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Abstract: Model Predictive Control (MPC) is a successful control strategy, with solid
theoretical and practical backgrounds. Currently, several stabilizing MPC formulations are
available to deal with tracking of piecewise constant references. In particular, it is well
understood that, in many cases, the use of artificial reference variables in the optimisation
problem allows to sensibly extend the region of attraction of the controller. This work proposes
a modified MPC for tracking formulation which is able to guarantee nominal stability also
in presence of positive semidefinite stage cost. This can be particularly useful when dealing
with high order and/or black-box models, as it allows penalizing the outputs or a subset
of states of the system without compromising stability. The algorithm design is based on
terminal ingredients and a cost detectability assumption which is explicitly accounted for in
the algorithm formulation. Such assumption can be verified by means of input-output-to-state
stability arguments, as well as dissipativity ones, thus exploiting techniques already available in
the literature.
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1. INTRODUCTION

Model Predictive Control (MPC) is a successful control
strategy, widely employed in the industrial frameworks
and thoroughly investigated in the academic one. Specif-
ically, stability, robustness, constraint satisfaction results,
as well as computationally tractable implementations are
nowadays available for both linear and nonlinear systems
(Rawlings et al. (2017)).
While MPC was originally developed to face regulation
problems, several stabilizing and robust algorithm for-
mulations have been proposed to deal with tracking of
piecewise or asymptotically constant references (Magni
and Scattolini (2005); Limón et al. (2008); Rawlings et al.
(2017); Limon et al. (2018)), periodic references (Limon
et al. (2015); Koehler et al. (2021)), zone regions (Fer-
ramosca et al. (2010); Liu et al. (2019)) or general trajecto-
ries generated by exosystems (Magni et al. (2001); Köhler
et al. (2018)). Moreover, the use of artificial reference
variables was introduced in Limón et al. (2008) and further
discussed in Ferramosca et al. (2019, 2014); D’jorge et al.
(2018); Limon et al. (2018); Köhler et al. (2020), to extend
the region of attraction of the tracking control scheme.
As a matter of fact, while standard tracking algorithm
may loose feasibility due to setpoint changes, the use of
artificial reference variables ensures recursive feasibility
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and convergence to an admissible setpoint.
In both regulation and tracking frameworks, the com-
putation of each MPC control action requires the mini-
mization of a suitable cost function, which penalizes the
distance of the system state from the desired setpoint, as
well as the necessary control effort, at each instant along
the prediction horizon( Rawlings et al. (2017)). However,
several practical applications favour or require the use of
cost functions weighting the output of the system, rather
than its state. As an example, this occurs with MPC
schemes based on high-order, black-box models, for which
a standard approach would result in a cumbersome tuning
process. While the MPC stage cost is typically required to
be positive definite (PD) to ensure stability properties of
the closed-loop scheme, the aforementioned situation may
result in a positive semidefinite (PSD) cost function. In
this scenario, a suitable detectability assumption must be
introduced to recover closed-loop stability (Grimm et al.
(2005); Rawlings et al. (2017)). In particular, nonlinear
detectability or input-output-to-state stability (Cai and
Teel (2008); Allan et al. (2021)) assumptions are exploited
in the recent literature to prove closed-loop stability, for
both MPC schemes with and without terminal ingredients
(Grimm et al. (2005); Rawlings et al. (2017); Koehler et al.
(2021)). Additionally, Höger and Grüne (2019) suggests
that dissipativity results can be exploited to prove nonlin-
ear detectability, thus allowing to leverage further results
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that dissipativity results can be exploited to prove nonlin-
ear detectability, thus allowing to leverage further results

Nonlinear MPC for Tracking
Piecewise-Constant Reference Signals: the
Positive Semidefinite Stage Cost Case

Giacomo Galuppini ∗,⋆ Lalo Magni ∗∗ Antonio Ferramosca ∗∗∗

∗ Dipartimento di Ingegneria Civile e Architettura, University of
Pavia, Pavia 27100, Italy (e-mail: giacomo.galuppini01@ateneopv.it)

∗∗ Dipartimento di Ingegneria Civile e Architettura, University of
Pavia, Pavia 27100, Italy (e-mail: lalo.magni@unipv.it)

∗∗∗ Department of Management, Information and Production
Engineering, University of Bergamo, Italy (e-mail:

antonio.ferramosca@unibg.it)

Abstract: Model Predictive Control (MPC) is a successful control strategy, with solid
theoretical and practical backgrounds. Currently, several stabilizing MPC formulations are
available to deal with tracking of piecewise constant references. In particular, it is well
understood that, in many cases, the use of artificial reference variables in the optimisation
problem allows to sensibly extend the region of attraction of the controller. This work proposes
a modified MPC for tracking formulation which is able to guarantee nominal stability also
in presence of positive semidefinite stage cost. This can be particularly useful when dealing
with high order and/or black-box models, as it allows penalizing the outputs or a subset
of states of the system without compromising stability. The algorithm design is based on
terminal ingredients and a cost detectability assumption which is explicitly accounted for in
the algorithm formulation. Such assumption can be verified by means of input-output-to-state
stability arguments, as well as dissipativity ones, thus exploiting techniques already available in
the literature.

Keywords: Nonlinear Model Predictive Control, Tracking, Nonlinear Detectability.

1. INTRODUCTION

Model Predictive Control (MPC) is a successful control
strategy, widely employed in the industrial frameworks
and thoroughly investigated in the academic one. Specif-
ically, stability, robustness, constraint satisfaction results,
as well as computationally tractable implementations are
nowadays available for both linear and nonlinear systems
(Rawlings et al. (2017)).
While MPC was originally developed to face regulation
problems, several stabilizing and robust algorithm for-
mulations have been proposed to deal with tracking of
piecewise or asymptotically constant references (Magni
and Scattolini (2005); Limón et al. (2008); Rawlings et al.
(2017); Limon et al. (2018)), periodic references (Limon
et al. (2015); Koehler et al. (2021)), zone regions (Fer-
ramosca et al. (2010); Liu et al. (2019)) or general trajecto-
ries generated by exosystems (Magni et al. (2001); Köhler
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et al. (2018)). Moreover, the use of artificial reference
variables was introduced in Limón et al. (2008) and further
discussed in Ferramosca et al. (2019, 2014); D’jorge et al.
(2018); Limon et al. (2018); Köhler et al. (2020), to extend
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(2021)). Additionally, Höger and Grüne (2019) suggests
that dissipativity results can be exploited to prove nonlin-
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already available in the literature.
However, stability properties of tracking MPC schemes
involving both a PSD stage cost and the use of artificial
reference variables has not been explored in the literature
yet. This work faces this issue by proposing a novel Nonlin-
ear MPC (NMPC) algorithm for tracking, with guaranteed
stability properties. Specifically, the proposed NMPC ex-
tends the original approach from Limon et al. (2018), and
copes with the PSD stage cost by explicitly accounting for
nonlinear detectability in the overall cost function which
is minimized at each iteration. Stability of the closed-
loop scheme is achieved by rather standard assumptions
on terminal ingredients. The proposed NMPC retains the
advantages of the original algorithm, and eases the tuning
process in presence of high-order and/or black-box models
of the system under control. Finally, the proposed NMPC
for tracking is demonstrated on a simulated example, to
highlight the benefits of the approach.

Notation

A function α : R≥0 → R≥0 is a K-function, if it is
continuous, strictly increasing, and α(0) = 0. A function
β : R≥0 → R≥0 is a K∞-function, if it is a K-function and
it is not bounded above. The inverse of K-function α is
denoted as α−1. Let a bold variable u denote a sequence
{u(0), u(1), ..., u(N−1)}, where u(i) is the i-th component
and N is the length of the sequence. For a given z ∈ Rn,
let |z| denote its L2-norm and |z|M its M-norm, with M a
matrix of suitable dimensions.

2. PROBLEM STATEMENT

Consider a nonlinear time invariant, discrete time system:

x+ = f(x, u), y = h(x, u) (1)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, y ∈ Rp is the system output, and x+ is the successor
state. Assume f(x, u) and h(x, u) are continuous at any
equilibrium point. State, input and output at sampling
time k are denoted as x(k), u(k) and y(k), respectively.
The solution of the system for an input sequence u and
initial state x is denoted as x(j) = ϕ(j;x,u) where x =
ϕ(0;x,u).

The system is subject to hard constraints on state and
control:

(x(k), u(k)) ∈ Z ∀k ≥ 0 (2)

with Z ⊂ Rn+m a closed set with not empty interior.

Let the steady state, input, and output of the plant be
denoted as (xs, us, ys). To avoid equilibrium points lying
on active constraints, define the restricted constraint set
as:

Ẑ = {z : z + e ∈ Z, ∀ |e| < ϵz}
where ϵz > 0 is an arbitrarily small constant. Then, the set
of admissible equilibrium states such that the constraints
are not active is defined as follows:

Zs = {(x, u) ∈ Ẑ : x = f(x, u)}
Ys = {y = h(x, u) : (x, u) ∈ Zs}

Note that, for the MPC for tracking proposed in this work
to be meaningful, Zs must be non empty. Finally, let Yt

be the largest convex subset of Ys.

Assumption 1. It is assumed that the steady output ys
univocally defines the equilibrium point (xs, us), hence,
for any given ys, there exists a unique steady state and
input (xs, us) such that xs = f(xs, us) and ys = h(xs, us).

It is also assumed that there exists a locally Lipschitz
continuous function gx : Yt → Rn and a continuous
function gu : Yt → Rm such that xs = gx(ys) and
us = gu(ys).

Remark: Assumption 1 is satisfied if f(·, ·) and h(·, ·) are
continuously differentiable and the Jacobian




∂f(x, u)

∂x
(xs, us)− In


∂f(x, u)

∂u
(xs, us)

∂h(x, u)

∂x
(xs, us)

∂h(x, u)

∂u
(xs, us)




is nonsingular for all (xs, us) ∈ Zs.

3. MPC FORMULATION

In this section, a new MPC for tracking with PSD stage
cost will be presented. This formulation, which, extends
the algorithm presented in Limon et al. (2018), is of
particular relevance in case of output tracking, or tracking
of a small subset of states of a high order system. In order
to prove asymptotic stabilty of the closed loop, a nonlinear
detectability assumption is needed.

For a given state x and setpoint yt, the cost function of
the proposed MPC is given by:

VNc,Np
(x, yt,u, ys) =

Nc−1
j=0

ℓ(x(j)− xs, u(j)− us)

+

Np−1
j=Nc

ℓ(x(j)− xs, κ(x(j), ys)− us)

+ Vf (x(Np)− xs, ys) + VO(ys − yt)

+ ψ(x− xs)

where u is the sequence of control inputs, ys is the
artificial reference, x(j) = ϕ(j;x,u), xs = gx(ys), and
us = gu(ys); Nc and Np are the control and prediction
horizon, respectively. The function l : Rn × Rm → R≥0 is
the stage cost function, the function κ : Rn × Rp → Rm

is a local control law, the function Vf : Rn → R≥0 is the
terminal cost function, the function VO : Rp → R≥0 is the
offset cost function, and the function Ψ : Rn → R≥0 is the
cost detectability function.

The MPC for tracking control law is derived from the
solution of the optimisation problem PNc,Np

(x, yt) given
by:

min
u,ys

VNc,Np(x, yt,u, ys) (3)

s. t.

x(0) = x (4)

x(j + 1) = f(x(j), u(j)) ∀j = 0, ..., Nc − 1 (5)

(x(j), u(j)) ∈ Z ∀j = 0, ..., Nc − 1 (6)

x(j + 1) = f(x(j), κ(x(j), ys)) ∀j = Nc, ..., Np − 1 (7)

(x(j), κ(x(j), ys)) ∈ Z ∀j = Nc, ..., Np − 1 (8)

xs = f(xs, us), ys = h(xs, us) (9)

(x(Np), ys) ∈ Γ (10)

where Γ ⊂ Rn × Rp is the terminal set.
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Denote the optimal solution to this optimisation prob-
lem and the corresponding optimal cost function as
(u0(x, yt), y

0
s(x, yt)) and V 0

Nc,Np
(x, yt), respectively. More-

over, let x0
s = gx(y

0
s) and u0

s = gu(y
0
s). According to

the receding horizon policy, the closed-loop control law
κNc,Np(x, yt) is then given by:

κNc,Np
(x, yt) = u0(0;x, yt)

The stage cost function, the offset cost function and
the cost detectability function must fulfill the following
assumptions:

Assumption 2. (1) Given a PSD stage cost function ℓ(·)
and a cost detectability function Ψ(·), there exists
constants γ0, ϵ0 and a continuous PD function µ :
R≥0 → R≥0 such that:

Ψ(x− xs) ≤ γ0µ(|x− xs|)
Ψ(x+ − xs)−Ψ(x− xs) ≤ −ϵ0µ(|x− xs|)

+ ℓ(x− xs, u− us)

for any (x, u) ∈ Ẑ, and any (xs, us) ∈ Zs.
(2) The offset cost function VO : Rp → R is a convex PD

function such that the minimizer:

y∗s = arg min
ys∈Yt

VO(ys − yt)

is unique. Moreover, there exists a K∞ function αO

such that:

VO(ys − yt)− VO(y
∗
s − yt) ≥ αO(|ys − y∗s |)

�

Remark: note that, for system (1), Assumption 2.1 requires
µ(·) to be nonlinearly detectable from the stage cost ℓ(·).
Given ℓ(·), a suitable cost detectability function can be
computed by relying on input-output-to-state stability
(Cai and Teel (2008); Allan et al. (2021)) or strict dissipa-
tivity methodologies (Grune and Guglielmi (2018); Höger
and Grüne (2019)).

The terminal ingredients must fulfil the following condi-
tions:

Assumption 3. (1) Let Γ be a positive invariant set for
tracking for the system x+ = f(x, κ(x, ys)), as defined
in Limon et al. (2018).

(2) Let κ(x, ys) be a control law such that for all (x, ys) ∈
Γ the equilibrium point xs = gx(ys) and us =
gu(ys) is an asymptotically stable equilibrium point
for the system x+ = f(x, κ(x, ys)). Besides, κ(x, ys)
is continuous at (x, ys) for all ys ∈ Yt.

(3) Let Vf (x− xs, ys) be a PD function such that for all
(x, ys) ∈ Γ there exist constants b > 0 and σ > 1
which verify:

Vf (x− xs, ys) ≤ b|x− xs|σ

and:

Vf (f(x, κ(x, ys))− xs, ys)− Vf (x− xs, ys)

≤ −ℓ(x− xs, κ(x, ys)− us)

where xs = gx(ys), us = gu(ys).

�

Remark: note that an invariant set for tracking Γ can be
conveniently computed with the methodology discussed in
Limon et al. (2018).

The following theorem presents the main result of this
work. Specifically, it ensures closed-loop stability and
convergence of the system controlled by the proposed MPC
for tracking.

Theorem 1. Suppose that Assumptions 1-3 hold, and con-
sider a given constant setpoint yt. Then, for any feasible
initial state x, the system controlled by the MPC controller
κNc,Np(x, yt) derived from the solution of (3-10) is stable,
fulfills the constraints, and converges to an equilibrium
point such that

(1) If yt ∈ Yt, then limk→∞ |y(k)− yt| = 0.
(2) If yt /∈ Yt, then limk→∞ |y(k)− y∗s | = 0.

where
y∗s = arg min

ys∈Yt

VO(ys − yt)

�

The proof of Theorem 1 requires two steps. In the first
one, recursive feasibility of the optimisation problem must
be proved for any setpoint yt. In the second one, asymp-
totic stability of the equilibrium (x∗

s, u
∗
s) must be proved.

Moreover, the proof is based on some technical lemmas,
stated and proved in Appendix.

Recursive Feasibility

Recursive feasibility directly follows from the proof in
Limon et al. (2018), Appendix A.

Stability

This part of the proof is conducted by showing that the
function

W (x, yt) = V 0
Nc,Np(x, yt)− VO(y

∗
s − yt)

is a Lyapunov function for the closed-loop system in a
neighborhood of the equilibrium point.

Assuming that ϵ is sufficiently small to guarantee that
the terminal control law u = κ(x, y∗s ) is admissible for all
|x−x∗

s| ≤ ϵ, it is proved that there exists three of suitable
K∞ functions, αW , βW and β∆W , such that:

αW (|x− x∗
s|) ≤ W (x, yt) ≤ βW (|x− x∗

s|)
W (f(x, κNc,Np(x, yt)), yt)−W (x, yt) ≤ −β∆W (|x− x∗

s|)

Lower bound.

Consider the following lower bound for the optimal cost
V 0
Nc,Np(x, yt):

V 0
Nc,Np(x, yt) ≥ ℓ(x− x0

s, u− u0
s)

+ VO(y
0
s − yt) + Ψ(x− x0

s)

and note that:

V 0
Nc,Np(x, yt) = W (x, yt) + VO(y

∗
s − yt)

then:

W (x, yt) ≥ ℓ(x− x0
s, u− u0

s) + VO(y
0
s − yt)

− VO(y
∗
s − yt) + Ψ(x− x0

s)

From Assumption 2.2 and Lipschitz continuity of gx(·), it
holds:

VO(y
0
s − yt)− VO(y

∗
s − yt) ≥ αO(|y0s − y∗s |)

≥ αO(L
−1
g |x0

s − x∗
s|)

= α̂O(|x0
s − x∗

s|)
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stated and proved in Appendix.

Recursive Feasibility

Recursive feasibility directly follows from the proof in
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This part of the proof is conducted by showing that the
function

W (x, yt) = V 0
Nc,Np(x, yt)− VO(y

∗
s − yt)

is a Lyapunov function for the closed-loop system in a
neighborhood of the equilibrium point.

Assuming that ϵ is sufficiently small to guarantee that
the terminal control law u = κ(x, y∗s ) is admissible for all
|x−x∗

s| ≤ ϵ, it is proved that there exists three of suitable
K∞ functions, αW , βW and β∆W , such that:

αW (|x− x∗
s|) ≤ W (x, yt) ≤ βW (|x− x∗

s|)
W (f(x, κNc,Np(x, yt)), yt)−W (x, yt) ≤ −β∆W (|x− x∗

s|)

Lower bound.

Consider the following lower bound for the optimal cost
V 0
Nc,Np(x, yt):

V 0
Nc,Np(x, yt) ≥ ℓ(x− x0

s, u− u0
s)

+ VO(y
0
s − yt) + Ψ(x− x0

s)

and note that:

V 0
Nc,Np(x, yt) = W (x, yt) + VO(y

∗
s − yt)

then:

W (x, yt) ≥ ℓ(x− x0
s, u− u0

s) + VO(y
0
s − yt)

− VO(y
∗
s − yt) + Ψ(x− x0

s)

From Assumption 2.2 and Lipschitz continuity of gx(·), it
holds:

VO(y
0
s − yt)− VO(y

∗
s − yt) ≥ αO(|y0s − y∗s |)

≥ αO(L
−1
g |x0

s − x∗
s|)

= α̂O(|x0
s − x∗

s|)

Then:

W (x, yt) ≥ ℓ(x− x0
s, u− u0

s)

+ α̂O(|x0
s − x∗

s|) + Ψ(x− x0
s)

Note that Assumption 2.1 can be rearranged as:

ℓ(x− x0
s, u− u0

s) + Ψ(x− x0
s) ≥ ϵ0µ(|x− x0

s|)
+ Ψ(x+ − x0

s)

≥ ϵ0µ(|x− x0
s|)

Finally, combining the previous two:

W (x, yt) ≥ α̂O(|x0
s − x∗

s|) + ϵ0µ(|x− x0
s|)

≥ αW (|x0
s − x∗

s|+ |x− x0
s|)

≥ αW (|x− x∗
s|)

Upper bound.

Let uk be the sequence of future inputs derived from
the local control law taking x as initial state and y∗s as
reference. This sequence is feasible, and the corresponding
cost function upper bounded by the terminal cost, as
follows:

V 0
Nc,Np(x, yt) ≤ VNc,Np(x, yt;uk, y

∗
s )

≤ Vf (x− x∗
s, y

∗
s ) + VO(y

∗
s − yt)

+ Ψ(x− x∗
s)

Then:

V 0
Nc,Np(x, yt)− VO(y

∗
s − yt) ≤ Vf (x− x∗

s, y
∗
s )

+ Ψ(x− x∗
s)

Therefore:

W (x, yt) ≤ Vf (x− x∗
s, y

∗
s ) + Ψ(x− x∗

s)

Finally, using the upper bounds from Assumptions 2.1 and
3.3:

W (x, yt) ≤ b|x− x∗
s|σ + γ0µ(|x− x∗

s|)
≤ βW (|x− x∗

s|)

Cost decrease.

Define the successor state, x+ = f(x, κNc,Np
(x, yt)) and

the following feasible sequence:

ũ+ = {u0(1), .., u0(Nc − 1),

κNc,Np
(x0(Nc), y

0
s), ..., κNc,Np

(x0(Np), y
0
s)},

ỹs
+ = y0s

Moreover, assume x ̸= x0
s(x, yt), and define

ṼNc,Np(x
+, yt; ũ

+, y0s) as the cost function evaluated at the
feasible solution (ũ+, y0s).

Then:

∆W (x, yt) = W (x+, yt)−W (x, yt)

= V 0
Nc,Np(x

+, yt)− VO(y
∗
s − yt)

− V 0
Nc,Np(x, yt) + VO(y

∗
s − yt)

= V 0
Nc,Np(x

+, yt)− V 0
Nc,Np(x, yt)

Note that, by optimality, it holds:

V 0
Nc,Np(x

+, yt) ≤ ṼNc,Np(x
+, yt; ũ

+, y0s)

By means of standard procedures in MPC stability proofs
(Rawlings et al. (2017)) and Assumption 3.3, it is possible
to obtain:

ṼNc,Np(x
+, yt; ũ

+, y0s)− V 0
Nc,Np(x, yt) ≤

− ℓ(x− x0
s, u(0)

0 − us) + Ψ(x+ − x0
s)−Ψ(x− x0

s)

Fig. 1. Comparison of feasible regions of the proposed
MPC for tracking (X2,2) and for a standard MPC for
tracking (X standard

2,2 ) in case of yt = 49.99.

Therefore:

∆W (x, yt) ≤ −ℓ(x− x0
s, u(0)

0 − us)

+ Ψ(x+ − x0
s)−Ψ(x− x0

s)

In view of Assumption 2.1, it holds:

∆W (x, yt) ≤ −ϵ0µ(|x− x0
s|)

Finally, using Lemma 2:

∆W (x, yt) ≤ −ϵ0µ(αd(|x− x∗
s|))

≤ −β∆W
(|x− x∗

s|)

4. NUMERICAL EXAMPLE

This Section demonstrates the proposed MPC scheme with
a numerical example, inspired by Höger and Grüne (2019),
and compares the results to a standard MPC for tracking,
which does not exploit auxiliary reference variables (i.e.
ys = yt is set whenever admissible).

Consider the following system:

x+ = Ax+Bu, y = Cx

with:

A =

[
1 1
0 1

]
B =

[
0.5
1

]
C = [1 0]

subject to state and input constraints:

x1 ∈ [−50; 50] x2 ∈ [−25; 25] u ∈ [−20; 20]

Moreover, consider the following PSD stage cost:

ℓ(x− xs, u− us) = |x− xs|2Q + |u− us|2R
with:

Q = C ′C =

[
1 0
0 0

]
R = 1

Note that Assumption 1 is satisfied, and that, according
to the analysis carried out in Höger and Grüne (2019),
nonlinear detectability holds for the stage cost, with:

Ψ(x− xs) = |x− xs|2PΨ

PΨ =
1

10

[
1 −2
−2 5

]
, γ0 = λmax(PΨ), ϵ0 = 3/40

µ(|x− xs|) = |x− xs|2
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Fig. 2. Result of a simulation with the proposed MPC for tracking, in case of yt = 49.99.

where λmax(PΨ) denotes the maximum eigenvalue of PΨ.
Set then:

VO(ys − yt) = |ys − yt|2

and synthesize an infinite horizon LQR with weightsQ and
R as auxiliary control law (note that the couple (A,C) is
observable). Let Plq denote the solution of the associated
algebraic Riccati equation, and set:

Vf (x− xs, ys) = |x− xs|2Plq
Plq =

[
2 1
1 1.5

]

Γ = {(x, ys) : |x− gx(ys)|2Plq
≤ γlq}

with γlq chosen so that the auxiliary control law locally
fulfils state and input constraints. Finally, pick:

Nc = Np = 2

For sake of comparison with a standard MPC for tracking,
consider now an output target yt ∈ Yt. e.g. yt = 49.99. Fig.
1 depicts the feasible region for the proposed MPC for
tracking, X2,2, and that of a standard MPC for tracking
with the same tuning, X standard

2,2 . As expected from Limon
et al. (2018), the use of artificial reference variables allows
obtaining a sensitive enlargement of the domain of attrac-
tion of the controller. Moreover, it should be also stressed
that the domain of attraction of the proposed MPC for
tracking does not depend on the output target yt. With
the novel results proved in this work, the tracking approach
based on artificial reference variables can be applied also
in case of PSD stage cost, as in this example.

Fig. 2 depicts the results of a closed-loop simulation with
initial state x(0) = [−40 −10]′ and further stresses the role
of artificial reference variables. As a matter of fact, despite
the use of a short horizon and a small terminal set (note
that Γ could have been set in a less conservative way by
following the procedure discussed in Limon et al. (2018)),
the proposed MPC successfully manages to regulate the
state of the system by suitably adjusting the auxiliary
reference variables at each time instant.

5. CONCLUSION

This work proposes a nonlinear MPC for tracking, which
guarantees stability even in presence of positive semidef-
inite stage cost. Stabiltiy results are based on a cost

detectability assumption, which is explicitly accounted for
in the algorithm design, and can be verified by means of
techniques already available in the literature on input-
output-to-state stability and dissipativity. Moreover, the
MPC for tracking exploits artificial variables to extend the
region of attraction of the controller, as demonstrated with
a numerical example.

REFERENCES

Allan, D.A., Rawlings, J., and Teel, A.R. (2021). Nonlin-
ear detectability and incremental input/output-to-state
stability. SIAM Journal on Control and Optimization,
59(4), 3017–3039.

Cai, C. and Teel, A.R. (2008). Input–output-to-state
stability for discrete-time systems. Automatica, 44(2),
326–336.

D’jorge, A., Anderson, A., González, A.H., and Fer-
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LEMMATA

The following lemmas are required for the proof of Theo-
rem 1.

Lemma 1. Consider system (1) subject to constraints (2).
Suppose that Assumptions 1-3 hold. Consider a given set-
point yt, and assume that for a given state x, the optimal
solution to PNc,Np

(x, yt) is such that x = x0
s(x, yt) =

gx(y
0
s(x, yt)). Then, V

0
Nc,Np

(x, yt) = VO(y
∗
s − yt).

Proof. Considering that the optimal solution to problem
PNc,Np

(x, yt) is (x
0
s, u

0
s, y

0
s), since x = x0

s, the optimal value

cost function is V 0
Nc,Np

(x, yt) = VO(y
0
s − yt).

The lemma is proved by contradiction. Assume that
VO(y

0
s − yt) > VO(y

∗
s − yt). Then, since y∗s is the unique

minimizer of VO(·), y0s ̸= y∗s . Define then ŷs as:

ŷs = βy0s + (1− β)y∗s
From the definition of set Yt, it follows that (x

0
s, u

0
s, y

0
s) ∈

Ẑ and it is in the interior of Z. Therefore, there exists

a β̂ ∈ [0, 1) such that for ŷs given by a β ∈ [β̂, 1], the
sequence of inputs û generated by the local control law is
such that (û, ŷs) is a feasible solution of PNc,Np(x, yt).

From the Lipschitz continuity of the function gx(·), it holds
that |x0

s − x̂s| ≤ Lg|y0s − ŷs|, where Lg > 0 is the Lipschitz
constant of gx(·). Taking into account that y0s − ŷs = (1−
β)(y0s−y∗s ) and the optimality of the solution, the following
holds:

VO(y
0
s − yt) = V 0

Nc,Np
(x, yt)

≤ VNc,Np(x, yt, û, ŷs)

=

Np−1∑
j=0

ℓ(x(j)− x̂s, (κ(x(j), ŷs)− ûs)

+ Vf (x(Np)− x̂s, ŷs) + VO(ŷs − yt)

+ ψ(x− x̂s)

≤ Vf (x
0
s − x̂s, ŷs) + VO(ŷs − yt) + ψ(x0

s − x̂s)

≤ b|x0
s − x̂s|σ + VO(ŷs − yt) + γ0µ(|x0

s − x̂s|)
≤ b(Lg|y0s − ŷs|)σ + VO(ŷs − yt)

+ γ0µ(Lg|y0s − ŷs|)
= Lσ

g (1− β)σ|y0s − y∗s |σ + VO(ŷs − yt)

+ γ0µ(Lg(1− β)|y0s − y∗s |)

From the convexity of VO(·), it follows:
VO(ŷs − yt) ≤ βVO(y

0
s − yt) + (1− β)VO(y

∗
s − yt)

Therefore:

VO(y
0
s − yt) ≤ Lσ

g (1− β)σ|y0s − y∗s |σ

+ βVO(y
0
s − yt) + (1− β)VO(y

∗
s − yt)

+ γ0µ(Lg(1− β)|y0s − y∗s |)
which leads to the following inequality:

VO(y
0
s − yt)− VO(y

∗
s − yt) ≤ Lσ

g (1− β)σ−1|y0s − y∗s |σ

+ γ0µ(Lg(1− β)|y0s − y∗s |)

Since σ > 1, taking the limit of both sides of the inequality
as β approaches 1 from the right,leads to:

VO(y
0
s − yt)− VO(y

∗
s − yt) ≤ 0

which in turn leads to a contradiction and concludes the
proof. �

Lemma 2. (Adapted from Ferramosca et al. (2014), Lemma
6). Suppose that Assumptions 1-3 hold. Then, there exists
a K∞ function αd verifying:

|x− x0
s| ≥ αd(|x− x∗

s|)
for all yt ∈ Yt and all feasible x, with x∗

s = gx(y
∗
s ).

Proof. Because of the convexity of the sets Z and Zs,
|x−x0

s| is a continuous function. Moreover, consider these
two cases:

(1) |x− x0
s| = 0 ⇐⇒ |x− x∗

s| = 0.
In fact, |x − x0

s| = 0 =⇒ |x − x∗
s| = 0 follows from

Lemma 1; moreover, |x − x∗
s| = 0 =⇒ |x − x0

s| = 0
follows by optimality.

(2) |x− x∗
s| > 0 =⇒ |x− x0

s| > 0.
Assume by contradiction that |x − x0

s| = 0. Then,
from the previous point, it would be |x − x∗

s| = 0,
which contradicts the hypothesis that |x− x∗

s| > 0.

Then, since Z is compact, there exists a K∞ function αd

verifying (Khalil (2002)):

|x− x0
s| ≥ αd(|x− x∗

s|)


