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A B S T R A C T

In this paper, a Districting Problem with chance-constraints balancing requirements is investigated. The goal is
to partition a set of basic Territorial Units into 𝑝 contiguous and compact districts such that their probability of
being balanced is above a minimum threshold. For such a problem, an approximate counterpart is considered,
in which deterministic inequalities are used to express the need for the districting plan to be balanced across
a large set of randomly drawn scenarios. This leads to a sample approximation problem. In order to solve
the latter, a new heuristic algorithm is devised. The proposed procedure exploits a location–allocation scheme
coupled with a so-called ‘‘balancing constraints-generation’’ procedure. In practice, the sample approximation
problem is iteratively solved by adding demand scenarios (and, hence, the corresponding balancing constraints)
on the fly. Several measures to drive the selection of such scenarios and embed them into the problem
during the solution process are introduced and discussed. Extensive computational experiments on testbed
instances from the literature prove the validity of the devised procedure, showing that it outperforms existing
heuristics in the number of solved instances and/or computing times while assuring comparable solutions’
quality, especially for larger-sized test cases.
1. Introduction and background

Districting Problems (DPs) represent a well-known family of opti-
mization problems in which a set of basic geographical Territorial Units
(TUs) has to be grouped into a given number of clusters (i.e., the
districts). Typically, districts are created in such a way as to meet
some desirable properties. The latter usually include integrity, balancing,
compactness, and contiguity. Integrity means that each TU belongs to
only one district. Balancing expresses the need for districts of similar
size w.r.t. some activity measures associated with the TUs (e.g., areas,
population, demand for a service). Without loss of generality, from
now on, we refer to such activity measures as demands. Contiguity
implies that the devised districting plan does not include enclaves,
which also ensures that there is always a path connecting two TUs
belonging to the same district that does not cross any other district.
Finally, compactness is a topological property requiring that districts
do not have elongated shapes. Other relevant criteria may apply de-
pending on the specific application context (e.g., respect of natural or
administrative boundaries, similarity w.r.t. an existing plan). Indeed,
DPs have been successfully used to model and solve mid-to-long-term
strategic decision problems in various fields, often referred to in the
literature as: (i) political districting (Bozkaya et al., 2003; Ricca et al.,
2013); (ii) sales territory design (Ríos-Mercado and Fernández, 2009;
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Salazar-Aguilar et al., 2011); (iii) service districting (Mendes et al.,
2022; Ríos-Mercado and Bard, 2019); (iv) distribution districting (Bender
et al., 2020; Konur and Geunes, 2019). The interested readers can find
an extensive overview on districting in the chapter by Kalcsics and
Ríos-Mercado (2019) and the book by Ríos-Mercado (2020).

The specific DP considered in this paper stems from the need to cope
with uncertainty on the demands originating from the TUs. Indeed,
if demand changes, one of the main features of a districting plan,
i.e., balancing, may fail. This leads to a stochasting districting problem.

Scholars’ interest towards stochastic districting is relatively recent. As
the discussion by Kalcsics and Ríos-Mercado (2019) highlights, such a
stream emerged in the context of distribution logistics for the design
of pickup and delivery districts. In practice, when uncertainty on the
demands exists, some authors resorted to districting approaches to deal
with stochastic vehicle routing problems. This is the case, for instance,
of the works by Haugland et al. (2007), Lei et al. (2012, 2016). In these
studies, a two-stage stochastic program is adopted, where districts are
devised in the first stage and routing decisions are taken in the second
stage, once demands become known. The authors propose specific
heuristic and metaheuristic procedures to solve these problems. A sim-
ilar setting is also considered by Carlsson (2012), Carlsson and Delage
(2013), who employ ‘‘computational geometry-based’’ methodologies
for the problem at hand.
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A two-stage stochastic programming model is also studied in Nikzad
et al. (2021) and Diglio et al. (2020). Specifically, Nikzad et al. (2021)
investigate a home health care planning problem with uncertainty on
travel and service times. Districting decisions are taken in the first
stage to partition the set of patients into clusters to be served by
caregivers. Then, routing and scheduling decisions for care delivery are
taken in the second stage. Instead, Diglio et al. (2020) ignore routing
decisions and focus on a ‘‘more standard’’ formulation for districting,
namely, optimizing compactness subject to integrity and balancing
requirements. In the first stage, a districting plan is determined, seeking
a set of compact districts; in the second stage, after uncertainty on
demands is disclosed, redistricting decisions are taken, i.e., TUs are
eventually reassigned to other districts to meet balancing.

An alternative framework for stochastic districting is considered
in Darmian et al. (2021), who propose a robust optimization model –
using the so-called uncertainty sets – to solve a healthcare districting
problem motivated by uncertainty on the demands for health services.
Besides, the authors also develop a graph-based genetic algorithm to
achieve approximate solutions to the problem.

Finally, another recently explored approach consists of resorting
to the use of chance-constrained programming. The latter is also the
ocus of the present work. In this case, a contiguous and compact
istricting plan is sought such that balancing requirements hold with
given probability, which is a user-defined parameter. The problem

s first introduced by Diglio et al. (2021), who design a two-step sim-
euristic solution procedure (Juan et al., 2015) to solve it. In the first
tep, a contiguous solution is found by optimizing compactness and
gnoring the balancing constraints. In the second step, a simulation
outine is applied, which estimates the probability in the chance-
onstraints and drives the corrections to be made to the current solution
i.e., TUs’ reassignments) if the given threshold is not met. For the same
roblem, Diglio et al. (2023) propose a sample approximation approach
see Luedtke and Ahmed, 2008). In that reference, the authors derive an
pproximate deterministic counterpart in which uncertainty is captured
y a large finite set of randomly drawn scenarios. Such formulation is
lso the base of two solution matheuristic algorithms exploiting a well-
stablished scheme in the location analysis and districting literature,
nown as location–allocation (Ríos-Mercado et al., 2021). The first
ethod relies on a sub-sampled problem, while the second approach

nvolves solving many single-scenario problems. Both methods provide
n initial solution for the problem, which is iteratively improved. Exten-
ive experiments prove the effectiveness of the proposed approaches,
hich produce higher-quality solutions w.r.t. the heuristic by Diglio
t al. (2021), at the cost of a more expensive computational effort.

The present work introduces a novel matheuristic algorithm to solve
he sample approximation model introduced by Diglio et al. (2023).
ur research effort stems from some empirical observations gained

rom the latter reference. Firstly, a solution satisfying a given set of
alancing requirements is often feasible for a larger set of such con-
traints. Also, attempting to solve a model embedding a high number of
alancing constraints may be computationally prohibitive, even when a
romising starting solution is used. Indeed, in Diglio et al. (2023), only
relatively small subset of larger-sized instances – involving 1000 TUs

nd 1000 demand scenarios – was solved. The key finding, in practice,
s that an efficient solution procedure involves reducing the number of
cenarios (hence, of balancing constraints) to be considered to obtain
feasible solution.

Therefore, the main contribution of this work is to design a more
fficient algorithm for the discussed problem. The proposed algorithm
s based on a location–allocation scheme coupled with a ‘‘balancing
onstraints-generation’’ procedure. In essence, the sample approximation
odel is iteratively solved by adding balancing constraints on the fly.

everal measures/criteria to embed such constraints during the solution
rocess are introduced and discussed. Extensive computational experi-
ents on testbed instances from the literature prove the validity of the
2

roposed procedure, showing that it outperforms existing heuristics in
the number of solved instances and/or computing times while assuring
comparable solutions’ quality, especially for larger-sized test cases.

The remainder of the paper is organized as follows. In Section 2,
we revisit the formulation of the investigated optimization problem. In
Section 3, the proposed heuristic is described. In Section 4, results from
the computational experiments are given. Conclusions and directions
for future research finally follow in Section 5.

2. Optimization models

In this section, we start by presenting a general mathematical
programming model for the chance-constrained districting problem.
From this program, we build afterwards an approximate deterministic
counterpart, i.e., a sample approximation model, which is also the core
of the heuristic algorithm devised in Section 3. The models presented
in this section are the same as in Diglio et al. (2023). Nevertheless, we
briefly revisit them here for the sake of clarity. This way, we also ensure
that this manuscript is self-contained.

2.1. A probabilistic districting model

The aim of the investigated problem is to partition a set, say 𝐼 ,
of Territorial Units (TUs) into 𝑝 contiguous districts, such that the
balancing requirement holds with a given probability 𝛾. Each TU 𝑖 is
ssociated with a demand, 𝑑𝑖, which is assumed to be a random variable
ith a known CDF. Accordingly, balancing is expressed by ensuring

hat each district serves a demand which deviates no more than a
aximum desirable deviation 𝛼 (𝛼 ∈ [0, 1]) from a reference value
, accounting for the average demand per district (𝜇 =

∑

𝑖∈𝐼 𝑑𝑖
𝑝 ). Note

that 𝜇 is a random variable itself. We also denote by 𝝃 = [𝑑1,… , 𝑑
|𝐼|]

he random vector containing all the possible future realizations of
he demands. Hence, we are looking for a districting plan whose
robability P𝝃 of being balanced is above a given threshold 𝛾 whatever
he realization of the demands might be.

As customary in districting problems, single assignments for the TUs
re considered. This is accomplished by designating a representative
U for each district. To this end, binary decision variables 𝑥𝑖𝑗 are

ntroduced for each pair of TUs (𝑖, 𝑗) ∈ 𝐼 , equal to 1 if TU 𝑖 is assigned to
U 𝑗, and 0 otherwise. The representatives (or centers) of the districts are
hose TUs 𝑗 ∈ 𝐼 such that 𝑥𝑗𝑗 = 1. Clearly, each district has a different
epresentative. Hence, we abuse the language by saying that TU 𝑖 is
ssigned to district 𝑗 if it is assigned to TU 𝑗.

Besides, to model contiguity, we consider a graph 𝐺 = (𝐼, 𝐸)
epresenting a connected network underlying the problem, where 𝐼 is
he set of TUs, and 𝐸 is the set of edges, i.e., of direct connections
etween the TUs. We say that two TUs are adjacent or contiguous if a
irect connection exists between them. Accordingly, we denote by 𝐾𝑖
he set of TUs adjacent to 𝑖 ∈ 𝐼 : 𝐾𝑖 = {𝑗 ∈ 𝐼 ∶ (𝑖, 𝑗) ∈ 𝐸 ∨ (𝑗, 𝑖) ∈ 𝐸}.

The objective function is a distance-based measure of compactness,
xpressed as the sum of the allocation costs of the TUs to the (repre-
entatives of the) districts. We denote by 𝑐𝑖𝑗 the distances between TUs
and 𝑗.

Based on the introduced notation, the Probabilistic Districting Problem
PDP) can be formulated as follows:

inimize
∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑐𝑖𝑗𝑥𝑖𝑗 , (1)

subject to
∑

𝑗∈𝑁
𝑥𝑖𝑗 = 1, 𝑖 ∈ 𝐼, (2)

∑

𝑗∈𝐼
𝑥𝑗𝑗 = 𝑝, (3)

P𝝃

[

(1 − 𝛼)𝜇𝑥𝑗𝑗 ≤
∑

𝑖∈𝐼
𝑑𝑖𝑥𝑖𝑗 ≤ (1 + 𝛼)𝜇𝑥𝑗𝑗 , 𝑗 ∈ 𝐼

]

≥ 𝛾, (4)
∑

𝑥𝑖𝑗 −
∑

𝑥𝑖𝑗 ≤ |𝑁| − 1,

𝑖∈𝑁 𝑖∈∪𝑣∈𝑁 (𝐾𝑣⧵𝑁)
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𝑗 ∈ 𝐼, 𝑁 ⊂ [𝐼 ⧵ (𝐾𝑗 ∪ {𝑗})], (5)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 ∈ 𝐼. (6)

bjective function (1) optimizes the compactness of the devised dis-
ricting plan by minimizing the total assignment costs of the TUs to the
istricts. Constraints (2) are the single assignments constraints, assuring
hat each TU is assigned to only one district. Constraints (3) define the
umber of districts 𝑝 to be designed. Constraints (4) state that balanc-
ng must hold with a probability higher than or equal to 𝛾. Contiguity
s ensured by means of Constraints (5), adopted from (Salazar-Aguilar
t al., 2011). These inequalities specify that, for any given subset 𝑁 of
Us allocated to a generic representative 𝑗 not containing 𝑗, there must
e an arc between 𝑁 and the set containing 𝑗. Constraints (6) define

the domain of the introduced decision variables.
Note that Constraints (5) are exponentially in number. Nevertheless,

as (Salazar-Aguilar et al., 2011) discuss, they have two important pros.
First, they only make use of the already introduced 𝑥-variables. Besides,
they give rise to an exact row-generation approach to districting, where
contiguity constraints are added on the fly during the solution process.
As we discuss in Section 3, we also embed such an approach in our
solution procedure. For this reason, we include these constraints in our
formulation.

Finally, according to Salazar-Aguilar et al. (2011), we also consider
the following valid inequalities enhancing our model:
∑

𝑚∈𝐾𝑖

𝑥𝑚𝑗 ≥ 𝑥𝑖𝑗 , 𝑗 ∈ 𝐼, 𝑖 ∈ 𝐼 ⧵ ({𝑗} ∪𝐾𝑗 ). (7)

These constraints state that, if a TU 𝑖 is assigned to a representative
𝑗 it is not adjacent to, a necessary condition for contiguity is that at
least one TU 𝑚 adjacent to 𝑖 is also assigned to 𝑗. In the referenced
paper, the authors demonstrate that such inequalities reduce the com-
putational burden required to solve the problem up to optimality using
a row-generation approach.

In summary, the PDP we wish to solve consists of minimizing (1),
subject to (2)–(7).

2.2. A sample approximation model

As discussed by Diglio et al. (2023), an approximate deterministic
counterpart to our PDP can be obtained by assuming that uncertainty
can be captured by a finite set 𝑆 of scenarios of large cardinality, ran-
omly drawn from the known CDF underlying the demand. For such a
andom sample, chance-constraints (4) can be replaced by deterministic
nequalities ensuring that the districting plan is balanced for at least
|𝑆| of its elements. This leads, in fact, to a sample approximation
pproach (see Luedtke and Ahmed, 2008).

To model the problem, we need to index in 𝑆 some relevant parame-
ters. In particular, we denote by 𝑑𝑖𝑠 the demand of TU 𝑖 ∈ 𝐼 in scenario
𝑠 ∈ 𝑆, and by 𝜇𝑠 the reference value for the balancing requirement
under scenario 𝑠, expressed as the average demand per district under
that scenario occurrence (𝜇𝑠 =

∑

𝑖∈𝐼 𝑑𝑖𝑠
𝑝 ). Also, we introduce the binary

decision variables 𝜙𝑠, equal to 1 if the districting is not balanced under
scenario 𝑠, and 0 otherwise.

With this additional notation, the probabilistic balancing constraints
4) can be replaced by the following inequalities:

𝑖∈𝐼
𝑑𝑖𝑠𝑥𝑖𝑗 + 𝑓𝑠𝜙𝑠 ≥ (1 − 𝛼)𝜇𝑠𝑥𝑗𝑗 , 𝑗 ∈ 𝐼, 𝑠 ∈ 𝑆, (8)

∑

𝑖∈𝐼
𝑑𝑖𝑠𝑥𝑖𝑗 − 𝑔𝑠𝜙𝑠 ≤ (1 + 𝛼)𝜇𝑠𝑥𝑗𝑗 , 𝑗 ∈ 𝐼, 𝑠 ∈ 𝑆, (9)

∑

𝑠∈𝑆
𝜙𝑠 ≤ ⌊(1 − 𝛾)|𝑆|⌋, (10)

𝜙𝑠 ∈ {0, 1}, 𝑠 ∈ 𝑆. (11)

Constraints (8)–(9) express the balancing requirements across the
3

set of scenarios 𝑆. Note that these inequalities become inactive if the e
scenario is not balanced under scenario 𝑠. This is ensured through an
appropriate setting of parameters 𝑓 and 𝑔 when the corresponding
decision variable 𝜙𝑠 takes value one. Specifically, for each scenario
𝑠 ∈ 𝑆, we set:

𝑓𝑠 = (1 − 𝛼)𝜇𝑠 − 𝑑[1]𝑠,

𝑔𝑠 = (𝑝 − 1 − 𝛼)𝜇𝑠 −
𝑝−1
∑

𝑚=1
𝑑[𝑚]𝑠,

here 𝑑[𝑚]𝑠 is the demand vector under scenario 𝑠 ∈ 𝑆 when demand
alues are sorted non-decreasingly.1

Inequality (10) ensures that the districting plan is balanced for
t least 𝛾|𝑆| scenarios, while the binary domain of the introduced
-variables is stated by Constraints (11).

Based on the above, our Sample Approximation Districting Problem,
ay (SADP), consists of solving the following model: minimizing (1),
ubject to (2)–(3), (5)–(11). For such a problem, a heuristic procedure
s described next.

emark 1. The SADP is -hard. This result is already discussed
n Diglio et al. (2023) and in Ríos-Mercado et al. (2021) for a similar
roblem. Following the latter reference, we first note that, although
nequalities (5) are exponential in number, checking the feasibility of
potential solution to our SADP (a 𝑝-partition of the set of TUs 𝐼) can
e done in polynomial time using a Breadth-First Search or Depth-First
earch algorithm. Hence, SADP is in NP. In addition, if we take the
articular case of a complete underlying graph 𝐺 and set 𝛾 = 0 (or,
quivalently, if 𝛼 takes very high values), which implies the balancing
onstraints (8)–(9) are not binding, the SADP becomes the 𝑝-Median
roblem (pMP), which is well-known to be -hard. In other words,
he pMP is polynomially reducible to the SADP. From here, the result
ollows.

. Solution algorithm

In this section, we develop a matheuristic algorithm for solving
he presented Sample Approximation Districting Problem (SADP). The
atter may become computationally prohibitive to tackle by commercial
olvers even for a reduced number of TUs and scenarios involved
i.e., |𝐼| and |𝑆|, respectively). Recall, in fact, that the considered
roblem is -hard (see Remark 1). For this reason, resorting to
euristic approaches is necessary to solve instances of meaningful size
n practical real-world-like applications.

The procedure we propose exploits a consolidated approach in the
istricting literature, i.e., the location–allocation scheme. The procedure,
hich we revisit in Algorithm 1, consists of two main steps: (i) the
ocation phase, in which a set of 𝑝 candidate centers is determined
line 1); (ii) the Allocation phase, in which TUs are assigned to the
dentified centers obtaining a balanced and contiguous solution (line 4).
t this point, new candidate centers are found by solving a 1-median
roblem within each district (line 5). This step helps minimizing our
bjective function (the allocation costs of the TUs). The procedure
terates until centers do not change in two consecutive iterations, that
s, no improved solutions can be achieved.

1 This result is rather intuitive if we consider that districts’ representatives
re assigned to themselves, which implies that each district contains at least
ne TU. Hence, in any given scenario 𝑠, we can say that the lowest demand a
istrict can serve equals the lowest value of the demand observed in scenario
, i.e., 𝑑[1]𝑠. To the contrary, the highest possible value equals the total demand
inus the lowest (𝑝− 1) demand occurrences in that scenario, i.e., ∑𝑝−1

𝑚=1 𝑑[𝑚]𝑠.
he latter sum accounts for the lowest possible value of the demand served by
he other (𝑝 − 1) districts in case they serve only their representatives. From
hese observations, the above settings follow. We refer the reader to Diglio
t al. (2023) for the proof of this result.
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Algorithm 1 Location–allocation approach
1: Determine 𝑝 initial centers. Let 𝐼𝐶 be the resulting set;
2: repeat
3: 𝐼∗ ← 𝐼𝐶 ; // best set of centers up to the current iteration
4: Impose the centers to the model, by fixing 𝑥𝑗𝑗 = 1, ∀𝑗 ∈ 𝐼∗, and

solve it;
5: Update the centers of the districts; // solve a 1-median problem

in each district
6: 𝐼𝐶 ← new set of 𝑝 centers;
7: until 𝐼𝐶 = 𝐼∗ // centers unchanged, i.e., no further improvement

achieved
8: return 𝑥⋆; // a feasible districting solution.

Our main contribution is in the algorithmic approach devised to
olve the underlying optimization model (line 4). Recall that the SADP
nvolves |𝐼|× |𝑆| number of balancing constraints (see Inequalities (8)–

(9)), which reduce to 𝑝×|𝑆| when 𝑝 centers are already identified. Since
embedding all of them directly in the model may be impracticable, the
core idea of the proposed algorithm is to start addressing a reduced
model, restricted to a few selected scenarios (thus, a few balancing
requirements). Once a solution for such a restricted model is found,
we check if it is balanced in at least 𝛾|𝑆| scenarios (as stated by
Inequalities (10)). If that is the case, we have a feasible solution for the
SADP. Otherwise, new scenarios are selected from the set of violated
ones, i.e., those in which the current districting plan is not balanced.
Accordingly, the corresponding balancing constraints are added to the
model, in a sort of ‘‘balancing constraints-generation’’ approach, until
the above condition is met. Several criteria are introduced to drive the
selection of the scenarios to be added to the model. We detail these
ideas in the next subsections.

3.1. A ‘‘balancing constraints-generation’’ procedure

The procedure we propose is based upon considering an initial
restricted model that results from restricting model SADP to a random
sample of scenarios 𝑆′ drawn from set 𝑆. We denote this restricted
model by SADP[𝑆′]. Of course, we target a sample such that |𝑆′

| is
clearly smaller than |𝑆|. Note that we may also wish to start with
a single scenario, that is, |𝑆′

| = 1. In general terms, our procedure
starts by considering an initialNumberOfScenarios, which is a
user-defined parameter.

We underline that we apply a slight modification to model SADP
when restricted to the random sample 𝑆′. Specifically, we want to
find a districting solution that satisfies all the considered scenarios
(i.e., balancing requirements) simultaneously. The model we solve,
denoted by SADP′ [𝑆′], is obtained by replacing inequalities (8)–(11),
by the following:

(1 − 𝛼)𝜇𝑠𝑥𝑗𝑗 ≤
∑

𝑖∈𝐼
𝑑𝑖𝑠𝑥𝑖𝑗 ≤ (1 + 𝛼)𝜇𝑠𝑥𝑗𝑗 , 𝑗 ∈ 𝐼, 𝑠 ∈ 𝑆′. (12)

This way, the 𝜙-variables do not need to be introduced at all in
model SADP′[𝑆′]. Note that, of course, we can obtain the same result
by imposing 𝛾 = 1 in model SADP[𝑆′].

Let us denote by 𝐱̂(𝑆′) the feasible solution obtained by solving
the above model. After that, we evaluate the number of balanced
scenarios 𝜋̂(𝐱̂(𝑆′)) associated with this solution. This number can be
easily computed by considering the demand vector associated with each
scenario 𝑠 ∈ 𝑆 and checking whether the solution is balanced for
that demand occurrence. We denote by 𝑆𝐵 the corresponding set of
balanced scenarios. Clearly 𝑆′ ⊂ 𝑆𝐵 . If this number is higher than or
equal to 𝛾|𝑆|, we stop. Otherwise, we look for an additional sample 𝑆′′

of scenarios chosen in 𝑆⧵(𝑆𝐵∪𝑆𝑇 ), and solve the model SADP′[𝑆′∪𝑆′′].
The number of new scenarios to be added at each iteration is again a
user-defined parameter, denoted by numberOfScenariosToAdd. In
4

this case, we update the numberOfIterationsNeeded to obtain a
feasible solution. Also, we update the totalElapsedTime once each
model is solved.

Note that 𝑆𝑇 represents the subset of the so-called ‘‘tabu’’ scenarios.
In fact, as our empirical evidence show, the addition of new scenarios
(and the corresponding balancing constraints) may sometimes result
in a lower number of balanced scenarios associated with the obtained
solution (i.e., 𝜋̂, see line 13 in Algorithm 2). However, as can be
reasonably expected, we observed that the general trend of the number
of balanced scenarios is non-decreasing with the number of iterations
and, hence, the number of scenarios considered in the restricted model.
Still, one may wish to avoid considering the scenarios causing such a
reduction. Hopefully, a lower number of scenarios in the model may
ease its resolution, yield a larger decision space and lead to higher-
quality solutions, in terms of objective function (the model, in fact, is
‘‘more relaxed’’).

To this end, in a generic iteration of our solution procedure, we
check if the above-mentioned number of balanced scenarios 𝜋̂ is lower
than that found in the previous iteration, say 𝜋̂𝑂𝐿𝐷 (line 14). That being
that the case, we update the set of tabu scenarios 𝑆𝑇 by enlarging it
to the set of scenarios added in the previous iteration (and leading
to such reduction), namely 𝑆𝑂𝐿𝐷. We consider a maximum number of
iterations, say 𝑘𝑚𝑎𝑥, in which scenarios in 𝑆𝑇 are considered as tabu.
Scenarios labeled as tabu for a number of iterations that exceeds such
a threshold (updated at the beginning of each iteration as in line 9)
are no longer considered in such status (line 17). We emphasize that
the above considerations are actually into effect if 𝑘𝑚𝑎𝑥 > 0. Otherwise,
scenarios are never considered as tabu throughout our procedure.

The procedure stops either: (i) the desired number of balancing
scenarios (𝛾|𝑆|) is obtained, that is, a feasible solution has been found,
or (ii) a maxIter number of iterations, or (iii) a timeLimit are
attained, or (iv) the set of ‘‘eligible’’ scenarios that can be added to the
model is empty (i.e., we are not able to add any new scenarios to our
model, due to tabu conditions as the number of iterations increases).

If a feasible solution is obtained, we try to improve it. To this end,
we perform a classic location–allocation scheme (as in Algorithm 1)
without adding new balancing constraints. In practice, we solve model
SADP′[𝑆′], where 𝑆′ denotes the latest (most updated) set of balancing
constraints considered in the previous step.

It may be possible that, in this final loop, improved solutions may
be associated with a number of balanced scenarios π̂ lower than 𝛾|𝑆|.
When this circumstance is verified (line 33), we discard such solutions.
This way, we ensure the feasibility of the obtained solutions across the
original sample 𝑆.

We formalize the procedure in Algorithm 2.

Remark 2. Algorithm 2 is, in fact, a location-application scheme
applied to our sample approximation problem (SADP). Specifically, we
see the Location phase in line 3. The Allocation phase can be recognized
in the main loop, i.e., lines 8–25. Indeed, at the end of this step, a
feasible districting plan for the SADP is (hopefully) found. The final
loop, i.e., lines 27–36, defines an Improvement phase, where we seek to
optimize compactness by applying again a location–allocation approach
starting from the feasible solution obtained in the previous step.

Remark 3. The 𝑝 centers in line 3 are selected using the heuristic
by Resende and Werneck (2004). The resolution of model SADP′[𝑆′]
in line 10 and in line 29 is performed through the row-generation
approach by Salazar-Aguilar et al. (2011). In extreme summary, we
start solving the model without inequalities (5). Note that the 𝑝 ob-
tained districts induce a 𝑝-partition of the underlying graph. Thus, we
need to check if each partition contains some connected components,
i.e., groups of connected TUs that are not connected to the center
of their district, which we perform in polynomial time by depth-first
search (see also Remark 1). If this circumstance occurs, each of these
components induces a violated constraint, in the form of inequalities
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Algorithm 2 Balancing constraints-generation procedure
(initialNumberOfScenarios, numberOfScenariosToAdd,
maxIter, timeLimit, 𝑘𝑚𝑎𝑥)
1: Draw a random sample 𝑆′ from sample 𝑆 (with |𝑆′

| = initialNum-
berOfScenarios);

2: Consider the restricted model SADP′[𝑆′];
3: Using the restricted model select 𝑝 centers. Let 𝐼𝐶 be the resulting set of

centers;
4: counter ← 1; // number of iterations needed to obtain a feasible solution
5: 𝜋̂𝑂𝐿𝐷 ← 0; // number of balanced scenarios in the previous iteration
6: 𝑆𝑇 ← ∅; // set of tabu scenarios
7: 𝑆𝑂𝐿𝐷 ← ∅; // set of scenarios added in the previous iteration
8: repeat
9: Update the number of iterations in which scenarios in 𝑆𝑇 have been

labeled as tabu;
0: Solve the restricted model SADP′[𝑆′] fixing 𝑥𝑗𝑗 = 1, ∀𝑗 ∈ 𝐼𝐶 ;

11: Find the best center within each district. Let 𝐼 ′
𝐶 be the new set of

centers; // solve a 1-median problem in each district
12: 𝐼𝐶 ← 𝐼 ′

𝐶 ; // best set of centers up to the current iteration
13: Evaluate the number of balanced scenarios 𝜋̂ associated with the current

solution. Let 𝑆𝐵 be the set of balanced scenarios;
14: if (𝜋̂ < 𝜋̂𝑂𝐿𝐷) then
15: 𝑆𝑇 ← 𝑆𝑇 ∪ 𝑆𝑂𝐿𝐷; // label the latest set of added scenarios as tabu
16: end if
17: Remove from 𝑆𝑇 those scenarios that have been tabu for 𝑘𝑚𝑎𝑥 number

of iterations;
18: if 𝜋̂ ≤ 𝛾|𝛺| then
19: Draw a random sample 𝑆′′ from 𝑆 ⧵ (𝑆𝐵 ∪ 𝑆𝑇 ) (with |𝑆′′

| =
numberOfScenariosToAdd);

20: 𝑆𝑂𝐿𝐷 ← 𝑆′′;
21: 𝑆′ ← 𝑆′ ∪ 𝑆′′;
22: counter ← counter + 1;
23: end if
24: Update totalElapsedTime; // total time spent so far
25: until (𝜋̂ ≥ 𝛾|𝛺|) or (counter > maxIter) or (totalElapsedTime >

timeLimit) or (𝑆 ⧵ (𝑆𝐵 ∪ 𝑆𝑇 ) = ∅);
26: if a feasible solution has been found (i.e., 𝜋̂ ≥ 𝛾|𝑆|) then
27: repeat
28: 𝐼∗ ← 𝐼𝐶 ; // best set of centers up to the current iteration
29: Solve the underlying optimization model fixing 𝑥𝑗𝑗 = 1, ∀𝑗 ∈ 𝐼∗;
30: Find the best center within each group;// solve a 1-median problem

in each district
31: 𝐼𝐶 ← new set of 𝑝 centers;
32: Evaluate the number of balanced scenarios 𝜋̂ associated with the

current solution;
33: if 𝜋̂ ≥ 𝛾|𝑆| then
34: save the current solution; // improved feasible solution found
35: end if
36: until 𝐼𝐶 = 𝐼∗ //centers unchanged, i.e., no further improvement

achieved
37: end if
38: return 𝑥⋆; // a feasible solution for the sample approximation.

(5), where the subset 𝑁 corresponds to the connected component itself.
The model is then solved again from scratch by adding these new cuts,
until a contiguous solution is obtained.

3.2. Selecting new demand scenarios

We now need to clarify how we select the new demand scenarios
to add et each iteration (line 19 in Algorithm 2). Recall that, in each
iteration, we include numberOfScenariosToAdd scenarios to the
model. We perform this step in three different ways, as we discuss next.

(i) Random selection.

We randomly select numberOfScenariosToAdd unbalanced and
non-tabu scenarios (namely, in 𝑆⧵(𝑆 ∪𝑆 )) and add them to our model.
5

𝐵 𝑇
(ii) Violation-based selection: Static case.

For each scenario 𝑠 ∈ 𝑆 ⧵ 𝑆𝑇 , we can associate each district 𝑗 with
he relative deviation, say 𝛥𝑗𝑠, from the upper/lower bounds of the
alancing requirements. Let us denote by 𝐷𝑗𝑠 the demand served by
istrict 𝑗 in scenario 𝑠 (i.e., 𝐷𝑗𝑠 =

∑

𝑖∈𝐼∶𝑥𝑖𝑗=1 𝑑𝑖𝑠). Then, we can write:

𝑗𝑠 = max{0,
𝐷𝑗𝑠 − 𝑈𝐵𝑠

𝑈𝐵𝑠
,
𝐿𝐵𝑠 −𝐷𝑗𝑠

𝐿𝐵𝑠
}, 𝑗 ∈ 𝐼|𝑥𝑗𝑗 = 1, 𝑠 ∈ 𝑆 ⧵ 𝑆𝑇 ,

where: 𝑈𝐵𝑠 = (1+𝛼)
∑

𝑖∈𝐼 𝑑𝑖𝑠
𝑝 , and 𝐿𝐵𝑠 = (1−𝛼)

∑

𝑖∈𝐼 𝑑𝑖𝑠
𝑝 , for each scenario

𝑠 ∈ 𝑆. Clearly, 𝛥𝑗𝑠 = 0 if district 𝑗 is balanced under scenario 𝑠.
Accordingly, we can associate the scenario 𝑠 with a violation measure,
say 𝛥𝑠, calculated as the minimum, the maximum or the average
deviation across the districts. Mathematically, we have:

• Lowest Deviation: 𝛥𝑠 = min𝑗∈𝐼∶𝑥𝑗𝑗=1{𝛥𝑗𝑠};
• Highest Deviation: 𝛥𝑠 = max𝑗∈𝐼∶𝑥𝑗𝑗=1{𝛥𝑗𝑠};

• Average Deviation: 𝛥𝑠 =
∑

𝑗∈𝐼∶𝑥𝑗𝑗=1 𝛥𝑗𝑠
𝑝 .

Hence, one of the following options is applicable:

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Lowest Deviation;

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Highest deviation;

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Lowest Average Deviation;

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Highest Average Deviation.

The rationale behind this choice is that scenarios with the Lowest
eviation are ‘‘closer’’ to those currently considered, thus they may lead

o an extended model which is (hopefully) still relatively easy to solve.
ote that with ‘‘closer’’ we mean that such scenarios are almost satisfied
y the current solution, or, in other words, ‘‘similar’’ to those already
mbedded in the model.

On the contrary, scenarios having the Highest Deviation, being ‘‘far-
her’’ from those already considered, may potentially lead to a solution
hat turns out to be balanced in a higher number of scenarios, while
ikely making the model more difficult to solve.

The Average Deviation trades-off between the above extreme cases.
Note that the above options determine four different settings for the

roposed heuristic. Also, we underline that the chosen measure does
ot vary across the solution procedure. This is why we denote this as
‘‘static’’ case.

iii) Violation-based selection: Reactive case.

Another option is to adopt a selection criterion that varies alongside
he solution process in a reactive posture to some occurring conditions.
n particular, we assume to start with one of the above-mentioned
iolation-based measures and to keep it until the number of balanced
cenarios is below a given threshold, say 𝛾 ′|𝑆| (with 𝛾 ′ < 𝛾). Then, we
witch to its opposite. This is a way to embed some ‘‘dynamicity’’ into
he selection process based on information gained from the procedure
tself, as opposed to the static criteria previously described.

For example, let us consider |𝑆| = 100, and 𝛾 ′ = 0.25. Suppose
e start with the Lowest Deviation measure. That means we select the
umberOfScenariosToAdd scenarios having the Lowest Deviation
hile the number of balanced scenarios associated with the current

olution is less than 25. Otherwise, we switch to the Highest Deviation
riterion. If such a number lowers again below 25, we revert to the
owest Deviation, and so on.

Four reactive cases are considered, depending on the violation-
ased measure used to trigger the solution procedure:
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• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Lowest Deviation or the Highest Devi-
ation, having the Lowest Deviation as starting selection measure;

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Lowest Deviation or the Highest Devi-
ation, having the Highest Deviation as starting selection measure;

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Lowest Average Deviation or the High-
est Average Deviation, having the Lowest Average Deviation as start-
ing selection measure;

• selecting the non-tabu and unbalanced numberOfScenarios-
ToAdd scenarios having the Lowest Average Deviation or the High-
est Average Deviation, having the Highest Average Deviation as
starting selection measure;

In total, we consider nine different selection criteria, corresponding
o as many settings for the proposed heuristic: one random, and eight
iolation-based ones (four static, and four reactive).

. Computational experiments

In this section, we report on the computational experiments per-
ormed to test the proposed matheuristic procedure. First, we describe
he data test used and the implementation details in Section 4.1.
hen, we present the obtained results in Section 4.2. Afterwards, we
enchmark the introduced algorithm against two existing procedures in
ection 4.3. Further results on harder instances, i.e., involving a higher
umber of TUs and scenarios, are given in Section 4.4. Some additional
nsights from the realized experiments are discussed in Section 4.5. Fi-
ally, a sensitivity analysis to some relevant parameters of the heuristic
ollows in Section 4.6.

.1. Test data and implementation details

We use the same test instances as in Diglio et al. (2023) for our
xperiments. These instances are obtained using the so-called Gabriel
raph (Gabriel and Sokal, 1969). The latter is a well-known approach
n the districting literature to create a connected adjacency graph
nderlying the problem, where two generic points 𝑃1 and 𝑃2 in the
lane are said to be adjacent if the closed disc having 𝑃1𝑃2 as a diameter

contains no other points.
In particular, our instances involve |𝐼| point-like basic TUs ran-

domly generated in a [0, 1000] × [0, 1000] square following a uniform
distribution. Specifically, we consider: |𝐼| ∈ {100, 500, 1000}.

The demands 𝑑𝑖 associated with TUs 𝑖 ∈ 𝐼 are randomly generated
from a uniform distribution  (𝑎, 𝑏), whose extremes are determined
by fixing the same expected value (equal to 50) and varying the cor-
responding Relative Standard Deviation (RSD).2The following values
are considered: 𝑅𝑆𝐷 ∈ {0.125, 0.250, 0.500}. Since the expected value
remains the same, note that higher RSD values induce higher demand
variability.

Also, various experiments are run by varying:

• the value of the maximum tolerance 𝛼 : 𝛼 ∈ {0.10, 0.20};
• the number of districts to create, 𝑝 : 𝑝 ∈ {6, 8} for |𝐼| = 100,
𝑝 ∈ {10, 20} for |𝐼| = 500, 𝑝 ∈ {20, 40} for |𝐼| = 1000;

• the desired probability for the balancing requirements to hold, 𝛾:
𝛾 ∈ {0.70, 0.80, 0.90}.

The above settings lead to 36 instances for each value of |𝐼|: three
values for the RSD, two values of 𝛼, two values of 𝑝, and three values
of 𝛾. These instances can be made available to those interested upon
writing to the authors.

Some additional parameters need to be defined to run our heuristic.

2 For a random variable 𝑑, its RSD is given by:
√

V𝑎𝑟[𝑑] .
6

E[𝑑] t
We recall that our procedure starts targeting a reduced model,
including an initial number of demand scenarios
(initialNumberOfScenarios), and iteratively adds new demand
scenarios at each iteration (numberOfScenariosToAdd). We set
both these parameters equal to 1. Also, we allow the procedure to
run for at most 1000 iterations (maxIter = |𝑆|

𝚗𝚞𝚖𝚋𝚎𝚛𝙾𝚏𝚂𝚌𝚎𝚗𝚊𝚛𝚒𝚘𝚜𝚃𝚘𝙰𝚍𝚍
=

1000), and 1000 s (timeLimit = 1000 s). At each iteration, we focus
on solving an SADP restricted to the subset of scenarios 𝑆′ selected
p to that iteration (i.e., SADP′[𝑆′] – see line 10 in Algorithm 2).
his step involves solving multiple Integer Programs (IPs) through the
ow-generation approach by Salazar-Aguilar et al. (2011) to ensure
ontiguity. For each individual IP, we impose the same time limit of
000 s and a termination gap equal to 0.01. As our empirical evidence
how, a few IPs are typically needed to converge to a balanced and
ontiguous solution to each SADP′[𝑆′] (see Section 4.5.1 for further
etails). Therefore, no such limits are imposed on its resolution process
t each algorithm iteration. Note that the same applies when we
ttempt to improve a feasible solution found to our SADP (if any, see
ine 29 in Algorithm 2).

Besides, we consider two values of 𝑘𝑚𝑎𝑥, i.e., the number of it-
rations in which demand scenarios are regarded as tabu: 𝑘𝑚𝑎𝑥 ∈
0, 𝚖𝚊𝚡𝙸𝚝𝚎𝚛} (with 𝚖𝚊𝚡𝙸𝚝𝚎𝚛 = 1000). This way, we have two extreme

case: (i) scenarios can never be considered as tabu (𝑘𝑚𝑎𝑥 = 0); (ii) once
a scenario is tabu, it remains in this status throughout all the solution
procedure (𝑘𝑚𝑎𝑥 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛 = 1000).

Finally, parameter 𝛾 ′, used in the Reactive Violation-based selection
criterion (see Section 3.2), is set as follows: 𝛾 ′ = 0.50 × 𝛾. Thus, in a
eneric iteration, the violation-based measure changes if the number
f balanced scenarios associated with the current solution is above or
elow 50% of the target value 𝛾|𝑆| (with |𝑆| = 1000).

With the above-discussed settings, our empirical work consists of
1944 experiments in total: three values of |𝐼|, 36 instances for each
value of |𝐼|, two values of 𝑘𝑚𝑎𝑥, and nine selection measures.

All these experiments were performed on an Intel(R) Core(TM) i7–
8750H CPU at 2.20 GHz, with 16 GiB of RAM running Windows 10
Pro–64 bits operating system. The algorithm was coded in Python 3.6,
and the IPs were solved using IBM ILOG CPLEX 12.10.

4.2. Computational results

This section presents the results obtained by implementing the
proposed procedure for solving our Sample Approximation Districting
Problem (SADP). We summarize them in Figs. 1–3. In these pictures,
for each considered value of |𝐼|, 𝑘𝑚𝑎𝑥, and the above-introduced selec-
tion criteria, we report on: (i) the minimum, average, and maximum
computing times; (ii) the number of solved instances (out of 36); (iii)
the minimum, average, and the maximum number of iterations needed
for the convergence of the algorithm. Recall that the Violation-based
selection criteria differ based on the specific measure used to evaluate
new candidate demand scenarios to add to the model. For brevity, we
denote these measures as follows:

• HD: Highest Deviation;
• LD: Lowest Deviation;
• HAD: Highest Average Deviation;
• LAD: Lowest Average Deviation.

For the Reactive case, we use the above acronyms to denote the start-
ing measure for our solution procedure. For instance, results displayed
for the Reactive and Lowest Deviation (LD) case refer to the particular
setting of the heuristic starting with the LD measure that will eventually
change into the Highest Deviation (HD) one. All the detailed results are
in the Electronic Supplement, Appendix A, Tables A21–A24

We start by focusing on |𝐼| = 100. In general, the obtained results
ighlight the efficiency of the proposed heuristic. Indeed, computing

imes are very limited since most instances are solved, on average,
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Fig. 1. Results for |𝐼| = 100, |𝑆| = 1000.
within less than two seconds. In the worst cases, the average computing
time equals 2.73 and 3.55 s, for 𝑘𝑚𝑎𝑥 = 0 and 𝑘𝑚𝑎𝑥 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛,
respectively. These circumstances both verify when the ‘‘static’’ LAD
measure is employed (see Fig. 1(a), and Tables A1–A2. Also, as Fig. 1(b)
shows, we notice that the algorithm converges in a relatively low
number of iterations: less than ten and about 12 – on average –
for 𝑘𝑚𝑎𝑥 = 0, and 𝑘𝑚𝑎𝑥 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛. Note that the average number
of iterations increases when the so-called tabu considerations apply.
Nevertheless, the deriving effect on the corresponding computing times
is negligible. Interestingly, tabu considerations lead to slightly higher-
quality solutions. In fact, the average value of the objective function is
lower when 𝑘𝑚𝑎𝑥 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛 for most of the measures employed (see
Tables A5–A6). This result, which we wished to see in practice, proves
that tabu considerations can determine some advantages in achieving
higher-quality solutions at an acceptable extra computational effort.

Another relevant aspect of our analysis deals with the number
of instances solved, depending on the specific selection criterion and
the value of 𝑘𝑚𝑎𝑥. From Fig. 1(a), we notice that 16 instances are
successfully tackled when a Random selection criterion is employed
(see the solid black line). This number increases to 17 when a Violation-
based criterion is adopted, particularly if the HD and HAD measures
are used. Such a finding indicates that selecting scenarios based on
their relative deviation from the balancing constraints is relevant to
improving the effectiveness of the proposed algorithm. As we show
in the next section, the above-discussed performance is in line with
existing heuristics for the problem at hand. From Tables A1–A2, we
7

also see that no feasible solutions are attained within the imposed time
limit for the highest considered value of RSD (0.5). These are more
challenging instances for our problem, as the higher variability in the
demands makes the balancing constraints more difficult to meet. Other
infeasibilities are noted for lower values of the RDS when 𝛼 reduces to
0.1, which tightens the range for a districting solution to be balanced.

Overall, we note relatively better performance, in terms of both
efficacy and efficiency, when the Highest Average Deviation measure is
‘‘statically’’ employed: indeed, it allows obtaining the highest number
of feasible solutions (17), within very reduced computing times, namely
1.23 and 1.20 s, for 𝑘𝑚𝑎𝑥 = 0, and maxIter, respectively.

A final comment on this first set of experiments is due. Recall
that our SADP is, in fact, an approximate deterministic model for
the ‘‘true’’ Probabilistic Districting Problem (PDP). Hence, the solution
obtained using the proposed heuristic (which exploits the approximate
model) may not satisfy the balancing requirements with the minimum
probability 𝛾 and, hence, be unfeasible for the original PDP. Therefore,
we perform an ex-post Monte Carlo simulation on each solution found
by our heuristic, assessing the probability of a solution being balanced
over a new sample of randomly drawn scenarios (out-of-sample vali-
dation). If the resulting probability is higher than 𝛾, such a solution
is considered feasible also for the PDP. These estimates are in Tables
A7–A8, which show that almost all of the produced solutions also
meet the desired probability in the ex-post simulation (see the last
row in the table–#Feasible). In the remaining cases, the differences
w.r.t. the threshold 𝛾 are not significant when looking at the values
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involved. This evidence further validates our research effort, suggesting
that the proposed heuristic provides robust approximate solutions to
the investigated probabilistic problem.

The above findings are confirmed when looking at the results ob-
tained for |𝐼| = 500 (see Fig. 2). In this case, the heuristic solves 24
out of 36 instances regardless of the considered selection criterion and
𝑘𝑚𝑎𝑥. Obviously, we see an increase in the average computing times
and the corresponding number of iterations needed for the algorithm
to converge: all the solutions are achieved in less than 100 s and 33
iterations on average. Note, however, that these are two extreme upper
bounds, as these indicators are much below the mentioned values in
most cases. For these instances, the use of the Static Violation-based
criterion with the HAD measure shows the best performance again,
with an average computing time equal to 19.63 for 𝑘𝑚𝑎𝑥 = 0, and
19.13 for 𝑘𝑚𝑎𝑥 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛. This fact further proves that selecting the
most violated scenarios is a wise strategy to boost the computational
efficiency of the algorithm.

These observations also hold when focusing on the larger instances,
i.e., with |𝐼| = 1000. An interesting point emerging from the analysis
is that the choice of the selection criterion significantly affects the
performance of the heuristic. In fact, the number of solved instances
varies from nine to 20, reaching its maximum when employing a Static
Violation-based criterion with the HAD and HD measures (in the latter
case, for 𝑘𝑚𝑎𝑥 = 0 only — see Fig. 3(a)). In particular, we notice again
that the HAD ‘‘dominates’’ the others by taking, on average, about 300 s
and 14 iterations. Additionally, it is worth highlighting that the running
times are (averagely) 40 s lower, and slightly better average objective
functions are observed when tabu considerations are into effect (see
Tables A17–A22). Also, observe that, under the latter setting, all the
obtained solutions are feasible to the PDP in the ex-post simulation (see
Tables A23–A24).

In summary, our results prove the efficiency and effectiveness of the
proposed procedure. Since the targeted instances involve a relatively
high number of demand scenarios, the algorithm can attain approxi-
mate feasible solutions for the original probabilistic districting problem
under investigation. Moreover, the realized experiments confirm the
appropriateness of the introduced violation-based measures and the
relevance of tabu considerations in the selection process of new demand
scenarios and, hence, on the performance of our approach.

4.3. Comparison with existing heuristics

In order to assess the validity and competitiveness of the introduced
procedure, the second step of our analysis consists of a comparative
analysis against two existing algorithms, i.e., the heuristics by Diglio
et al. (2023) and Diglio et al. (2021).

To this end, we use the results obtained with the best-performing
setting of the proposed approach: (i) (Static) Violation-based selec-
tion criterion; (ii) Highest Average Deviation measure; (iii) 𝑘𝑚𝑎𝑥 =
𝚖𝚊𝚡𝙸𝚝𝚎𝚛 = 1000.

4.3.1. Benchmarking against Diglio et al. (2023)
The developments presented in this paper stem from the attempt of

inding a more efficient solution procedure for the sample approxima-
ion problem studied by Diglio et al. (2023). Therefore, the heuristics
roposed in that work are a natural benchmark for our procedure.
n the referenced study, the authors design two location–allocation
chemes, which they tested under multiple settings of some relevant pa-
ameters (e.g., the constructors for identifying the initial 𝑝 centers, the
umber of sub-sampled scenarios or single-scenario problems solved,
o name a few). Each of these settings leads, in practice, to a different
euristic. In order to make a more robust assessment, we pick up the
est solution found across all those settings, in terms of the objective
unction, and compare it against that achieved by the new proposed
pproach. If multiple solutions with the same objective function are
8

ttained, we use for comparison the one reporting the lowest computing
ime.

Results are summarized in Table 1. There, the heuristics proposed
n the current paper and by Diglio et al. (2023) are respectively de-
oted by ‘‘New’’ and ‘‘Existing’’. The comparison is made based on the
omputing times and the gap between the objective functions, say 𝛥𝑂𝐹 ,

with the latter being computed as follows: 𝛥𝑂𝐹 = 100× 𝑂𝐹𝑁𝑒𝑤−𝑂𝐹𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔
𝑂𝐹𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

.
Accordingly, a negative value of such indicators reveals that the new
heuristic produces higher-quality solutions w.r.t. to the existing one.
The extended results are in Appendix B, Table B1.

From the above table, it can be noticed that the new heuristic always
outperforms that by Diglio et al. (2023) in terms of computing times
and the number of solved instances (out of 36), especially for larger-
sized cases, i.e., |𝐼| = 500, and |𝐼| = 1000. If we focus on the average
computing times, they are reduced by two orders of magnitude for
|𝐼| = 100, and |𝐼| = 500, and by a factor of approximately one-fifth
for |𝐼| = 1000. Observe that also the minimum and maximum values
are incomparable. The very short computing times for |𝐼| = 100 result
in lower-quality objective functions. Indeed, the new heuristic produces
solutions that are, on average, 2.62% worse than those obtained by the
existing one. However, objective functions are comparable for the other
cases, as shown by the significantly low values of the calculated devia-
tions. Notably, the increased efficiency also yields greater effectiveness,
as a remarkably higher number of instances is solved for the more
challenging cases: 24 vs. 16 for |𝐼| = 500, and 20 vs. 8 for |𝐼| = 1000.

4.3.2. Benchmarking against Diglio et al. (2021)
We now present the comparison against the heuristic designed

by Diglio et al. (2021). In that paper, the authors devise a sim-heuristic
approach that embeds a simulation routine to drive the changes to
be made in a current solution and verify that the chance-constraints
balancing requirements are met. In practice, a feasible solution for
the ‘‘true’’ Probabilistic Districting Problem (PDP) is found. In this
paper, recall, we attempt to solve a Sample Approximation Problem
as a way to attain feasible solutions to the PDP. Therefore, such a
comparison is also meaningful. However, as the heuristic by Diglio et al.
(2021) produces solutions to the ‘‘true’’ problem, we use for comparison
only the ‘‘new’’ solutions that meet the balancing constraints with the
required probability in the ex-post simulation, i.e., those that can be
regarded as feasible also for the PDP.

Results are summarized in Table 2. The information therein re-
ported are the same as in Table 1. The detailed data can be found in
Appendix B, Table B2.

Our findings reveal that, for |𝐼| = 100, the method proposed in this
paper solves a lower number of instances. However, the newly obtained
solutions show lower objective functions’ values (on average, 1.91%
better than the existing ones) and are attained in shorter computing
times (1.04 vs. 5.78 on average). When focusing on |𝐼| = 500, the
dominance of the new heuristic is clear: one more instance solved,
slightly better objective functions (see the negative deviation), and a
lower computational effort. Finally, results from larger-sized instances
(|𝐼| = 1000) confirm the higher effectiveness of our approach since
five more instances are solved (20 vs. 15) with comparable solutions’
quality at the cost of increased computing times (288.30 vs. 126.29 on
average).

In conclusion, the general evidence emerging from these experi-
ments is that the new heuristic is proven to be competitive w.r.t. exist-
ing algorithms, by always outperforming them in terms of computing
times (efficiency) and/or the number of solved instances (effective-
ness), while achieving comparable objective function values.

4.4. Further results — more challenging instances

In this section, we show the results of an additional set of com-

putational tests we realized to assess the capability of the proposed
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Fig. 2. Results for |𝐼| = 500, |𝑆| = 1000.
Table 1
Comparison against Diglio et al. (2023).

|𝐼| = 100 |𝐼| = 500 |𝐼| = 1000

CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%)

New Existing New Existing New Existing

Min 0.56 13.71 0.27 2.83 58.8 −0.09 18.45 624 −0.09
Max 3.69 2383.5 5.05 54.08 1344.69 1.25 818.45 1665.88 0.26
Avg 1.20 252.75 2.62 19.13 571.78 0.21 288.3 1086.09 0.05

#Solved 17 17 24 16 20 8
Table 2
Comparison against Diglio et al. (2021).

|𝐼| = 100 |𝐼| = 500 |𝐼| = 1000

CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%)

New Existing New Existing New Existing

Min 0.56 0.41 −2.81 2.83 6.45 −1.36 18.45 62.3 −0.28
Max 2.04 66.93 −0.71 54.08 126.87 0.87 818.45 207.89 0.19
Avg 1.04 5.78 −1.91 19.52 36.42 −0.40 288.30 126.29 −0.10

#Solved 16 19 23 22 20 15
9
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Fig. 3. Results for |𝐼| = 1000, |𝑆| = 1000.
procedure to solve more challenging instances for our Sample Approx-
imation Districting Problem (SADP). Specifically, we target instances
involving a higher number of scenarios (|𝑆|) and Territorial Units (TUs
– |𝐼|).

In particular, two types of experiments are performed:

• Experiment 1. For this experiment, we consider the same 1000-
TUs instances (|𝐼| = 1000) but increase the number of scenarios
to 10,000 (|𝑆| = 10000). We perform these tests by setting the
relevant parameters as in the previous empirical tests (𝛼, 𝛾, 𝑝);

• Experiment 2. Following the mechanism discussed in Section 4.1,
we randomly generate an instance with 2000 TUs (|𝐼| = 2000).
We test it by only changing the number of districts 𝑝, here fixed
equal to 40 and 60.

Again, the heuristic is run by considering the ‘‘Static’’ Higher Av-
erage Deviation, and 𝑘𝑚𝑎𝑥 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛. Note that the letter equals 2000
in Experiment 2. Also, the time limit is set at 2000 s. In total, 72 new
experiments are performed.

The obtained results are in Table 3, which reports, for each of the
two experiments, the computing times (CPU Times) and the number of
iterations needed (# Iter) to attain a feasible solution to the SADP.

Briefly, we note that the heuristic seems relatively well-performing
in the case of Experiment 1. The number of solved instances equals 18,
and these are obtained, on average, within less than 800 s. Interest-
ingly, we are able to solve two instances less than |𝑆| = 1000. This is
10
mainly due to the longer time required to check all the involved de-
mand scenarios for balancing. In this regard, it is worth observing that
the number of iterations needed for the convergence of the algorithm is
relatively low, which indicates that the average time taken by a single
iteration is significant. Also, only ten out of 18 instances would have
been solved within the original time limit (1000 s).

Performance deteriorates for Experiment 2. Indeed, 11 instances are
solved within an average computing time of about 980 s. In particular,
none instances with RSD = 0.5 and only two for 𝑝 = 60 are tackled.
This is an indication that the heuristic ‘‘suffers’’ from the increase in
the number of TUs.

Clearly, further effort is necessary to increase the effectiveness of the
proposed procedure on very large-scale cases. Nevertheless, the number
of solved instances is not negligible, and the overall results prove
the heuristic to be competitive, especially when tackling instances
involving large cardinalities of the scenario sets.

4.5. Additional insights

Having discussed in detail the performance of the proposed heuristic
procedure, we now focus on some other aspects of relevance to our
analysis. Specifically, in the following, we report on: the time perfor-
mance of the single phases of the algorithm (Section 4.5.1); the number
of the so-called split units (Section 4.5.2).
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Table 3
Results for Experiments 1 and 2 — more challenging instances.

RSD 𝛼 𝛾 Experiment 1 (|𝐼| = 1000, |𝑆| = 10000) Experiment 2 (|𝐼| = 2000, |𝑆| = 1000)

𝑝 CPU times (s) # Iter 𝑝 CPU times (s) # Iter

0.125 0.1 0.7 20 315.11 10 40 1152.68 24
0.8 415.81 11 1224.75 25
0.9 538.73 15 1311.92 26

0.2 0.7 68.11 2 216.16 5
0.8 63.94 2 394.43 7
0.9 67.81 2 463.56 11

0.1 0.7 40 1367.24 21 60 t.l. t.l.
0.8 1296.88 21 t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.2 0.7 1275.01 20 1775.76 16
0.8 1294.25 21 2276.75 19
0.9 1664.07 26 t.l. t.l.

0.25 0.1 0.7 20 1016.63 19 40 t.l. t.l.
0.8 1666.86 29 t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.2 0.7 89.56 3 517 12
0.8 136.41 4 646.21 15
0.9 207.88 6 852.14 23

0.1 0.7 40 t.l. t.l. 60 t.l. t.l.
0.8 t.l. t.l. t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.2 0.7 t.l. t.l. t.l. t.l.
0.8 t.l. t.l. t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.5 0.1 0.7 20 t.l. t.l. 40 t.l. t.l.
0.8 t.l. t.l. t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.2 0.7 748.81 19 t.l. t.l.
0.8 1616.59 33 t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.1 0.7 40 t.l. t.l. 60 t.l. t.l.
0.8 t.l. t.l. t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

0.2 0.7 t.l. t.l. t.l. t.l.
0.8 t.l. t.l. t.l. t.l.
0.9 t.l. t.l. t.l. t.l.

Min 63.94 2 Min 216.16 5
Max 1666.86 33 Max 2276.75 26
Avg 769.43 14.67 Avg 984.67 16.64

#Solved 18 #Solved 11
4.5.1. Time performance of the phases of the algorithm
We recall that our algorithm involves three main phases:

• the Location phase, consisting of identifying an initial set of
𝑝 centers/representatives for the districts, performed using the
heuristic for the 𝑝-Median Problem by Resende and Werneck
(2004) (line 3 in Algorithm 2);

• the Allocation phase, aiming at finding a feasible solution to the
SADP by the iterative balancing-constraints generation procedure
described in Section 3.1 (lines 8–25 in Algorithm 2);

• the Improvement phase, where we attempt to improve a feasible
solution (if any) to our SADP (lines 27–36 in Algorithm 2).

Table 4 reports on the average proportion of time taken by each
phase of the algorithm resulting from our computational experience
for each tested combination of |𝐼| and 𝑝. Specifically, such evaluations
are again made w.r.t. to the best-performing setting of the proposed
heuristic: (i) (Static) Violation-based selection criterion; (ii) Highest
Average Deviation measure; (iii) 𝑘 = 𝚖𝚊𝚡𝙸𝚝𝚎𝚛 = 1000.
11

𝑚𝑎𝑥
Table 4
Average proportion of time taken by each phase of the algorithm by |𝐼|
and 𝑝 (in %).

|𝐼| 𝑝 Location Allocation Improvement

100 6 8.04 83.83 8.13
8 7.52 84.38 8.09

500 10 33.10 63.21 3.69
20 4.34 90.47 5.19

1000 20 14.40 80.08 5.52
40 0.90 94.68 4.42

As expected, the allocation phase is the most time-consuming. In-
deed, it is the core of the algorithm as it involves solving an SADP
restricted to a limited sample of selected scenarios at each iteration.
Notably, the proportion of running time taken by this phase increases
with 𝑝, which is consistent with the fact that this parameter tightens the

balancing requirements and makes our instances harder to solve. Also,
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Table 5
Detailed results for the allocation phase: Number of iteration needed for convergence and number of IPs solved at each
iteration (i.e., in the row-generation approach).

|𝐼| 𝑝 No. of iterations and avg time No. of IPs

Min Avg Max Avg Time (s) Min Avg Max

100 6 4 4.33 5 0.25 1 1 1
8 2 4.25 10 0.30 1 1 1

500 10 1 6.13 15 2.05 1 1.27 10
20 4 9.56 16 3.75 1 4.55 21

1000 20 2 10.54 26 9.60 1 2.07 12
40 14 22.86 33 27.28 1 3.10 15
b
v
e
I
a
=
a
n
t
f

A
g
R
g
o
w
o

it tends to increase with the number of TUs (|𝐼|). The only case such
proportion falls below 70% is for (|𝐼|, 𝑝) = (500, 10). With these settings,
n fact, the tested instances are solved in very limited computing times
about 10 s on average, see Table A10); thus, the running times of the
ocation and allocation phases turn out to be more comparable (33.10%
s. 63.21%, respectively).

To gain more insights into the performance of the allocation phase,
able 5 informs on the number of iterations (minimum, average, and
aximum) needed for convergence – i.e., to find a feasible solution

o the SADP – by |𝐼| and 𝑝. Besides, the average running time per
teration is reported (Avg Time). In addition, it is worth reminding
hat each of these iterations involves solving multiple IPs to gain a
ontiguous solution. Therefore, the corresponding minimum, average,
nd maximum number of IPs solved are also displayed.

As our previous results already highlighted, we can observe that
he heuristic converges in relatively few iterations. Not surprisingly,
uch a number also tends to increase with 𝑝 and |𝐼|. Interestingly, the

average time taken by each iteration is acceptable and equals 27.28 s
in the worst case (for (|𝐼|, 𝑝) = (1000, 40)). Moreover, the number of IPs
solved per iteration is limited. In the worst cases, in fact, its maximum
is 21 for (|𝐼|, 𝑝) = (500, 20) and 15 for (|𝐼|, 𝑝) = (1000, 40), while
the corresponding average values are much below these thresholds.
In other words, the relatively low running times per iteration and the
fast convergence to contiguity seem to further validate the efficiency
of our heuristic. Also, they support our choice to resort to an off-the-
shelf solver (although within a row-generation approach) for solving
the required optimization models instead of more classical location–
allocation schemes. A deeper discussion on this aspect follows in the
next section.

4.5.2. Assessing the number of the split units
As stated throughout the manuscript, the required optimization

models are always solved using a commercial solver within a row-
generation approach (lines 10 and 29 in Algorithm 2). This differs
from classical location–allocation schemes, which essentially work as
follows: (i) 𝑝 centers are fixed; (ii) a subproblem is solved, in which
the tolerance 𝛼 in the balancing constraints is set equal to zero, and
the remaining integer variables are relaxed; (iii) the so-called splits
(also referred to as split nodes or split units) are resolved to recover the
integrity of the assignments.

The success of this approach, introduced by Hess et al. (1965) and
used in Fleischmann and Paraschis (1988) and George et al. (1997)
for classical Districting Problems (DPs), is due to two main factors:
first, the subproblem in step (ii) is an easy-to-solve transportation-like
problem; second, the number of fractional variables in the solution of
this subproblem (i.e., the splits) is bounded by 𝑝−1, regardless the size
of the problem itself (i.e., |𝐼| - see Hojati, 1996).

However, the latter theoretical result does not hold when multiple-
ctivity balancing requirements are simultaneously considered, as in
íos-Mercado et al. (2021). In that reference, the authors investigate
DP with two-activity balancing requirements (that is, two demand

cenarios, in our terminology), showing that the number of splits is
12

n

well-behaved – i.e., often below 2(𝑝 − 1) – thus extending the classical
location–allocation scheme by developing an ad-hoc split resolution
heuristic.

Therefore, it is reasonable to check whether classical approaches
are applicable here. Indeed, the SADP is a particular DP where at least
𝛾|𝑆|-activity balancing requirements are to be met (no less than 700,
in our case - 𝛾 = 0.7, |𝑆| = 1000). To this end, we evaluated the
number of splits in the subproblem obtained from the SADP by applying
the above steps (i) and (ii). We denote this relaxed linear program
by (SADPR). Also, we denote by (SADPR[𝑠]) the relaxed linear single-
scenario program parametrized on each scenario 𝑠 ∈ 𝑆. We further
underline that, in line with (Ríos-Mercado et al., 2021), splits may come
from two main sources: the TUs (without repetition) whose assignment
variables are fractional in the solution of each SADPR[𝑠]; the TUs that
are integrally assigned to different centers in two different SADPR[𝑠].

Table 6 reports on the splits found for the 500 and 1000-nodes
instances, for each considered value of RSD used for demand genera-
tion, 𝑝, and different cardinalities of the scenario set 𝑆. For illustrative
purposes, we vary |𝑆| ∈ {2,… , 5}. Finally, we underline that 20
different experiments are realized for each combination of |𝐼|, RSD, 𝑝,
and |𝑆|, by varying the seed for generating the demands. Accordingly,
the corresponding minimum, maximum, and average number of splits
are reported.

The first aspect relevant to our analysis is that the number of splits
is strongly affected by the RSD. Indeed, as the RSD influences the
variability of the demands, it increases the number of units assigned
to different centers in different SADP′[𝑠], 𝑠 ∈ 𝑆. Note that the average
number of splits almost doubles when the RSD increases from 0.125 to
0.500 (all other conditions being equal, i.e., for the same values of |𝐼|,
|𝑆|, and 𝑝).

Also, the splits grow by the number of TUs |𝐼|. For RSD = 0.125,
|𝑆| = 2, and 𝑝 = 20, the average number of splits increases from 22.35
(for |𝐼| = 500) to 45.45 (for |𝐼| = 1000). Similar considerations can
e made for higher values of the RSD and |𝑆|, although the involved
alues are obviously higher in absolute terms. Not surprisingly, the
ffect of |𝐼| is more severe if jointly occurring with an increase in 𝑝.
ndeed, for the most challenging instances (|𝐼| = 1000, 𝑝 = 40), the
verage number of splits equals 101.95, 145.55, and 195.20 for RSD
0.125, 0.25, and 0.5, respectively, when only two demand scenarios

re considered (|𝑆| = 2). Of course, in the worst cases, the maximum
umber of splits to be resolved is higher, although not much w.r.t. to
he average if one looks at the values involved. Such observations hold
or each tested value of |𝑆|.

Clearly, the latter parameter plays a crucial role in this assessment.
s expected, its increase yields the number of splits to grow. Such
rowth, in general, is more intense for higher values of |𝐼|, 𝑝, and
SD (consistently with the above findings). Interestingly, the marginal
rowth of the number of splits exhibits a decreasing trend by |𝑆| (all
ther parameters kept equal). In other words, splits tend to stabilize
ith |𝑆|. This may be an indication that there is a maximum number
f scenarios – sampled from the same demand distribution – after which

o significant variations would be devised, presumably due to recurring
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Table 6
Number of splits units.

RSD |𝐼| = 500 |𝐼| = 1000

𝑝 |𝑆| = 2 |𝑆| = 3 |𝑆| = 4 |𝑆| = 5 Total 𝑝 |𝑆| = 2 |𝑆| = 3 |𝑆| = 4 |𝑆| = 5 Total

0.125 10 Min 17 23 31 32 103 20 Min 40 50 53 65 208
Max 26 37 39 41 143 Max 52 66 71 77 266
Avg 22.25 30.60 34.95 37.15 124.95 Avg 45.45 56.45 65.20 70.55 237.65

20 Min 30 40 46 50 166 40 Min 89 122 142 154 507
Max 44 56 57 64 221 Max 106 145 163 179 593
Avg 36.75 45.50 50.50 55.35 188.10 Avg 101.95 133.25 153.05 166.45 554.70

0.25 10 Min 24 38 43 50 155 20 Min 55 74 86 96 311
Max 43 53 62 65 223 Max 80 101 107 117 405
Avg 32.45 45.95 52.50 57.10 188.00 Avg 65.00 83.80 96.50 104.45 349.75

20 Min 43 59 66 76 244 40 Min 133 170 206 229 738
Max 81 74 89 94 338 Max 159 218 242 273 892
Avg 51.50 67.90 78.60 85.90 283.90 Avg 145.55 194.20 225.40 250.75 815.90

0.5 10 Min 38 53 62 70 223 20 Min 75 108 123 140 446
Max 60 78 91 96 325 Max 119 151 174 197 641
Avg 48.10 65.20 74.60 84.70 272.60 Avg 92.70 124.60 147.15 166.50 530.95

20 Min 56 85 94 111 346 40 Min 176 249 295 322 1042
Max 88 109 130 133 460 Max 215 295 334 366 1210
Avg 71.15 95.05 112.10 123.10 401.40 Avg 195.20 268.65 313.05 344.10 1121.00
similarities among the solutions of the relaxed single-scenario problem
(SADPR[𝑠], 𝑠 ∈ 𝑆).

Also, recall that the number of splits is bounded by 𝑝−1 for each of
he latter. However, no theoretical bounds are known for our problem.
he average – and, often, the maximum – number of splits are found to
e below |𝑆|(𝑝 − 1) for most of the analyzed cases when RSD = 0.125.
n the remaining ones, they turn out to be higher than that threshold
sometimes even significantly). This means that the number of splits is
ot guaranteed to be kept relatively low. In addition, consider that the
plit resolution problem should be tackled 𝑛 times if 𝑛 is the number
f iterations needed for convergence. This implies, in practice, that
or a problem converging to a feasible solution in five iterations, the
otal number of splits to be resolved would equal those displayed in
able 6 (see the ‘‘Total’’ columns). Indeed, we add one new demand
cenario at each iteration; thus, the number of iterations and scenarios
oincides (they may be slightly different only if tabu considerations are
nto effect). Therefore, although a proper comparison is not performed,
he discussed efficiency of our procedure and the analyzed behavior of
he splits make a strong case – in our opinion – why classical location–
llocation approaches (at least in their current forms) may not be
uitable for our SADP.

.6. Sensitivity analysis to other parameters of the heuristic

Another step of our analysis consists of evaluating the sensitivity
f the performance of our heuristic w.r.t. some of its other relevant
arameters. In particular, one parameter is still to be tested: the number
f scenarios added at each iteration (numberOfScenariosToAdd).

At this aim, we performed another full set of experiments using
gain the setting of the heuristic defined by the Static Highest Average
eviation measure for scenario selection, and 𝑘𝑚𝑎𝑥 = |𝑆| = 1000, by
arying the parameter numberOfScenariosToAdd ∈ {2,… , 5}.

For brevity, we only report in Table 7 the comparison between our
ase-case (i.e., numberOfScenariosToAdd = 1) and the case num-
berOfScenariosToAdd = 4, which showed the best performance.

e consider both the test instances described in Section 4.1 (i.e., those
ith 100, 500, 1000 TUs, and 1000 demand scenarios) and the larger

nstances presented in Section 4.4. Specifically, the comparison is made
ased on the computing times, the gap between the objective functions
𝛥𝑂𝐹 ), and the number of solved instances (#Solved). Note that 𝛥𝑂𝐹 is

calculated as: 𝛥 = 100 × 𝑂𝐹4−𝑂𝐹1 , with 𝑂𝐹 and 𝑂𝐹 denoting the
13

𝑂𝐹 𝑂𝐹1 1 4
value of the objective function when numberOfScenariosToAdd
equals 1 and 4, respectively.

The main result emerging from the above table is that increasing
the number of scenarios added at each iteration yields more instances
solved for |𝐼| = 1000 (23 vs. 20). This parameter also seems to impact
the efficiency of the heuristic. Although not reported in the table, it is
worth underlining that, for |𝐼| = 1000 and numberOfScenarios-
ToAdd = 4, the heuristic takes, on average, about 160 s to solve the
same 20 instances tackled when the same parameter takes value one.
Observe that the average computing times are generally comparable
(281.14 vs. 288.30 s). Besides, no significant differences are devisable
when focusing on the gaps between the objective functions. Finally, as
concerns the larger instances, our results show that the heuristic attains
the same solutions (the gaps 𝛥𝑂𝐹 always equal zero) in similar running
times.

In summary, our experiments prove the relevance of this parameter
for the performance of the algorithm, at least in a subset of the tested
instances. Nevertheless, further experiments performed on different test
cases from those used in this paper would be necessary to fine-tune it
and draw more general conclusions on its actual effects.

5. Conclusions

In this paper, a Probabilistic Districting Problem (PDP) was inves-
tigated. Assuming the demands associated with the Territorial Units
(TUs) as a natural source of uncertainty, the problem consists of find-
ing 𝑝 contiguous and compact districts whose probability of being
balanced is above a given threshold. For such a problem, a Sample
Approximation approach was considered. In practice, an approximate
counterpart was derived, in which the chance-constraints balancing
requirements were replaced by deterministic inequalities expressing
the need for the districting plan to be balanced across an extensive
set of demand scenarios, randomly drawn from the (assumed) known
CDF underlying the demands. In order to tackle the so-called Sam-
ple Approximation Districting Problem (SADP), a heuristic procedure
was devised. The latter is based on a location–allocation scheme cou-
pled with a ‘‘balancing constraints-generation’’ procedure. In essence,
the algorithm starts targeting a reduced SADP, restricted to a few
demand scenarios, and thus embedding a reduced number of balancing
constraints. Then, it iteratively solves the problem by adding new
demand scenarios (and the corresponding balancing constraints) on
the fly. Several measures/criteria to embed such constraints during the
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Table 7
Results of the heuristic by varying the number of scenarios added at each iteration (numberOfScenariosToAdd, denoted by #𝑠𝑎𝑑𝑑 ).

Test instances

|𝐼| = 100 |𝐼| = 500 |𝐼| = 1000

CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%)

#𝑠𝑎𝑑𝑑 = 1 #𝑠𝑎𝑑𝑑 = 4 #𝑠𝑎𝑑𝑑 = 1 #𝑠𝑎𝑑𝑑 = 4 #𝑠𝑎𝑑𝑑 = 1 #𝑠𝑎𝑑𝑑 = 4

Min 0.56 0.70 −2.49 2.83 2.93 −0.41 18.45 17.63 −0.10
Max 3.69 4.43 1.69 54.08 62.11 0.31 818.45 1894.03 0.61
Avg 1.20 1.27 0.22 19.13 17.50 0.00 288.30 281.14 0.20

#Solved 17 17 24 24 20 23

Larger instances

|𝐼| = 1000, |𝑆| = 10000 |𝐼| = 2000, |𝑆| = 1000

CPU times (s) 𝛥𝑂𝐹 (%) CPU times (s) 𝛥𝑂𝐹 (%)

#𝑠𝑎𝑑𝑑 = 1 #𝑠𝑎𝑑𝑑 = 4 #𝑠𝑎𝑑𝑑 = 1 #𝑠𝑎𝑑𝑑 = 4

Min 63.94 64.17 0.00 216.16 205.32 0.00
Max 1666.86 1879.73 0.00 2276.75 2154.80 0.00
Avg 769.43 783.20 0.00 984.67 941.45 0.00

#Solved 18 18 11 11
solution process are introduced and discussed. Extensive computational
experiments on testbed instances from the literature proved the validity
of the proposed approach, demonstrating that it can tackle large-sized
instances – involving up to 1000 TUs and 1000 demand scenarios – in
acceptable computing times. Also, the introduced measures for scenario
selection were shown to be relevant to the performance of our method-
ology. Besides, the comparison with existing works demonstrated that
the current heuristic outperforms them in computing times and/or
the number of solved instances while assuring comparable solutions’
quality. Finally, the heuristic was also proven to be competitive on
more challenging test cases, being able to solve instances involving
10,000 demand scenarios and 2000 TUs.

However, the latter results also revealed that the performance of
our approach deteriorated when increasing the number of TUs. Ad-
ditional tests would be necessary to fully understand ‘‘how far’’ our
procedure can go on very large-scale cases. Nevertheless, further re-
finements to improve the computational efficiency and effectiveness of
the approach are worth investigating. Applications are another inter-
esting field to be explored. Of course, real-world problems may involve
various additional requirements of practical relevance. However, as
long as their underlying structure roots into districting, the proposed
approach emerges as a viable tool to obtain approximate solutions to
such problems. Finally, we note that the structure of the proposed
heuristic makes it applicable to a broader range of closer optimization
problems (e.g., Facility Location). Therefore, extending and testing the
introduced method to design a general solution procedure for sample
approximation and chance-constraints programming problems is an
ambitious line of research to pursue.
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