
Computer Physics Communications 235 (2019) 305–323

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

CPC 50th anniversary article

Some useful optimisations for unstructured computational fluid
dynamics codes on multicore and manycore architectures
Ioan Hadade a,b,*, Feng Wang b, Mauro Carnevale b, Luca di Mare b

a Rolls-Royce Vibration UTC, Imperial College London, London, SW7 2AZ, United Kingdom
b Oxford Thermofluids Institute, University of Oxford, Oxford, OX2 0ES, United Kingdom

a r t i c l e i n f o

Article history:
Received 14 February 2018
Received in revised form 19 June 2018
Accepted 5 July 2018
Available online 18 July 2018

Keywords:
Unstructured grids
Computational fluid dynamics
Code optimisation
High performance computing
Parallel programming

a b s t r a c t

This paper presents a number of optimisations for improving the performance of unstructured compu-
tational fluid dynamics codes on multicore and manycore architectures such as the Intel Sandy Bridge,
Broadwell and Skylake CPUs and the Intel Xeon Phi Knights Corner and Knights Landing manycore
processors. We discuss and demonstrate their implementation in two distinct classes of computational
kernels: face-based loops represented by the computation of fluxes and cell-based loops representing
updates to state vectors. We present the importance of making efficient use of the underlying vector
units in both classes of computational kernels with special emphasis on the changes required for
vectorising face-based loops and their intrinsic indirect and irregular access patterns. We demonstrate
the advantage of different data layouts for cell-centred as well as face data structures and architectural
specific optimisations for improving the performance of gather and scatter operationswhich are prevalent
in unstructuredmesh applications. The implementation of a software prefetching strategy based on auto-
tuning is also shown along with an empirical evaluation on the importance of multithreading for in-
order architectures such as Knights Corner. We explore the various memory modes available on the Intel
Xeon Phi Knights Landing architecture and present an approach whereby both traditional DRAM as well
as MCDRAM interfaces are exploited for maximum performance. We obtain significant full application
speed-ups between 2.8 and 3X across the multicore CPUs in two-socket node configurations, 8.6X on the
Intel Xeon Phi Knights Corner coprocessor and 5.6X on the Intel Xeon Phi Knights Landing processor in an
unstructured finite volume CFD code representative in size and complexity to an industrial application.
Program summary
Program Title: some_opt_for_unstructured_cfd
Program Files doi: http://dx.doi.org/10.17632/zyh2zkf3jw.1
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: C/C++
Nature of problem: The solution of fluid flow problems in the vicinity of complex geometries mandates
the utilisation of unstructured grids. However, this flexibility of unstructured mesh methods in dealing
with complicated geometries comes at a cost of increased difficulty in extracting high performance out of
modern processors. We provide implementations for a number of optimisations useful for improving the
performance of unstructured CFD codes on modern multicore and manycore architectures.
Solution method: grid renumbering via Reverse Cuthill–Mckee, code transformations necessary for en-
abling vectorisation, face colouring/reordering for removing dependencies at the face end-points when
accumulating residuals, data layout transformations for reducing cache misses, hand-tuned gather and
scatter primitives for in-register transpositions, software prefetching via auto-tuning andmultithreading
for exploiting SMT features of modern processors.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

* Corresponding author at: Rolls-Royce Vibration UTC, Imperial College London,
London, SW7 2AZ, United Kingdom.

E-mail address: i.hadade@imperial.ac.uk (I. Hadade).

1. Introduction

The flexibility of unstructured mesh methods in dealing with
complicated geometries comes at a cost of increased difficulty
in achieving high performance on modern computer architec-
tures. This is due in great part to the data structures required for

https://doi.org/10.1016/j.cpc.2018.07.001
0010-4655/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2018.07.001
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.07.001&domain=pdf
http://dx.doi.org/10.17632/zyh2zkf3jw.1
http://creativecommons.org/licenses/by/4.0/
mailto:i.hadade@imperial.ac.uk
https://doi.org/10.1016/j.cpc.2018.07.001
http://creativecommons.org/licenses/by/4.0/

306 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

expressing grid connectivity and the resulting indirect and irregu-
lar memory access patterns. In finite volume discretisations, such
data structures and access patterns appear when iterating over
the faces or edges of the computational domain for the purpose of
evaluating fluxes, gradients and limiters. These kernels are usually
structured as a sequence of gather, compute and scatter operations
where variables are gathered from pairs of cells or vertices sharing
a face or edge followed by the calculation and scatter of results to
the respective face or edge end-points.

An example of a typical face-based loop can be seen in Listing
1 where unknowns are gathered from neighbouring cells and used
together withmesh geometrical attributes to compute flux residu-
als that are subsequently accumulated and scattered back to the
face-end points. For edge-based solvers, one can simply replace
faces with edges and cells with vertices or nodes.

Listing 1: Example of a simplified face-based loop on unstructured
grids
1 for(ic=ics;ic<ice;ic++)
2 {
3 i1= ifq[0][ic]; // index of cell 1
4 i2= ifq[1][ic]; // index of cell 2
5 u1= q[i1]; // gather from cell 1
6 u2= q[i2]; // gather from cell 2
7 f= geo[ic]*(u2-u1); // compute residual
8 rhs[i1]-= f; // scatter to cell 1
9 rhs[i2]+= f; // scatter to cell 2

10 }

The gather and scatter operations in Listing 1 can operate across
large and random strides in memory depending on the mesh
topology and algorithms used at the grid generation stage [1]. As
a result, they are inherently inefficient on modern processor ar-
chitectures for a number of reasons. First of all, accessing memory
at irregular strides does not exploit the cache hierarchy as data
cannot be reused from the faster higher levels due to lack of spatial
and temporal locality. Secondly, the compiler would be unable to
vectorise the loop construct in Listing 1 due to the use of indirect
addressing and potential data dependencies between the face end-
points when accumulating the residuals. This also prevents the
exploitation of thread-level parallelism due to the risk of race
conditions. Finally, accessing memory indirectly can also prohibit
the performance of hardware prefetchers and therefore severely
reduce any opportunity for memory parallelism.

A typical unstructured finite volume code will spendmore than
two thirds of its execution time evaluating face-based loops. Con-
sequently, addressing the limitations that prevent them frommak-
ing optimal use of the available vector units, threads and memory
hierarchy is imperative for achieving high performance onmodern
processors. However, some optimisations that are beneficial to
face-based loops might be detrimental to the performance of cell-
based loops where the remaining execution time is spent. This
requires that both face-based and cell-based kernels are optimised
and that the impact of each optimisation is assessed and evaluated
across the whole application.

In this paper, we present a number of such optimisations for
improving the performance of unstructured finite volume CFD
applications on modern multicore and manycore processors. We
demonstrate their implementation in a kernel computing inviscid
second order fluxes as an example of face-based loops and in
a kernel computing state vector updates as an example of cell-
based loops. We discuss the trade off between programming effort
and performance improvements for each optimisation and demon-
strate how a single code base can be used to target a wide range of
architectures via approaches such as auto-tuning and simple code
abstractions. Finally, we report full application speed-ups in a code
of complexity and size similar to that of an industrial application
ranging between 2.8 and 3X across two-socket Intel Xeon CPU
nodes and a speed-up of 8.6X on the Intel Xeon Phi Knights Corner

and 5.6X on Intel Xeon Phi Knights Landing processor relative to
their respective baseline.

The rest of the paper is organised as follows. Section 2 presents
related work and a description of the code used as a test vehicle
in this study along with details regarding its numerical imple-
mentation, selected test case and computational kernels. In-depth
description of the evaluated hardware architectures and software
environment is given in Section 3 whilst a description of the
applied optimisations is presented in Section 4. Section 5 presents
results and associated discussions whilst concluding remarks are
given in Section 6.

2. Background

2.1. Related work

Anderson et al. [2] presented the optimisation of FUN3D [3], a
tetrahedral vertex-centred unstructured mesh code developed at
the NASA Langley Research Center for the solution of the com-
pressible and incompressible Euler and Navier–Stokes equations
and for which they received the 1999 Gordon Bell Prize [4]. Their
optimisations were based on the concept of memory centric com-
putations whereby the aim was to minimise the number of mem-
ory references as much as possible in the recognition that flops are
cheap relative to memory load and store operations. The authors
achieved this by increasing spatial localitywith thehelp of interlac-
ing in which data items that are required in close succession such
as unknowns are stored contiguously in memory based on data
layouts such as Array of Structures (AoS). They also reduced the
impact of the underlying gather and scatter operations by renum-
bering themesh vertices using the Cuthill–Mckee [5] sparsematrix
bandwidth minimiser. Their work was subsequently extended in
the context of the FUN3D code by a number of studies such as
Gropp et al. [6] which introduced performance models in order to
guide the optimisation process by classifying the operational char-
acteristics of the computational kernels and their interaction with
the underlying hardware, Mudigere et al. [7] who demonstrated
sharedmemory optimisations onmodern parallel architectures in-
cluding vectorisation and threading through a hybridMPI/OpenMP
implementation, Al Farhan et al. [8] who presented optimisations
specific to the Intel Xeon Phi Knights Corner processor as well
as Duffy et al. [9] who ported FUN3D for execution on graphical
processing units obtaining a factor of two speed-up as a result.

More recently, Economon et al. [10] presented the performance
optimisation of the open-source SU2 [11] unstructured CFD code
on Intel architectures. Their work demonstrated the impact of a
number of optimisations such as vectorisation, edge reordering,
data layout transformations for improving single core performance
on modern multicore architectures as well as optimisations of the
linear solver in order to remove the impact of performing collective
operations at large core counts. As a result, they obtained speed-
ups of more than a factor of two at single node and multi node
granularities.

A different approach for optimising unstructured grid applica-
tions is by implementing such optimisations at a higher level of
abstraction through a Domain Specific Language (DSL). Examples
of such initiatives with respect to unstructured CFD solvers can
be found by examining the work revolving the OP2 framework
[12–15] and Liszt [16].

The work in this paper complements these endeavours in that
it evaluates new architectures such as the Intel Xeon Skylake and
Intel Xeon Phi Knights Landing processors and presents similar as
well as novel optimisations. We study their impact across one of
the broadest selection of multicore and manycore processors in
literature and discuss commonalities and differences in their im-
plementation depending on the underlying platform. Furthermore,
the optimisations presented herein are useful for both approaches
in code optimisations, be it at traditional levels of abstraction or at
the level of a DSL.

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 307

2.2. Application

The test vehicle for this study is the in-house CFD solver
AU3X [17,18]. AU3X uses a cell-centred finite volume approach
to solve the unsteady Favre-averaged Navier–Stokes equations on
unstructured meshes. Steady solutions are obtained by pseudo
time marching and time accurate solutions by dual time step-
ping [19]. The governing equations, spatial discretisation and time
integration schemes are briefly described in the following sections
in order to complement the implementation details and code op-
timisation study.

2.3. Governing equations

The Favre-averaged Navier–Stokes equations for compressible
flows in the differential form read:

∂ρ

∂t
+

∂(ρṽi)
∂xj

= 0

∂(ρṽi)
∂t

+
∂(ρṽiṽj)

∂xj
= −

∂p
∂xi

+
∂

∂xj
(τ̃ij + τ t

ij)

∂(ρẼ)
∂t

+
∂(ρṽjH̃)

∂xj
= −

∂

∂xj
(κ

∂ T̃
∂xj

+ ṽi(τ̃ij + τ t
ij)) (1)

where,

τ̃ij = 2µ(S̃ij −
1
3

∂ṽk

∂xk
δij), p = (γ − 1)ρ(Ẽ −

1
2
ũjũj),

κ
∂T
∂xj

=
γ

γ − 1
µ

Pr

∂

∂xj
(
p
ρ
),

(2)

The tilde ‘‘∼’’ and overbar ‘‘−’’ represent Favre averaging and
Reynolds averaging respectively. The working fluid is air and it is
treated as calorically perfect gas while γ and the Prandtl number
Pr are held constant at 1.4 and 0.72 respectively. µ is evaluated by
Sutherland’s law and is based on a reference viscosity of 1.7894 ×

10−5 kg
ms together with a reference temperature of 288.15 K and

Sutherland’s constant at 110 K. If the Boussinesq assumption holds,
the Reynolds stress τ t

ij can be written as a linear function of the
mean flow gradient:

τ t
ij = 2µt (S̃ij −

1
3

∂ṽk

∂xk
δij) (3)

Turbulent viscosity µt is computed by turbulence models. In this
paper, the Wilcox k − ω turbulence model is used and additional
equations are required for k andω. Readers can refer toWilcox [20]
for more details.

2.4. Spatial discretisation

The flow variables are stored at the cell centres and the bound-
ary conditions are applied at the ghost cells, the positions of which
are generated by mirroring the positions of the cells immediately
adjacent to the boundary. The inviscid and viscous fluxes are
evaluated at the cell-to-cell and boundary-to-cell interfaces. The
schematic of the finite volume scheme is shown in Fig. 1. Flow
gradient is computed at the cell centre using the weighted least
square procedure [21]. The matrix of the weighted least square
gradient is evaluated once at pre-processing for static grids and at
every nonlinear iteration for moving meshes.

The inviscid fluxes are computed by the upwind scheme using
the approximated Riemann solver of Roe [22]. Second order spatial
discretisation is obtained by extrapolating the values from the cell
centre to the interface via theMUSCL [23] with the van Albada lim-
iter [24]. The viscous fluxes at the interface are computed by using
the inverse of the distance weighting from the ones evaluated at
the cell centres on both sides of the interface while source terms
are evaluated at the cell centres and are assumed to be piecewise
constant in the cell.

Fig. 1. Schematic of the cell-centred finite volume scheme on unstructured grids.

2.5. Time integration

After inviscid, viscous fluxes and source terms are computed
for each cell, the coupled system in Eq. (1) can be described as the
following:

Ωi
dUi

dt
= −

N∑
j=1

Ri(Uj) (4)

where Ui are the conservative variables of cell i, namely
(ρ, ρṽi, ρẼ)T , Ωi the cell volume, Uj the conservative variables of
the neighbouring cells of Ui, N the number of neighbouring cells
and Ri the right hand side of cell i, which are the fluxes evaluated
at each cell. Here we assume no mesh motion and Ωi remains a
constant for each cell in the computation.

The system in Eq. (1) is solved implicitly by first applying the
backward Euler scheme:

Ωi
∆Ui

∆t
= −

N∑
j=1

Ri(Un+1
j) (5)

where n is the solution at the current level, n + 1 is the solution to
be solved in the next level and ∆Ui = Un+1

i − Un
i

Expanding Ri(Un+1
j) in Taylor series, Eq. (5) becomes:

Ωi
∆Ui

∆t
= −

N∑
j=1

Ri(Un
j) −

N∑
j=1

∂(Ri(Un
j))

∂Uj
∆Un

j (6)

where
∂(Ri(Un

j))

∂Uj
is the flux Jacobian. Eq. (6) can be re-arranged

and the flux Jacobian is approximated by its spectral radius. The
resulting linear system reads:

[Jni (
Ωi

Jni ∆t
+ 1)]∆Un

i = −

N∑
j=1

Ri(Un
j) (7)

Eq. (7) is the resulting linear system to march the solution
from time level n to n + 1, and it is solved by the Newton–Jacobi
method where Jni is the spectral radius of the flux Jacobian matrix
which is accumulated across the cell interfaces. Linearised fluxes
∂(Ri(Un

j))

∂Uj
∆Un

j are required to update the solutions at each Newton–
Jacobi iteration and they are evaluated exactly for the inviscid
and viscous fluxes. For the Wilcox k − ω turbulence models, an
approximation is used for linearising the governing equations for k
andω. The Newton–Jacobi is executed for user-specified iterations

308 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Fig. 2. Computational domain.

to march the solution from n to n + 1, the right and left hand
sides are then updated, and the Newton–Jacobi is invoked again.
This process proceeds until a user-specified convergence criterion
is met.

2.5.1. Test case
The numerical test case used for this optimisation study rep-

resents an aero-engine intake operating near ground. Validation
and numerical investigation using the AU3X code have been pre-
viously presented by Carnevale et al. [25,26] and utilised exper-
imental data provided by Murphy et al. [27]. The computational
domain based on an unstructured mesh can be seen in Fig. 2. Near
wall regions have been discretised with hexahedral elements for
boundary layer prediction whilst prismatic elements have been
used in the free stream domain. Furthermore, two mesh sizes
have been utilised throughout our work, namely mesh 1 which
contains 3.3× 106 elements and mesh 2with 6.3× 106 elements
respectively in order to discount any effects of the problem size in
the results.

2.5.2. Computational kernels
Face-based loops are characterised by a relatively high arith-

metic intensity as they involve a large number of floating point
operations per pair of adjacent cells. Furthermore, they contain a
mixture of irregular and regular access patterns for gathering and
scattering cell-centred variables and for evaluating face properties
such as area and normals. For example, the face-based kernel used
as an example in this study computes second order inviscid fluxes
and exhibits a 1.3 arithmetic intensity (flops per byte ratio). In
contrast, cell-based loops tend to perform a modest number of
calculations per memory load operation. This is evidenced by the
cell-based kernel used as an example in this studywhich computes
updates to state vectors and exhibits an arithmetic intensity of
0.18. Thus, we expect face-based loops to benefit the most from
optimisations that improve the throughput of floating point com-
putations such as vectorisation and to scale with the available
number of computational cores. For cell-based loops, we expect
them to scale with the available memory bandwidth although it
will be of interest to assess the impact that optimisations such as
vectorisation or data layout transformations have on their perfor-
mance and whether optimisations useful for face-based kernels
have any negative impact on the performance of cell-based loops
or vice-versa.

The optimisations presented in this paper have been imple-
mented across all other face-based and cell-based kernels in the
application. This is reflected in the results presenting full appli-
cation performance as time per solution update (Newton–Jacobi
iteration).

3. Experimental setup

We continue by describing the architectural features of the
processors used in this paper and give special consideration to
details that are relevant to the optimisation of unstructured mesh
computations.

3.1. Intel Xeon Sandy Bridge

The Sandy Bridge (SNB) microarchitecture was the first to in-
troduce 256-bit vector registers and an extension to the SIMD in-
struction set via Advanced Vector eXtensions (AVX) [28]. The AVX
instruction setmaintains compatibilitywith its predecessors and is
implemented on top of Streaming SIMD Extensions (SSE) by fusing
two 128-bit SSE registers. The latter design consideration has an
impact on certain operations that target data elements across 128-
bit lanes such as shuffles and permutations. In theory, the load
ports in Sandy Bridge can perform 256-bit loads via AVX, however,
achieving this bandwidth requires the simultaneous usage of the
two available load ports. This limitation leads to situations where
vectorisation might not deliver the expected performance boost
due to load port pressure [29]. In terms of the cache hierarchy, the
L1 is 32 KB and 8-way associative, L2 is 256 KB and L3 is 20MB and
shared across the cores on the die. Integration of all physical cores
on the chip is done via a ring-based interconnect [29].

3.2. Intel Xeon Broadwell

The Broadwell (BDW) microarchitecture is the successor to
Haswell to which it brings a number of enhancements such as
latency improvements for floating-point multiply operations and
throughput of gather instructions [29]. Compared to Sandy Bridge,
the largest differences were introduced in the Haswell microarchi-
tecture which came with a completely new core design, improved
execution unit and a revamped memory subsystem [29]. The exe-
cution unit was extended with the addition of two ports, one for
memory and one for integer operations which increases the scope
of instruction-level parallelismand alleviates port pressure. To that
end, Haswell, and Broadwell by extension, dedicate two execution
ports for performing Fused-Multiply-Add (FMA) SIMD operations
with a theoretical peak performance of sixteen double precision
operations per cycle. Furthermore, they also support operations
such as gather for loading non-contiguous elements into SIMD
registers. The latter is particularly relevant to our work since the
gather primitives in unstructured grid computations naturallymap
to such instruction extensions. These advancements in instruction

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 309

set capabilities are delivered in Haswell and Broadwell through
the AVX2 extensions. Furthermore, as opposed to Sandy Bridge,
both Haswell and Broadwell deliver true 256-bit load capability
due to improvements to the L1 cache which can service each
of the two load ports with a combined 64 bytes (2 × 256-bit)
of data and 32 bytes (256-bit) bandwidth for the store port per
cycle. For this reason, the Broadwell microarchitecture is more
likely to highlight the benefits of vectorisation and other memory
related optimisations since the pressure on the load ports will be
minimised.

3.3. Intel Xeon Skylake Server

The Skylake Server (SKX)microarchitecturewas released in July
2017 and is the successor to Broadwell [30]. At core level, Skylake
Server increases the vector register size to 512-bits and adds sup-
port for AVX-512 instructions. Although the execution unit has the
same number of ports as Broadwell, port zero and one can either
perform AVX/AVX2 vector computations on 256-bit lanes or fused
512-bit AVX-512 computations. Port five is exclusive to AVX-512
execution. Therefore, to take full advantage of this architecture,
vector computations should target the wider vector lanes via AVX-
512 as it utilises the highest available throughput. Skylake Server
can perform in theory thirty two double precision computations
per cycle when utilising both AVX-512 FMA units which is twice
more thanBroadwell. In terms of the cache subsystem, the L1 cache
on Skylake offers similar latency and size to Broadwell, 32KB at 4–6
cycles [29]. The major difference however is based on the increase
in bandwidth to 128 bytes (2 × 512-bits) for loads and 64 bytes
(512-bits) for stores which are required by AVX-512 operations. In
essence, the L1 cache can service up to two entire cache lines (64
bytes each) to the load ports if AVX-512 is used and the underlying
data is aligned to 64 byte boundary which make these considera-
tions crucial for achieving best performance. Radical changes are
also present in the L2 cache which sees a factor of four increase
in size compared to Broadwell (1 MB versus 256 KB) [29]. The
L3 cache is marginally smaller in size than on Broadwell and is
configured as a victim cache (non-inclusive) to the higher levels.
The effect of these changes means that applications making use of
communication avoiding algorithms such as loop tiling or cache
blocking should target the L2 cache rather than L3 with the same
considerations applying for prefetching. Access to main memory
can be serviced by up to six memory channels on Skylake Server
versus four on Broadwell which should provide a 50% increase
in available bandwidth as evidenced by our STREAM [31] results.
However, this also means that for memory bound applications,
the difference in performance between Broadwell and Skylake
should be approximately 50% and 2X if the application is compute
bound. Further changes are also present for the on-chip intercon-
nect topology where the previous ring implementation is replaced
with a 2D mesh interconnect which was initially implemented on
the Intel Xeon Phi Knights Landing [29]. This enables the Skylake
Server microarchitecture to scale to as many as 28 cores per die.

3.4. Intel Xeon Phi Knights Corner

The Intel Xeon Phi Knights Corner (KNC) coprocessor can be
classed as an x86-based Shared-Memory-Multiprocessor-on-a-
chip [32] with more than sixty physical cores on the die each
supporting four hardware threads. A KNC core contains one Vector
ProcessingUnit (VPU) that can operate on 32 512-bitwide registers
and 8 mask registers based on the Integrated Many Core Instruc-
tion Set (IMCI) extensions. The IMCI extensions however are not
compatible with other SSE/AVX/AVX2/AVX-512 implementations.
The functionality offered by the VPU is heavily geared towards
floating point computations with support for FMA, gather and

scatter operations useful for unstructured mesh computations.
Theoretically, the VPU can execute one FMA operation per cycle
(sixteen DP FLOPs) however, due to the in-order execution nature
of the core, either prefetching or more than one in-flight thread is
required to keep the VPU busy. This is due to the fact that every
missed load from the L1 cache leads to a pipeline stall unless
context can be switched to another in-flight thread. The cores
on the die are connected via a bi-directional ring interconnect
that offers full cache coherence. Communication with the host
CPU is performed via the PCI-Express bus in a similar fashion to
GPGPUs. Although KNC can execute in a number of modes such
as offload, symmetric or native, throughout our study we have
chosen the latter as it removes any unnecessary synchronisation
constructs and truly assess the computational characteristics and
performance of the platform.

3.5. Intel Xeon Phi Knights Landing

The Knights Landing (KNL) architecture is the successor of KNC
and second iteration of the Xeon Phi family series. The KNL is the
first self-bootmanycore processor able to run a standard operating
system [33] and therefore differentiates itself to all other copro-
cessor and accelerator platforms. The KNL architecture provides
binary compatibility with the Xeon multicore CPUs and an in-
tegrated high performance memory-on-package (MCDRAM) [34].
The basic building block of the KNL architecture is the tile which
is replicated across the entire chip on a 2D lattice interconnect.
A tile is further composed of two cores sharing a 1MB L2 cache
and associated memory control agents. The KNL core is based on
the Intel Atom (Silvermont) architecture and includes additional
features targeting floating pointworkloads and supports up to four
in-flight threads [33]. For the purpose of compute, the core inte-
grates two Vector Processing Units (VPUs) each supporting AVX-
512 execution. Implementation of SSE/AVX/AVX2 instructions [33]
is present on one of the two vector units and not on both. As such,
similar to SKX, full throughput can only be achieved by AVX-512
calculations as SSE/AVX/AVX2 can only utilise half of the available
vector units. Due to the out of order nature, one threadperKNL core
can saturate all available core resources. The L1 cache can perform
two 64 byte (2 × 512-bits) loads and one 64 byte (1 × 512-bits)
stores per cycle and supports unaligned and split loads accesses
across multiple cache lines which was not previously possible in
KNC. Furthermore, the L1 cache also implements special logic for
gather and scatter operations whereby a single instruction can
access multiple memory locations at once without the need of a
blocking loop implementation as found in KNC [35]. The L2 cache
is shared by the two cores in a tile via the Bus Interface Unit (BIU)
and has a bandwidth of 64 bytes (1 × 512-bits) for reads and 32
bytes (1 × 256-bits) for writes per cycle. This can therefore be-
come a bottleneck for memory bound workloads when both cores
issue AVX-512 vector loads and store operations. KNL can support
various clustering and memory mode configurations which were
traditionally hard-wired during the chip manufacturing process
but are now exposed as bootable options [33]. Clustering modes
target ways in which data is routed on the 2D mesh in the event
of a cache miss in L2 [34]. An L2 miss in KNL involves the interac-
tion of three actors: the tile from where the miss originated, the
Cache Homing Agent (CHA) that tracks the location and state of
that address and the actual memory location [33]. In the All-to-
All configuration, all memory addresses are distributed uniformly
across all CHA’s without any locality considerations. This mode
provides the lowest performance out of all available configurations
and is usually used as fall-back in the event of memory imbalance
or errors. In the Quadrant configuration, the entire die is divided
into four distinct regions and memory addresses are mapped to
the caching agents which reside in the same quadrant. This creates

310 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Table 1
Hardware and software configuration of compute nodes used in this paper. The SIMD ISA represents the latest vector
instruction set architecture supported by the platform.

SNB BDW SKX KNC KNL

Version E5-2650 E5-2680 Gold 6140 7120P 7210
Sockets 2 2 2 1 1
Cores 8 14 18 61 64
Threads 2 2 2 4 4
Clock (GHz) 2.0 2.4 2.3 1.2 1.3
SIMD ISA AVX AVX2 AVX-512 IMCI AVX-512
SIMD width 256-bit 256-bit 512-bit 512-bit 512-bit
L1 Cache (KB) 32 32 32 32 32
L2 Cache (KB) 256 256 1024 512 1024
L3 Cache (MB) 20 35 25 – –
DRAM (GB) 32 128 196 16 96/16
DRAM type DDR3 DDR4 DDR4 GDDR5 DDR4/MCDRAM
Stream (GB/s) 71 118 186 181 82/452
Compiler icpc 17.0
MPI Library Intel MPI 2017

affinity between the memory location and the CHA which reduces
latency and provides an increase in bandwidth. Finally, the Sub-
Numa-Clustering (SNC) mode can be configured as either a four
way or two way division of the chip analogous to a four or two
socket Xeon node where affinity exists between all agents: tile,
CHA and memory. This configuration introduces Non-Uniform-
Memory-Access (NUMA) considerations that have to be exploited
on the application-side as accessing data owned by a tile from a
different region will lead to increased latency due to the longer
path traversed on the 2Dmesh. However, if implemented correctly,
this mode of operation can provide the best performance as all
communications are localised. In regard to memory modes, the
KNL can support three distinct memory configurations. The first
option is Cache mode in which the 16 GB MCDRAM acts as a
transparent direct mapped memory side cache. In flat mode, the
MCDRAM is exposed as an explicit memory buffer that must be
managed by the application and which has a different address
space thanmain DDR. Hybrid mode combines both of the previous
options where MCDRAM can be used as cache and explicit high
bandwidth memory based on pre-defined ratios. For our study,
experimental results for the KNL processor were obtained using
the ARCHER-KNL [36] evaluation platform. All runs have been
performed in quadrant cluster mode as this was the global con-
figuration across all nodes. In regard to memory modes, separate
queues allowed for the evaluation of both cache and flat modes.

3.6. Hardware configuration and software environment

Table 1 presents the configuration of the computational nodes
used in this studywith respect to processor version, node architec-
ture and software environment.

4. Optimisations

This section gives an in-depth account of the various opti-
misations applied to face-based and cell-based kernels together
with a discussion on the particularities of their implementation
depending on the underlying hardware platform.

4.1. Grid renumbering

The first optimisation aims to improve the access pattern in
face-based loops by minimising the distance between memory
references when gathering and scattering data from and to pairs
of cells that share a face. In our work, we achieved this using
the Reverse Cuthill Mckee (RCMK) [5] sparse matrix bandwidth
minimiser. The RCMK algorithm reorders the non-zero elements of
the adjacency matrix derived from the underlying mesh topology

so as to cluster them as close as possible to the main diagonal [37].
An example of the resulting bandwidth reduction when applying
RCMK on the smallest mesh in our test case can be seen in Fig. 3.
Following the renumbering, we sort the faces with respect to the
first index which results in a list of cell numbers that increase
monotonically. A subsequent sort is performedon the second index
so that in groups of ordered faces where the first index is constant,
the second index reference will be traversed in ascending order.
The main benefits of these optimisations relate to improving both
spatial and temporal locality as the cells referenced by the first
index will be quasi contiguous in memory and therefore exploit
the available memory bandwidth. Reducing the distance between
the face end-points via RCMK leads to a better exploitation of the
caches through reuse and also minimises Translation Look-aside
Buffer (TLB) misses which are particularly expensive on many-
core architectures due to their more simple core implementation
which cannot handle a page walk efficiently. The final sort on the
second index further improves memory performance since hard-
ware prefetchers operate best on streams with ordered accesses
whether in a forward or backward direction.

The grid renumbering is performed immediately after solver
initialisation and across all MPI ranks. Each rank is in charge of
reordering its local cells afterwhich it traverses its local list of halos
and relabels them with their new values. Consequently, this has
a negligible effect on the overall application execution since the
mesh is reordered only once at start-up and scales linearly with
the available number of processors.

4.2. Vectorisation

The steady increase in vector register sizes and associated SIMD
instruction set capabilities as evidenced in Section 3 have made
vectorisation indispensable for extracting performance onmodern
hardware architectures. Although compilers have evolved over the
years and are generally more capable in automatically vectorising
computations, they can only do so when both safety and benefit
are guaranteed. Complex constructs such as face-based loops in-
hibit vectorisation opportunities due to the existence of indirect
accesses when scattering results back to the face end-points. Fur-
thermore, even for constructs with linear and contiguous access
patterns such as cell-based loops, compiler auto-vectorisation is
not guaranteed due to various reasons such as pointer aliasing,
inner function calls or conditional branching. In places where
auto-vectorisation fails, the programmer can vectorise the kernel
either via the utilisation of compiler directives, lower level intrin-
sics or in extreme cases, inline assembly. In this work, we have
predominantly used the compiler directive approach available in
OpenMP 4.0 [38]. The use of directives has been preferred over

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 311

Fig. 3. Sparse matrix bandwidth (β) reduction via Reverse Cuthill Mckee on mesh 1 (3 × 106 elements) with figure (a) highlighting initial bandwidth and (b) the result of
applying the renumbering.

other alternatives since they offer far greater flexibility and com-
patibility across SIMD architectures and compilers at a small cost
in performance compared to lower level implementations. For cell-
based loops, vectorisation was possible by the addition of omp
simd directives either at loop level or at function declaration. This
not only forces vectorisation but can also increase its efficiency by
informing the compiler of auxiliary data attributes such as array
alignment, variable scoping and vector lane length.

For face-based loops however, a rewrite is necessary in order
to switch to a vector programming paradigm. Listing 2 presents
the original implementation of the kernel computing the second
order convective fluxeswhile Listing 3 shows the improved vector-
friendly layout. In the vector-friendly implementation, the main
loop over the faces is divided into three distinct stages which
naturally map to the underlying gather–compute–scatter pattern.
In essence, each main loop iteration will process a number of
consecutive faces in parallel by exploiting the available vector
lanes as defined by theVECLENmacro. The first nested loop gathers
the cell data into local short vector arrays. Depending on the
underlying architecture, the compiler will either generate SIMD
gather instructions or serial load sequences if the architecture does
not support such operations. Once all data is loaded into short
vectors allocated on the stack, the second nested loop performs
the computation. Similarly to the previous stage, computations are
carried out in parallel on the available vector lanes. In AVX/AVX2,
four faces would be processed at the same time or eight for IMCI
and AVX-512 in double precision. Since all intermediate vector
data is allocated on the stack as static arrays of sizes known at
compile time as defined by the preprocessor macros, the compiler
can easily generate efficient vector code as all dependencies have
been eliminated. This includes loading contiguous data such as face
geometrical properties at aligned addresses as expressed through
the aligned clause in the directive. In finite volumeapplications, the
computation stage involves a large amount of operations per pair
of neighbouring cells making vectorisation mandatory for good
performance. The last stage involves scattering back the residuals
to the cells. This is done serially since generating vector code for
this section would lead to incorrect results due to data depen-
dencies as we process multiple successive faces in parallel. It is
important to mention that the extra nested loops within the new
implementation are unrolled automatically at compilation since
they decay into single or multiple SIMD instructions therefore re-
moving potential overheads as long as the iteration space (VECLEN)
is equal or a relatively small multiple of the underlying vector lane
width. The latter has been tested with VECLEN equal to twice or

Listing 2: Original implementation of face-based kernel computing
second order inviscid fluxes
1 double ql[MAXNPDE], qr[MAXNPDE];
2 double f[MAXNPDE], fl[MAXNPDE];
3 double fr[MAXNPDE], fa[MAXNPDE];
4
5 for(ic=ics;ic<ice;ic++)
6 {
7 for(ipde=0;ipde<npde;ipde++)
8 {
9 ql[ipde]= q[ipde][ifq[0][ic+iv]];

10 qr[ipde]= q[ipde][ifq[1][ic+iv]];
11 }
12 // Euler fluxes from the left -- truncated
13 fl[0]= ll1*rhol;
14 fl[1]= fl[0]*ql[0]+wc[0][ic]*ql[4];
15 fl[2]= fl[0]*ql[1]+wc[1][ic]*ql[4];
16 // Euler fluxes from the right -- truncated
17 fr[0]= lr1 *rhor;
18 fr[1]= fr[0]*qr[0]+wc[0][ic]*qr[4];
19 fr[2]= fr[0]*qr[1]+wc[1][ic]*qr[4];
20 // Roe fluxes -- truncated
21 fa[0]= dw1+dw3+dw4;
22 fa[1]= dw1*qa[0]+dw2[0]+dw3*(qa[0]+ana[0])+dw4*(qa[0]-ana[0]);
23 fa[2]= dw1*qa[1]+dw2[1]+dw3*(qa[1]+ana[1])+dw4*(qa[1]-ana[1]);
24 // assemble fluxes
25 for(ipde=0;ipde<npde;ipde++)
26 {
27 f[ipde]= 0.5*(fr[ipde]+fl[ipde]-fa[ipde])*wc[3][ic];
28 }
29 // accumulate
30 for(ipde=0;ipde<npde;ipde++)
31 {
32 rhs[ipde][ifq[0][ic+iv]]-= f[ipde];
33 rhs[ipde][ifq[1][ic+iv]]+= f[ipde];
34 }
35 }

three times the architecture vector length, an optimisation called
double or triple pumping. Promotion from scalar to short vectors
allocated on the stack is done only for variables that appear in at
least one of the three distinct stages (i.e. f representing the flux
residual, computed in stage two and written back in stage three)
or for variables that are used in conditionals in order to help the
compiler to generate correct masking operations. In addition to re-
writing all face-based kernels in the solver,we also aligned face and
cell data structures to 32 or 64 byte boundary depending on SIMD
architecture and padded the list of faces through the addition of
redundant entries until we reached a size that is multiple of VE-
CLEN. This removed the need for peel or remainder loops. Finally,
we also performed various arithmetic optimisations whereby we
replaced divisions with reciprocal multiplications where the divi-
sors were geometrical variables since SIMD division operations are
non-pipelined across the majority of architectures and suffer from
very high latencies.

312 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Listing 3: Vector friendly implementation of face-based kernel
computing second order inviscid fluxes.
1 double ql[MAXNPDE][VECLEN], qr[MAXNPDE][VECLEN];
2 double f[MAXNPDE][VECLEN], wn[4][VECLEN];
3 double fl[MAXNPDE], fr[MAXNPDE], fa[MAXNPDE];
4
5 for(ic=ics;ic<ice;ic+=VECLEN)
6 {
7 // 1. gather unknowns from cells
8 #pragma omp simd simdlen(VECLEN) safelen(VECLEN)
9 for(iv=0;iv<VECLEN;iv++)

10 {
11 for(ipde=0;ipde<npde;ipde++)
12 {
13 ql[ipde][iv]= q[ipde][ifq[0][ic+iv]];
14 qr[ipde][iv]= q[ipde][ifq[1][ic+iv]];
15 }
16 }
17 // 2. compute flux
18 #pragma omp simd simdlen(VECLEN) safelen(VECLEN)
19 for(iv=0;iv<VECLEN;iv++)
20 {
21 // fluxes from the left -- truncated
22 fl[0]= ll1*rhol;
23 fl[1]= fl[0]*ql[0][iv]+wn[0][iv]*ql[4][iv];
24 fl[2]= fl[0]*ql[1][iv]+wn[1][iv]*ql[4][iv];
25 // fluxes from the right -- truncated
26 fr[0]= lr1 *rhor;
27 fr[1]= fr[0]*qr[0][iv]+wn[0][iv]*qr[4][iv];
28 fr[2]= fr[0]*qr[1][iv]+wn[1][iv]*qr[4][iv];
29 // Roe fluxes -- truncated
30 fa[0]= dw1+dw3+dw4;
31 fa[1]= dw1*qa[0]+dw2[0]+dw3*(qa[0]+ana[0])+dw4*(qa[0]-ana[0]);
32 fa[2]= dw1*qa[1]+dw2[1]+dw3*(qa[1]+ana[1])+dw4*(qa[1]-ana[1]);
33 // assemble fluxes -- truncated
34 f[0][iv]= 0.5*(fr[0]+fl[0]-fa[0])*wn[3][iv];
35 f[1][iv]= 0.5*(fr[1]+fl[1]-fa[1])*wn[3][iv];
36 f[2][iv]= 0.5*(fr[2]+fl[2]-fa[2])*wn[3][iv];
37 }
38 // 3. accumulate and scatter to cells, serially
39 for(iv=0;iv<VECLEN;iv++)
40 {
41 for(ipde=0;ipde<npde;ipde++)
42 {
43 rhs[ipde][ifq[0][ic+iv]]-= f[ipde][iv];
44 rhs[ipde][ifq[1][ic+iv]]+= f[ipde][iv];
45 }
46 }
47 }

Listing 4: Preprocessing macros.
1 # define MAXNPDE 8
2
3 # if defined __MIC__
4 # define VECLEN 8
5 # define ALIGN 64
6 # elif defined __AVX512F__
7 # define VECLEN 8
8 # define ALIGN 64
9 # elif defined __AVX__

10 # define VECLEN 4
11 # define ALIGN 32
12 # elif defined __SSE3__
13 # define VECLEN 2
14 # define ALIGN 16
15 # endif

4.3. Face colouring

The data dependencies presentwhen scattering back to the face
end-points and which prevent vectorisation of scatters can be re-
moved by further colouring and reordering the list of faces. Löhner
et al. [39] presented two such algorithmswhichwere originally de-
veloped for the purpose of avoidingmemory contention but which
can be extended to serve an additional purpose, that of allowing for
the vectorisation of scatter primitives in unstructured field solvers.
The first algorithm applies a simple colouring approach whereby
it renumbers the list of faces such that groups of successive faces
of size equal to the requested vector size i.e. VECLEN, have no
dependencies at both cell end-points. The second algorithm builds
upon the first with the addition of performing the renumbering
while also attempting to reduce the distance in the second index.
In our experience, both algorithms exhibited approximately the
same performance characteristics after vectorisation even though

the second algorithm did reduce the spread in distances between
the second indices. It is important to note however that further
colouring and reordering leads to a small increase in distances
among first indices. Furthermore, these algorithms are unable to
guarantee a complete dependency free order therefore extra care
has to be taken for the last remaining set of faces which have to be
further coloured as convergence is not guaranteed. Nevertheless,
by applying the above algorithms in conjunction with the use of
an additional OpenMP 4.0 simd directive for the remaining scatter
loop, we were able to fully vectorise the entire gather, compute
and scatter work flow across all face-based loops and therefore the
entire application.

In terms of the computational cost of colouring and reordering
the faces, this is performed only once, at solver initialisation and in
a similar fashion to and after the grid renumbering. Consequently,
this has a minuscule impact on application performance.

4.4. Array of structures

Our original implementation used Structures of Arrays (SoA) to
store both face and cell data. For example, primitive variables (un-
knowns) were represented by a single structure holding pointers
to individual long vectors as seen in Fig. 4.

As we process through faces in consecutive order within face-
based loops, accessing face data such as normals, coordinates
and frame speed is done via contiguous vector load operations
which map effectively to the CPU vector registers. However, the
accesses for cell data are irregular since cells are traversed non-
consecutively. As a result, within each cell, variables have to
be gathered from their respective position in the corresponding
vector and into the vector registers. For SIMD architectures that do
not support vector gather operations, the compiler will generate
a large number of sequential loads in order to fill in the available
SIMD registers. Similarly, scattering values such as residuals back
to the corresponding cells translates into a very large number of
sequential stores if scatter vector instructions are not available.
On architectures with available gather and/or scatter support, the
number of issued instructions is reduced by a factor equal to the
underlying number of vector lanes. When compared to regular
SIMD load and store operations, gather and scatter primitives are
known to suffer from significantly higher latencies [29]. As a result,
we have modified the data structures storing cell data to an Array
of Structures (AoS) implementation whilst maintaining face data
as SoA. In the AoS layout, cell variables such as the unknowns are
grouped together in short arrayswithin a cell as seen in Fig. 5 rather
than being stored in separate vectors. We further pad each short
array to the underlying cache line size or the nearestmultiple of the
underlying SIMD register. Although AoS does not fully remove all
gather and scatter operations, irregular load and stores are only ex-
ecuted once for each cell vector as subsequent successive elements
are loaded automatically at cache line granularity. This improves
locality and minimises cache misses although quantities still need
to be transposed into their respective vector lane positions.

The transition from SoA to AoS was by no means a trivial en-
deavour as it required significant changes to the message passing
interface, array access semantics and switching the order of all
nested loop constructs that manipulated cell centred data. We
therefore recommend that abstraction is implementedwith regard
to the layout in memory of such data structures so that a switch
between different implementations can be performed at compile
time which would be a useful design trait. This is important when
considering that for structured codes, SoA or a hybrid of, is the
best implementation [40] since cells are traversed consecutively
following an i,j,k indexing systemwhich therefore allows for vector
load and store operations. Finally, in regard to unstructured grid
applications, modifying cell data to the AoS layout has an impact

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 313

Fig. 4. Structures of Array (SoA) layout in memory of primitive variables (unknowns).

Fig. 5. Array of Structures (AoS) layout in memory of primitive variables (unknowns) with extra padding represented by blank cell.

on cell-based kernels. Whereas previously with SoA, these kernels
could exploit SIMD contiguous load store operations since cells
were traversed in successive order, switching to AoS means that
variableswithin a cell have to be loaded in vector registers and sub-
sequently transposed into the SoA formatwhich adds extra latency
and decreases performance. It is therefore important to empirically
evaluate the impact of this optimisation as performance will be
lost in the cell-based loops although improvements are expected
for the face-based constructs which are the main bottleneck in the
application.

4.5. Gather and scatter optimisations

The AoS memory layout for cell data requires that gathers, aris-
ing from indirect addressing, are only executed once per structure
and not for every element as it is the case with SoA. However,
successive elements in AoS although contiguous, need to be trans-
posed into the correct vector register and lane positions. Some
compilers will recognise the access pattern and aim to generate
sequences of transpose operations although the programmer’s do-
main knowledge can improve on this significantly. Let us consider
the primitive variables in AoS layout with padding in the last
position at a given cell index i. Depending on the underlying SIMD
architecture (i.e. 256-bit or 512-bit wide register), we can load all
eight double precision values of the structure with either one or
two aligned vector loads for each cell end-point. As vectorisation
is applied across consecutive faces, the primitive variables of all
gathered pairs of cells need to be re-arranged on the fly and packed
into a SoA format. This process is highlighted more clearly in
Fig. 6. In our work, we implement these transpose primitives using
compiler intrinsics and target each individual SIMD architecture
by using instructions that exhibit the lowest latency and highest
degree of instruction parallelism. This is relevant since the SIMD
implementations across the studied hardware platforms differ sig-
nificantly and a generic solution would leave performance on the
table. For example, the Knights Corner architecture provides swiz-
zle operationswhich can performon the fly datamultiplexing prior
to execution from the register. Consequently, some permutations
and shuffles can be done with ‘‘zero’’ penalty whereas on all other
architectures, these will be forwarded to an execution port (port 5
on multicores) which can create a bottleneck. Similarly, scatters
for writing back residuals at each pair of cells are implemented
by transposing back from SoA to AoS and utilising aligned vector
stores which is possible since faces have been coloured. Similar
work to the above has been presented by Pennycook et al. [35]
for optimising the gather/scatter patterns in molecular dynamics
applications although our solution extends this to cover additional
AVX-512 SIMD architectures and applies them to an unstructured
computational fluid dynamics application.

4.6. Array of structures structure of arrays

While the SoA format is ideal for mapping face data to SIMD
registers, it requires that multiple memory streams are serviced

in parallel for each vector of variables. Since prefetchers can only
operate on a limited number of streams, maintaining a large
number of them in flight wastes memory bandwidth and other
valuable resources. Consequently, we replace the SoA layout with
the hybrid Array of Structures Structure of Arrays (AoSSoA) format.
Essentially, face attributes such as normals and coordinates are
clubbed together in short vectors equal to the underlying vector
register size or a multiple of it. As an example, let us consider the
normals to the face in three dimensions: x, y, z on AVX/AVX2 with
256-bit wide registers. The hybrid AoSSoA implementation would
map these to the layout see in Fig. 7. This increases locality since
variables are stored at a close stride inmemory andwhereas before
we required three independent streams to load normals in each
dimension, the new layout merges this into a single stream whilst
still allowing for aligned vector load and store operations.

4.7. Software prefetching

In structured codes with contiguous and regular access pat-
terns, memory parallelism is exploited by the hardware trans-
parently via the available hardware prefetchers across different
cache levels. In unstructured codes, the irregular and indirect ac-
cess patterns make prefetching more difficult to accomplish. In
most cases, hardware prefetchers are unable to anticipate which
data is needed in the upcoming iterations for face/edge-based
loops due to the non-consecutive traversal of the cell/node end-
points. This limitation can be overcome using the programmer’s
domain knowledge since the order in which cells are traversed
is known at run-time and can be deduced from the associated
connectivity arrays. In this study, we have inserted prefetching
hints via compiler intrinsics for prefetching data either in L1, L2
or both cache levels depending on architecture and at an auto-
tuned distance. The compiler hintswere placed in the same kernels
as the optimised intrinsics gather functions so that before we
gather and transpose data for the cells of successive faces, we
already issue prefetches for the next set of cell data a few iterations
ahead. In this way, all platform specific routines can be bundled
together in specific header files and abstracted away from themain
application code. The prefetch distance parameter is important for
obtaining any palpable performance improvement. If it is too small,
the data will be brought into the higher level caches after it is
required leading to unnecessarymemory traffic. On the other hand,
if this is too large, it will dislodge useful data therefore leading to
cache evictions and subsequent misses. There have been a large
amount of studies pertaining to the selection of an optimal prefetch
distance such as the one conducted by Mowry et al. [41] or more
recently, by Lee et al. [42]. In this work however, we have based
our prefetching strategy on the work of Ainsworth et al. [43]. Their
work demonstrated that when inserting software prefetches for
indirect memory addressing, one has to not only prefetch the data
of interest but also the index used to reference it. Furthermore,
they have demonstrated that the distance of prefetches for the
index values should be twice that of the referenceddata since cache

314 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Fig. 6. On the fly in-register conversion from AoS to SoA of unknowns at a given cell and including padding on AVX/AVX2 256-bit SIMD registers. Variables in each short
array are loaded using aligned vector load/store operations in registers and then transposed via shuffles and cross-lane permutations.

Fig. 7. Array of Structures Structure of Arrays (AoSSoA) layout in memory of three dimensional coordinates of normals to the interfaces.

misses in loading the values for the reference array can offset any
potential improvements from prefetching the actual data. Building
upon these observations, we have created an auto-tuning script
with the help of one of the authors in [43] whereby we telescoped
through various ranges of both index prefetch and data prefetch
distances whilst maintaining this ratio. The above is mainly ap-
plicable to software prefetching for exploiting the indirect access
patterns in face-wise kernels. In regard to cell/vertex-based loops,
the hardware prefetchers of all but theKNC architecture performed
well and software prefetching saw little benefit. Finally, if software
prefetching is implemented explicitly as described above, compiler
prefetching should be switched off in order to avoid for competing
prefetch instructions to be issuedwhich can degrade performance.

4.8. Multi-threading

Thread-level parallelism has been exploited in our application
via the utilisation of OpenMP directives and specifically targets
the Xeon Phi manycore architectures. For the multicore CPUs,
multi-threading in conjunction with MPI did not bring forth any
performance improvement and was therefore abandoned. How-
ever, on the Intel Xeon Phi architecture, running more than one
thread context per physical core is highly encouraged especially for
KNC where it can hide memory latencies due to the in-order core
execution engine. Although exposing parallelism in loops over the
degrees of freedom is trivial, exposing thread parallelism in face
loops is more challenging and requires colour concurrency. There
are a number of approaches which can be utilised with respect
to the latter [44]. In this work, we used the available colouring
algorithms to reorder the list of faces such that the number of de-
pendency free faces is not only a multiple of the underlying vector
register size but can also be divided so that each active thread per
core can process an equal amount of vector iterations. We then
schedule the iteration space as static at a chunk equal to one vector
iterationwhereby each thread executes vector iterations in a round
robin fashion. The main rationale behind this approach is that it
guarantees correctness and integrateswell withMPIwhereby each
rank is pinned to a physical corewith subsequent threads spawned
within the same core domain. This maintains data locality and
affinity to the underlying cache hierarchy, reduces traffic caused
from the protocols in charge of cache coherence and mitigates
against the risk of false sharing. Most importantly, this approach
hides latency best especially for KNC since it guarantees that each

threadwill access different cell data due to the colouring and every
miss and stall in L1 can be circumvented by switching between
active threads that have data available.

5. Results and discussions

5.1. Effects of optimisations

Figs. 8–10 present the impact that each optimisation has on
the performance of both classes of computational kernels and
overall solver across every processor architecture. The resultswere
obtained by executing the application on one MPI rank in order
to discount any effects of the message passing implementation.
The KNL results presented in this section were obtained with the
MCDRAM configured as cache. We discuss these in more detail in
the following sections.

5.1.1. Grid renumbering
Renumbering the grid via the Reverse Cuthill Mckee algorithm

led to minor improvements in performance for the face-based
kernel (flux computations) when compared directly to the base-
line implementation. However, when we account for all other
optimisations, the difference in performance between face-based
kernels with and without grid renumbering grows to as much
as 40%. This is due to the fact that once we efficiently vectorise
these types of kernels, their performance is bound by the memory
bandwidth. As such, performing grid renumbering in unstructured
grid applications is mandatory for improving the performance of
face-based or edge-based kernels especially when they are already
tuned for exploiting the arithmetic units.

5.1.2. Vectorisation
Vectorisation sees the largest increases in performance across

all architectures and computational patterns. For the face-based
kernel, we obtain improvements between 2-5X on the multicore
CPUs and 2-3X on the KNC and KNL processors. For cell-based
kernels, vectorisation also provided the highest performance im-
pact compared to all other optimisations. Furthermore, all of these
translate to an overall application speed-up between 2-3X relative
to the original baseline.

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 315

Fig. 8. Effects of optimisations on the performance of face-based kernels (second order inviscid flux computations) measured as GFLOPS and Speed-up relative to the
reference version. Results are averaged across mesh 1 and mesh 2 and obtained by running the application on 1 MPI rank (serially). Results for all are based on running
the application with both software prefetching enabled and utilising all of the 4 available hyperthreads in the KNC 7120P core.

5.1.3. Face colouring
The colouring of faces for enabling vectorised scatters to the

face end-points does not yield any benefits on the multicore CPUs
where it is in fact detrimental to performance. In contrast, this
is beneficial on the manycore processors and leads to marginal
speed-ups although not higher than 10%. This difference might
stem from the fact that non-vectorised serial stores are signifi-
cantly slower on the manycore processors than the SIMD scatter
instruction. On the multicore CPUs, the Sandy Bridge and Broad-
well architectures implement AVX/AVX2 which do not provide
vector scatter functionality. Scatters are performed as a series of
vector inserts and stores that have a higher cumulative latency
than their serial store counterpart. On Skylake, the AVX-512F
implementation does provide support for vector scatters but we
attribute the small decrease in performance to the increase in the
distance across the first and second index due to reordering which
leads to an increase in cache misses since the distance among each
cell index has to be higher than eight which is also equal to the

number of variables that can be stored in a 64-byte cache line.
Nevertheless, colouring is important further down the line oncewe
implement additional optimisations since it exposes parallelism in
writing back values across all face-based kernels and allows for the
introduction of multi-threading.

5.1.4. Array of structures
The conversion of cell centred data structures from SoA to AoS

has a positive impact on the performance of face-based loops on
the multicore CPUs where we obtain as much as 25% speed-up
on top of previous optimisations. On KNL, the AoS layout sees
significant speed-ups of as much as 50% for the face-based kernel.
This is opposite to KNC where we see no improvement. Further-
more, modifying the layout in memory of cell-centred data struc-
tures has a negative effect in cell-based loops. This is important
when bearing in mind that the overall application performance
decreases afterwe convert cell-centred data structures fromSoA to
AoS. However, as with colouring, this optimisation is required for

316 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Fig. 9. Effects of optimisations on the performance of cell-based kernels (linearised update to primitive variables)measured as GFLOPS and Speed-up relative to the reference
version. Results are averaged across mesh 1 and mesh 2 and obtained by running the application on 1MPI rank (serially). Results for all are based on running the application
with both software prefetching enabled and utilising all of the 4 available hyperthreads in the KNC 7120P core.

further optimisations which will exploit the additional data local-
ity available within each vector of cell-centred variables.

5.1.5. Gather and scatter
The on the fly transposition from AoS to SoA using specialised

intrinsics-based functions improves performance across all archi-
tectures. The impact is significantly higher on processors with
wider vector registers such as SKX, KNC and KNL. This is due to
the fact that consecutive variables are gathered via a single aligned
vector load and subsequently transposed and arranged into the
correct lane via architectural specific permute instructions and
the fact that the number of SIMD instructions required for the
transposition scales logarithmically compared to the serial imple-
mentation. It is worth mentioning that on KNL and Skylake with
AVX-512F, our tests have shown that permute instructions using
a single source operand (vpermpd) perform better compared to
the newly available two source operand instructions (vpermt2pd)
since they exhibit superior throughput. On SNB and BDW with

AVX/AVX2, the best version is the one based on a combination
of interleave operations (vunpckhpd/vunpacklpd) and 128-bit
wide permutations (vperm2f128) even when we compare it with
other implementations that performed the first step of the shuffle
on the load ports with the utilisation of the vinsertf instruction
on a memory operand. This would indicate that the bottleneck on
these architectures is not port 5 pressurewhere all of the interleave
and shuffle operations are executed. In cell-wise loops, performing
the conversion from AoS to SoA and back on the fly via compiler
intrinsics sees a moderate improvement in performance for our
candidate kernel and in some cases, it offsets the performance
dropped from switching to AoS from SoA in the first place. More
importantly, the implementation of these highly tuned primitives
leads to whole application speed-up on all processors between a
few percentages on the multicore CPUs where it amends for the
loss in performance due to the switch to AoS in cell-based loops
and to as much as 50% on the Xeon Phi processors on the previous
optimisations.

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 317

Fig. 10. Effects of optimisations on the whole solver measured as average time per Newton–Jacobi iteration and Speed-up relative to the reference version and averaged
across mesh 1 and mesh 2. Results for all are based on running the application with both software prefetching enabled and utilising all of the 4 available hyperthreads in
the KNC 7120P core.

5.1.6. Array of structures structure of arrays
The conversion of face data structures to the hybrid AoSSoA

layout concerns only face-based loops and yields minor improve-
ments. However, these are not significant enough to warrant its
usefulness as it did not generate any substantial speed-ups on any
architectures and as such, the effort of implementing such hybrid
memory layout within a code of representative size might not be
warranted.

5.1.7. Software prefetching
Software prefetching exhibits substantial speed-ups on the KNC

due to the out of order core design and on the SKX and KNL archi-
tecture due to the larger L2 cache. On KNC, the best performing
strategy was to issue prefetch instructions at a distance of 32 and
64 for the indices in L1 and L2 respectively and half of that for the
actual data as aforementioned in the methodology. For KNL and

SKX, the best strategy was to only issue prefetch instructions for
the L2 cache at a distance of 32 for the index and therefore 16 for
the data as any prefetch instructions for L1were in fact detrimental
to performance. We suspect this is due to the small size of the
L1 cache (32 KB) which remained unchanged from SNB and BDW
while the L2 was increased by a factor of four. Furthermore, in
the case of KNL, this approach bears fruit since the L1 prefetcher
can operate on irregular streams however the L2 is not hence why
issuing prefetch instructions for L2 in software is advisable. On
SNB and BDW, the advantage of software prefetching is minimal
and virtually non existent. We believe this is due to the smaller L2
caches on these architectures as face-based loops tend to exhibit
a large amount of work per iteration and access a large number of
data structures from memory. As such, we are probably running
out of space in the caches and the prefetch instructions actually
replace useful cache lines. In our cell-based loop example, software

318 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Fig. 11. Performance strong scaling of the face-based kernel (flux computations) averaged across mesh 1 and mesh 2 except for the KNC 7120P where results are only
presented for mesh 1.

prefetches have no effect on SNB and BDW but provide benefits
on SKX, KNC and KNL, similar to face-based loops. This is not
surprising for KNC where the lack of an L1 hardware prefetcher
mandates the utilisation of prefetch instructions either in software
or through the compiler even for regular unit stride access patterns
however, it was unexpected for the other two architectures. The
prefetch distances for cell-based kernels with linear unit stride
loads have been selected via auto-tuning as well. For L1, the best
linear prefetch distance was deemed to be 32 and 64 for the L2
cache respectively across KNC, KNL and SKX.

5.1.8. Multi-threading
Multithreading viaOpenMPonKnights Corner yields significant

speedups with performance increasing almost linearly with the
number of threads. The reason for this lies again in the in-order
nature of the KNC core where a missed load in the L1 cache leads
to a complete pipeline stall. Having more than one thread in flight

can help minimise memory latency as context can be switched to
a thread for which data is available. Since both software prefetch-
ing and threading on KNC have the same purpose, in the KNC
results, the runs with 2, 3, 4 threads per MPI rank and physical
core have been done with software prefetching disabled while
for the software prefetching × 4 threads analysis, both software
prefetching and four active threadswere utilised perMPI rank. The
results indicate that best performance on KNC is obtained when
both threading and prefetching are enabled however, if required
to choose between the two, careful prefetching based on an auto-
tuning approach such as ours yields better performance than just
multithreading. This is an important aspect to take into account
since the implementation of software prefetching is more trivial
in nature and less error prone than exposing another level of par-
allelism in the application for multithreading within an MPI rank.
Surprisingly, on KNL, multithreading was actually detrimental to
performance. We believe this to be due to the fact that the core

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 319

Fig. 12. Performance strong scaling of the cell-based kernel (variable update) averaged across mesh 1 and mesh 2 except for the KNC 7120Pwhere results are only presented
for mesh 1.

architecture of KNL is out of order and therefore capable of utilising
all core resources with a single thread per core. Runningmore than
one thread per core on KNL leads to available core resources being
divided among the in-flight threads. We obtain similar results
when running with 3 and 4 threads per core due to the fact that
resources are divided in the same manner for both configurations.

For cell-based kernels, 2, 3 and 4 threads per core improves
performance significantly on KNC although, similar to the face-
based kernels, it degrades it on KNL. The above also holds true for
the overall execution time of the solver.

5.2. Performance scaling across a node

We present performance scaling across the compute nodes for
each computational kernel and thewhole solver. For themulticore-
based two-socket compute nodes, we compare baseline imple-
mentation across bothmesh sizes with the best optimised version.

On the KNC co-processor, we perform strong scaling studies of
three different versions besides the baseline in order to study
how they scale across the entire device. These are the optimised
version with software prefetching enabled and no multithreading,
optimised version with four threads per MPI rank and no soft-
ware prefetching and lastly, optimised version with both software
prefetching and four threads per rank. On KNL, we study the dif-
ference in performance between baseline and optimised versions
with the additional exploration of the memory configurations that
are available on this architecture. In cache mode (cache), the
MCDRAM is configured as a direct mapped cache and acts as a
memory side buffer transparent to the user. In flat mode (mcdram),
all memory allocations are performed explicitly in MCDRAM using
the numactl utility. For the larger mesh 2, approximately 10%
of the allocations were re-routed to DDR memory after utilising
all of the available 16 GB in MCDRAM. In DDR mode (ddr), the
allocation of memory has been done only in DDR memory and

320 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

Table 2
Comparison between time to solution update measured in seconds of baseline and best optimised implementation on
multicore CPUs.

MPI ranks mesh 1 mesh 2

reference optimised speed-up reference optimised speed-up

SNB E5-2650

1 83.0 29.0 2.8 184.0 61.0 3.0
2 42.0 15.3 2.7 86.8 29.7 2.9
4 23.0 8.9 2.5 44.7 15.1 2.9
8 13.6 5.8 2.3 24.7 9.0 2.7
10 10.7 4.5 2.3 19.5 7.5 2.6
12 9.4 3.7 2.5 18.3 7.2 2.6
16 7.4 2.8 2.6 14.4 5.5 2.6

BDW E5-2680

1 46.5 16.8 2.7 91.0 35.7 2.5
2 24.9 9.1 2.7 47.4 20.2 2.3
4 14.6 5.5 2.6 26.5 11.2 2.3
8 8.4 3.8 2.2 16.1 7.4 2.1
14 6.4 3.0 2.1 10.4 5.9 1.7
16 5.8 2.5 2.3 9.1 5.2 1.7
18 5.3 2.4 2.2 8.8 4.6 1.9
22 4.6 1.9 2.4 7.9 3.8 2.0
28 3.8 1.4 2.7 7.6 2.8 2.7

SKX Gold 6140

1 47.8 15.5 3.0 91.3 32.1 2.8
2 25.5 8.0 3.1 49.9 16.4 3.0
4 13.4 4.5 2.9 28.1 8.8 3.1
8 7.4 2.9 2.5 15.5 5.5 2.8
14 5.1 2.2 2.3 10.7 4.2 2.5
18 4.7 2.1 2.2 9.0 3.7 2.4
22 3.9 1.6 2.4 7.8 3.1 2.4
24 3.8 1.5 2.5 7.2 2.8 2.5
26 3.5 1.4 2.5 6.6 2.6 2.5
32 2.9 1.2 2.4 6.0 2.2 2.7
36 2.8 1.0 2.8 5.3 1.9 2.7

MCDRAM has not been utilised at all. The last option was a hybrid
evaluation (interleaved) where we allocated the storage of cell-
centred data structures in MCDRAMwhilst face data was allocated
in DDR together with MPI buffers in order to interleave access and
therefore exploit the bandwidth of bothmemory systems. This has
been implemented in the code using the libmemkind interface.

5.2.1. Face-based loops
Fig. 11 presents strong scaling results of the face-based kernel

(flux computations) over the compute nodes.
On the multicore CPUs, the difference between baseline and

optimised versions remains approximately unchanged from the
single core runs as we scale across the entire node. More specif-
ically, at full concurrency, the optimised face-based kernel is 3X
faster on Sandy Bridge (16 cores), 2.7X on Broadwell (28 cores) and
3.9X on Skylake (36 cores).

We observe the same characteristics on the manycore proces-
sors where at full concurrency, the difference between baseline
and best optimised version for the face-based kernel range is 16.3X
on Knights Corner (60 cores × 4 threads) and 11.4X on Knights
Landing (64 cores). Since face-based loops involve a relatively large
number of floating point operations per pair of evaluated cells,
these kernels tend to exhibit significant speed-ups due to our
optimisations and scale almost linearly with the number of cores.

On KNC, for the flux computation kernel, the best version as we
scale across all physical cores is the one with software prefetching
and 4 threads per core. This is followed by the version with no
software prefetching and threading while software prefetching
only is last by a significant margin.

In regard to the various memory modes available on KNL, we
can observe that if we do not exploit the MCDRAM either as a
cache or explicitly as a memory side buffer, running out of only
DDR is as much as 3X worse than the other versions as we scale

past 16 physical cores. This is to be expected since the difference
in bandwidth between MCDRAM and DDR is more than a factor of
four asmeasuredwith STREAM. The best performing version is our
interleaved implementation where we utilise MCDRAM and DDR
together allocating specific data structures across both.

5.2.2. Cell-based loops
For our cell-based kernel (Fig. 12), we observe how the baseline

implementation slightly outperforms our optimised version on
SKX and BDW aswe strong scale across the node.We attribute this
to the extra latency incurred by the transposition from AoS to SoA.
The optimised implementation outperforms the baseline on Sandy
Bridge and the Xeon Phi processors since serial instructions are sig-
nificantly slower on the manycore architectures than their vector
counterparts and the Sandy Bridge architecture has fewer cores
per node and can therefore perform more work per rank to hide
the effects of the transpositions. As cell-based kernels are memory
bound with low flop per byte ratios, they tend to scale with the
available memory bandwidth and as such, optimisations focused
on improving floating-point performance such as vectorisation fail
to give any benefit as we increase the number of cores and saturate
all memory channels. We can certainly observe the negative effect
that switching from SoA to AoS had on these kernels due to the
overhead transpositions which become a bottleneck on the newer
multicores.

On KNC, as with the face-based kernels, the best version by a
large margin was the one running with 4 threads per MPI rank and
software prefetching. On KNL, we can see howDDR scales better in
cell-based kernels compared to face-based loops due to the regular
unit stride access pattern however, it is almost 3X worse than the
other alternatives.

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 321

Table 3
Comparison between time to solution update measured in seconds of baseline and optimised versions with 4 threads
and no software prefetching, software prefetching and no threading and both software prefetching and 4 threads on
the Intel Xeon Phi Knights Corner coprocessor. The speed-up is calculated based on baseline results and the timings of
the best optimisation (optimised prefetch x 4 threads). On this architecture, we could only perform experimental
runs on mesh 1 at full concurrency due to the 16 GB memory limit.

MPI ranks mesh 1

reference optimised
× 4 threads

optimised
prefetch

optimised
prefetch × 4 threads

speed-up

KNC 7120P

1 1349.0 193.6 183.4 149.1 9.0
2 703.0 111.9 89.7 78.9 8.9
4 385.8 56.7 48.2 40.8 9.4
8 192.9 34.4 28.5 25.1 7.6
16 110.1 17.5 14.3 13.6 8.0
32 62.5 10.0 8.4 7.9 7.9
60 43.8 6.0 5.0 5.0 8.7

Table 4
Comparison between time to solution update measured in seconds of baseline and best optimised implementation on
the Intel Xeon Phi Knights Landing 7210 processor and across different memory modes.

MPI ranks mesh 1 mesh 2

reference optimised speed-up reference optimised speed-up

KNL 7210 Cache

1 205.0 33.7 6.0 411.0 71.1 5.7
2 116.0 17.8 6.5 238.4 37.8 6.3
4 57.1 9.4 6.0 120.4 19.3 6.2
8 29.0 5.3 5.4 63.3 10.0 6.3
16 16.2 2.8 5.7 32.1 5.3 6.0
32 9.1 1.6 5.6 18.23 3.1 5.8
64 5.9 1.0 5.9 10.5 2.0 5.2

KNL 7210 MCDRAM

1 204.5 33.2 6.1 405.1 69.1 5.8
2 115.0 17.8 6.4 230.9 37.4 6.1
4 57.3 9.4 6.0 119.4 18.9 6.3
8 28.9 5.3 5.4 61.6 9.8 6.2
16 16.0 2.8 5.7 31.2 5.3 5.8
32 8.9 1.6 5.5 17.9 3.0 5.9
64 5.7 1.0 5.7 10.3 1.9 5.4

KNL 7210 DDR

1 190.7 31.9 5.9 377.1 66.2 5.6
2 106.8 17.1 6.2 213.6 35.9 5.9
4 53.1 9.1 5.8 111.2 18.3 6.0
8 27.1 5.2 5.2 57.3 9.7 5.9
16 15.4 3.0 5.1 29.6 5.7 5.1
32 9.2 2.6 3.5 18.1 4.9 3.6
64 7.6 2.6 2.9 13.6 4.9 2.7

KNL 7210 DDR+MCDRAM

1 – 30.2 – – 62.5 –
2 – 17.5 – – 36.4 –
4 – 9.1 – – 18.7 –
8 – 5.3 – – 9.6 –
16 – 2.8 – – 5.1 –
32 – 1.6 – – 3.0 –
64 – 0.9 – – 1.8 –

5.2.3. Full application
Results for whole application strong scaling can be seen in

Tables 2–4. At full concurrency and on both mesh sizes, our best
optimised version is between 2.8 and 3X faster on the multicore
CPUs, 8.6X on KNC and 5.6X on the best performing configuration
of KNL in quadrant and flat modewithMCDRAM and DDR accesses
interleaved. As expected, running only with DDR is 2.5X slower
than the other modes that involve the utilisation of MCDRAM. Our
approach of utilising bothmemories explicitly is the fastest version
although by a very small percentage. On KNC, in terms of time per
solution update, runningwith 4 threads perMPI rank and software
prefetching or only performing software prefetching exhibit the

same performance as we scale across the whole coprocessor and
saturate the available memory.

6. Conclusions

We have presented a number of optimisations useful for im-
proving the performance of unstructured finite volume CFD codes
on a range of multicore and manycore architectures that form
the backbone of current and likely future HPC systems. We have
discussed their implementation in two distinct classes of compu-
tational kernels which form the foundation of unstructured finite
volume CFD codes: face-based and cell-based loops and measured

322 I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323

their impact on the performance of the whole application across
every architecture. The importance of making efficient use of the
available vector units in both types of computational kernels has
been presented and the optimisations required to vectorise face-
based kernels despite their underlying indirect and irregular access
patterns.We have demonstrated the advantage of the AoSmemory
layout for cell-centred variables in kernels with indirect and irreg-
ular access patterns due to their more efficient utilisation of the
cache hierarchy and presented hand tuned architectural specific
compiler intrinsics for performing in-register AoS to SoA transpo-
sitions in order to allow for increased performance of gather and
scatter operations.We have discussed the utility of auto-tuning for
finding parameters such as prefetch distances across all processors
and the large impact these can have on performance. Moreover,
we have demonstrated that software prefetching is highly recom-
mended on architectures with large L2 caches and on the Knights
Corner co-processor due to the in-order core design. We have
also established and confirmed the previous work of Ainsworth
et al. [43] that issuing prefetch instructions for the indices at twice
the distance of the data while finding the former through an auto-
tuner is a very good recipe for best performance across a wide
range of processors.

With regard to the configurable memory modes available on
the Intel Xeon Phi Knights Landing processor, we have studied
their performance and have introduced a third option in which
we utilise bothMCDRAM and DDR4 interfaces simultaneously. The
main take away point is that the exploitation ofMCDRAM,whether
transparently in cache mode or explicitly via libraries or utilities
such as numactl, is imperative for best performance on architec-
tures that integrate such high-bandwidth memory packages.

Although using multiple threads per MPI rank leads to very
good performance on the Knights Corner architecture, the opposite
is true on the Knights Landing processor due to the improvements
to the core design and out of order execution capabilities.

Finally, our optimisations efforts led to full application speed-
ups between 2.8 and 3X on the multicore CPUs and 5-8X on the
manycore Xeon Phi processors at double precision and across two
different mesh sizes.

Acknowledgements

This work has been supported by the Engineering and Physical
Sciences Research Council (EPSRC) and Rolls-Royce plc through
the Industrial CASE Award 13220161. The authors are particularly
indebted to Timothy Jones at the University of Cambridge for
discussions and help with software prefetching, David Power and
Konstantinos Mouzakitis at Boston Limited for access to Broad-
well and Knights Corner nodes, Dheevatsa Mudigere and Michael
Klemm of Intel Corporation for discussions and advice on the
Skylake and Knights Landing architectures and to Adrian Jackson
at the University of Edinburgh and Harvey Richardson of Cray Inc
for access and helpwith the ARCHERKnights Landing development
system.

References

[1] M.B. Giles, I. Reguly, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
372 (2022) (2014). http://dx.doi.org/10.1098/rsta.2013.0319.

[2] W.K. Anderson, W.D. Gropp, D.K. Kaushik, D.E. Keyes, B.F. Smith, Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing, SC ’99, ACM, New York,
NY, USA, 1999. http://dx.doi.org/10.1145/331532.331600.

[3] FUN3D, 2017. https://fun3d.larc.nasa.gov/. (Accessed 31 August 2017).
[4] ACMGordon Bell Prize, 2017. http://awards.acm.org/bell. (Accessed 31 August

2017).
[5] E. Cuthill, J. McKee, Proceedings of the 1969 24th National Conference, ACM

’69, ACM, New York, NY, USA, 1969, pp. 157–172.
[6] W.D. Gropp, D.K. Kaushik, D.E. Keyes, B.F. Smith, Parallel Comput. 27 (4)

(2001) 337–362. http://dx.doi.org/10.1016/S0167-8191(00)00075-2. Parallel
computing in aerospace.

[7] D. Mudigere, S. Sridharan, A. Deshpande, J. Park, A. Heinecke, M. Smelyanskiy,
B. Kaul, P. Dubey, D. Kaushik, D. Keyes, 2015 IEEE International Parallel and
Distributed Processing Symposium, 2015, pp. 723–732 http://dx.doi.org/10.
1109/IPDPS.2015.114.

[8] M.A.A. Farhan, D.K. Kaushik, D.E. Keyes, Parallel Comput. 59 (2016) 97–118.
http://dx.doi.org/10.1016/j.parco.2016.06.001. Theory and Practice of Irregu-
lar Applications.

[9] A.C. Duffy, D.P. Hammond, E.J. Nielsen, Production Level CFD Code Accelera-
tion for Hybrid Many-Core Architectures, Technical Report NASA/TM-2012-
217770, National Aeronautics and Space Administration, 2012.

[10] T.D. Economon, D. Mudigere, G. Bansal, A. Heinecke, F. Palacios, J. Park, M.
Smelyanskiy, J.J. Alonso, P. Dubey, Comput. & Fluids 129 (2016) 146–158.
http://dx.doi.org/10.1016/j.compfluid.2016.02.003.

[11] SU2, the Open-Source CFD Code, 2017. http://su2.stanford.edu. (Accessed 31
August 2017).

[12] M.B. Giles, G.R. Mudalige, Z. Sharif, G. Markall, P.H. Kelly, SIGMETRICS Perform.
Eval. Rev. 38 (4) (2011) 9–15. http://dx.doi.org/10.1145/1964218.1964221.

[13] G.R. Mudalige, M.B. Giles, I. Reguly, C. Bertolli, P.H.J. Kelly, 2012 Innovative
Parallel Computing, InPar, 2012, pp. 1–12 http://dx.doi.org/10.1109/InPar.
2012.6339594.

[14] I.Z. Reguly, G.R.Mudalige, C. Bertolli,M.B. Giles, A. Betts, P.H.J. Kelly, D. Radford,
IEEE Trans. Parallel Distrib. Syst. 27 (5) (2016) 1265–1278. http://dx.doi.org/
10.1109/TPDS.2015.2453972.

[15] I.Z. Reguly, E. László, G.R. Mudalige, M.B. Giles, Concurr. Comput.: Pract. Exper.
28 (2) (2016) 557–577. http://dx.doi.org/10.1002/cpe.3621.

[16] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,
F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, P. Hanrahan, Proceedings of
2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, ACM, New York, NY, USA, 2011, pp. 9:1–9:12.
http://dx.doi.org/10.1145/2063384.2063396.

[17] L. Di Mare, D.Y. Kulkarni, F. Wang, A. Romanov, P.R. Ramar, Z.I. Zachariadis,
Proceedings of ASME TurboExpo, Vancouver, Canada, 2011.

[18] F. Wang, M. Carnevale, G. Lu, L. Di Mare, D. Kulkarni, ASME Turbo Expo 2016:
Turbomachinery Technical Conference and Exposition, American Society of
Mechanical Engineers, 2016, V001T01A009–V001T01A009.

[19] A. Jameson, AIAA Pap. 1596 (1991).
[20] D. Wilcox, AIAA J. 26 (1988) 1299–1310. http://dx.doi.org/10.2514/3.10041.
[21] D. Mavriplis, Revisiting the Least-squares Procedure for Gradient Recon-

struction on Unstructured Meshes, Technical Report NASA/CR-2003-212683,
National Aeronautics and Space Administration, 2003.

[22] P.L. Roe, J. Comput. Phys. 43 (2) (1981) 357–372.
[23] B. van Leer, J. Comput. Phys. 32 (1) (1979) 101–136. http://dx.doi.org/10.1016/

0021-9991(79)90145-1.
[24] C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley

and Sons, Chichester, West Sussex, UK, 1990.
[25] M. Carnevale, J.S. Green, L. Di Mare, Proceedings of ASME Turbo Expo 2014:

Turbine Technical Conference and Exposition, 2014, pp. 16–20.
[26] M. Carnevale, F. Wang, L. Di Mare, J. Eng. Gas Turbines Power 139 (4) (2017)

041203.
[27] J.P. Murphy, D.G. MacManus, Exp. Fluids 50 (1) (2011) 109–124. http://dx.doi.

org/10.1007/s00348-010-0902-4.
[28] P. Gepner, V. Gamayunov, D.L. Fraser, Procedia Comput. Sci. 4 (2011) 452–460.

Proceedings of the International Conference on Computational Science, ICCS
2011.

[29] Intel Corporation, Intel R⃝ 64 and IA-32 Architectures Optimization Reference
Manual, 248966–037, 2017.

[30] Intel Xeon Scalable Processors, 2017. https://newsroom.intel.com/press-kits/
next-generation-xeon-processor-family/. (Accessed 18 July 2017).

[31] J.D. McCalpin, STREAM: Sustainable Memory Bandwidth in High Performance
Computers, Technical Report, University of Virginia, Charlottesville, Virginia,
1991–2007, A continually updated technical report, http://www.cs.virginia.
edu/stream/.

[32] J. Jeffers, J. Reinders, Intel Xeon Phi Coprocessor High Performance Program-
ming, Morgan Kaufmann, Boston, United States, 2013.

[33] J. Jeffers, J. Reinders, A. Sodani, Intel Xeon Phi Processor High Performance
Programming, Morgan Kaufmann, 2016.

[34] A. Sodani, R. Gramunt, J. Corbal, H.S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, Y.C. Liu, IEEEMicro 36 (2) (2016) 34–46. http://dx.doi.org/10.1109/
MM.2016.25.

[35] S.J. Pennycook, C.J. Hughes,M. Smelyanskiy, S.A. Jarvis, Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing,
IPDPS ’13, IEEE Computer Society,Washington, DC, USA, 2013, pp. 1085–1097.
http://dx.doi.org/10.1109/IPDPS.2013.44.

[36] ARCHER. Knights Landing Testing&Development Platform, 2017. http://www.
archer.ac.uk/documentation/knl-guide/. (Accessed 1 August 2017).

[37] D.A. Burgess, M.B. Giles, Adv. Eng. Softw. 28 (3) (1997) 189–201. http://dx.doi.
org/10.1016/S0965-9978(96)00039-7.

[38] OpenMP 4.0 Specifications, 2016. http://www.openmp.org/wp-content/uploa
ds/OpenMP4.0.0.pdf. (Accessed 15 May 2016).

http://dx.doi.org/10.1098/rsta.2013.0319
http://dx.doi.org/10.1145/331532.331600
https://fun3d.larc.nasa.gov/
http://awards.acm.org/bell
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb5
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb5
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb5
http://dx.doi.org/10.1016/S0167-8191(00)00075-2
http://dx.doi.org/10.1109/IPDPS.2015.114
http://dx.doi.org/10.1109/IPDPS.2015.114
http://dx.doi.org/10.1109/IPDPS.2015.114
http://dx.doi.org/10.1016/j.parco.2016.06.001
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb9
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb9
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb9
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb9
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb9
http://dx.doi.org/10.1016/j.compfluid.2016.02.003
http://su2.stanford.edu
http://dx.doi.org/10.1145/1964218.1964221
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/TPDS.2015.2453972
http://dx.doi.org/10.1109/TPDS.2015.2453972
http://dx.doi.org/10.1109/TPDS.2015.2453972
http://dx.doi.org/10.1002/cpe.3621
http://dx.doi.org/10.1145/2063384.2063396
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb18
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb18
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb18
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb18
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb18
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb19
http://dx.doi.org/10.2514/3.10041
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb21
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb21
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb21
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb21
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb21
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb22
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb24
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb24
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb24
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb26
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb26
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb26
http://dx.doi.org/10.1007/s00348-010-0902-4
http://dx.doi.org/10.1007/s00348-010-0902-4
http://dx.doi.org/10.1007/s00348-010-0902-4
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb28
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb28
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb28
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb28
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb28
https://newsroom.intel.com/press-kits/next-generation-xeon-processor-family/
https://newsroom.intel.com/press-kits/next-generation-xeon-processor-family/
https://newsroom.intel.com/press-kits/next-generation-xeon-processor-family/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb32
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb32
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb32
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb33
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb33
http://refhub.elsevier.com/S0010-4655(18)30249-2/sb33
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/IPDPS.2013.44
http://www.archer.ac.uk/documentation/knl-guide/
http://www.archer.ac.uk/documentation/knl-guide/
http://www.archer.ac.uk/documentation/knl-guide/
http://dx.doi.org/10.1016/S0965-9978(96)00039-7
http://dx.doi.org/10.1016/S0965-9978(96)00039-7
http://dx.doi.org/10.1016/S0965-9978(96)00039-7
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

I. Hadade et al. / Computer Physics Communications 235 (2019) 305–323 323

[39] R. Löhner, Int. J. Numer. Methods Biomed. Eng. 26 (5) (2010) 628–636. http:
//dx.doi.org/10.1002/cnm.1160.

[40] I. Hadade, L. Di Mare, Comput. Phys. Comm. 205 (2016) 32–47. http://dx.doi.
org/10.1016/j.cpc.2016.04.006.

[41] T.C. Mowry, M.S. Lam, A. Gupta, SIGPLAN Not. 27 (9) (1992) 62–73. http://
dx.doi.org/10.1145/143371.143488. URL http://doi.acm.org/10.1145/143371.
143488.

[42] J. Lee, H. Kim, R. Vuduc, ACM Trans. Archit. Code Optim. 9 (1) (2012) 2:1–2:29.
http://dx.doi.org/10.1145/2133382.2133384.

[43] S. Ainsworth, T.M. Jones, Proceedings of the 2017 International Symposium on
Code Generation and Optimization, CGO ’17, IEEE Press, Piscataway, NJ, USA,
2017, pp. 305–317. URL http://dl.acm.org/citation.cfm?id=3049832.3049865.

[44] R. Aubry, G. Houzeaux,M. Vzquez, J.M. Cela, Internat. J. Numer.Methods Engrg.
85 (5) (2011) 537–561. http://dx.doi.org/10.1002/nme.2973.

http://dx.doi.org/10.1002/cnm.1160
http://dx.doi.org/10.1002/cnm.1160
http://dx.doi.org/10.1002/cnm.1160
http://dx.doi.org/10.1016/j.cpc.2016.04.006
http://dx.doi.org/10.1016/j.cpc.2016.04.006
http://dx.doi.org/10.1016/j.cpc.2016.04.006
http://dx.doi.org/10.1145/143371.143488
http://dx.doi.org/10.1145/143371.143488
http://dx.doi.org/10.1145/143371.143488
http://doi.acm.org/10.1145/143371.143488
http://doi.acm.org/10.1145/143371.143488
http://doi.acm.org/10.1145/143371.143488
http://dx.doi.org/10.1145/2133382.2133384
http://dl.acm.org/citation.cfm%3Fid%3D3049832.3049865
http://dx.doi.org/10.1002/nme.2973

	Some useful optimisations for unstructured computational fluid dynamics codes on multicore and manycore architectures
	Introduction
	Background
	Related work
	Application
	Governing equations
	Spatial discretisation
	Time integration
	Test case
	Computational kernels

	Experimental setup
	Intel Xeon Sandy Bridge
	Intel Xeon Broadwell
	Intel Xeon Skylake Server
	Intel Xeon Phi Knights Corner
	Intel Xeon Phi Knights Landing
	Hardware configuration and software environment

	Optimisations
	Grid renumbering
	Vectorisation
	Face colouring
	Array of structures
	Gather and scatter optimisations
	Array of structures structure of arrays
	Software prefetching
	Multi-threading

	Results and discussions
	Effects of optimisations
	Grid renumbering
	Vectorisation
	Face colouring
	Array of structures
	Gather and scatter
	Array of structures structure of arrays
	Software prefetching
	Multi-threading

	Performance scaling across a node
	Face-based loops
	Cell-based loops
	Full application

	Conclusions
	Acknowledgements
	References

