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Abstract—A complex problem when outsourcing data to the
cloud is access control management. Encryption, by wrapping
data with a self-enforcing protection layer, provides access control
enforcement by making resources intelligible only to users holding
the necessary key. The real challenge becomes then the efficient
revocation of access. We address this challenge and present an
approach to effectively and efficiently enforce access revocation on
resources stored at external cloud providers. The approach relies
on a resource transformation that provides strong mutual inter-
dependency in its encrypted representation. To revoke access on a
resource, it is then sufficient to update a small portion of it, with the
guarantee that the resource as a whole (and any portion of it) will
become unintelligible to those from whom access is revoked. Our
experimental results show the effectiveness of our approach, and
confirm its efficiency, especially when managing large resources
with dynamic access policy.

Index Terms—Access control, access revocation, resource
encryption, mix&slice.

I. INTRODUCTION

W ITH the considerable advancements in Information and
Communication Technologies solutions, users and com-

panies are finding increasingly appealing to rely on external
services for storing resources and making them available to
others. In such contexts, a promising approach to enforce access
control to externally stored resources is via encryption: resources
are encrypted for storage and only authorized users have the
keys that enable their decryption. There are several advantages
that justify the use of encryption for enforcing access control.
First, robust encryption has become computationally inexpen-
sive, enabling its introduction in domains that are traditionally
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extremely sensitive to performance (like cloud-based applica-
tions and management of large resources). Second, encryption
provides protection against the service provider itself. While
trustworthy for providing storage and access functionality, the
provider cannot typically be considered authorized to know
the content of the resources it stores (honest-but-curious sce-
nario [2], [3], [4]) and hence neither to enforce access control.
Third, encryption solves the need of having a trusted party
for policy enforcement: resources enforce self-protection, since
only authorized users, holding the keys, will be able to decrypt
them.

One of the complex aspects in using encryption to enforce
access control concerns access revocation. If granting an au-
thorization is easy (it is sufficient to give the newly authorized
user access to the key for decrypting the resource), revoking
an authorization is a completely different problem. There are
essentially two approaches to enforce revocation: i) re-encrypt
the resource with a new key or ii) revoke access to the key
itself. Re-encryption of the resource entails, for the data owner,
downloading the resource, decrypting it and re-encrypting it
with a new key, re-uploading the resource, and re-distributing
the key to the users who still hold authorizations. If decryp-
tion, re-encryption, and even key management (for this spe-
cific context) can be supported by current technologies, the
remaining challenge is represented by the need to download
and re-upload the resource, with a considerable overhead for the
data owner. This overhead will continue to grow as usage of
cloud resources grows, in particular in the context of emerging
Big Data applications. The alternative approach of enforcing
revocation on the resource by preventing access to the key with
which the resource is encrypted cannot be considered a solution.
As a matter of fact, it protects the key, not the resource itself,
and it is inevitably fragile against a user who - while having
been revoked from an access - has maintained a local copy of
the key.

Our Approach. In this paper, we present a novel approach
to enforce access revocation that provides efficiency, as it does
not require expensive upload/re-upload of (large) resources, and
robustness, as it is resilient against the threat of users who
might have maintained copies of the keys protecting resources
on which they have been revoked access.

The basic idea of our approach is to provide an encrypted rep-
resentation of the resources that guarantees complete interdepen-
dence (mixing) among the bits of the encrypted content, meaning
that each bit in the resulting encrypted content depends on every

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0688-7696
https://orcid.org/0000-0003-0793-3551
https://orcid.org/0000-0002-1658-6734
https://orcid.org/0000-0003-0399-1738
https://orcid.org/0000-0002-4614-6932
https://orcid.org/0000-0001-7395-4620
mailto:enricobacis@google.com
mailto:enricobacis@google.com
mailto:sabrina.decapitani@unimi.it
mailto:sara.foresti@unimi.it
mailto:pierangela.samarati@unimi.it
mailto:pierangela.samarati@unimi.it
mailto:marco.rosa@sap.com
mailto:parabosc@unibg.it


BACIS et al.: MIX&SLICE FOR EFFICIENT ACCESS REVOCATION ON OUTSOURCED DATA 1391

bit of the original plaintext content. In this way, unavailability
of even a small portion of the encrypted version of a resource
completely prevents the reconstruction of the resource or even of
portions of it. Brute-force attacks guessing possible values of the
missing bits are possible, but even for small missing portions of
the encrypted resource, the required effort would be prohibitive.
The classical All-Or-Nothing Transform (AONT) [5] considers
similar requirements, but the techniques proposed for it are
not suited to our scenario. AONT approaches are based on the
assumption that keys are not known to users, whereas in our
scenario revoked users can know the encryption key and may
plan ahead to locally store critical pieces of information.

Our approach trades off between the requirement to connect
all bits of a resource (to provide the desired interdependency of
the content), and the requirement to maintain fine-grained access
of the resource itself (to enable authorized retrieval of portions of
the resource). This is a particular challenge due to the potentially
huge size of the resources. To achieve this, we apply the idea of
mixing content within portions of the resource, enforcing then
revocation by overwriting encrypted bits in every such portion.
Before mixing, our approach partitions the resource in different,
equally sized, chunks, called macro-blocks. Then, as the name
hints, it is based on the following concepts.
� Mix: The content of each macro-block is processed by a

carefully designed bit-mixing approach that ensures, at the
end of the process, that every individual bit in the input has
had an impact on each of the bits in the encrypted output.

� Slice: The mixed macro-blocks are sliced into fragments
so that each fragment includes bits from each macro-block
of the resource. Fragments represent a minimal (in terms of
number of bits of protection, which we call mini-block) unit
of revocation: lack of any single fragment of the resource
completely prevents reconstruction of the resource or of
portions of it.

To revoke access from a user, it is sufficient to re-encrypt one
(any one) of the resource fragments with a new key not known
to the user. The advantage is clear: re-encrypting a tiny chunk of
the resource guarantees protection of the whole resource itself.
Also, the service provider simply needs to provide storage func-
tionality and is not required to play an active role in enforcing
access control or providing user authentication. Our Mix&Slice
proposal is complemented with a convenient approach for key
management that, based on key regression, avoids any storage
overhead for key distribution.

A preliminary version of this work appeared in [1]. In this
paper, we extend our proposal with a more general approach to
mixing by considering also the application of the Optimal Asym-
metric Encryption Padding (OAEP), discussing two strategies
for such a solution. We also extend the analysis of the effec-
tiveness of our approach to cover erasure code attacks. Finally,
we extend the experimental evaluation, where we evaluate the
performance of our approach in terms of the throughput at the
client-side for the application of our protection technique, and
the efficiency in policy revocation.

Outline. The remainder of the paper is organized as follows.
Section II illustrates the basic concepts of our approach, the
working of mixing and slicing, and the properties they need to

satisfy to enable effective revocation. Section III illustrates two
main approaches to realize mixing, based on the iterative appli-
cation of AES and on an extended 3-round OAEP, respectively.
Section IV illustrates the enforcement of access revocation.
Section V discusses the effectiveness of our solution in providing
revocation, considering its resilience against storage attacks by
users who might maintain some local storage of previously ac-
cessed fragments or an erasure code on the resource. Section VI
illustrates our implementation and experimental evaluation, to
measure the throughput of mixing as well as of access and
update requests, confirming the advantages and applicability
of our approach. Section VII discusses related work. Finally,
Section VIII presents our conclusions.

II. MIX & SLICE

We introduce the concepts of block, mini-block, and macro-
block (Section II-A) at the basis of our approach, and then
illustrate the working of mixing (Section II-B) and slicing
(Section II-C).

A. Blocks, Mini-Blocks, and Macro-Blocks

The basic building block of our approach is the application
of a transformation that maps input data onto output data in
a way that all bits of the output depend on all bits in the input.
Such a transformation can be realized with either a cryptographic
hash function or a symmetric block cipher. A cryptographic hash
function is a non invertible function that transforms an input into
an output such that every bit of the input has effect on every bit
of the output. A symmetric block cipher guarantees complete
dependency of the encrypted result from every bit of the input
and the impossibility, when missing some bits of an encrypted
version of a block, to retrieve the original plaintext block (even if
parts of it are known). The only possibility to retrieve the original
block would be to perform a brute-force attack attempting all
the possible combinations of values for the missing bits. For
instance, modern encryption functions like AES guarantee that
the absence of i bits from the input (plaintext) and of o bits from
the output (ciphertext) does not permit, even with knowledge
of the encryption key k, to properly reconstruct the plaintext
and/or ciphertext, apart from performing a brute-force attack
generating and verifying all the 2min(i,o) possible configurations
for the missing bits [6].

Clearly, the larger the number of bits that are missing in
the encrypted version of a block, the larger the effort needed
to perform a brute-force attack, which requires attempting 2x

possible combinations of values when x bits are missing. Such
number of missing bits is the security parameter at the center of
our approach and represents the atomic unit of protection. We
then explicitly identify the following basic concepts.
� Block: A sequence of bits input to a block cipher or a cryp-

tographic function (it corresponds to the classical block
concept).

� Mini-block: A sequence of bits, of a specified length, con-
tained in a block. It represents our atomic unit of protection
(i.e., when removing bits, we will operate at the level of
mini-block removing all its bits).
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� Macro-block: A sequence of blocks. It allows extending
the application of a block cipher on sequences of bits
larger than individual blocks. In particular, our approach
operates by mixing bits at the macro-block level, extending
protection to work against attacks beyond the individual
block.

Our approach is completely parametric with respect to the size
(in terms of the number of bits) that can be considered for blocks,
mini-blocks, and macro-blocks. The only constraints are for the
size of a mini-block to be a divisor of the size of the block (aspect
on which we will elaborate later on) and for the size of a macro-
block to be a product of the size of a mini-block. In the following,
for concreteness and simplicity of the figures, we will illustrate
our examples assuming blocks of 128 bits and mini-blocks of 32
bits, which corresponds to having 4 mini-blocks in every block.
In the following, we will use msize, bsize, Msize to denote the
size (in bits) of mini-blocks, blocks, and macro-blocks, re-
spectively. We will use bj [i] (Mj[i], resp.) to denote the i-th
mini-block in a block bj (macro-blockMj, resp.). We will simply
use notation [i] to denote the i-th mini-block in a generic bit
sequence (be it a block or macro-block), and [[j]] to denote the
j-th block. In the mixing process, a subscript associated with a
mini-block/block denotes the round that produced it.

B. Mixing

Our mixing has the objective of producing an encrypted ver-
sion of a resource in a way that each bit in the encrypted represen-
tation depends on every bit of the plaintext resource. As already
noted, a block cipher provides mixing only at the level of block.
For instance, given a sequence of 16 mini-blocks ([0], . . . , [15]),
the application of a block cipher working on blocks of 4
mini-blocks each provides mixing among mini-blocks [0] . . . [3],
[4] . . . [7], [8] . . . [11], and [12] . . . [15], respectively. Absence of
a mini-block from the result will prevent reconstruction only of
the plaintext block including it, while not preventing the recon-
struction of all the other blocks. For instance, with reference
to our example, absence of [0] in the result of the block cipher
applied over the first block [0] . . . [3], will prevent reconstruc-
tion of such first block but will not prevent reconstruction of
the other three blocks (mini-blocks [4], . . . , [15]). Protection at
the block level is clearly not sufficient in our context, where
we expect to manage resources of arbitrarily large size and
aim to provide the guarantee that the lack of any individual
mini-block in the encrypted representation of a resource implies
the impossibility (apart from performing a brute-force attack)
of reconstructing any other mini-block of the corresponding
plaintext resource. The concept of macro-block allows us to
provide mixing on an arbitrarily long sequence of bits (going
much above the size of the block). An interpretation of mixing
is that it extends the ability of protecting the correspondence
between input and output of a block cipher to blocks of arbitrary
size.

Fig. 1 illustrates our mixing applied to a macro-block com-
posed of 16 mini-blocks [0] . . . [15]. The pattern-coding in the
figure shows that the 16 output mini-blocks depend on each of
the 16 input mini-blocks.

Fig. 1. An example of mixing of a macro-block with 16 mini-blocks
[0] . . . [15].

To provide an effective and robust support to the enforcement
of access revocation, mixing must satisfy the following proper-
ties.
� Complete mixing: Every bit in the input macro-block of

the mixing must cryptographically affect every bit of the
output macro-block.

� Arbitrary macro-block size: Mixing should operate on
macro-blocks of arbitrarily large size.

� No-shrinking effect: The output of mixing, as well any of its
intermediate results or observable state must not be smaller
than the size of the input macro-block.

Complete mixing guarantees the complete dependency of
each output bit from each input bit, and hence the impossibility
of reconstructing the plaintext macro-block, or parts of it, when
even a small portion (mini-block) of its mixed version is missing.
As previously discussed, in this case the only possibility is the
application of a brute-force attack. Since such a property is guar-
anteed at the level of macro-block, the second property requires
no limitation on the size of the macro-block (e.g., trivially a so-
lution operating complete mixing but with a macro-block of the
size of a block would not be acceptable). This property permits
the management of an efficient access revocation on resources of
arbitrarily large size (Section VI). The last property imposes the
size of the output and intermediate results of the process to be
not smaller than the size of the input. The motivation for this is
that an output or an intermediate result of smaller size would be
advantageous to users, who could be able to store such compact
information to reconstruct (part of) the input macro-block of a
resource to which they have been revoked access. Ensuring the
size of intermediate results does not decrease at any step of the
process counteracts this threat (Section V).

When resources are extremely large, or when access to a
resource involves only a portion of it, considering a whole
resource as a single macro-block may be not desirable. Indeed,
mixing the whole resource as a single macro-block implies its
complete download at every access, when this might actually
not be needed for service.

Accounting for this, we do not assume a resource to corre-
spond to an individual macro-block, but assume instead that any
resource can be partitioned into M macro-blocks, which can then
be mixed independently. The choice of the size of macro-blocks
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Fig. 2. Mix&Slice: from resource to fragments.

should take into consideration the performance requirements
of both the data owner (for encryption) and of clients (for
decryption), and the possible need to serve fine-grained retrieval
of content (i.e., enabling authorized access of portions of the
resource). This requirement can be efficiently accommodated
independently encrypting (i.e., mixing) different portions of the
resource, which can be downloaded and processed indepen-
dently (we will discuss this in Section VI).

Encryption of a resource would then entail a preliminary step
cutting the resource in different, equally sized, macro-blocks on
which mixing operates. To ensure the mixed versions of macro-
blocks be all different, even if with the same original content, the
first block of every macro-block is XOR-ed with an initialization
vector (IV) before starting the mixing process. Since mixing
guarantees that every block in a macro-block influences every
other block, the adoption of a different initialization vector for
each macro-block guarantees indistinguishability among their
encrypted content. The different initialization vectors for the
different blocks can be obtained by randomly generating a vector
for the first macro-block and then incrementing it by 1 for each of
the subsequent macro-blocks in the resource, in a way similar to
the CTR encryption mode [7]. Fig. 2(a) illustrates such process.

C. Slicing

The starting point for introducing mixing is to ensure that each
single bit in the encrypted version of a macro-block depends
on every other bit of its plaintext representation, and therefore
that removing any one of the bits of the encrypted macro-block
would make it impossible (apart from brute-force attacks) to
reconstruct any portion of the plaintext macro-block. Such a
property operates at the level of macro-block. Hence, if a re-
source (because of size or need of efficient fine-grained access)
has been partitioned into different macro-blocks, removal of a
mini-block would only guarantee protection of the macro-block
to which it belongs, while not preventing reconstruction of the
other macro-blocks (and therefore partial reconstruction of the
resource). Resource protection can be achieved by removing a
mini-block for each macro-block of which the resource is com-
posed. This observation brings us to the second concept giving
the name to our approach, which is slicing. Slicing the encrypted
resource consists in defining different fragments such that: i)

Fig. 3. Mix&Slice: from resource R to fragments.

every fragment contains a mini-block for each macro-block of
the resource, ii) no two fragments contain the same mini-block,
and iii) for every mini-block there is a fragment that contains it.
To ensure all this, as well as to simplify management, we slice the
resource simply putting in the same fragment the mini-blocks
that occur at the same position in the different macro-blocks.
Fig. 2(b) illustrates the slicing process. Slicing and fragments
are defined as follows.

Definition 2.1 (Slicing and fragments): Let R be a resource
and M0, . . . ,MM−1 be its (individually mixed) macro-blocks,
each composed of f mini-blocks. Slicing produces f fragments
forRwhereFi = 〈M0[i], . . . ,MM−1[i]〉, with i = 0, . . . , f − 1.

Fig. 3 illustrates the Mix&Slice procedure for encrypting a
resource R. R is first cut into M macro-blocks, a padding is then
applied to the last macro-block, and an initialization vector is
randomly chosen. The first block of each macro-block is then
XOR-ed with the initialization vector, which is incremented by 1
for each macro-block. The macro-block is then encrypted with a
mixing process (Section III). Encrypted macro-blocks are finally
sliced into fragments. In the next section, we elaborate on the
mixing step (line 6) of such a process.

III. MIXING

We present two strategies to produce a mixing that satisfies the
properties discussed in Section II-B, that is: complete mixing,
support for macro-blocks of arbitrary size, and no-shrinking
effect. The first strategy (Section III-A) leverages the AES block
cipher and aims at providing efficient mixing of large macro-
blocks, also thanks to the wide availability of the hardware
implementation of AES. The second strategy (Section III-B)
is based on OAEP, to the aim of supporting large mini-blocks
(beyond the size that the more efficient AES-based approach
can support), hence increasing the size of the atomic unit of
protection provided by mixing.

A. AES Mixing

Our first proposal for enforcing complete mixing of the bits
in a macro-block extends the mixing provided at the block-level
by AES to the macro-block granularity. Our strategy provides
mixing by iteratively applying AES on different portions of the
macro-block to guarantee complete dependency of the bits of
the output from all the bits in the input. The basic step of our
approach (on which we will iteratively build to provide complete
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Fig. 4. An example of AES mixing (encrypt mode) of 16 mini-blocks assuming
m = 4.

mixing within a macro-block) is then the application of encryp-
tion at the block level. The idea is to iteratively apply block
encryption on, at each round, blocks composed of mini-blocks
that are representative (i.e., belong to the result) of different
encryptions in the previous round.

Before giving the general definition of our approach, let
us discuss the simple example of two rounds illustrated in
Fig. 4, where the first row reports a sequence of 16 mini-blocks
([0], . . . , [15]) composing 4 blocks (i.e., each block is composed
of m=4 mini-blocks) and the second row reports the mini-blocks
([0]1, . . . , [15]1) resulting from the first round. As visible from
the pattern-coding in the figure, encryption provides mixing
within each block so that each mini-block in the result depends
on every mini-block in the same input block. In other words,
each [i]1 depends on every [j]0 with (i div 4) = (j div 4).
The second round applies again block encryption, considering
different blocks each composed of a representative of a different
computation in the first round. To guarantee such a composition,
we define the blocks input to the four encryption operations
as composed of mini-blocks that are at distance 4 (i.e., the
number m of mini-blocks in each block) in the sequence,
hence considering as input a mini-block from each of all the
different encryption operations in the previous round. The
blocks considered for encryption are then 〈[0]1[4]1[8]1[12]1〉,
〈[1]1[5]1[9]1[13]1〉,〈[2]1[6]1[10]1[14]1〉,〈[3]1[7]1[11]1[15]1〉.
The result is a sequence of 16 mini-blocks, each of which
is dependent on each of the 16 original mini-blocks, that
is, the result provides mixing among all 16 mini-blocks.
With 16 mini-blocks, two rounds of encryption suffice for
guaranteeing mixing among all of them. Providing mixing for
larger sequences clearly requires more rounds.

This brings us to the general formulation of our approach
operating at the level of macro-block of arbitrarily large size (the
example just illustrated being a macro-block of 16 mini-blocks).
Providing mixing of a macro-block composed of b blocks with
b=mx−1 requires x rounds of encryption each composed of b
encryptions. Each round allows mixing among a number span
of mini-blocks that multiplies by m at every round. At round i,
each encryption j takes as input m mini-blocks that are within

Fig. 5. AES mixing of a macro-block M.

the same span (i.e., the same group of mi mini-blocks to be
mixed) and at a distance (mi−1).

To ensure the possibility of mixing, at each round, blocks
composed of mini-blocks resulting from different encryption
operations of the previous round, we assume a macro-block
composed of a number of mini-blocks, which is the power of
the number (m) of mini-blocks in a block. For instance, with
reference to our running example where blocks are composed
of 4 mini-blocks (i.e., m=4), macro-blocks can be composed
of 4x mini-blocks, with an arbitrary x (x=2 in the example of
Fig. 4). The assumption can be equivalently stated in terms of
blocks, where the number of blocks b will be 4x−1. Any classical
padding solution can be employed to guarantee such a require-
ment, if not already satisfied by the original bit sequence in input.
Fig. 5 illustrates the mixing procedure. To illustrate, consider the
example in Fig. 4, where blocks are composed of 4 mini-blocks
(m=4) and we have a macro-block of 16 mini-blocks, that is,
4 blocks (b=4). Mixing requires x = 2 rounds of encryption
(16 = 42), each composed of 4 (b) encryptions operating on
4 (m) mini-blocks. At round 1, the span is 4 (i.e., mixing
operates on chunks of 4 mini-blocks) and mini-blocks input to
an encryption are taken at distance 1 within each span. At round
2, the span is 16 (all mini-blocks are mixed) and mini-blocks
input to an encryption are taken at distance 4 within each span.
Let us consider, as another example, a macro-block composed of
64 mini-blocks (i.e., 16 blocks). Mixing requires 3 rounds. The
first two rounds would work as before, with the second round
producing mixing within chunks of 16 mini-blocks. The third
round would then consider a span of all the 64 mini-blocks and
mini-blocks input to an encryption would be the ones at distance
16. At each round i, mini-blocks are mixed among chunks of mi

mini-blocks, hence ensuring at round x, mixing of the whole
macro-block composed of mx mini-blocks.

Fig. 6 captures this concept by showing the mixing of the
content of the first ([0]) and last ([63]) mini-blocks of the
macro-block at the different rounds, given by the encryption to
which they (and those mini-blocks mixed with them in previous
rounds) are input, showing also how the two meet at the step that
completes the mixing. Note that, while for simplicity the figure
pictures only propagation of the content of two mini-blocks,
every mini-block actually carries along the content of all the
mini-blocks with which it mixed in previous rounds. Given
a macro-block M with mx mini-blocks (corresponding to b
blocks), the following two properties hold: 1) a generic pair of
mini-blocks [i] and [j] mix at round r with i div mr=j div mr,
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Fig. 6. Propagation of the content of mini-blocks [0] and [63] in the AES mix process.

Fig. 7. An example of AES mixing (decrypt mode) of 16 mini-blocks assuming
m=4 and the absence of mini-block [5]2.

and 2) x rounds bring complete mixing. In other words, the
number of encryption rounds needed to mix a macro-block with
m·b mini-blocks is logm(m·b).

The AES mixing illustrated above satisfies all the properties
discussed in Section II-B. In particular, complete mixing is
guaranteed since the number of bits that are passed from each
block in a round to each block in the next round is equal to
the size of the mini-block. This guarantees that the uncertainty
introduced by the absence of a mini-block at the first round
(2msize) maps to the same level of uncertainty for each of the
blocks involved in the second round, and iteratively to the next
rounds, thanks to the use of AES at each iteration. This implies
that with logm(m·b) rounds, that is, the rounds requested by our
technique, a complete mixing of the macro-block is achieved.
Consequently, the absence of a mini-block from the resulting
encrypted macro-block will prevent reconstruction of the whole
plaintext macro-block. As an example, consider Fig. 7, where
the first row reports the 16 encrypted mini-blocks obtained from
the mixing in Fig. 4, and suppose that mini-block [5]2 (i.e.,
the mini-block represented with a uniform gray background)
is missing. The figure shows that the absence of this mini-block
prevents the decryption of block 〈[4]2[5]2[6]2[7]2〉, which in

Fig. 8. Classical OAEP structure.

turns prevents the reconstruction of block 〈[1]1[5]1[9]1[13]1〉,
which finally prevents the reconstruction of all the plaintext
blocks (i.e., all mini-blocks [0]0, . . . , [15]0). Such complete
mixing clearly applies to macro-blocks of arbitrary size (the
condition that the number mini-blocks be a power of the number
m of mini-blocks in a block can be easily achieved through
padding). Finally, AES mixing also guarantees no-shrinking
effect, in fact the representation after each round has the same
size as the original macro-block. Users aiming at reconstructing
a resource they cannot access would then have no benefit in
attacking one round compared to another (see Section V).

B. OAEP Mixing

Our second proposal for enforcing complete mixing of a
macro-block is based on an extended 3-round version of the
Optimal Asymmetric Encryption Padding (OAEP) [8]. OAEP is
a standard padding for RSA that operates on plaintext data and
adds randomness to encryption, thus providing higher security
guarantees. Fig. 8 illustrates the structure that characterizes the
classical OAEP. Given two cryptographic hash functions G and
H (which can also be identical), and two plaintext input L and
R (i.e., a padded message and a random seed), OAEP computes
its output as (G(R)⊕ L)‖H((G(R)⊕ L)⊕ R), where ⊕ is
the XOR operator and ‖ is the concatenation of two bit-strings.
Although OAEP can be used to build an All-Or-Nothing Trans-
form resistant to chosen-plaintext attacks [9], this basic OAEP
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Fig. 9. OAEP with complete mixing.

structure with 2 rounds does not guarantee every bit of the
input to cryptographically affect each bit of the resulting output
(i.e., it does not guarantee complete mixing as discussed in
Section II-B). For instance, as visible in Fig. 8, the change of
a bit in L (i.e., the left input in the figure) impacts all the bits
in the right part of the OAEP output, but it only impacts the bit
in the same position in the left part of the OAEP output, while
not affecting the other bits in the left part. To perform complete
mixing, we apply an extended 3-round OAEP as illustrated in
Fig. 9, where mix denotes the transformation (cryptographic
hash functions G and H in the original OAEP), on which we
elaborate next, which is applied at each round. Indeed, 3 rounds
are necessary, but also sufficient, to create a pseudorandom
permutation, ensuring complete mixing.1

With 3-round OAEP ensuring complete mixing, we need then
to consider the other two properties that must be ensured by
mixing, that is, support for macro-blocks of arbitrary size and
no-shrinking effect. Before discussing the mixing function to
guarantee these properties we make a note on the input and final
step to produce output for the application of OAEP mixing. As
for input, plaintextL andR to be considered as input are obtained
by splitting the plaintext input in two parts of the same size,
so to ensure the no-shrinking effect and maximize protection
guarantees. As for output, we note that being a padding scheme
based on cryptographic hash functions, OAEP does not provide
data confidentiality (which is instead provided by AES-Mix
already during the mixing process). Therefore, the OAEP output
must be encrypted (e.g., for this last step our implementation
uses AES in counter mode [11]). As for the mixing function,
since the functions (i.e., G and H) at the different rounds can
be identical, we simply assume to use the same function (mix in
Fig. 9) in all the three rounds of our OAEP mixing.

An easy way to use a 3-round OAEP mixing that provides
complete mixing while ensuring no-shrinking effect would be
to use, as mix function, a cryptographic hash function with an
input of size equal to the size of the output. In fact, this con-
straint would maintain the size of the input and output constant
throughout all the process. The adoption of a cryptographic

1A 4-round OAEP produces a super pseudorandom permutation [10] resistant
to an adversary with oracle access to its inverse permutation. This is not needed
to create an AONT and would impact the efficiency of mixing.

Fig. 10. OAEP mixing with internal layered structure.

Fig. 11. OAEP mixing of a macro-block M.

hash function to implement our mix function, however, limits
the size of the input macro-block to be (at most) twice the size
of the output of the selected cryptographic hash function, hence
not supporting macro-blocks of arbitrary size. The support of
macro-blocks of arbitrarily large size could be achieved by using
a stream cipher with initial seeds as mix function. In fact, the
stream cipher can produce any required number of bits needed
for the XOR operation with the half of a macro-block, meaning
that we can accommodate input and output of arbitrary size.
However, the seeds used in the computation are compact in size,
and hence their use would violate the no-shrinking effect prop-
erty that the mix transformation needs to ensure. In the remainder
of this section, we illustrate two possible approaches for the
mix function that enforce complete mixing, while guaranteeing
both support for macro-blocks of arbitrary size and no-shrinking
effect.

OAEP-Mix. Our first approach uses our AES-Mix structure
discussed in Section III-A as mix function, with the only dif-
ference of using a cryptographic hash function instead of AES
for mixing mini-blocks coming from different blocks at each
round (i.e., the circled E in Fig. 4 and line 7 in Fig. 5). The
resulting process is illustrated in Fig. 10, where the mix function
of Fig. 9 has been instantiated to be the layered process in Fig. 4,
and the last step of encryption has been included. The layered
structure of AES-Mix guarantees complete mixing, supports
macro-blocks of arbitrary size, and satisfies the no-shrinking
effect. Fig. 11 shows the pseudo-code of OAEP-Mix. Note that,
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Fig. 12. Recursive OAEP mixing.

while in the pseudo-code, for simplicity we have maintained
the internal call to AES-Mix (Fig. 5), as noted the last step
at each round of AES-mix is in this case the application of a
cryptographic hash function, instead of AES encryption. The
reason for this is that the mix function needs not be invertible,
since in the OAEP approach encryption is applied at the end
of the mixing process. Hence, there is no need to encrypt at
each step as AES does and the application of a cryptographic
hash function (e.g., BLAKE2 [12] in our implementation) in
a way that guarantees no-shrinking effect is sufficient. The
advantage of using a cryptographic hash function instead of AES
is efficiency of the computation and the possibility of using larger
blocks and setting larger values for the mini-block size (e.g., 512
bits for bsize and up to 256 bits for msize when using BLAKE2,
in contrast to 128 bits for bsize and up to 64 bits for msize when
using AES), thus possibly reducing the number of rounds needed
for performing a complete mix of the input. By using the layered
structure of AES-Mix as mix function, the input macro-block
must include b = 2 · (bsize/msize)x−1 blocks, with bsize the
size of the output of the adopted cryptographic hash function,
thus requiring x rounds for the internal AES-Mix. For instance,
assuming a macro-block of size Msize = 16.384 bits, blocks of
size bsize = 512 bits, and mini-blocks of size msize = 32 bits,
the mix function based on BLAKE2 needs 2 rounds only (i.e.,
b = 2 · 161) in contrast to 4 rounds necessary when adopting
AES with then bsize = 128 bits (i.e., b = 2 · 43).

ROAEP-Mix. Our second approach uses the 3-round OAEP
structure as mix function, thus building a recursive OAEP
structure. This is illustrated in Fig. 12, where the mix func-
tion of Fig. 9 has been instantiated to be again the process
in Fig. 9 itself, and as before the last step of encryption has
been included. Fig. 13 shows the pseudo-code of ROAEP-Mix.
By using recursive OAEP mixing, the input macro-block must
include b = 2x = (Msize/bsize) blocks, with bsize the size
of the output of the adopted cryptographic hash function, thus

Fig. 13. Recursive OAEP mixing of a macro-block M.

requiring x recursive applications of the 3-round OAEP struc-
ture. The main advantage of the ROAEP-Mix with respect to
AES-Mix and OAEP-Mix is the flexibility in the definition of
the mini-block size (msize). For AES-Mix and OAEP-Mix, the
largest msize is 64 bits (half the size of the AES block) and
half the size of the output of the selected hash function (e.g.,
256 bits in our implementation with BLAKE2), respectively.
For ROAEP-Mix, the largest mini-block size corresponds to the
size of the output of the selected cryptographic hash function
(e.g., 512 bits in our implementation). This provides stronger
protection against brute-force attacks. While in most applica-
tion scenarios the use of AES-Mix (and 32 or 64 bits for the
mini-block size) can be appropriate, some applications may want
more flexibility, especially if having larger mini-blocks does not
have a significant impact on performance. We note that block
ciphers (e.g., AES) are often implemented by dedicated circuits
within many modern CPUs and the throughput exhibited by their
hardware-accelerated computation is better than the software
computation of cryptographic hash functions, as confirmed by
our experiments (Section VI). As CPU architectures evolve with
hardware acceleration of hash functions, similar advantages will
also be enabled for the recursive application of OAEP.

IV. ACCESS MANAGEMENT

Accessing a resource (or a macro-block in the resource, resp.)
requires availability of all its fragments (its mini-blocks in all
the fragments, resp.), and of the key used for encryption. Policy
changes corresponding to granting access to new users can
be simply enforced, as usual, by giving them the encryption
key. In principle, policy changes corresponding to revocation of
access would instead normally entail downloading the resource,
re-encrypting it with a new key, re-uploading the resource, and
distributing the new encryption key to all the users who still
hold authorizations. Our approach enables the enforcement of
access revocation to a resource by simply making any of its
fragments unavailable to the users from whom the access is
revoked. Since lack of a fragment implies lack of a mini-block
for each macro-block of a resource, and lack of a mini-block
prevents reconstruction of the whole macro-block, lack of a
fragment equates to complete inability, for the revoked users,
to reconstruct the plaintext resource or any portion of it. In other
words, it equates to revocation.

Hence, access revocation can be enforced by the data owner
by randomly picking a fragment, which is then downloaded,
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Fig. 14. An example of fragments evolution.

re-encrypted with a new key (which will be made known only
to users still authorized for the access), and re-uploaded at
the server overwriting its previous version. While still request-
ing some download/re-upload, operating on a fragment clearly
brings large advantages (in terms of throughput) with respect to
operating on the whole resource (see Section VI). Revocation
can be enforced on any randomly picked fragment (even if
already re-written in a previous revocation) and a fresh new
key is employed at every revoke operation. Fig. 14 illustrates
an example of fragments evolution due to the enforcement of
a sequence of revoke operations. Fig. 14(a) is the starting con-
figuration with the original fragments computed as illustrated
in Section II. Fig. 14(b)–(d) is the sequence of rewriting to
enforce revocations, which involve, respectively: fragment F10,
re-encrypted with key k1; fragment F4, re-encrypted with key
k2; and fragmentF10 again, now re-encrypted with key k3. In the
following, we use notation Fj

i to denote a version of fragment
Fi encrypted with key kj , being F0

i the version of the fragment
resulting from the application of the Mix&Slice process. In
the figure, the resource is represented in a three-dimensional
space, with axes corresponding to fragments, macro-blocks, and
keys. The re-writing of a fragment is represented by placing
it in correspondence to the new key used for its encryption.
The shadow in correspondence to the previous versions of the
fragments denotes the fact that they are not available anymore
as they are overwritten by the new versions.

Each revoke operation requires the use of a fresh new key
and, due to policy changes, fragments of a resource might be en-
crypted with different keys. Such a situation does not cause any
complication for key management, which can be conveniently
and efficiently handled with a key regression technique [13]. Key
regression is an RSA-based cryptographically strong technique
(the generated keys appear as pseudorandom) allowing a data
owner to generate, starting from a seed s0, an unlimited sequence
of symmetric keys k0, . . . , ku, so that simple knowledge of a key
ki (or the compact secret seed si of constant size related to it)
permits to efficiently derive all keys kj with j ≤ i. Only the
data owner (who knows the private key used for generation)
can perform forward derivation, that is, from ki, derive keys
following it in the sequence (i.e., kz with z ≥ i). By contrast,
not knowing the private key, other users cannot perform forward
derivation. To note that the cost that users must pay for backward
key derivation is small: on a single core, the computer we used
for the experiments is able to process several hundred thousand
key derivations per second.

With key regression, every user authorized to access a re-
source just needs to know the seed corresponding to the most
recent key used for it (s0 if the policy has not changed, s3 in
the example of Fig. 14(d)). To this end, there is no need for key
distribution, rather, such a seed can be stored in the resource
descriptor and protected (encrypted) with a key corresponding
to the resource’s acl (i.e., known or derivable by all authorized
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Fig. 15. Revoke on resource R.

Fig. 16. Access to resource R.

users) [14], [15]. Enforcing revocation entails then, besides
re-encrypting a randomly picked fragment with a fresh new key
ki, rewriting its corresponding seed si, encrypted with a key
associated with the new acl of the resource. Fig. 15 illustrates
the pseudo-code for the revocation process.

To access a resource, users need first to download the resource
descriptor, to retrieve the most recent seed sl, and all the frag-
ments. With the seed, users can compute the keys necessary
to decrypt fragments that have been overwritten, to retrieve
their version encrypted with k0. Then, they can combine the
mini-blocks in fragments to reconstruct the macro-blocks in
the resource. Finally, they apply mixing in decrypt mode to
macro-blocks to retrieve the plaintext resource. Fig. 16 illustrates
the pseudo-code for the process to access a resource. In the
pseudocode, the call to UnMix corresponds to a call to one of
our mixing strategies in decrypt mode.

Note that the size of macro-blocks influences the performance
of both revoke and access operations. Larger macro-blocks
naturally provide better policy update performance as they de-
crease policy update cost linearly, with limited impact on the
efficiency of decryption, since its cost increases logarithmically
(Section VI).

V. EFFECTIVENESS OF THE APPROACH

In this section, we elaborate on the effectiveness of our ap-
proach for enforcing revocation, meaning its resilience against
possible attacks by users trying to maintain access to resources
even after revocation. For the discussion, we recall that msize
is the size of individual mini-blocks, m is the number of mini-
blocks in a block, b is the number of blocks in a macro-block, M
is the number of macro-blocks, and f is the number of fragments,
with f=m·b.

We consider the threat coming from a user whose access
to a resource has been revoked, and who can still download
the resource from the server. As a matter of fact, with ac-
cess policy enforced by encryption, a revoked user can still
be able to download the resource after revocation, since it is
the encryption itself (and hence the re-writing of fragments
in case of revocation) that prevents the reconstruction of its
plaintext representation. We then evaluate the protection against
the user’s attempts to reconstruct the plaintext resource. In doing
so, we consider the worst case scenario, with respect to key
management, where the user has maintained memory of the last
key (or the corresponding seed) used for the resource, up to the
point in which the user was authorized for the access. In other
words, we assume the user to be able to decrypt the fragments
that are in their original state or have been overwritten before the
user has been revoked access. Since keys and seeds are compact,
such a threat is indeed realistic. To reconstruct the resource when
missing a fragment, the user would have to perform a brute
force attack attempting all possible combinations of values of
the missing bits, that is, 2msize attempts for each of the M macro-
blocks. If more fragments, let’s say fmiss, are missing, the user
would have to perform 2msize·fmiss attempts for each of the M
macro-blocks.

The inability of the user to reconstruct a resource if some frag-
ments have been overwritten is because, without such fragments,
the user cannot retrieve the corresponding original version (the
one encrypted with k0) needed to correctly reconstruct the
resource plaintext. A potential threat can then come if the user
maintains a local storage with the original version of part of
the resource. We distinguish three cases, depending on whether
the user stores: complete fragments, portions of them across the
whole resource, or an erasure code computed on the fragments.

Local Storage of Fragments. Suppose a user locally stores
(when authorized) some fragments of the resource. Even if one
of these fragments is later overwritten for revoking access to
the user, and then its most recent version stored at the server
is unintelligible to the user, the user would have it available
for reconstructing the resource. However, the fragment to be
overwritten in a policy revocation is chosen randomly by the
owner. Therefore, the user can still reconstruct the resource
after one fragment has been overwritten if the fragment that
the owner has overwritten is among the fragments that the user
has stored locally, which has probability (floc/f) to occur,
where floc is the number of fragments stored by the user.
After more policy changes have been enforced, and hence more
fragments have been overwritten, such a probability becomes
PA = (floc/f)

fmiss , where fmiss is the number of fragments
that have been overwritten since the user has been revoked
access. ProbabilityPA clearly increases with the number of frag-
ments stored locally, but quickly reaches extremely low values
after a few updates of the policy, approximating zero even for
high percentage of fragments locally stored. The low probability
(and the high storage effort requested to the user) essentially
makes such attack not suitable: if the user has to pay a storage
cost that approaches the maintenance of the whole resource, then
the user would have stored the plaintext resource when autho-
rized in the first place. We note also that a possible extension of
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our approach could consider overwriting, instead of pre-defined
fragments, a randomly chosen set of mini-blocks (ensuring cov-
erage of all macro-blocks), to enforce a revocation. In this case,
the probability of the user storing mloc mini-blocks per macro-
block (also randomly chosen) to be able to access the resource
immediately after her revocation would be (mloc/(m · b))M ,
which would become (mloc/(m · b))M ·mmiss , (i.e., negligible),
if the user misses mmiss mini-blocks per macro-block. We note
however that overwriting randomly picked mini-blocks across
the resource would considerably increase the complexity in the
management of fragments. Hence, given the observations above
about the high storage cost that would be required to the user
and the low probability of her success as policy changes, we
argue that a regular structure for the fragments is sufficient for
protection and is then preferable.

Local Storage of Portions of All Mini-Blocks. Instead of
locally storing some selected fragments, a user can opt for
using storage to maintain portions of all the mini-blocks in each
fragment. In this case, whatever the fragment overwritten in the
revocation, the user will have to perform some effort to realize
a brute-force attack to retrieve the bits the user does not have,
but such an effort will be lower. For instance, assuming the user
to keep 50% (i.e., half of the bits) of each mini-block, the effort
for reconstructing the resource given a missing fragment would
now be 2(msize/2) attempts for each of the M macro-blocks (in
contrast to the 2msize required if all the bits in the fragment
were unknown). However, again, if more fragments are miss-
ing, the required effort would quickly escalate, being equal to
2(msize/2)·fmiss when fmiss fragments are missing. For each
attempt, the verification that a guess is correct would require to
apply all the unmixing rounds until the plaintext is reconstructed,
with a great cost. We note that the user can cut down on such cost
by locally maintaining, in addition to the portions of the original
mini-blocks, also a partial representation of the intermediate
results of the computation. This partial representation would
allow the user to test correctness of a guess without perform-
ing all the mixing rounds. In fact, availability of such partial
results can help testing the guesses for a mini-block if the other
mini-blocks in the same block are available (i.e., when the user
misses only one fragment per block). However, from the birthday
paradox, we note that the probability of two revocations hitting
the same block (but a different fragment) quickly increases with
the number of revocations. Then, after a few policy updates for
revocations, the advantage of the user keeping partial results
of the computation will become ineffective. In addition to this,
we note that, also in this case, the storage and computational
efforts required to the user do not seem to make this attack
much preferable for the user with respect to the choice of locally
storing the whole plaintext resource itself in the first place.

Local Storage of Erasure Codes. Instead of storing fragments,
or portions of them, a user could compute and locally maintain
an erasure code on fragments. Erasure codes [16] support the
construction of additional sequences of bits that can be used
to compensate the loss of some bits in a message. The simplest
erasure code is the parity bit, which permits to verify the integrity
of a bit sequence and to recover the value of a bit that may
have been lost. In general, an erasure code (e.g., Reed-Solomon

codes [17]) of size n bits permits the recovery (i.e., compensates
the loss) of up to n bits in a message. Major cloud providers
extensively use erasure codes in their storage architectures to
improve reliability, as a more efficient alternative to complete
replication. In our scenario, the user could compute and locally
store an erasure code that permits to mitigate the loss of one
or more fragments, or - more precisely - the intelligibility of
fragments that have been overwritten for policy revocation. The
user can then locally store a code of size equal to t fragments
(with t < f , where f is the total number of fragments composing
the resource) to be able to recover the plaintext of the resource as
long as no more than t different fragments have been overwritten
and not accessible to the user.

We note that erasure codes represent a more efficient attack
strategy, with respect to the two previously discussed, for users
aiming to maintain access to resources after revocation. In fact,
erasure codes are more compact in size with respect to fragments
or portions of them. It is interesting here to evaluate the protec-
tion against a user using an erasure code with a comparison
between an AONT like the one proposed by Rivest [5] and our
proposal. Rivest’s scheme relies on the use of a compact key,
whose application produces in the process observable states of
size smaller than the input, hence violating the no-shrinking
property. Consequently, a user without an erasure code could
store the AONT key and thus be able to invert the transformation
even if a fragment has been updated. The missing fragment
prevents reconstructing some portions of the plaintext, however,
the majority of it would still be accessible. To illustrate, assume
the user maintains an erasure code as big as a% of the resource
size and that the owner has overwritten r% of the resource
size. When r ≤ a, the user would succeed in reconstructing the
plaintext resource in both Rivest’s scheme and our approach.
However, when r > a, the Rivest’s scheme and our approach
differ significantly. With Rivest’s AONT, the user can apply the
erasure code and then use the AONT key to invert the function
and re-gain access to a portion of the resource potentially as
big as 100− (r − a)% of the resource size. By contrast, in our
approach, even after applying the erasure code, there is no key
that can be used to invert the function, and therefore no part of
the resource can be reconstructed. This property is graphically
illustrated in Fig. 17, showing the percentage of the resource
that can be recovered by a user who has maintained an erasure
code of size a = 3% of the resource size, as the percentage of
resource that is overwritten by the owner increases. This analysis
suggests as a possible approach for the owner to counteract
erasure code attacks to overwrite more than a single fragment
for policy revocation. Moreover, we note that to build the erasure
code, the user had to have access to the whole resource. In
scenarios where the major cost for the user is the time and
network traffic needed to download the resource, rather than
the local cost of storage, erasure codes are not a concern, as the
user could have easily built a complete local copy of the resource
after its download. For scenarios where the crucial parameter is
the storage cost at the user-side, revocation should consider the
possibility for users to build local erasure codes and therefore
the overwriting of more than one fragment for enforcing policy
revocation.
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Fig. 17. Comparison of percentage of resource recovered between Rivest’s
AONT and Mix&Slice when the revoked user has kept an erasure code whose
size is 3% of the resource size.

A Note on Collusion. can happen when two users join their
effort to gain access to a resource that neither of them can
access (we do not consider collusion with the server, which is
assumed trustworthy to enforce the re-writing requested by the
owner). Collusion is then represented by users who join their
effort in maintaining portions of the resource (e.g., fragments,
parts of mini-blocks, or erasure codes as discussed above). For
instance, each of the users could keep half of the fragments and
they can merge their knowledge to patch for missing fragments.
Such a situation does not add any complication with respect to
the previous discussion, as it simply reduces to consider the
group of colluding users as an individual attacker. We then
note again that the collective effort, in terms of storage and/or
computation, required to gain access would easily approximate
the effort of locally storing the original plaintext resource itself.
In other words, the attack strategy does not offer an advantages
to users attempting to access the resources for which they are
not authorized.

VI. IMPLEMENTATION AND EXPERIMENTS

To verify the applicability and the benefits of our proposal, we
implemented and tested a client application (Section VI-A) for
the encryption/decryption of resources to be accessed. We also
implemented the interaction protocol (Section VI-B) between
the client and the server for the storage, retrieval, and policy
update of resources. For the server, we used Swift as object
storage service which is available open source, and is a good rep-
resentative of what is offered by a modern object storage service
for the cloud. For the client, we built a Swift client application
that implements the get method to retrieve a resource from the
server, and the put_fragments method to store/overwrite a
fragment of a resource at the server. The client application also
implements our mix strategies in encrypt and decrypt mode.
The client is written in Python with a C component responsible
for the invocation of mixing in encrypt or decrypt mode. The
experiments have been performed using, for the client, a machine
with Linux Ubuntu 22.04 LTS, Intel Xeon CPU E5-2620 v4,
8 cores. For the server, we used an Amazon EC2 m4.xlarge

instance, with 4 CPUs and 16 GB of RAM. The client was
connected to the Internet by a symmetric 100 Mbps connection.
Our experiments evaluated the throughput for reconstructing the
plaintext of the resources (i.e., the execution of the mix process
in decrypt mode, Section VI-A) and for accessing resources at
the server as well as managing policy updates (i.e., the access to a
resource and the upload/overwrite of fragments, Section VI-B).

A. Mixing Throughput

We evaluated the cost, in terms of throughput, of the client
for reconstructing the plaintext representation of a resources
protected with our approach, which entails the execution of
the mixing process in decrypt mode. We considered then the
troughput for mixing a macro-block with the different strategies.
In particular, we considered the AES-Mix (bsize=128 bits) with
both the software implementation of AES and its hardware
implementation AES-NI, supported by most of the current Intel
x86 CPUs, and the OAEP-Mix (bsize=512 bits) with BLAKE2
as cryptographic hash function for the internal OAEP layer. The
experiments have been performed over a macro-block of 256KiB
(512KiB for the OAEP-Mix where the mix function operates on
half of the input).

Fig. 18 compares the throughput obtained by the application
of our mixing strategies (i.e., AES-Mix, AES-NI-Mix, and
OAEP-Mix), varying the number of threads activated by the
client application (1, 2, 4, 8, or 16 threads), and the size msize of
mini-blocks (32 bits, 64 bits, or 128 bits). Note that AES-Mix
requires 8 rounds (i.e., 256KiB=32 · 48) and 15 rounds (i.e.,
256KiB = 64 · 215) when msize = 32 bits and msize = 64 bits,
respectively, compared to the 4 rounds (i.e., 256KiB = 32 · 164)
and 5 rounds (i.e., 256KiB=64 · 85), respectively, required by
OAEP-Mix. Also, OAEP-Mix is the only mix strategy that
supports mini-blocks of size msize=128 bits for which 7 rounds
(i.e., 256KiB=128 · 47) are needed. As visible from Fig. 18,
OAEP-Mix performs better than AES-Mix, as cryptographic
hash functions are more efficient than AES encryption. However,
AES-NI-Mix, leveraging hardware implementation, has the best
performance. For instance, the AES-NI multi-threaded imple-
mentation with msize = 32 reaches a throughput of 2.5 GB/s.
The figure also shows that, increasing the number of threads, we
reach a performance level that is 8 times the one obtained by
the single-threaded implementation. This is consistent with the
presence of 8 physical cores in the CPU we used, each with a
dedicated AES-NI circuitry.

The results of our experiments also show that, even if our
(AES and OAEP) mixing requires the client to execute a more
complex decryption compared to the use of AES with a tradi-
tional encryption mode (e.g., CTR or CBC), the performance is
orders of magnitude better than the bandwidth of current network
connections, even for a large number of fragments. As shown in
Fig. 18, the encryption and decryption speed of Mix&Slice can
reach up to 2.5 GB/s (or 20 Gbps) when 16 threads are used. This
is 1000 times faster than the bandwidth required to stream a 4 K
video (20 Mbps), and 20 times faster than commonly available
home broadband connections (1 Gbps). For reference, the AWS
machine configuration that was used in the tests supported a
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Fig. 18. Mixing throughput comparison, varying the size (msize) of mini-blocks and the number of client-side threads.

network bandwidth of 750 Mbps, so the network was always
the performance bottleneck in our client-server tests. High-end
cloud configurations in AWS offer network connections as fast
as 50 Gbps, however these configurations also come with up to
192 cores, enabling even faster encryption speed.

B. Access and Update Throughput

We evaluated the cost, in terms of time, of get requests and
the cost, in terms of throughput, of get requests and policy
updates. In our implementation, the interaction protocol operates
on top of a Swift server instance installed on the Amazon EC2
platform. For the management of the fragments composing
an object (we will use the term object instead of resource
to be consistent with the Swift terminology), we considered
two options: 1) fragments are managed as separate objects; 2)
fragments are managed as sub-objects of a single object through
the Dynamic Large Objects (DLO)2 service of Swift, which can
split large objects into a number of sub-objects all downloadable
through a single request. The first option has the advantage of
simplifying policy updates, since the re-encryption of a fragment
can be mapped to a single update of the object storing the
corresponding fragment. Also, this option is available with any
object storage service. In this case, however, the client has the
additional overhead of being responsible for opening a large
number of connections with the server (one for each fragment) to
concurrently access all the fragments of the object and guarantee
high performance. With the second option (the use of DLO),
which is specific to Swift, the client instead generates a single
get request for the object, independently from the number of
fragments; the Swift server is responsible for mapping such a
request into a number of independent requests for downloading
all the fragments composing the object. An approach similar to
the use of DLO can be realized when the object storage service
offers the flexibility to operate with get and put only on a portion
of the object.

Our experiments consider objects of different size (1 MB,
4 MB, 16 MB, 64 MB, 256 MB, or 1 GB) composed of a
variable number of fragments (i.e., 1, 4, 16, 64, 256, and 1024).
The configurations with 1 fragment per object represents our

2https://docs.openstack.org/swift/latest/overview_large_objects

baseline, since they correspond to the case where the object is
stored in encrypted form without adopting our approach.

Fig. 19 reports the time required for managing a get request
varying the object size and the number of fragments, when
managing each fragment as a single object (Fig. 19(a)) and
when relying on DLO service (Fig. 19(b)). In both scenarios, the
graphs clearly show that for medium/large-size objects (i.e., with
size greater than 4 MB) the overhead introduced by our approach
is limited compared with the baseline, especially when adopting
the DLO service (Fig. 19(b)). For medium/large-size objects,
the parameter with the major impact on performance is therefore
the network bandwidth. As expected, splitting the resource in a
larger number of fragments implies a higher overhead for the
execution of the get request, especially when the resource is
small. The impact of the overhead due to fragmentation is one
order of magnitude higher when each fragment is managed as
a separate object (Fig. 19(a)). This is mainly due to the need
of opening a different connection for the download of each
fragment.

To evaluate the throughout of our approach when managing
policy updates, we considered a workload characterized by one
put_fragment request after 50 get requests on objects
in a collection of 1000 objects all of the same size. Fig. 20
reports the throughput obtained varying the object size and
the number of fragments, when managing each fragment as
a single object (Fig. 20(a)) and when relying on the DLO
service (Fig. 20(b)). The figures show that for medium/large-size
objects the benefits of our approach in the management of policy
updates is significant. In fact, for objects with size greater than
4 MB the throughput of the configurations using fragments
is always higher than the throughput of the baseline. Indeed,
the baseline implies a complete overwriting of the resource at
eachput_fragment request, while our approach manages the
same operation overwriting a single fragment having size 1/f
the size of the resource (with a saving of (f − 1)/f the size of
the resource). Our approach provides therefore higher scalability
compared to the baseline, with a higher advantage if the access
policy changes frequently. Comparing Fig. 20(a) and (b) we can
see a significant benefit deriving from the use of the DLO service,
thanks to the lower times for the execution of the get requests
(see Fig. 19). We note that the number of fragments has an impact
on throughput also in case of policy updates. Indeed, splitting a
resource in a higher number of fragments implies a higher cost of

https://docs.openstack.org/swift/latest/overview_large_objects
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Fig. 19. Time for the execution of get requests

get operations but a lower cost ofput_fragment operations,
since they overwrite a smaller portion of the revoked resource.
Therefore, the number of fragments that better balances the
performance of get and of put_fragment operations can
be different depending, for example, on the size of the object
and on the frequency of policy updates.

Concluding, our experimental results demonstrate that the
size msize of mini-blocks and the number of fragments f have
an impact on the performance of our solution. While the size
of mini-blocks represents our security parameter and must be
chosen by the data owners based on their security requirements,
the number of fragments (and hence the size of macro-blocks)
can be chosen considering performance only. The identification
of the best value for the number of fragments, however, has
to take into consideration different factors with an impact on
performance, including: the size of the objects, the frequency of
policy updates, the frequency and average size of get requests,
and the network bandwidth.

VII. RELATED WORK

The idea of making the extraction of the information content
of an encrypted resource dependent on the availability of the
complete resource has been first explored by Rivest [5], who
proposed the All-Or-Nothing Transform (AONT). The AONT

Fig. 20. Throughput for a workload combining get and put_fragment
requests.

requires that the extraction of a resource where n bits of its
transformed form are missing should require to attempt all the
possible 2n combinations. The AONT can be followed by en-
cryption to produce an all-or-nothing encryption schema, where
the ciphertext is suffixed with the used random key k XOR-ed
with a hash of all the previous encrypted message blocks. In
this way, a modification on the encrypted message limits the
ability to derive the encryption key. This technique works under
the assumption that the user who wants to decrypt the resource
has never accessed the key before, but fails in a scenario where
the user had previously accessed the key and now the access
must be prevented (i.e., revocation of privileges on encrypted
files). The user, in fact, could have stored key k and hence be
able to partially retrieve the plaintext. Key k can be seen as a
digest: it is compact and its storage allows a receiver to access
the majority of the file, even if one of the blocks was destroyed.
Different techniques have been proposed for the definition of
AONT (e.g., [18], [19]). These approaches, however, are based
on the assumption that the key has never been shared with the
user.

Most approaches for efficient secure deletion [20], [21] rely
on the fact that the key is a digest for a resource and its content
can be securely deleted by deleting the specific disk location
that stores a piece of information that permits to derive the
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key used to encrypt the resource. Such approaches are already
used by commercial storage devices [22] and recent proposals
have considered the integration of such approaches with flexible
policies [20]. All these approaches are not applicable in our
scenario, since the server does not have access to (and hence
does not store) the key.

Other approaches for enforcing access control in the cloud
through encryption have been developed along two research
lines: attribute-based encryption (ABE) and selective encryption
approaches. ABE approaches (e.g., [23], [24], [25], [26], [27],
[28]) provide access control enforcement by ensuring that the
key used to protect a resource can be derived only by the
users that satisfy a given condition on their attributes (e.g.,
age, role). The main shortcoming of these solutions is due
to their evaluation costs (they rely on public key encryption),
and not always easily and efficiently support access revocation.
Approaches based on selective encryption (e.g., [15], [29], [30])
assume to encrypt each resource with a key that only authorized
users know or can derive. In this scenario, policy updates are
then either managed by the data owner, with considerable over-
head, or delegated to the server through over-encryption [15],
[29] or updatable encryption [31]. Over-encryption consists
in requesting the server to enforce an additional encryption
layer on the encrypted resources so to enforce policy changes.
Updatable encryption schemas instead directly support updates
in the key used for encrypting data by sending to the server a
short update token, without revealing encryption keys. Although
over-encryption and updatable encryption enable enforcement
of policy changes without requiring to download resources, they
require the collaboration of the server for enforcing the changes.
On the contrary, Mix&Slice can be used also if the server is
completely unaware of its adoption. Similarly to Mix&Slice,
Knob [32] enforces revocation through the re-encryption of a
small portion of the resource and does not require trust as-
sumptions on the server. It however relies on a trusted hard-
ware component. While providing more efficiency compared to
Mix&Slice, Knob does not provide protection against users who
accessed the resource before being revoked access.

A related line of work addresses the problem of protecting
the confidentiality of encrypted data stored in a distributed
environment in case of key exposure. The approaches in [33]
and [34] leverage Mix&Slice and a new secret sharing schema,
respectively, combined with data fragmentation to prevent re-
source reconstruction by making a single fragment unavailable.

VIII. CONCLUSION

We presented an approach for efficiently enforcing access
revocation on encrypted resources stored at external providers.
Our solution includes a mixing phase followed by a slicing
phase. The mixing phase transforms the original plaintext re-
source in an encrypted resource where the whole encrypted
representation is needed to go back to the original plaintext
resource. We showed different strategies for implementing this
mixing that differ in the performance and security guarantee
offered. The slicing phase splits the encrypted resource in frag-
ments that represent the unit of revocation since the lack of a

fragment makes it impossible for a user to reconstruct the plain-
text resource. We showed that our approach is resilient against
attacks by users locally maintaining copies of previously-used
keys. Our implementation and experimental evaluation confirm
the efficiency and effectiveness of our proposal, which enjoys
orders of magnitude of improvement in throughput with respect
to resource re-writing.
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