c), considering quasi-identifier Age and
Country and sensitive attribute TopSpeed 42

3.2 Architecture and working of the distributed anonymization system 44
3.3 Execution time of the centralized version and distributed version varying the

number of workers 46

4.1 Plaintext relation (a), and its encrypted and indexed version (b) 51
4.2 Graphical representation of the cuts performed by procedure Cut over the

relation in Figure 4.1(a) 56
4.3 Algorithm for computing a k-flat partition 57
4.4 Algorithm for cutting a k-flat partition 57
4.5 Algorithm for checking the validity of a cut 58
4.6 Examples of partitions for different cases of the Check procedure, k=10 59
4.7 Spatial representation of the running example and corresponding Map 60
4.8 Physical representation of the relation in Figure 4.1(a) 62
4.9 Information stored at the client-side for representing functions mapAge/id.mapAge

(a)-(c) and mapState/id.mapState (b)-(d) 63

135



Dario Facchinetti

4.10 Server-side representations: (a) Relational DBMS with GIDs, (b) Relational
DBMS with Tokens, (c) Key-value store with GIDs, and (d) Key-value store
with Tokens. 68

4.11 Map size for each sample of usa2019 70
4.12 Average execution time of queries on WAGP column with a 10 ms latency. 71
4.13 Average execution time of queries on both OCCP and WAGP columns with a

10 ms latency. 73
4.14 Execution time and performance ratio of queries on WAGP column with the

addition of latency. 75
4.15 Average global execution time and performance ratios of queries on both OCCP

and WAGP columns with the addition of latency. 76
4.16 Overhead in the number of tuples downloaded with queries on the WAGP column. 77
4.17 Overhead in the number of tuples downloaded with queries on both OCCP and

WAGP columns. 77
4.18 Execution time and performance ratio of queries on WAGP column with a

latency of 10 ms and, varying K and bandwidth. 78
4.19 Execution time and performance ratio of queries on both OCCP and WAGP

columns with a latency of 10 ms and, varying K and bandwidth. 79

5.1 Protocol initialization algorithm (executed by the owner). 90
5.2 Shareholder commitment algorithm 90
5.3 Share whistleblow algorithm 91
5.4 Secret whistleblow algorithm 91
5.5 Share disclose algorithm 92
5.6 Reward withdraw algorithm 92
5.7 Ityt constraints representation 95
5.8 State machine representing the valid state transitions of the ITYT protocol.

Each transition name maps to an action (an Ethereum smart contract function)
that can be invoked by participants to update the state. Square brackets state
additional conditions that must be met to consider the transition valid 96

5.9 Avoid the exposition of S before sc activation 98
5.10 sMPC protocol time and memory consumption: (a) Single-phase vs two-phase

sMPC execution, (b) Two-phase time consumption, (c) Two-phase memory
consumption 102

A.1 MainActivity 109
A.2 Use case 1 views 110
A.3 Use case 1 logcat 110

136



A.4 Use case 2 views 111
A.5 Use case 2 exploit 112
A.6 Use case 2 logcat - SELinux denial 112
A.7 Use case 2 logcat - Activity termination 112
A.8 Use case 3 views 113
A.9 Use case 3 logcat - SELinux denial 114

C.1 Differences between an initial dataset and its 25-flat representation 123
C.2 Example of construction of the encrypted index, the client-side maps, and the

encrypted k-flat relation 124
C.3 Dataset upload to the storage provider 125
C.4 Translation and resolution of a runtime query 126
C.5 Theoretical versus experimental token collision probability varying the number

of tokens and their size 126

D.1 Solving the model from command line using the Z3 solver 129
D.2 Simulation of the decentralized protocol using Brownie 131
D.3 Single-phase protocol execution for N = 2 133

List of figures





List of tables

2.1 Application policy module CIL syntax 19
2.2 SEApp macros to grant permissions to local types 22
2.3 Policy size 35
2.4 Cold and warm start performance for activities and services 36
2.5 File creation performance 37

3.1 DP and GCP information loss with 100% and 0.01% sampling 47

4.1 Relative size of the client-side maps given the size of the initial dataset 69

5.1 Sample configurations (economic amounts are expressed as ratio of V) 96
5.2 Gas cost for each smart contract function with k = 2 101

B.1 Docker containers and URLs associated 118

D.1 Parameters and economic amounts constrained by the solver 130
D.2 List of targets available 132
D.3 Variables to customize the sMPC experiment 132





References

[1] Hyperledger Sawtooth. https://sawtooth.hyperledger.org, 2018.

[2] Ganache – personal blockchain for ethereum development. https://github.com/
trufflesuite/ganache, 2019.

[3] A. Albrecht. sqlparse. https://github.com/andialbrecht/sqlparse,
2021.

[4] A. B. and D. Dinu and D. Khovratovich and S. Josefsson. The memory-hard Argon2
password hash and proof-of-work function. https://datatracker.ietf.org/

doc/draft-irtf-cfrg-argon2/, 2021.

[5] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Poster:
Leveraging ebpf to enhance sandboxing of webassembly runtimes. In Proceeding of the
18th ACM ASIA Conference on Computer and Communications Security (ACM ASIACCS
2023), 2023.

[6] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Cage4deno: A fine-
grained sandbox for deno subprocesses. In Proceeding of the 18th ACM ASIA Conference
on Computer and Communications Security (ACM ASIACCS 2023), 2023.

[7] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Natisand: Na-
tive code sandboxing for javascript runtimes. In Proceedings of the 26th International
Symposium on Research in Attacks, Intrusions and Defenses, 2023.

[8] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith. SoK: Lessons learned
from Android security research for appified software platforms. In IEEE S&P, 2016.

[9] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient encryption
and cryptographic hashing with minimal multiplicative complexity. In ASIACRYPT, 2016.

[10] Alexandra Institute. FRESCO - a framework for efficient secure computation. https:
//github.com/aicis/fresco, 2019.

[11] J. Alwen, C. Cachin, O. Pereira, A. Sadeghi, B. Schoenmakers, A. Shelat, and I. Visconti.
Summary report on rational cryptographic protocols, 2007.

[12] Android. Google Play Protect. https://www.android.com/play-protect/,
2021.

141



Dario Facchinetti

[13] Android Developers. adb install. https://developer.android.com/studio/
command-line/adb#move, 2021.

[14] Android Developers. Android App Bundles. https://developer.android.com/
platform/technology/app-bundle, 2021.

[15] Android Developers. Android Interface Definition Language. https://

developer.android.com/guide/components/aidl, 2021.

[16] Android Developers. android:isolatedProcess. https://

developer.android.com/guide/topics/manifest/service-

element#isolated, 2021.

[17] Android Developers. Bound services overview. https:

//developer.android.com/guide/components/bound-

services#Creating, 2021.

[18] Android Developers. isolated_app.te. https://android.googlesource.com/

platform/system/sepolicy/+/refs/heads/master/private/

isolated_app.te, 2021.

[19] Android Open Source Project. Enable per-user isolation for normal apps. https:

//android.googlesource.com/platform/external/sepolicy/+/

a833763ba04147e840fd054b613f759395bada35, 2014.

[20] Android Open Source Project. SELinux for Android 8.0.
https://source.android.com/security/selinux/images/

SELinux_Treble.pdf, 2017.

[21] Android Open Source Project. Android 9 release notes. https:

//source.android.com/setup/start/p-release-notes#per-

app_selinux_sandbox, 2018.

[22] Android Open Source Project. ActivityManagerService. https://

android.googlesource.com/platform/frameworks/base/+/refs/

heads/master/services/core/java/com/android/server/am/

ActivityManagerService.java, 2021.

[23] Android Open Source Project. Android Debug Bridge (adb). https://

developer.android.com/studio/command-line/adb, 2021.

[24] Android Open Source Project. Android Permissions. https://

developer.android.com/guide/topics/permissions/overview,
2021.

142



References

[25] Android Open Source Project. Android Runtime. https://

developer.android.com/guide/platform#art, 2021.

[26] Android Open Source Project. App manifest overview. https://

developer.android.com/guide/topics/manifest/manifest-intro,
2021.

[27] Android Open Source Project. Binder. https://developer.android.com/

reference/android/os/Binder, 2021.

[28] Android Open Source Project. Implementing SELinux. https://

source.android.com/security/selinux/implement, 2021.

[29] Android Open Source Project. init. https://android.googlesource.com/

platform/system/core/+/refs/heads/master/init/main.cpp, 2021.

[30] Android Open Source Project. installd. https://android.googlesource.com/
platform/frameworks/native/+/refs/heads/master/cmds/

installd/, 2021.

[31] Android Open Source Project. Intent and intent filters. https://

developer.android.com/guide/components/intents-filters, 2021.

[32] Android Open Source Project. Mounting partitions early. https:

//source.android.com/devices/architecture/kernel/mounting-

partitions-early, 2021.

[33] Android Open Source Project. PackageManagerService. https://

android.googlesource.com/platform/frameworks/base/+/refs/

heads/master/services/core/java/com/android/server/pm/

PackageManagerService.java, 2021.

[34] Android Open Source Project. Policy compatibility. https://

source.android.com/security/selinux/compatibility, 2021.

[35] Android Open Source Project. restorecond service. https://

android.googlesource.com/platform/external/selinux/+/refs/

heads/master/restorecond/restorecond.service, 2021.

[36] Android Open Source Project. secilc. https://android.googlesource.com/

platform/external/selinux/+/refs/heads/master/secilc/, 2021.

143



Dario Facchinetti

[37] Android Open Source Project. SELinuxMMAC. https://

android.googlesource.com/platform/frameworks/base/+/refs/

heads/master/services/core/java/com/android/server/pm/

SELinuxMMAC.java, 2021.

[38] Android Open Source Project. untrusted_app_all.te. https://

android.googlesource.com/platform/system/sepolicy/+/refs/

heads/master/private/untrusted_app_all.te, 2021.

[39] Android Open Source Project. Zygote. https://android.googlesource.com/
platform/frameworks/base.git/+/master/core/java/com/

android/internal/os/Zygote.java, 2021.

[40] Apache Spark. Apache Spark. https://spark.apache.org/, 2021.

[41] Ars Technica. The Android 11 interview. https://arstechnica.com/

gadgets/2020/09/the-android-11-interview-googlers-answer-

our-burning-questions/, 2020.

[42] G. Asharov, R. Canetti, and C. Hazay. Toward a game theoretic view of secure computa-
tion. IACR, 2011.

[43] G. Asharov, I. Komargodski, W. Lin, E. Peserico, and E. Shi. Optimal oblivious parallel
ram. IACR, 2020.

[44] F. Ashkouti, K. Khamforoosh, and A. Sheikhahmadi. DI-Mondrian: Distributed im-
proved Mondrian for satisfaction of the ℓ-diversity privacy model using Apache Spark.
Information Sciences, 2021.

[45] E. Bacis, S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, S. Paraboschi,
M. Rosa, and P. Samarati. Multi-provider secure processing of sensors data. In IEEE
PerCom (PerCom Workshops), 2019.

[46] E. Bacis, D. Facchinetti, M. Guarnieri, M. Rosa, M. Rossi, and S. Paraboschi. I told you
tomorrow: Practical time-locked secrets using smart contracts. In ARES, 2021.

[47] E. Bacis, S. Mutti, and S. Paraboschi. AppPolicyModules: Mandatory access control for
third-party apps. In ASIACCS, 2015.

[48] E. Bacis, S. Mutti, and S. Paraboschi. Policy specialization to support domain isolation.
In SafeConfig, 2015.

[49] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection in Android and
its security applications. In CCS, 2016.

144



References

[50] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android security framework:
Extensible multi-layered access control on Android. In ACSAC, 2014.

[51] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. V. Styp-Rekowsky. Boxify: Full-
fledged app sandboxing for stock Android. In USENIX Security, 2015.

[52] M. Bayer. SQLAlchemy. https://pypi.org/project/SQLAlchemy/, 2021.

[53] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.
Time-lock puzzles from randomized encodings. In ITCS, 2016.

[54] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric en-
cryption. In International Conference on the Theory and Applications of Cryptographic
Techniques, 2009.

[55] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of provably secure searchable
encryption. ACM Comput. Surv., 2015.

[56] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of provably secure searchable
encryption. ACM Comput. Surv., 2015.

[57] G. Branwen. Time-lock encryption. https://www.gwern.net/Self-

decrypting-files, 2018.

[58] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry. Towards
taming privilege-escalation attacks on Android. In NDSS, 2012.

[59] S. Bugiel, S. Heuser, and A. Sadeghi. Flexible and fine-grained mandatory access control
on Android for diverse security and privacy policies. In USENIX Security, 2013.

[60] C. L. Halbert and K. Tretyakov. intervaltree. https://pypi.org/project/
intervaltree/, 2021.

[61] P. Caballero-Gil, C. Hernández-Goya, and C. Bruno-Castañeda. A rational approach to
cryptographic protocols. CoRR, 2010.

[62] F. M. Celebi, P. Fletcher-Hill, G. Kaemmer, and D. Que. Kimono time capsule. https:
//kimono.network, 2018.

[63] A. Chan and I. Blake. Scalable, server-passive, user-anonymous timed release cryptog-
raphy. In ICDCS, 2005.

[64] H. Chen, I. Chillotti, and L. Ren. Onion ring oram: Efficient constant bandwidth
oblivious ram from (leveled) tfhe. In Proc. of ACM SIGSAC Conference on Computer
and Communications Security, 2019.

145



Dario Facchinetti

[65] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of SEAndroid policies:
Combining MAC and DAC in Android. In ACSAC, 2017.

[66] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi. On security analysis of Proof-of-
Elapsed-Time (PoET). In SSS, 2017.

[67] J. Cheon, N. Hopper, Y. Kim, and I. Osipkov. Timed-release and key-insulated public key
encryption. In FC, 2006.

[68] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-Anonymity. In
Secure Data Management in Decentralized Systems. 2007.

[69] B. Cohen and K. Pietrzak. Simple proofs of sequential work. In EUROCRYPT, 2018.

[70] A. Conner-Simons. Programmers solve MIT’s 20-year-old cryptographic puz-
zle. https://www.csail.mit.edu/news/programmers-solve-mits-20-
year-old-cryptographic-puzzle, 2019.

[71] D. Cynthia. Differential privacy. In International Colloquium on Automata, Languages,
and Programming, 2006.

[72] D. J. Bernstein. The poly1305-aes message-authentication code. In International work-
shop on fast software encryption, 2005.

[73] D. J. Bernstein. Extending the salsa20 nonce. In Workshop record of Symmetric Key
Encryption Workshop, 2011.

[74] I. Damgård, K. Damgård, K. Nielsen, P. Nordholt, and T. Toft. Confidential benchmarking
based on multiparty computation. In FC, 2017.

[75] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. Smart. Practical covertly
secure MPC for dishonest majority – or: Breaking the SPDZ limits. In ESORICS, 2013.

[76] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. Smart. Practical covertly
secure mpc for dishonest majority–or: breaking the spdz limits. In ESORICS, 2013.

[77] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.
Balancing confidentiality and efficiency in untrusted relational DBMSs. In Proc. of ACM
CCS, 2003.

[78] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM: Minimizing ORAM Response Times
for Bursty Access Patterns. In USENIX, 2014.

[79] A. Dawoud and S. Bugiel. DroidCap: OS support for capability-based permissions in
Android. In NDSS, 2019.

146



References

[80] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Scalable distributed data anonymization. In PerCom 2021, 2021.

[81] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garofalakis.
Practical private range search revisited. In Proc. of ACM SIGMOD, 2016.

[82] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. Gunter. Free for all! Assessing
user data exposure to advertising libraries on Android. In NDSS, 2016.

[83] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, G. Oldani, S. Paraboschi,
M. Rossi, and P. Samarati. Scalable distributed data anonymization for large datasets.
IEEE Transactions on Big Data, pages 1–14, 2022.

[84] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Artifact: Scalable distributed data anonymization. In IEEE PerCom
(PerCom Workshops), 2021.

[85] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi, and
P. Samarati. k-flat secure indexing for encrypted databases. In Under submission, 2021.

[86] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Multi-dimensional indexes for point and range queries on outsourced
encrypted data. In IEEE GlOBECOM, 2021.

[87] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Scalable distributed data anonymization. In IEEE PerCom (PerCom
Workshops), 2021.

[88] M. Diamantaris, E. Papadopoulos, E. Markatos, S. Ioannidis, and J. Polakis. REAPER:
Real-time app analysis for augmenting the Android permission system. In CODASPY,
2019.

[89] Docker inc. Docker. https://www.docker.com/, 2021.

[90] Docker inc. Docker-compose. https://docs.docker.com/compose/, 2021.

[91] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel. Betrayal, distrust, and
rationality: Smart counter-collusion contracts for verifiable cloud computing. In SIGSAC,
2017.

[92] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO,
1993.

147



Dario Facchinetti

[93] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android application
security. In USENIX Security, 2011.

[94] W. Enck, M. Ongtang, and P. McDaniel. Understanding Android security. IEEE S&P
Magazine, 2009.

[95] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions demystified.
In CCS, 2011.

[96] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android Permissions:
User attention, comprehension, and behavior. In SOUPS, 2012.

[97] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl. Stack
overflow considered harmful? The impact of copy paste on Android application security.
In IEEE S&P, 2017.

[98] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel, E. Kirda, and G. Vigna.
On the security and engineering implications of finer-grained access controls for Android
developers and users. In DIMVA, 2015.

[99] Free Software Foundation. GNU M4. https://www.gnu.org/savannah-

checkouts/gnu/m4/manual/m4-1.4.18/index.html, 2016.

[100] G. Craig, and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme.
2011.

[101] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for authorization policy
enforcement. In IEEE S&P, 2006.

[102] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. In
STOC, 2013.

[103] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM symposium on
Theory of computing, 2009.

[104] O. Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In ACM symposium on Theory of computing, 1987.

[105] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams. J.
ACM, 1996.

[106] Google. Capsicum object-capabilities on Linux. https://github.com/google/
capsicum-linux, 2017.

148



References

[107] Google Play Protect. Android app vulnerability classes: A whirl-
wind overview of common security and privacy problems in An-
droid apps. https://static.googleusercontent.com/media/

www.google.com/en//about/appsecurity/play-rewards/

Android_app_vulnerability_classes.pdf, 2021.

[108] Google Play Store. Android top apps. https://play.google.com/store/apps/
top, 2021.

[109] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas. Byzantine agreement with a rational
adversary. In ICALP, 2012.

[110] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in
the database-service-provider model. In Proc. of ACM SIGMOD, 2002.

[111] B. Hauser. Introducing Brownie: A python framework for testing, deploying and
interacting with ethereum smart contracts. https://medium.com/hyperlink-

technology/introducing-brownie-a763859409ca, 2019.

[112] C. Hazay and Y. Lindell. A note on the relation between the definitions of security for
semi-honest and malicious adversaries, 2010.

[113] S. Heuser, A. Nadkarni, W. Enck, and A. Sadeghi. ASM: A programmable interface for
extending Android security. In USENIX Security, 2014.

[114] R. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan, P. McDaniel, and
T. Jaeger. An architecture for enforcing end-to-end access control over web applications.
In SACMAT, 2010.

[115] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional range
queries over outsourced data. The VLDB Journal, 2012.

[116] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In
Proc. of Int. Conf. on Very large data bases-V. 30, 2004.

[117] J. Huang, O. Schranz, S. Bugiel, and M. Backes. The ART of app compartmentalization:
Compiler-based library privilege separation on stock Android. In CCS, 2017.

[118] Intel. Software Guard Extensions. https://software.intel.com/content/

www/us/en/develop/topics/software-guard-extensions.html,
2021.

[119] iproute2. Ubuntu man pages. https://launchpad.net/ubuntu/focal/

+package/iproute2, 2021.

149



Dario Facchinetti

[120] J. Vander Stoep. ioctl command whitelisting in SELinux. http://kernsec.org/

files/lss2015/vanderstoep.pdf, 2015.

[121] Kaggle. Acquire Valued Shoppers Challenge, transactions

dataset. https://www.kaggle.com/c/acquire-valued-shoppers-

challenge/data?select=transactions.csv.gz, 2014.

[122] M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure com-
putation with oblivious transfer. In SIGSAC, 2016.

[123] M. Keller, V. Pastro, and D. Rotaru. Overdrive: making SPDZ great again. In EURO-
CRYPT, 2018.

[124] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In IEEE S&P, 2016.

[125] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity.
In Proc. of ICDE, 2006.

[126] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. In Proc. of ICDE, 2006.

[127] K. Leyton-Brown and Y. Shoham. Essentials of game theory: A concise multidisciplinary
introduction. Synthesis lectures on artificial intelligence and machine learning, 2008.

[128] C. Li and B. Palanisamy. Timed-release of self-emerging data using distributed hash
tables. In ICDCS, 2017.

[129] C. Li and B. Palanisamy. Decentralized release of self-emerging data using smart con-
tracts. In SRDS, 2018.

[130] Libsodium. Libsodium Library. https://github.com/jedisct1/libsodium,
2021.

[131] J. Liu, T. Jager, S. Kakvi, and B. Warinschi. How to build time-lock encryption. Designs,
Codes and Cryptography, 2018.

[132] G. Loukas and G. Öke. Protection against denial of service attacks: A survey. The
Computer Journal, 2010.

[133] M. Luongo and C. Pon. The Keep network: A privacy layer for public blockchains.
https://keep.network/whitepaper, 2019.

[134] A. Machanavajjhala, J. Gehrke, and D. Kifer. ℓ-diversity: Privacy beyond k-anonymity.
In Proc. of ICDE, 2006.

150



References

[135] K. MacMillan, C. Case, J. Brindle, and C. Sellers. SELinux Common Intermediate Lan-
guage motivation and design. https://github.com/SELinuxProject/cil/

wiki, 2020.

[136] M. Mahmoody, T. Moran, and S. Vadhan. Time-lock puzzles in the random oracle model.
In CRYPTO, 2011.

[137] M. Mahmoody, T. Moran, and S. Vadhan. Publicly verifiable proofs of sequential work.
In ITCS, 2013.

[138] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. Mitigating distributed denial
of service attacks with dynamic resource pricing. In ACSAC, 2001.

[139] A. Mavridou and A. Laszka. Designing secure Ethereum smart contracts: A finite state
machine based approach. ArXiv, 2017.

[140] T. May. Timed-release crypto. http://cypherpunks.venona.com/date/

1993/02/msg00129.html, 1993.

[141] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich. The Android platform security
model. arXiv, 2019.

[142] A. McCurdy. Redis-py. https://pypi.org/project/redis/, 2021.

[143] Microsoft. Microsoft SEAL, 2021. https://www.microsoft.com/en-
us/research/project/microsoft-seal.

[144] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging “choice” to automate autho-
rization hook placement. In CCS, 2012.

[145] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua. Incentivizing
blockchain miners to avoid dishonest mining strategies by a reputation-based paradigm.
In ICIC, 2019.

[146] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-
centric security in Android. In ACSAC, 2009.

[147] R. Ostrovsky. Efficient computation on oblivious rams. In ACM Symposium on Theory
of Computing, 1990.

[148] pandas-dev. pandas. https://pandas.pydata.org/, 2021.

[149] D. Parkes, M. Rabin, S. Shieber, and C. Thorpe. Practical secrecy-preserving, verifiably
correct and trustworthy auctions. ECRA, 2008.

151



Dario Facchinetti

[150] P. Pearce, A. Felt, G. Nunez, and D. Wagner. AdDroid: Privilege separation for applica-
tions and advertisers in Android. In ASIACCS, 2012.

[151] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad. Searchable symmetric encryption:
Designs and challenges. 2017.

[152] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad. Searchable symmetric encryption:
Designs and challenges. ACM CSUR, 2017.

[153] J. Poon and T. Dryja. The Bitcoin lightning network: Scalable off-chain instant
payments. https://www.bitcoinlightning.com/wp-content/uploads/

2018/03/lightning-network-paper.pdf, 2016.

[154] A. P. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for order-preserving
encoding. In 2013 IEEE Symposium on Security and Privacy, 2013.

[155] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting
confidentiality with encrypted query processing. In Proc. of SOSP, 2011.

[156] A. O. S. Project. PackageParser. https://android.googlesource.com/

platform/frameworks/base/+/master/core/java/android/

content/pm/PackageParser.java, 2021.

[157] Python Software Foundation. multiprocessing - Process-based parallelism.
https://docs.python.org/3/library/multiprocessing.html, 2021.

[158] Python Software Foundation. pickle - Python object serialization. https:

//docs.python.org/3/library/pickle.html, 2021.

[159] M. Rabin. How to exchange secrets with oblivious transfer. IACR, 2005.

[160] M. Rabin and C. Thorpe. Time-lapse cryptography. Technical report, 2006.

[161] Redis Ltd. Redis. https://redis.io/, 2021.

[162] R. Rivest. Description of the LCS35 time capsule crypto-puzzle. https://

people.csail.mit.edu/rivest/lcs35-puzzle-description, 1999.

[163] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-release crypto.
Technical report, 1996.

[164] M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi. Seapp: Bringing
mandatory access control to android apps. In 30th USENIX Security Symposium (USENIX
Security 21), 2021.

152



References

[165] S. Ruggles et al. IPUMS USA: Version 10.0 [dataset], 2020.
https://doi.org/10.18128/D010.V10.0.

[166] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and M. Sobek. IPUMS
USA: Version 10.0 [dataset], 2020.

[167] P. Samarati. Protecting respondents’ identities in microdata release. IEEE TKDE, 2001.

[168] P. Samarati and S. De Capitani di Vimercati. Cloud security: Issues and concerns. In
Encyclopedia on cloud computing. 2016.

[169] R. Sandhu and P. Samarati. Authentication, access control, and audit. CSUR, 1996.

[170] A. Shamir. How to share a secret. Communications of the ACM, 1979.

[171] U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-flow integrity verifi-
cation for security-critical applications. In NDSS, 2006.

[172] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing flexible MAC to
Android. In NDSS, 2013.

[173] SQLite Consortium. SQLite. https://www.sqlite.org/index.html, 2021.

[174] Statista. Most popular installed ad network software development kits
(SDKs) across Android apps worldwide as of September 2020. https:

//www.statista.com/statistics/1035623/leading-mobile-app-

ad-network-sdks-android/, 2020.

[175] E. Stefanov, M. V. Dĳk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM:
an extremely simple oblivious RAM protocol. In ACM Computer & communications
security, 2013.

[176] N. Szabo. Formalizing and securing relationships on public networks. First Monday,
1997.

[177] T. Cornebize. pyroaring. https://pypi.org/project/pyroaring/, 2021.

[178] tc. Ubuntu man pages. https://manpages.ubuntu.com/manpages/xenial/
man8/tc.8.html, 2021.

[179] The Apache Software Foundation. Apache Arrow. https://arrow.apache.org/,
2021.

[180] The PostgreSQL Global Development Group. PostgreSQL. https://

www.postgresql.org/, 2021.

153



Dario Facchinetti

[181] The SELinux Project. Type Enforcement. https://selinuxproject.org/page/
NB_TE, 2015.

[182] The SELinux Project. libselinux. https://github.com/SELinuxProject/

selinux/tree/master/libselinux, 2021.

[183] Unity. Unity Ads. https://unity.com/solutions/unity-ads, 2021.

[184] U.S. Bureau of the Census. Public Use Microdata Sample. Individual

dataset of all US. 1-Year version of ACS 2018. https://

www2.census.gov/programs-surveys/acs/data/pums/2018/1-Year,
2019.

[185] U.S. Bureau of the Census. Public Use Microdata Sample. Individual

dataset of all US. 1-Year version of ACS 2019. https://

www2.census.gov/programs-surveys/acs/data/pums/2019/1-Year,
2019.

[186] H. Van Tran, T. Allard, L. d’Orazio, and A. El Abbadi. FRESQUE: A scalable ingestion
framework for secure range query processing on clouds. In Proc. of EDBT, 2021.

[187] M. von Maltitz and G. Carle. A performance and resource consumption assessment
of secret sharing based secure multiparty computation. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology, 2018.

[188] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li. Maple: Scalable multi-dimensional range
search over encrypted cloud data with tree-based index. In Proc. of ACM ASIACCS, 2014.

[189] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 2014.

[190] C. Wright, C. Cowan, J. Morris, James, S. Smalley, and G. Kroah-Hartman. Linux
Security Module framework. In Ottawa Linux Symposium, 2002.

[191] Z. Xiao, A. Amit, and D. Wenliang. AFrame: Isolating advertisements from mobile
applications in Android. In ACSAC, 2013.

[192] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.-C. Fu. Utility-based anonymization for
privacy preservation with less information loss. ACM SIGKDD Explorations Newsletter,
2006.

[193] A. Yao. Protocols for secure computations. In SFCS, 1982.

154



References

[194] Zerodium. Zerodium - The leading exploit acquisition platform. https://

zerodium.com, 2021.

[195] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized computation platform
with guaranteed privacy. arXiv, 2015.

155


