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Abstract−− Currently, there has been a sharp in-

crease in epidemic control research as a result of re-

cent epidemic outbreaks. Several strategies aiming to 

minimize the Epidemic Final Size and/or to keep the 

Infected Peak Prevalence under a specific value were 

proposed.  

However, not many strategies focused on analyz-

ing the impact of applying quantified measures in-

stead of continuous control action. This analysis is a 

crucial aspect since policymakers design their non-

pharmaceutical intervention based on a discrete scale 

of intensity, from mask-wearing to hard lockdown. 

In this work, we present a quantized-input non-

linear Model Predictive Control strategy to manage 

non-pharmaceutical interventions during an epi-

demic outbreak. The impact of quantifying the social 

distancing measure is computed through several sim-

ulations based on a COVID-19 epidemic model and 

considering different quantization levels of the non-

pharmaceutical intervention. Finally, the control per-

formance in each quantization level is evaluated with 

the computation of four epidemic indices. 

Keywords−− Epidemiological models, Model pre-

dictive control, Non-pharmaceutical interventions, 

Discrete control actions. 

I. INTRODUCTION 

Since the appearance of SARS-CoV-2 (Weiss and Na-

vas-Martin, 2005), humanity has had to face different 

global challenges in terms of health care and economy 

through epidemic control strategies (Alamo et al., 

2021a,b). This kind of pathogen will reappear recur-

rently, due to zoonotic interaction with other species 

(Lamers and Haagmans, 2022; Zhou et al., 2020). Thus, 

the emergence of novel human pathogens could poten-

tially lead to worldwide pandemics similar to the 

COVID-19 outbreak, in the near future (Akter et al., 

2021). These worldwide pandemics could have an uncon-

trolled exponential spread and, as we saw with COVID-

19, cause a global collapse of the healthcare system and 

economy (Abbasi, 2020; Brodeur et al., 2021). To coun-

teract these new pathogens, policymakers require tools to 

keep infectious diseases under control. In the absence of 

a vaccine or medical treatments, one of the main ways to 

lessen the disease transmission is by implementing Non-

Pharmaceutical Interventions (NPIs), mainly Social Dis-

tancing (SD) measures such as mask-wearing, stay-at-

home, the banning of gatherings, amount other (Flaxman 

et al., 2020). 

Several works have been made in the literature to con-

trol epidemic outbreaks by using social distancing 

measures (Köhler et al., 2021; Morato et al., 2020; Péni 

et al., 2020; Péni et al., 2022; Pataro et al., 2021; Carli et 

al., 2020), being the optimal control technique one of the 

most commonly used. The vast majority of these pro-

posals are based on continuous control actions instead of 

discrete ones, while common NPIs applied by policy-

makers are clearly discrete, covering no more than four 

or five possible severities. This fact, not only turns most 

of the control techniques unpractical in real scenarios but 

also suboptimal. 

In Köhler et al. (2021), the authors formulate a robust 

Non-linear Model Predictive Controller (NMPC) to man-

age the COVID-19 outbreak in Germany. The approach 

is based on manipulating the transmission rate on the 

(well-known) SIDARTHE model (Giordano et al., 

2020). The control action is considered as a continuous 

variable taking values between 0 (hard lockdown) and 1 

(no intervention). No quantization or discrete levels of 

SD are considered in the NMPC formulation. In Morato 

et al. (2020), a Model Predictive Controller (MPC) is 

proposed to manage social distancing in Brazil. The au-

thors present an optimal on-off SD strategy, thus allow-

ing authorities to consider two possible discrete levels of 

control action: the existence or the absence of SD policy. 

For these two possible discrete levels, the authors formu-

late a dwell-time restriction to avoid too frequent shifts 

between these two control inputs. In Péni et al. (2020), 

the authors presented an NMPC with logic constraints to 

manage the COVID-19 pandemic in Hungary. Similarly, 

to Carli et al. (2020), the authors consider a control input 

quantization by applying fixed levels of SD measures. 

 In this work, we analyze the quantization of control 

inputs under MPC strategies, to manage the SD measures 

in general epidemic models. For this, we formulate an 

NMPC that considers different levels of quantization for 

the SD measures, which can be obtained by a variety of 

combinations of the different measures of social distanc-

ing, such as: closing public spaces, schools, and univer-

sities; banning public transportation; wearing face mask; 

closing non-essential businesses, among others. To eval-

uate the controller performance, we simulate the control 

technique on the so-called SLPIAHRD model, which was 

proposed in Péni et al. (2020) and contains the following 

population compartments: susceptible, latent, pre-symp-

tomatic, infected-symptomatic, asymptomatic-infected, 

hospitalized, recovered, and deceased. 



Latin American Applied Research  53(4):417-422 (2023) 

418 

The controller performance is assessed through the 

next four indexes: the Epidemic Final Size (𝐸𝐹𝑆, total 

fraction of infected individuals at the end of the pandemic 

outbreak), the Infected Peak Prevalence (𝐼𝑃𝑃, which cor-

responds to the maximal fraction of infected individuals 

over the total epidemic time), the Social Distancing Index 

(𝑆𝐷𝐼, which we proposed as an index to measure the SD 

severity and side effects), and finally the Herd Immunity 

Time (𝐻𝐼𝑇, time required to achieve the herd immunity 

value). The obtained results are far from trivial, and we 

present an extensive interpretation of them, emphasizing 

the importance of considering quantization/discretization 

in the control input of optimal control strategies. 

 The work is organized as follows: Section I presents 

the between-host dynamical model and the epidemic per-

formance metrics. The control strategy for epidemiolog-

ical management is presented in Section II. In this sec-

tion, a non-linear MPC with quantized control actions is 

presented. After that, the results and discussion are pre-

sented in Section IV. Finally, some remarks are given in 

Section V to conclude this work. 

II. BETWEEN-HOST DYNAMICAL MODEL 

Having a model that represents the dynamics and inter-

action between susceptible, infected, and recovered pop-

ulations is necessary for the application of model-based 

predictive controllers. Here, we work with the 

SLPIAHRD model - an extended, compartmentalized, 

and control-oriented epidemiological model - presented 

in Péni et al. (2020). The population is divided into eight 

compartments: 𝑆 represents the susceptibles, i.e. people 

who are vulnerable to contracting the disease, 𝐿 (latent) 

stands for those who have already contracted the disease 

but have not yet shown symptoms and are not yet conta-

gious, and 𝑃 is the pre-symptomatic compartment, which 

represents persons who are infected but have not yet 

shown any symptoms. The infected individuals are 

moved then to the asymptomatic (𝐴) and symptomatic (𝐼) 

compartments when the incubation period has passed. 

Those in compartment 𝐴 will always recover, however, 

the more serious cases in compartment 𝐼 could need to be 

hospitalized and transferred to compartment 𝐻. Eventu-

ally, patients in 𝐻 may recover (𝑅) or die (𝐷). 

 The dynamical systems consist of eight ordinary dif-

ferential equations, describing the evolution of the popu-

lation in each stage over time. 

 𝑥̇𝑆 = −𝛽[𝑥𝑃 + 𝑥𝐼 + 𝛿𝑋𝐴]𝑋𝑠, (1) 

 𝑥̇𝐿 = 𝛽[𝑥𝑃 + 𝑥𝐼 + 𝛿𝑋𝐴]𝑋𝑠 − 𝛼𝑥𝐿 ,  

 𝑥̇𝑃 = 𝛼𝑥𝐿 − 𝑝𝑥𝑃,  

 𝑥̇𝐼 = 𝑞𝑝𝑥𝑃 − 𝜌𝐼𝑥𝐼 ,  

 𝑥̇𝐴 = (1 − 𝑞)𝑝𝑥𝑃 − 𝜌𝑎𝑥𝐴,  

 𝑥̇𝐻 = 𝜌𝐼𝜂𝑥𝐼 − ℎ𝑥𝐻 ,  

 𝑥̇𝑅 = 𝜌𝐼(1 − 𝜂)𝑥𝐼 + 𝜌𝐴𝑥𝐴 + (1 − 𝜇)ℎ𝑥𝐻,  

𝑥̇𝐷 = 𝜇ℎ𝑥𝐻 

where the time dependence was omitted for the sake of 

simplicity. Model parameters are shown in Table 1. This 

kind of extended model could be represented by grouping 

its different compartments into the three main categories 

of the SIR model: Susceptible, Infected/Infectious, and  
 

Table 1. Parameters of the SLPIAHRD model (Péni and 

Szederkényi, 2021) 
Parameter Value Meaning 

𝛼−1 2.5 

(days) 

Latent period 

𝑝−1 3 (days) Pre-symptomatic infectious period 

𝛽 1/3 Transmission rate 

𝛿 0.75 Relative transmissibility of asymptomatic 

𝑞 0.6 Probability of developing symptoms 

𝜌𝐼
−1

= 𝜌𝐴
−1 

4 (days) Infectious period 

𝜂 0.076 Hospitalization probability of symptomatic 
cases 

ℎ−1 10 Average length of hospitalization 

𝜇 0.145 Probability of fatal outcome, given hospitaliza-

tion 
 

Removed. In such a way, we have that Susceptible is 

given by 𝑆, while Infected is given by {𝐿, 𝑃, 𝐼, 𝐴, 𝐻}, and 

Removed is given by {𝑅, 𝐷}. Considering that there are 

no additional flows out of the traditional ones, we can 

make the stability analysis presented in Sereno et al. 

(2022), which allows us to properly define the control ob-

jectives that the controller will be required to achieve (see 

Subsection III.A. 

The time-varying reproduction number of the 

SLPIAHRD model is given by,  

 ℛ(∙) = 𝛽(∙) (
1

𝑝
+

𝑞

𝜌𝐼
+

𝛿(1−𝑞)

𝜌𝐴
), (2) 

which directly depends on the (assumed) time-varying 

parameter 𝛽 that is affected by the SD measures. The ef-

fect of any intervention (from mandatory mask-wearing 

to hard lockdown) can be quantified by scaling factors of 

the transmission rate 𝛽. From Péni et al. (2020), the 

boundedness of the transmission rate parameter is 

0.067 ≤ 𝛽 ≤ 1/3, where 𝛽𝑚𝑖𝑛 = 0.067 correspond to 

the strictest SD measure (note that no real-life SD is able 

to zero the transmission rate), and 𝛽𝑚𝑎𝑥 = 1/3 repre-

sents the absence of SD measures.  

A. Epidemic Indexes 

Here, we define the four epidemic indexes that are con-

sidered to assess the controller performance in the man-

agement of the epidemic outbreak. The performance in-

dexes are as follows: 

Infected Peak Prevalence (𝐼𝑃𝑃) 

The first epidemic-severity index, the IPP, is defined as: 

 𝐼𝑃𝑃 ≡ max
𝑡∈[0,∞)

𝐼(𝑡). (3) 

A high 𝐼𝑃𝑃, a large number of infected individuals in a 

given time, could overwhelm the healthcare capacity and 

consequently limit the capacity to take care of patients. 

Epidemic Final Size (EFS) 

Let 𝑆∞ ≡ lim
𝑡→∞

𝑆(𝑡), thus, the second epidemic-severity 

index, the 𝐸𝐹𝑆, is defined as:  

 𝐸𝐹𝑆 ≡ 1 − 𝑆∞. (4) 

A high 𝐸𝐹𝑆 means a high total number of infected indi-

viduals at the end of the epidemic, and consequently a 

higher number of deaths. Further information about the 

computation of 𝐸𝐹𝑆 is given in Sereno et al. (2022). 

Social Distancing Index (𝑆𝐷𝐼) 

In order to consider the undesirable outcomes and side 
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effects of the SD measures (i.e., psychological stress, 

economic damages, among others), the third epidemic-

severity index, the 𝑆𝐷𝐼, is defined as: 

 𝑆𝐷𝐼 ≡ ∫ (ℛ0 − ℛ(𝑡))𝑑𝑡 =
∞

0
∫ (ℛ0 − ℛ(𝑡))𝑑𝑡

𝑡𝑓

𝑡𝑖
. (5) 

A high 𝑆𝐷𝐼 means longer and harder interventions, caus-

ing social fatigue and economic issues. 

Herd Immunity Time (𝐻𝐼𝑇)} 

As shown in Sereno et al. (2022), a standard SIR-type 

model has a unique asymptotically stable set, define as 

𝒳𝑠
𝑠𝑡, which is reached when 𝑆 ∈ [0, 𝑆∗] and 𝐼 = 0, being 

𝑆∗ the herd immunity value defined as:  

 𝑆∗ ≡ 1/ℛ0. (6) 

Once 𝑆(𝑡) goes below the herd immunity value, 𝑆 ≤ 𝑆∗, 

the infected population can no longer increase, and there-

fore the system monotonically converges to the asymp-

totically stable set 𝒳𝑠
𝑠𝑡. So, the fourth epidemic-severity 

index, the 𝐻𝐼𝑇, is defined as the period of time required 

for the susceptible population to go below the herd im-

munity value, 𝑆∗, since the start of the epidemic outbreak, 

𝑡 = 0. 

III. Epidemic Control Strategy 

A. Control Objectives  

Considering the epidemiological indexes presented 

above, the control objectives for the MPC formulation 

are established as follows: 

Epidemic control objective: Bringing the 𝐸𝐹𝑆 as near as 

possible to 1 − 𝑆∗, while maintaining 𝐼𝑃𝑃 ≤ 𝐼𝑚𝑎𝑥 . 

Social control objective: Minimizing 𝑆𝐷𝐼, provided that 

the Epidemic Control Objective was achieved. 

B. Quantized Control Action 

The transmission rate parameter is quantized through the 

equation, 

 𝛽(𝑡) = 𝛽𝑚𝑎𝑥 − 𝑣(𝑡)∆𝛽, (7) 

with 

 ∆𝛽 =
𝛽𝑚𝑎𝑥−𝛽𝑚𝑖𝑛

𝑛
,  

where 𝑛 ∈ 𝕀 represents the number of possible SD 

measures, and 𝑣(𝑡) ∈ 𝕀[0,𝑛] is the control integer input 

describing the severity of the SD measure. Notice from 

Eq. 7 that 𝑣 = 0 corresponds to the absence of SD 

measures, while 𝑣 = 𝑛 corresponds to the hardest lock-

down. This way, from Eqs. 7 and 2, the integer control 

input 𝑣(𝑡) sets a discrete value from 𝛽, allowing us to 

select a specific reproduction number, as stated in Table 

2. Figure 1 shows a schematic plot of ℛ(𝑡) corresponding 

to an illustrative example of an intervention scenario 

when the number of possible SD measures is 𝑛 = 4. 𝑡𝑖 

and 𝑡𝑓 stand for the initial and final time of intervention, 

respectively. 

 
Table 2. Levels of SD measures, when 𝑛 = 4. 

𝑣(𝑡) 𝛽(𝑡) ℛ(𝑡) SD measure 

0 𝛽0 ℛ0 no SD measure 

1 𝛽1 ℛ1 addition of mask-wearing 

2 𝛽2 ℛ2 addition of university/school closure 

3 𝛽3 ℛ3 addition of stay-at-home measures 

4 𝛽4 ℛ4 hardest lockdown (all available measures) 

 

 
Figure 1. Schematic plot of ℛ(𝑡) for an illustrated intervention 

scenario. 

C. MPC Formulation 

The system (1) together with (7) is discretized to obtain 

the general form 𝑥𝑘+1 = 𝐹(𝑥𝑘 , 𝑣𝑘), 𝑘 ∈ 𝕀0:∞, where 𝐹(∙) 

is the discrete-time version of the non-linear function cor-

responding to the dynamical model (1). 𝑥𝑘 stand for the 

state vector at the sampled time 𝑘 (𝑥𝑘 ≡ 𝑥(𝑘𝑇𝑠), 𝑇𝑠 > 0 

is the sampling time), and 𝑣𝑘   stands for the input such 

that 𝑣(𝑡) = 𝑣𝑘, 𝑡 ∈ [𝑘𝑇𝑠, (𝑘 + 1)𝑇𝑠], 𝑘 ∈ 𝕀0:∞. We de-

fine 𝑡𝑖 and 𝑡𝑓 as the initial and final time of intervention, 

respectively. In such a way, for 𝑡 ∈ [𝑡𝑖, 𝑡𝑓] the MPC com-

putes the optimal SD measure. 

This subsection is dedicated to the non-linear model 

predictive controller formulation. This formulation is 

based mainly on the dynamic analyses conducted in 

Sereno et al. (2022), and the analysis made in the previ-

ous subsections. Here, we mainly focus on designing an 

MPC formulation that explicitly considers control ac-

tions in a quantized way, i.e., discrete levels of SD inter-

ventions. 

 The cost function to be minimized online by the MPC 

is given by: 

 𝑉𝑁(𝑥; 𝑣) = ∑ 𝑟‖𝑣𝑗‖
2

+ 𝑞𝑁−1
𝑗=0 ‖𝑆𝑗 − 𝑆∗‖

2
, (8) 

where 𝑁 stands for the control horizon, 𝑟 and 𝑞 are posi-

tive constants that stand for input, and state penalization, 

respectively. 𝑥 = 𝑥𝑘 = (𝑆𝑘 , 𝐿𝑘, 𝑃𝑘 , 𝐼𝑘 , 𝐴𝑘, 𝐻𝑘 , 𝑅𝑘, 𝐷𝑘) is 

the current state at time 𝑘 and 𝑣 ≡ {𝑣0, 𝑣1, ⋯ , 𝑣𝑁−1} is 

the predicted control sequence, with 𝑣𝑗 ∈ 𝕀[0,𝑛], for 𝑗 ∈

𝕀0:𝑁−1. In general, 𝑁 is assumed to be much smaller than 

the period of intervention, (𝑡𝑓 − 𝑡𝑖)/𝑇𝑠, and the controller 

is executed up to the final time of intervention, 𝑘𝑓 =

𝑡𝑓/𝑇𝑠 (then, no control action is implemented).  

 The optimization problem to be solved at each sam-

pling time 𝑘 (for all 𝑘 such that 𝑘𝑇𝑠 ∈ [𝑡𝑖, 𝑡𝑓]) is then 

given by: 

 min
𝑣

𝑉𝑁(𝑥; 𝑣) (9) 

s.t. 

 𝑥0 = 𝑥𝑘, 

 𝑥𝑗+1 = 𝐹(𝑥𝑗 , 𝑣𝑗),  𝑗 ∈ 𝕀0:𝑁−1, 

 𝑥𝑗 ∈ 𝒳,  𝑗 ∈ 𝕀0:𝑁−1, 

 𝑣𝑗 ∈ 𝕀[0:𝑛],  𝑗 ∈ 𝕀0:𝑁−1, 

 𝐻𝑗 ≤ 𝐻𝑚𝑎𝑥,  𝑗 ∈ 𝕀0:𝑁−1, 

constraint 𝐻𝑗 ≤ 𝐻𝑚𝑎𝑥 stands for the available healthcare 

capacity 𝐻𝑚𝑎𝑥, associated with the availability of beds in 

the healthcare system. 𝐹(𝑥𝑗 , 𝑣𝑗) is the predictive model in 

discrete-time version of the system (1), for 𝑗 ∈ 𝕀0:𝑁−1. 

The optimization problem is applied through a receding 
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horizon control strategy. Note that the use of quantized 

control actions leads to the use of mixed-integer nonlin-

ear programming strategies to solve (9).  

IV. SIMULATION 

In this section, different levels of quantization for SD in-

tervention are tested through several simulation scenar-

ios. These simulations were run on a laptop computer 

with an i7-4510U processor (2 cores, 4 threads, 2.0-3.1 

GHz) and 16GB RAM, using the software MATLAB 

R2021a and CasADi version 3.5.5 (Andersson et al., 

2019). To solve the mixed-integer non-linear problem 

(9), the BONMIN solver was used. 

 All simulations were performed for a period of 1 year, 

with a sampling time 𝑇𝑠 = 5 days, and 𝐻𝑚𝑎𝑥=0.002 was 

selected as a maximum healthcare capacity (percentage 

of the total population). Although different levels of 

quantization were considered, the minimal and maximal 

intervention severity was set as: 𝛽𝑚𝑖𝑛=0.067 (ℛ𝑛 =
0.44) and 𝛽𝑚𝑖𝑛=1/3 (ℛ0 = 2.2). According to these val-

ues, the herd immunity threshold is given by 𝑆∗ =
1 ℛ0⁄ = 0.4545. Model simulation was set as stated in 

Péni and Szederkényi (2021), the state space is normal-

ized between [0, 1], the initial state is given by 𝐿(0) =
2.0408 × 10−5, 𝑃(0) = 5.1020 × 10−6, 𝐼(0) =
2.0408 × 10−7, and 𝐴(0) = 1.0204 × 10−7 and 𝑆(0) =
1 − 𝐿(0) − 𝑃(0) − 𝐼(0) − 𝐴(0). The control horizon of 

the NMPC is selected to be 𝑁 =  30 days, while the pen-

alties 𝑟 and 𝑞 are selected to be 10−3 and $103, respec-

tively. This tuning was selected to prioritize the epidemic 

control objective, in contrast to the social control objec-

tive. The initial and final time of intervention was se-

lected as 𝑡𝑖 = 15 and 𝑡𝑓 = 285 days, respectively. In 

such a way, the controller has a time window of 9 months 

to apply the corresponding interventions to achieve the 

control objectives (IIIA). 

 For comparison purposes, a single-intervention strat-

egy (consisting of a 2 months hardest lockdown strategy, 

were 𝑣(𝑡) = 𝑛, from 𝜏𝑖 = 60 to 𝜏𝑓 = 120 days, i.e. 

ℛ(𝑡) = ℛ𝑛), and an absence-intervention strategy (un-

controlled epidemic, were 𝑣(𝑡) = 0, ℛ(𝑡) = ℛ0, for all 

𝑡) are also simulated and plotted in all figures. Figures 2 

to 5 show the temporal evolution of Susceptible, Total 

Infected, Hospitalized, and Deceased individuals, respec-

tively, while Fig. 6 shows the SD severity, i.e., ℛ(𝑡). As 

can be seen, the MPC controller with quantized inputs 

performs well on average for all possible levels of quan-

tization. The epidemic control objective is achieved for 

all the simulated levels of quantization, that is, the sus-

ceptible population remains close to the optimal value 𝑆∗, 

and as we can see in Table 3, the obtained 𝐸𝐹𝑆 values are 

quite similar in all cases and close to the optimal value 

𝐸𝐹𝑆 = 1 − 𝑆∗ = 0.5455$. However, one can see that 

the On-Off strategy (when 𝑛 = 2) performs slightly bet-

ter than the others. There is a variety of proposals in the 

literature that account for this On-Off implementation, 

but without accounting for the Epidemic Control Objec-

tive proposed in this article. Instead, they consider just a 

control objective consisting in minimizing the infected 

population over time (Morato et al., 2020; Bisiacco and 

Pillonetto, 2021; Bin et al., 2021), so resulting in strate-

gies with significantly large values of 𝐸𝐹𝑆.  

 As we can observe in Table 3, the On-Off strategy 

produces a larger 𝑆𝐷𝐼 and, in consequence, further social 

and economic fatigue. From Table 3 is noteworthy that 

the 𝐻𝐼𝑇 (in months) decreases as the level of quantization 

increases, suggesting that more levels of quantization en-

large the controllability of the system, allowing the con-  
 

 
Figure 2. Fraction of susceptible population for SLPIAHRD 

model. 

 
Figure 3. Fraction of total infected population for SLPIAHRD 

model (𝐿 + 𝑃 + 𝐼 + 𝐴 + 𝐻). 

 
Figure 4. Fraction of Hospitalized population for SLPIAHRD 

model. Black horizontal-dashed line represents the maximum 

healthcare capacity. 
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Table 3. Performance indexes for the SLPIAHRD model 

Quantization levels 
Performance index 

𝐸𝐹𝑆 𝐼𝑃𝑃 𝑆𝐷𝐼 𝐻𝐼𝑇 

2 0.5455 0.0437 38.72 10.67 

4 0.5456 0.0413 37.55 9.333 

6 0.5457 0.0376 36.26 8.333 

8 0.5458 0.0459 35.20 8.667 

10 0.5459 0.0431 35.40 8.500 

12 0.5461 0.0451 34.40 8.667 

 

 
Figure 5. Fraction of Deceased population for SLPIAHRD 

model. 

 

 
Figure 6. Reproduction number as a control action for 

SLPIAHRD model. 

 
 

troller to converge faster to the asymptotically stable set 

𝒳𝑠
𝑠𝑡. No significant difference can be observed for the 

𝐼𝑃𝑃 index, presumably because the controller always 

tries to operate at the edge of hospital capacity, 𝐻𝑚𝑎𝑥. 

The higher the number of SD levels, the more the con-

troller can operate on the edge of the constraint, which 

can be seen in detail in Fig. 7a and 7b. In addition, all 

quantization levels are able to maintain the hospitalized 

individuals under the 𝐼𝑃𝑃 restriction, 𝐻𝑗 ≤ 𝐻𝑚𝑎𝑥, see 

Fig. 4. Finally, Fig. 5 shows that the controller strategy 

achieves a lower value of the deceased individuals than 

the single-intervention and absence-intervention strate-

gies, suggesting that this objective is not a trivial one (or 

one consisting in just applying an intuitive strategy). 
 

 

Figure 7. (a) Hospitalized population behaviour vs changes in 

quantization NPI levels. (b) Control action pattern with respect 

to different quantization levels.  

 

V. CONCLUSIONS 

A quantized input analysis for model predictive control 

applied to the COVID-19 pandemic was presented in this 

paper. First, we consider a well-posed formulation of the  

 

optimal control problem for the MPC strategy, based on 

the results in Sereno et al. (2022). Then, an input quanti-

zation process is made to evaluate the control perfor-

mance based on different levels of quantization. The 

transmission rate parameter was selected to conduct this 

quantization process and through it, different levels of 

SD interventions were performed and associated with 

different levels of the reproduction number. Four differ-

ent epidemic severity indexes were stated to evaluate the 

controller performance under quantized level variations. 

A single intervention and an absence-intervention strat-

egy were also simulated to compare with the proposed 

MPC strategy. The epidemic control objective is 

achieved for all simulated quantization levels. It is im-

portant to mention that less quantization levels produce 

more social and economic fatigue. Otherwise, a strategy 

more like a fast periodic switching policy, between the 

absence and hardest intervention, could numerically 

achieve slightly better performance on the $EFS$ index. 

Accounting for the social control objective, the $SDI$ is 

minimized better when we have the availability to imple-

ment more levels of SD interventions. So, policymakers 
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could achieve less social and economic fatigue by con-

sidering more social distancing measures apart from the 

traditional ones. As a future work, a robustness analysis 

of the impact of quantifying social distancing measures 

may add further value to the research. 
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