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1. INTRODUCTION

Temperature control is widely diffused in disparate indus-
trial sectors including metallurgy, manufacturing, chemical
processes, food industry, and construction. Although most
applications share the same goal, i.e. tracking a desired
temperature profile, the controlled plants differ vastly,
encompassing industrial furnaces (Tudon-Martinez et al.
(2019)), convection ovens (Ramirez-Laboreo et al. (2016);
Ryckaert et al. (1999)), Heating, Ventilation and Air
Conditioning (HVAC) systems in buildings (Serale et al.
(2018)), heat pumps (Rastegarpour et al. (2020)), heat
exchangers (Vasičkaninová et al. (2011)), and environ-
mental chambers (He et al. (2014)). Temperature control
applications exhibit common characteristics. Firstly, the
plants are divided into multiple control zones, each with
its set of actuators and temperature sensors. Secondly, the
control design is usually model-based (Serale et al. (2018))
such as Proportional-Integral-Derivative (PID) regulators
or Model Predictive Control (MPC) strategies. Many dif-
ferent models are used, including:

• White-box models built from energy balance equa-
tions. For example, Rastegarpour et al. (2020) derived
a nonlinear white-box model of a heat pump and
employed it in an MPC strategy.

• Grey-box models, which still retain the physical de-
scription of the plant but require system identifica-
tion methods to estimate the parameters. The most
common are thermal network models (Sidebotham
(2015)), which have been used, e.g., in Ramirez-
Laboreo et al. (2016) to represent a convection oven.

• Black-box models, ranging from First Order Lag Plus
time Delay (FOLPD) transfer functions to Artifi-
cial Neural Networks (ANNs). FOLPD models are
broadly used due to their ease of PID tuning (Ryck-
aert et al. (1999); He et al. (2014)). Instead, ANNs
are often employed in MPC strategies, e.g. in temper-

ature control of heat exchangers (Vasičkaninová et al.
(2011)) or in HVAC systems (Terzi et al. (2020)).

In this work, we focus on modelling the industrial oven
of a shrink tunnel, a widely used application with a large
impact on the packaging industry. Shrink tunnel control
performances greatly affect plant energy consumption and
are thus of utmost importance. Unfortunately, the tracking
performances are often subpar due to the poor quality of
the models used for control design. Shrink tunnels are
composed of an industrial convection oven and a con-
veyor belt that feeds products (e.g. bottles) to it. The
oven cavity is divided into different interconnected heating
zones, each with multiple thermocouples and a dedicated
set of heat resistors. Several convection fans allow for air
circulation inside the cavity. Before being inserted into
the oven, the products are wrapped in a thin plastic
film. The heat within the cavity shrinks the plastic and
tightly envelopes the products, creating the pack. Several
relays drive the heat resistors by supplying Pulse-Width-
Modulated (PWM) voltage signals. A common industry
practice is to use a combination of ElectroMechanical
Relays (EMRs) and Solid-State Relays (SSRs). The former
are cheaper but exhibit lower switching rates (i.e. higher
PWM periods) to prevent degradation. Consequently, the
heat resistors driven by the EMRs typically track (on aver-
age) a desired temperature profile, while those controlled
by the SSRs react to fast disturbances (e.g. the insertion of
the products inside the oven cavity), preventing noticeable
temperature drops.

In what follows, we derive a lumped-parameter grey-box
sampled-data state-space model of a shrink tunnel, a
relevant application that, to the best of our knowledge,
has yet to be treated in the literature. In the present
paper, we address the two main challenges of shrink
tunnel modelling: (i) the presence of multiple PWM signals
with different periods, and (ii) the restrictive experimental
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applications share the same goal, i.e. tracking a desired
temperature profile, the controlled plants differ vastly,
encompassing industrial furnaces (Tudon-Martinez et al.
(2019)), convection ovens (Ramirez-Laboreo et al. (2016);
Ryckaert et al. (1999)), Heating, Ventilation and Air
Conditioning (HVAC) systems in buildings (Serale et al.
(2018)), heat pumps (Rastegarpour et al. (2020)), heat
exchangers (Vasičkaninová et al. (2011)), and environ-
mental chambers (He et al. (2014)). Temperature control
applications exhibit common characteristics. Firstly, the
plants are divided into multiple control zones, each with
its set of actuators and temperature sensors. Secondly, the
control design is usually model-based (Serale et al. (2018))
such as Proportional-Integral-Derivative (PID) regulators
or Model Predictive Control (MPC) strategies. Many dif-
ferent models are used, including:

• White-box models built from energy balance equa-
tions. For example, Rastegarpour et al. (2020) derived
a nonlinear white-box model of a heat pump and
employed it in an MPC strategy.

• Grey-box models, which still retain the physical de-
scription of the plant but require system identifica-
tion methods to estimate the parameters. The most
common are thermal network models (Sidebotham
(2015)), which have been used, e.g., in Ramirez-
Laboreo et al. (2016) to represent a convection oven.

• Black-box models, ranging from First Order Lag Plus
time Delay (FOLPD) transfer functions to Artifi-
cial Neural Networks (ANNs). FOLPD models are
broadly used due to their ease of PID tuning (Ryck-
aert et al. (1999); He et al. (2014)). Instead, ANNs
are often employed in MPC strategies, e.g. in temper-

ature control of heat exchangers (Vasičkaninová et al.
(2011)) or in HVAC systems (Terzi et al. (2020)).

In this work, we focus on modelling the industrial oven
of a shrink tunnel, a widely used application with a large
impact on the packaging industry. Shrink tunnel control
performances greatly affect plant energy consumption and
are thus of utmost importance. Unfortunately, the tracking
performances are often subpar due to the poor quality of
the models used for control design. Shrink tunnels are
composed of an industrial convection oven and a con-
veyor belt that feeds products (e.g. bottles) to it. The
oven cavity is divided into different interconnected heating
zones, each with multiple thermocouples and a dedicated
set of heat resistors. Several convection fans allow for air
circulation inside the cavity. Before being inserted into
the oven, the products are wrapped in a thin plastic
film. The heat within the cavity shrinks the plastic and
tightly envelopes the products, creating the pack. Several
relays drive the heat resistors by supplying Pulse-Width-
Modulated (PWM) voltage signals. A common industry
practice is to use a combination of ElectroMechanical
Relays (EMRs) and Solid-State Relays (SSRs). The former
are cheaper but exhibit lower switching rates (i.e. higher
PWM periods) to prevent degradation. Consequently, the
heat resistors driven by the EMRs typically track (on aver-
age) a desired temperature profile, while those controlled
by the SSRs react to fast disturbances (e.g. the insertion of
the products inside the oven cavity), preventing noticeable
temperature drops.

In what follows, we derive a lumped-parameter grey-box
sampled-data state-space model of a shrink tunnel, a
relevant application that, to the best of our knowledge,
has yet to be treated in the literature. In the present
paper, we address the two main challenges of shrink
tunnel modelling: (i) the presence of multiple PWM signals
with different periods, and (ii) the restrictive experimental
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1. INTRODUCTION

Temperature control is widely diffused in disparate indus-
trial sectors including metallurgy, manufacturing, chemical
processes, food industry, and construction. Although most
applications share the same goal, i.e. tracking a desired
temperature profile, the controlled plants differ vastly,
encompassing industrial furnaces (Tudon-Martinez et al.
(2019)), convection ovens (Ramirez-Laboreo et al. (2016);
Ryckaert et al. (1999)), Heating, Ventilation and Air
Conditioning (HVAC) systems in buildings (Serale et al.
(2018)), heat pumps (Rastegarpour et al. (2020)), heat
exchangers (Vasičkaninová et al. (2011)), and environ-
mental chambers (He et al. (2014)). Temperature control
applications exhibit common characteristics. Firstly, the
plants are divided into multiple control zones, each with
its set of actuators and temperature sensors. Secondly, the
control design is usually model-based (Serale et al. (2018))
such as Proportional-Integral-Derivative (PID) regulators
or Model Predictive Control (MPC) strategies. Many dif-
ferent models are used, including:

• White-box models built from energy balance equa-
tions. For example, Rastegarpour et al. (2020) derived
a nonlinear white-box model of a heat pump and
employed it in an MPC strategy.

• Grey-box models, which still retain the physical de-
scription of the plant but require system identifica-
tion methods to estimate the parameters. The most
common are thermal network models (Sidebotham
(2015)), which have been used, e.g., in Ramirez-
Laboreo et al. (2016) to represent a convection oven.

• Black-box models, ranging from First Order Lag Plus
time Delay (FOLPD) transfer functions to Artifi-
cial Neural Networks (ANNs). FOLPD models are
broadly used due to their ease of PID tuning (Ryck-
aert et al. (1999); He et al. (2014)). Instead, ANNs
are often employed in MPC strategies, e.g. in temper-

ature control of heat exchangers (Vasičkaninová et al.
(2011)) or in HVAC systems (Terzi et al. (2020)).

In this work, we focus on modelling the industrial oven
of a shrink tunnel, a widely used application with a large
impact on the packaging industry. Shrink tunnel control
performances greatly affect plant energy consumption and
are thus of utmost importance. Unfortunately, the tracking
performances are often subpar due to the poor quality of
the models used for control design. Shrink tunnels are
composed of an industrial convection oven and a con-
veyor belt that feeds products (e.g. bottles) to it. The
oven cavity is divided into different interconnected heating
zones, each with multiple thermocouples and a dedicated
set of heat resistors. Several convection fans allow for air
circulation inside the cavity. Before being inserted into
the oven, the products are wrapped in a thin plastic
film. The heat within the cavity shrinks the plastic and
tightly envelopes the products, creating the pack. Several
relays drive the heat resistors by supplying Pulse-Width-
Modulated (PWM) voltage signals. A common industry
practice is to use a combination of ElectroMechanical
Relays (EMRs) and Solid-State Relays (SSRs). The former
are cheaper but exhibit lower switching rates (i.e. higher
PWM periods) to prevent degradation. Consequently, the
heat resistors driven by the EMRs typically track (on aver-
age) a desired temperature profile, while those controlled
by the SSRs react to fast disturbances (e.g. the insertion of
the products inside the oven cavity), preventing noticeable
temperature drops.

In what follows, we derive a lumped-parameter grey-box
sampled-data state-space model of a shrink tunnel, a
relevant application that, to the best of our knowledge,
has yet to be treated in the literature. In the present
paper, we address the two main challenges of shrink
tunnel modelling: (i) the presence of multiple PWM signals
with different periods, and (ii) the restrictive experimental
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design conditions, mainly due to the long duration of the
experiments that allow only open-loop step responses or
closed-loop tracking experiments. The former challenge is
solved via an ad hoc discretization method, the latter is
tackled by performing multiple experiments, which are all
taken into account when estimating the model parameters
via the output-error approach (Verhaegen and Verdult
(2007)).

This paper is organized as follows. Section 2 presents the
shrink tunnel under study. Then, Section 3 describes the
proposed model. The estimation of the model parameters
is covered in Section 4. Next, Section 5 assesses the
performances of the proposed model on experimental data,
comparing it to a black-box FOLPD model. Lastly, Section
6 gives some concluding remarks.

2. SYSTEM DESCRIPTION

The shrink tunnel under study is used in bottle packs
manufacturing processes. Its schematic is shown in Fig. 1,
which highlights its main components. The oven cavity has
a volume of 2.26m3 and is divided into two interconnected
heating zones. The heat in each zone is produced by
a dedicated set of heat resistors, located in separate
compartments. Specifically, each zone relies on one SSR
and one EMR to modulate the voltages across the heat
resistors. Two heating elements per zone are controlled by
the same EMR. Instead, the SSRs drive four (respectively,
two) heat resistors in zone 1 (zone 2). The relays are
responsible for producing the voltage PWM signals based
on the duty cycles supplied by a temperature controller.
Due to the limitations of the electromechanical relays,
the periods of the PWM signals are set to 30 s for the
EMRs and 1 s for the SSRs respectively. The hot air in
the proximity of the heat resistors diffuses inside the oven
cavity by means of four convection fans installed at the
top of the oven. The air temperature inside the oven is
measured by six equally spaced thermocouples.

Let i ∈ {1, 2} be the zone of belonging. We denote the heat
flow rate produced by the heat resistors in zone i at time

t ∈ R≥0 (in s) as qi (t) ∈ R≥0 (in J
s ). Instead, T

(l)
i (t) ∈ R

(in ◦C) is the temperature measured by the thermocouple
positioned at location l ∈ {1, 2, 3} in zone i at time t (see
Fig. 1).

3. SHRINK TUNNEL MODEL

We consider the oven cavity divided into six subzones of
the same volume, each with its own thermocouple (see Fig.
1). Based on this consideration, in Section 3.1 we propose a
lumped-parameter state-space continuous-time model that
describes the relationship between the heat produced by
the heat resistors and the temperatures. Then, in Section
3.2, we derive its corresponding sampled-data model via a
novel discretization method.

3.1 Continuous-time model

Following the thermal-electrical analogy (see Sidebotham
(2015)), each subzone is modelled by an RC-analogue
circuit; these are connected by a resistor that models the
interaction between subzones. We assume that the heat

produced by the heating elements originates from a specific
location in each zone and then propagates throughout the
whole oven cavity. Specifically, after several experiments,
we have assessed that the hottest spots are located next

to the thermocouples measuring T
(1)
1 and T

(2)
2 respectively.

The resulting thermal network is shown in Fig. 1, where:

• R
(l)
i ∈ R>0 (in

◦C
J · s), i ∈ {1, 2}, l ∈ {1, 2, 3}, is the

thermal resistance between the oven walls of zone i,
location l, and the ambient;

• R
(l′)
Ti

∈ R>0 (in
◦C
J · s), i ∈ {1, 2}, l′ ∈ {1, 2}, is

the thermal resistance related to the transfer of heat
between two locations of zone i;

• RT21
∈ R>0 (in

◦C
J ·s) is the thermal resistance related

to the transfer of heat from zone 1 to zone 2;
• RT12 ∈ R>0 (in

◦C
J · s) is analogous to RT21 but going

from zone 2 to zone 1; in general, RT21
̸= RT12

.
• Cz ∈ R>0 (in J

◦C ) is the thermal capacitance of the
air in each subzone of the oven cavity, which all have
the same volume.

• Ta (t) = T̄a, ∀t ∈ R≥0, T̄a ∈ R (in ◦C), is the ambient
temperature. It is constant during normal operation
of the shrink tunnel;

The circuit in Fig. 1 includes two ideal diodes and two
different thermal resistances RT21 and RT12 to model the
possibility of having different static gains between the heat
produced in one zone and the temperatures of the opposite
zone. The system of differential equations governing the
circuit in Fig. 1 is (Sidebotham (2015)):

Ṫ (t) = ATT · T (t) +Bq · q (t) + bT · Ta (t) , (1)

where T (t) ∈ R6 amounts to

T (t)=
[
T

(3)
1 (t) T

(2)
1 (t) T

(1)
1 (t) T

(1)
2 (t) T

(2)
2 (t) T

(3)
2 (t)

]⊤
,

Ṫ (t)=
[

d
dtT

(3)
1 (t) . . . d

dtT
(3)
2 (t)

]⊤
, and q(t)=[q1(t) q2(t)]

⊤
,

q(t)∈R2
≥0. Then, ATT ∈ R6×6 is a matrix whose (i, j)-th

entry A
(i,j)
TT is zero except for:

A
(1,1)
TT =− 1

Cz
·
[

1

R
(3)
1

+ 1

R
(2)
T1

]
, A

(1,2)
TT =A

(2,1)
TT = 1

Cz
· 1

R
(2)
T1

,

A
(2,2)
TT =− 1

Cz
·
[

1

R
(2)
1

+ 1

R
(2)
T1

+ 1

R
(1)
T1

]
, A

(2,3)
TT =A

(3,2)
TT = 1

Cz
· 1

R
(1)
T1

,

A
(3,3)
TT =− 1

Cz
·
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1

R
(1)
1

+ 1

R
(1)
T1

+ 1
RT21

]
, A

(3,4)
TT = 1

Cz
· 1
RT21

,

A
(4,4)
TT =− 1

Cz
·
[

1

R
(1)
2

+ 1

R
(1)
T2

+ 1
RT12

]
, A

(4,3)
TT = 1

Cz
· 1
RT12

,

A
(5,5)
TT =− 1

Cz
·
[

1

R
(2)
2

+ 1

R
(2)
T2

+ 1

R
(1)
T2

]
, A

(4,5)
TT =A

(5,4)
TT = 1

Cz
· 1

R
(1)
T2

,

A
(6,6)
TT =− 1

Cz
·
[

1

R
(3)
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+ 1

R
(2)
T2
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, A

(5,6)
TT =A

(6,5)
TT = 1
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· 1

R
(2)
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.

Lastly, Bq ∈ R6×2 is defined as:

Bq =

[
0 0 1

Cz
0 0 0

0 0 0 0 1
Cz

0

]⊤
,

and bT ∈ R6 as:

bT =
1

Cz
·
[

1

R
(3)
1

1

R
(2)
1

1

R
(1)
1

1

R
(1)
2

1

R
(2)
2

1

R
(3)
2

]⊤
.

The system of differential equations in (1) can be further
extended by modelling the propagation of heat from the
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design conditions, mainly due to the long duration of the
experiments that allow only open-loop step responses or
closed-loop tracking experiments. The former challenge is
solved via an ad hoc discretization method, the latter is
tackled by performing multiple experiments, which are all
taken into account when estimating the model parameters
via the output-error approach (Verhaegen and Verdult
(2007)).

This paper is organized as follows. Section 2 presents the
shrink tunnel under study. Then, Section 3 describes the
proposed model. The estimation of the model parameters
is covered in Section 4. Next, Section 5 assesses the
performances of the proposed model on experimental data,
comparing it to a black-box FOLPD model. Lastly, Section
6 gives some concluding remarks.

2. SYSTEM DESCRIPTION

The shrink tunnel under study is used in bottle packs
manufacturing processes. Its schematic is shown in Fig. 1,
which highlights its main components. The oven cavity has
a volume of 2.26m3 and is divided into two interconnected
heating zones. The heat in each zone is produced by
a dedicated set of heat resistors, located in separate
compartments. Specifically, each zone relies on one SSR
and one EMR to modulate the voltages across the heat
resistors. Two heating elements per zone are controlled by
the same EMR. Instead, the SSRs drive four (respectively,
two) heat resistors in zone 1 (zone 2). The relays are
responsible for producing the voltage PWM signals based
on the duty cycles supplied by a temperature controller.
Due to the limitations of the electromechanical relays,
the periods of the PWM signals are set to 30 s for the
EMRs and 1 s for the SSRs respectively. The hot air in
the proximity of the heat resistors diffuses inside the oven
cavity by means of four convection fans installed at the
top of the oven. The air temperature inside the oven is
measured by six equally spaced thermocouples.

Let i ∈ {1, 2} be the zone of belonging. We denote the heat
flow rate produced by the heat resistors in zone i at time

t ∈ R≥0 (in s) as qi (t) ∈ R≥0 (in J
s ). Instead, T

(l)
i (t) ∈ R

(in ◦C) is the temperature measured by the thermocouple
positioned at location l ∈ {1, 2, 3} in zone i at time t (see
Fig. 1).

3. SHRINK TUNNEL MODEL

We consider the oven cavity divided into six subzones of
the same volume, each with its own thermocouple (see Fig.
1). Based on this consideration, in Section 3.1 we propose a
lumped-parameter state-space continuous-time model that
describes the relationship between the heat produced by
the heat resistors and the temperatures. Then, in Section
3.2, we derive its corresponding sampled-data model via a
novel discretization method.

3.1 Continuous-time model

Following the thermal-electrical analogy (see Sidebotham
(2015)), each subzone is modelled by an RC-analogue
circuit; these are connected by a resistor that models the
interaction between subzones. We assume that the heat

produced by the heating elements originates from a specific
location in each zone and then propagates throughout the
whole oven cavity. Specifically, after several experiments,
we have assessed that the hottest spots are located next

to the thermocouples measuring T
(1)
1 and T

(2)
2 respectively.

The resulting thermal network is shown in Fig. 1, where:

• R
(l)
i ∈ R>0 (in

◦C
J · s), i ∈ {1, 2}, l ∈ {1, 2, 3}, is the

thermal resistance between the oven walls of zone i,
location l, and the ambient;

• R
(l′)
Ti

∈ R>0 (in
◦C
J · s), i ∈ {1, 2}, l′ ∈ {1, 2}, is

the thermal resistance related to the transfer of heat
between two locations of zone i;

• RT21
∈ R>0 (in

◦C
J ·s) is the thermal resistance related

to the transfer of heat from zone 1 to zone 2;
• RT12 ∈ R>0 (in

◦C
J · s) is analogous to RT21 but going

from zone 2 to zone 1; in general, RT21
̸= RT12

.
• Cz ∈ R>0 (in J

◦C ) is the thermal capacitance of the
air in each subzone of the oven cavity, which all have
the same volume.

• Ta (t) = T̄a, ∀t ∈ R≥0, T̄a ∈ R (in ◦C), is the ambient
temperature. It is constant during normal operation
of the shrink tunnel;

The circuit in Fig. 1 includes two ideal diodes and two
different thermal resistances RT21 and RT12 to model the
possibility of having different static gains between the heat
produced in one zone and the temperatures of the opposite
zone. The system of differential equations governing the
circuit in Fig. 1 is (Sidebotham (2015)):

Ṫ (t) = ATT · T (t) +Bq · q (t) + bT · Ta (t) , (1)

where T (t) ∈ R6 amounts to

T (t)=
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(3)
1 (t) T

(2)
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1 (t) T
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2 (t) T
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,

Ṫ (t)=
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dtT
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, and q(t)=[q1(t) q2(t)]

⊤
,
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≥0. Then, ATT ∈ R6×6 is a matrix whose (i, j)-th

entry A
(i,j)
TT is zero except for:
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Lastly, Bq ∈ R6×2 is defined as:

Bq =

[
0 0 1
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,

and bT ∈ R6 as:
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The system of differential equations in (1) can be further
extended by modelling the propagation of heat from the
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heat resistors to the air inside the oven cavity using a first-
order low-pass filter with unitary gain:

q̇
(f)
i (t) = −τi

−1 · q(f)i (t) + τi
−1 · qi (t) , ∀i ∈ {1, 2}, (2)

where τi ∈ R>0 (in s) is the time constant for zone i.
Then, in the circuit in Fig. 1, we should replace qi (t) with

q
(f)
i (t). The heat flow rates q (t) in (1) are generated by
the heat resistors located in the corresponding zones. We
consider the heat resistors in Fig. 1 in pairs: in the first
zone, one pair is driven by the EMR and two pairs by
the same SSR. Instead, in the second zone, the EMR and
the SSR handle one pair each. We denote the voltages

across the heat resistors as V
(r)
i (t) ∈ R≥0 (in V), where

i ∈ {1, 2} denotes the zone while r ∈ {1, 2} indicates the
driving relay (r = 1 for the SSRs and r = 2 for the EMRs).
Let Rheat ∈ R>0 (in Ω) be the resistance of a pair of heat
resistors and assume that it is the same for each pair. Then:

q1 (t) = R−1
heat ·

�
2 · V (1)

1 (t)
2
+ V

(2)
1 (t)

2
�
, (3a)

q2 (t) = R−1
heat ·

�
V

(1)
2 (t)

2
+ V

(2)
2 (t)

2
�
. (3b)

We group the V
(r)
i (t)’s in (3) inside a vector V (t),

V (t)=
�
V

(1)
1 (t) V

(2)
1 (t) V

(1)
2 (t) V

(2)
2 (t)

�⊤
, V (t)∈R4

≥0,

and define the vector of squared voltages as:

V sq (t) = V (t)⊙ V (t) , V sq (t) ∈ R4
≥0, (4)

where ⊙ is the Hadamard product. By combining (1), (2),
(3), and (4), we get the nonlinear state-space continuous-
time model describing the shrink tunnel under study:



q̇(f) (t)=Aff ·q(f) (t) +Bf ·V sq (t)

Ṫ (t)=ATT ·T (t) +ATf ·q(f) (t) + bT ·Ta (t)

y (t)=T (t)

, (5)

where q(f) (t)=
�
q
(1,f)
1 (t) q

(2,f)
1 (t) q

(1,f)
2 (t) q

(2,f)
2 (t)

�⊤
∈R4

≥0

is the vector of filtered heat flow rates associated with each
V

(r)
i (t), while y (t) ∈ R6 are the outputs of the model (i.e.

the temperatures). Lastly, the remaining matrices in (5)
are defined as:

Aff = diag
�
−τ−1

1 ,−τ−1
1 ,−τ−1

2 ,−τ−1
2

�
, Aff ∈ R4×4,

Bf = R−1
heat · diag

�
τ−1
1 , τ−1

1 , τ−1
2 , τ−1

2

�
, Bf ∈ R4×4,

ATf = Bq ·
�
2 1 0 0
0 0 1 1

�
, ATf ∈ R6×4.

3.2 Sampled-data model

In what follows, we denote the PWM periods of the SSRs

as T (1)
P = 1 s and those of the EMRs as T (2)

P = 30 s. The
signals of interest are sampled at a sampling time Ts ∈ R>0

such that Ts = T (1)
P . Consequently, in this Section we will

derive a sampled-data model for the system with sampling
time Ts. We introduce the following notation:

• s (t) ∈ R is a continuous-time signal (t ∈ R≥0),
• k ∈ N ∪ {0} is the discrete-time index,
• s̃ (k; Ts) ∈ R is the discrete-time signal obtained by
sampling s (t) at a sampling time Ts. In particular,
s̃ (k; Ts) = s (k · Ts) , ∀k ∈ N ∪ {0}.

Before tackling the discretization of (5), consider the

voltage PWM signals V
(r)
i (t) , i ∈ {1, 2}, r ∈ {1, 2}. Each

V
(r)
i (t) has a duty cycle u

(r)
i (t) ∈ [0, 1] that (inherently)

can be seen as a discrete-time signal sampled at a sampling

time equal to its PWM period T (r)
P . That is because:

u
(r)
i (t) = ũ

(r)
i

�
k; T (r)

P

�
, ∀t : k · T (r)

P ≤ t < [k + 1] · T (r)
P .

Let T̃ (r)
ONi

�
k; T (r)

P

�
∈
�
0, T (r)

P

�
,

T̃ (r)
ONi

�
k;T (r)

P

�
= ũ

(r)
i

�
k;T (r)

P

�
·T (r)

P , ∀k ∈ N ∪ {0}, (6)

be the pulse active time at index k. Then, the correspond-
ing voltage PWM signal is defined as:

V
(r)
i (t)=



Vg(t) if k ·T (r)

P ≤ t<k ·T (r)
P +T̃ (r)

ONi

�
k;T (r)

P

�

0 if k ·T (r)
P +T̃ (r)

ONi

�
k;T (r)

P

�
≤ t< [k+1]·T (r)

P

(7)
where Vg (t) ∈ R≥0 (in V) is the grid voltage. Fig. 2
shows an example of voltage PWM signals produced by
the SSR and the EMR of zone 1. In order to discretize
the system in (5), all signals must be sampled at the same
sampling time Ts. However, the duty cycles of the EMRs
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are inherently sampled at T (2)
P ̸= Ts. The next Section

tackles the derivation of equivalent duty cycles for the
EMRs that are suited for the discretization.

Fig. 2. Example of voltage PWM signals produced by
the SSR and the EMR of zone 1. In this example,

T (1)
P = 1 s and T (2)

P = 5 s (i.e. T (2)
P = 5 · T (1)

P ).

SSR-equivalent duty cycles for the EMRs. Let us assume
that the PWM period of the EMRs is a multiple of the

PWM period of the SSRs, i.e. T (2)
P = m·T (1)

P ,m ∈ N. That
is exactly the case for the system under study, for which
m = 30. Then, we can see each PWM period of a EMR
as a composition of m periods of a SSR. In particular, if

we were to view the duty cycles ũ
(2)
i

�
k; T (2)

P

�
, i ∈ {1, 2},

sampled at Ts = T (1)
P rather than T (2)

P , we would get:

ũ
(2)
i

�
k;T (1)

P

�
=



1 if 0≤k mod m<⌊κ⌋
γ if k mod m=⌊κ⌋
0 if ⌈κ⌉≤k mod m<m

, (8)

where:

κ = T̃ (2)
ONi

�
k; T (2)

P

�
·
�
T (1)
P

�−1

,

γ =
�
T̃ (2)
ONi

�
k; T (2)

P

�
mod T (1)

P

�
·
�
T (1)
P

�−1

,

with mod being the modulo operation, while ⌊a⌋, ⌈a⌉ , a ∈
R, being the floor and ceiling functions respectively.

As an example, referring to Fig. 2 where m = 5 and

T̃ (2)
ON1

�
0; T (2)

P

�
= 2.5 s, after applying (8) we get:

• ũ
(2)
1

�
k;T (1)

P

�
=1 for k ∈ {0, 1},

• ũ
(2)
1

�
2;T (1)

P

�
=0.5 (leading to T̃ (2)

ON1

�
2;T (1)

P

�
=0.5 s),

• ũ
(2)
1

�
k;T (1)

P

�
= 0 for k ∈ {3, 4}.

Sampled-data model. Let us consider the duty cycles of the
EMRs converted into their SSR equivalents using (8). We

define the vector of duty cycles sampled at Ts = T (1)
P , i.e.

ũ(k; Ts) ∈ [0, 1]
4
, as:

ũ(k;Ts)=
�
ũ
(1)
1 (k;Ts) ũ

(2)
1 (k;Ts) ũ

(1)
2 (k;Ts) ũ

(2)
2 (k;Ts)

�⊤
.

In order to discretize the system under study, we integrate
the left and the right sides of the differential equations in
(5) between k · Ts and (k + 1) · Ts. For what concerns the
filtered heat flow rates, we get:

q̃(f)(k+1;Ts)−q̃(f)(k;Ts) = Aff ·
� (k+1)·Ts

k·Ts

q(f) (t) dt+

+Bf ·
� (k+1)·Ts

k·Ts

V sq (t) dt. (9)

The integrals on the right side of the above equation can
be approximated via the forward Euler method (Seborg
et al. (2016)) which, for a generic continuous-time signal
s (t) ∈ R, amounts to:

� (k+1)·Ts

k·Ts

s (t) dt ≈ s̃ (k; Ts) · Ts. (10)

However, we point out that (10) is not suited for the

integral
� (k+1)·Ts

k·Ts
V sq (t) dt in (9). That is because the

voltage PWM signals are sampled at a sampling time

Ts = T (1)
P , leading the forward Euler method to miss the

portions of the signals when the voltages are zero and,
consequently, to a suboptimal approximation (see Fig. 3).
Consequently, we propose an ad hoc discretization method
for PWM signals that are sampled at a sampling time
that is equal to their PWM period. Consider the squared

voltages V
(r)
i (t)

2
, i ∈ {1, 2}, r ∈ {1, 2}. We propose the

following approximation (see (6) and (7)):
� (k+1)·Ts

k·Ts

V
(r)
i (t)

2
dt ≈ Ṽg (k; Ts)2 · T̃ (r)

ONi
(k; Ts)

≈ Ṽg (k; Ts)2 · ũ(r)
i (k; Ts) · Ts. (11)

As highlighted in Fig. 3, the approximation in (11) is
better suited for computing the integral of the squared
voltages in (9) compared to (10). To discretize the system
in (5), we apply the forward Euler method to the integrals
that concern q(f) (t) ,T (t) , and Ta (t). Instead the integral
related to V sq (t) is approximated using (11). The result-
ing sampled-data state-space model is:


q̃(f)(k+1;Ts)=Ãff ·q̃(f)(k;Ts)+B̃f ·ũ(k;Ts)·Ṽg(k;Ts)2

T̃ (k+1;Ts)=ÃTT ·T̃ (k;Ts)+ÃTf ·q̃(f)(k;Ts)+b̃T ·T̃a(k;Ts)
ỹ(k;Ts)= T̃ (k;Ts)

(12)
where the matrices and vectors amount to:
Ãff=Aff·Ts+I4, Ãff ∈ R4×4, B̃f=Bf·Ts, B̃f ∈R4×4,

ÃTT=ATT·Ts+I6, ÃTT ∈R6×6, ÃTf=ATf·Ts, ÃTf ∈R6×4,

b̃T=bT·Ts, b̃T ∈R6,
and Im,m ∈ N, is the m × m identity matrix. In what
follows, we will refer to the model in (12) as discretized
Electro-eQuivalent Thermal Model (dEQTM). One of the
advantages of the proposed approximation method in (11)
compared to forward Euler in (10) is that the dependency
on the control actions, i.e. the duty cycles ũ (k; Ts), is made
explicit in the dEQTM, easing controller design.

4. IDENTIFICATION OF THE PARAMETERS

The dEQTM in (12) depends on several unknown param-

eters: the thermal resistances R
(l)
i , R

(l′)
Ti

, RT12 , RT21 , i ∈
{1, 2}, l ∈ {1, 2, 3}, l′ ∈ {1, 2}, the thermal capacitance Cz,
the time constants τi, i ∈ {1, 2}, and the resistance Rheat

(see Section 3). In practice, Cz need not be estimated;
assuming that we are dealing with dry air at constant
pressure, we have (Halliday et al. (2013)):
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are inherently sampled at T (2)
P ̸= Ts. The next Section

tackles the derivation of equivalent duty cycles for the
EMRs that are suited for the discretization.

Fig. 2. Example of voltage PWM signals produced by
the SSR and the EMR of zone 1. In this example,

T (1)
P = 1 s and T (2)

P = 5 s (i.e. T (2)
P = 5 · T (1)

P ).

SSR-equivalent duty cycles for the EMRs. Let us assume
that the PWM period of the EMRs is a multiple of the

PWM period of the SSRs, i.e. T (2)
P = m·T (1)

P ,m ∈ N. That
is exactly the case for the system under study, for which
m = 30. Then, we can see each PWM period of a EMR
as a composition of m periods of a SSR. In particular, if

we were to view the duty cycles ũ
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sampled at Ts = T (1)
P rather than T (2)
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with mod being the modulo operation, while ⌊a⌋, ⌈a⌉ , a ∈
R, being the floor and ceiling functions respectively.

As an example, referring to Fig. 2 where m = 5 and
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Sampled-data model. Let us consider the duty cycles of the
EMRs converted into their SSR equivalents using (8). We

define the vector of duty cycles sampled at Ts = T (1)
P , i.e.

ũ(k; Ts) ∈ [0, 1]
4
, as:

ũ(k;Ts)=
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(1)
1 (k;Ts) ũ
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1 (k;Ts) ũ

(1)
2 (k;Ts) ũ
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In order to discretize the system under study, we integrate
the left and the right sides of the differential equations in
(5) between k · Ts and (k + 1) · Ts. For what concerns the
filtered heat flow rates, we get:

q̃(f)(k+1;Ts)−q̃(f)(k;Ts) = Aff ·
� (k+1)·Ts

k·Ts

q(f) (t) dt+

+Bf ·
� (k+1)·Ts

k·Ts

V sq (t) dt. (9)

The integrals on the right side of the above equation can
be approximated via the forward Euler method (Seborg
et al. (2016)) which, for a generic continuous-time signal
s (t) ∈ R, amounts to:

� (k+1)·Ts

k·Ts

s (t) dt ≈ s̃ (k; Ts) · Ts. (10)

However, we point out that (10) is not suited for the

integral
� (k+1)·Ts

k·Ts
V sq (t) dt in (9). That is because the

voltage PWM signals are sampled at a sampling time

Ts = T (1)
P , leading the forward Euler method to miss the

portions of the signals when the voltages are zero and,
consequently, to a suboptimal approximation (see Fig. 3).
Consequently, we propose an ad hoc discretization method
for PWM signals that are sampled at a sampling time
that is equal to their PWM period. Consider the squared

voltages V
(r)
i (t)

2
, i ∈ {1, 2}, r ∈ {1, 2}. We propose the

following approximation (see (6) and (7)):
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≈ Ṽg (k; Ts)2 · ũ(r)
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As highlighted in Fig. 3, the approximation in (11) is
better suited for computing the integral of the squared
voltages in (9) compared to (10). To discretize the system
in (5), we apply the forward Euler method to the integrals
that concern q(f) (t) ,T (t) , and Ta (t). Instead the integral
related to V sq (t) is approximated using (11). The result-
ing sampled-data state-space model is:


q̃(f)(k+1;Ts)=Ãff ·q̃(f)(k;Ts)+B̃f ·ũ(k;Ts)·Ṽg(k;Ts)2

T̃ (k+1;Ts)=ÃTT ·T̃ (k;Ts)+ÃTf ·q̃(f)(k;Ts)+b̃T ·T̃a(k;Ts)
ỹ(k;Ts)= T̃ (k;Ts)

(12)
where the matrices and vectors amount to:
Ãff=Aff·Ts+I4, Ãff ∈ R4×4, B̃f=Bf·Ts, B̃f ∈R4×4,

ÃTT=ATT·Ts+I6, ÃTT ∈R6×6, ÃTf=ATf·Ts, ÃTf ∈R6×4,

b̃T=bT·Ts, b̃T ∈R6,
and Im,m ∈ N, is the m × m identity matrix. In what
follows, we will refer to the model in (12) as discretized
Electro-eQuivalent Thermal Model (dEQTM). One of the
advantages of the proposed approximation method in (11)
compared to forward Euler in (10) is that the dependency
on the control actions, i.e. the duty cycles ũ (k; Ts), is made
explicit in the dEQTM, easing controller design.

4. IDENTIFICATION OF THE PARAMETERS

The dEQTM in (12) depends on several unknown param-

eters: the thermal resistances R
(l)
i , R

(l′)
Ti

, RT12 , RT21 , i ∈
{1, 2}, l ∈ {1, 2, 3}, l′ ∈ {1, 2}, the thermal capacitance Cz,
the time constants τi, i ∈ {1, 2}, and the resistance Rheat

(see Section 3). In practice, Cz need not be estimated;
assuming that we are dealing with dry air at constant
pressure, we have (Halliday et al. (2013)):
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(a) - Real integral. (b) - Forward Euler method. (c) - Proposed method.
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Fig. 3. Comparison between the forward Euler method in (10) and the proposed method in (11) when approximating

the integral
� (k+1)·Ts

k·Ts
V

(1)
1 (t)

2
dt. The fluctuations in V

(1)
1 (t) are due to the fluctuations in the grid voltage Vg (t).

Cz = cair · ρair ·
Voven

6
= 461

J
◦C

,

where cair = 1000 J
Kg·◦C is the specific heat of air, ρair =

1.225 Kg
m3 is the air density, and Voven = 2.26m3 is the

volume of the oven cavity. We group all the unknown
parameters inside a vector θ ∈ Rnθ

>0, which are nθ =
15 in total. θ is estimated using data coming from five
experiments carried out on the shrink tunnel under study:

(E1) Open-loop step response test with ũ
(r)
i (k;Ts) =

0.5, ∀k ∈ N ∪ {0}, and i ∈ {1, 2}, r ∈ {1, 2};
(E2) Open-loop step response test with ũ

(r)
1 (k;Ts) =

0.5, ũ
(r)
2 (k;Ts)=0, ∀k ∈ N ∪ {0}, and r ∈ {1, 2};

(E3) Open-loop step response test with ũ
(r)
1 (k;Ts) =

0, ũ
(r)
2 (k;Ts)=0.5, ∀k ∈ N ∪ {0}, and r ∈ {1, 2};

(E4) Closed-loop test where only the temperatures T
(1)
1

and T
(2)
2 are controlled in closed-loop by PID con-

trollers. Specifically, the regulators are tasked to track
a piecewise constant reference signal that alternates
between 160◦C and 150◦C .

(E5) Closed-loop step response test with reference signal
equal to 160◦C and different PID tunings compared
to (E4).

These experiments were designed with the following goals
in mind: (i) each trial must take less than a work day, (ii) a
wide temperature range should be covered, and (iii) some
experiments should capture typical closed-loop operation,
making them suited for the identification of a control-
oriented model.

Let NE = 5 be the number of experiments and N
(e)
E ∈

N, e ∈ {1, . . . , NE}, be the number of samples acquired in
the e-th experiment. Then, we estimate θ according to the
output-error approach (Verhaegen and Verdult (2007)),
i.e. by minimizing the following cost function over Rnθ

>0:

J(θ)=
1

NE

NE�
e=1


 1

N
(e)
E

N
(e)
E

−1�
k=0

���ỹ(e)(k;Ts)−ˆ̃y(e)(k;Ts,θ)
���
2

2


, (13)

where ỹ(e) (k;Ts) are the measured outputs of the e-

th experiment at index k ∈ {0, . . . , N (e)
E − 1}, while

ˆ̃y(e) (k;Ts,θ) are the outputs estimated by the dEQTM in

(12), simulated using the inputs ũ(e)(k;Ts) , T̃ (e)
a (k;Ts), and

Ṽ
(e)
g (k;Ts), associated with the e-th experiment. At the

beginning of all the experiments, the temperatures are at
equilibrium and are equal to the (constant) ambient tem-
perature T̄a, while the heat resistors are off. Consequently,

we can remove T̄a from each output ỹ(e) (k;Ts) and neglect

T̃
(e)
a (k;Ts) when simulating ˆ̃y(e) (k;Ts,θ). Specifically, for

any θ ∈ Rnθ
>0, the initial states of the model in (12) are set

to zero and need not be estimated, i.e. ˆ̃q(f),(e)(0;Ts,θ) = 04

and ˆ̃T (e)(0;Ts,θ) = 06. Then, we compute ˆ̃q(f),(e)(k;Ts,θ)
and ˆ̃T (e)(k;Ts,θ) at any k ∈ {1, . . . , N (e)

E − 1} and for
any e ∈ {1, . . . , NE} by iterating the state equations in

(12) using only ũ(e)(k;Ts) and Ṽ
(e)
g (k;Ts). Finally, we set

ˆ̃y(e)(k; Ts,θ) = ˆ̃T (e)(k;Ts,θ) , ∀k ∈ {0, . . . , N (e)
E − 1}, ∀e ∈

{1, . . . , NE}, and calculate the cost defined in (13).

Comparatively, we also consider an additional model ob-
tained by approximating the relationship between each
temperature (output) and each duty cycle (input) using a
FOLPD transfer function (He et al. (2014)). In particular,
consider the j-th output yj (t) , j ∈ {1, . . . , 6}, and the

input u
(r)
i (t) , i ∈ {1, 2}, r ∈ {1, 2}. Then:

G
(r)
ji (s) =

Yj (s)

U
(r)
i (s)

=
µ
(r)
ji

1 + s · τ (r)ji

· exp
�
−s · L(r)

ji

�
, (14)

where µ
(r)
ji ∈ R>0 (in

◦C) is the gain, τ
(r)
ji ∈ R>0 is the time

constant (in s), and L
(r)
ji ∈ R≥0 is the time delay (in s). We

group the parameters of the 24 FOLPD transfer functions
inside a vector θ ∈ Rnθ

≥0 (nθ = 72 in total) and we estimate
them via the output-error approach for continuous-time
systems. Specifically, we apply the maximum likelihood
method discussed in Garnier (2015), i.e., analogously to
(13), we minimize the difference between the measured and
simulated outputs in the Least Squares sense, averaged
over the NE experiments.

5. EXPERIMENTAL RESULTS

Now, we assess the performances of the derived models
on a validation dataset resulting from a closed-loop exper-
iment that was not used during the identification described

in Section 4. Let θ̂ ∈ Rnθ

≥0 be the estimated parameters of

either the dEQTM in (12) or the FOLPD model in (14).

Moreover, let ϵ̃
(v)
j

�
k; Ts, θ̂

�
, j ∈ {1, . . . , 6}, be the error
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T
(3)
1 (j = 1) T

(2)
1 (j = 2) T

(1)
1 (j = 3) T

(1)
2 (j = 4) T

(2)
2 (j = 5) T

(3)
2 (j = 6) Average

Fit
(v)
j [%] dEQTM 96.88% 97.56% 97.10% 95.75% 97.38% 97.93% 97.10%

FOLPD 97.37% 91.91% 95.79% 96.97% 97.92% 95.31% 95.88%

MaxErr
(v)
j [◦C] dEQTM 8.56 7.18 10.43 10.26 9.58 6.29 8.72

FOLPD 7.45 27.71 22.40 11.32 6.66 18.38 15.66

Fig. 4. Performances of the dEQTM in (12) and the FOLPD model in (14) on the validation dataset w.r.t. the indicators
in (15) and (16). The best results are highlighted with a bold font. We also show the simulated outputs corresponding

to T
(2)
1 and T

(2)
2 , for which either the dEQTM or the FOLPD model notably outperformed the other.

made by the identified models on the j-th output ỹ
(v)
j of

the validation dataset at index k, i.e.:

ϵ̃
(v)
j

(
k; Ts, θ̂

)
= ỹ

(v)
j (k; Ts)− ˆ̃y

(v)
j

(
k; Ts, θ̂

)
.

Finally, let N (v) ∈ N be the number of samples present
in the validation dataset. We evaluate the performances
using the following measures of goodness: (i) the fits, i.e.

Fit
(v)
j = 1−

√
1

N(v) ·
∑N(v)−1

k=0

∣∣∣ϵ̃(v)j

(
k;Ts, θ̂

)∣∣∣
2

maxk ỹ
(v)
j (k;Ts)−mink ỹ

(v)
j (k;Ts)

, (15)

and (ii) the maximum absolute errors, i.e.

MaxErr
(v)
j = max

k

∣∣∣ϵ̃(v)j

(
k; Ts, θ̂

)∣∣∣ [◦C] . (16)

The performances achieved by the dEQTM in (12) and
the FOLPD model in (14) on the validation dataset are
reported in Fig. 4. We can clearly see that (on average)
the proposed model outperforms its competitor w.r.t. both
(15) and (16). In particular, the FOLPD model exhibits
maximum absolute errors that exceed 20◦C while the
dEQTM shows a MaxErr

(v)
j that is, at most, roughly 11◦C.

Instead, the fits are overall comparable. We conclude that
the proposed model in (12) clearly outperforms the one in
(14), especially if we also take into account that it uses 4.8
times fewer parameters (nθ = 15 against nθ = 72).

6. CONCLUSIONS

This paper presented a lumped-parameter sampled-data
state-space model for the industrial oven of a shrink tun-
nel. The model has been derived following the thermal-
electrical analogy and via a novel and ad hoc discretization
strategy. Its parameters have been estimated following the
output-error approach, using data coming from an exten-
sive experimental campaign. The proposed model exhib-
ited better performances on experimental data compared
to the FOLPD model with notably fewer parameters.
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