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A B S T R A C T

In this paper, we present new optimization models for Support Vector Machine (SVM), with the aim of
separating data points in two or more classes. The classification task is handled by means of nonlinear classifiers
induced by kernel functions and consists in two consecutive phases: first, a classical SVM model is solved,
followed by a linear search procedure, aimed at minimizing the total number of misclassified data points. To
address the problem of data perturbations and protect the model against uncertainty, we construct bounded-
by-norm uncertainty sets around each training data and apply robust optimization techniques. We rigorously
derive the robust counterpart extension of the deterministic SVM approach, providing computationally tractable
reformulations. Closed-form expressions for the bounds of the uncertainty sets in the feature space have been
formulated for typically used kernel functions. Finally, extensive numerical results on real-world datasets show
the benefits of the proposed robust approach in comparison with various SVM alternatives in the machine
learning literature.
1. Introduction

Support Vector Machine (SVM) is one of the main supervised Machine
Learning (ML) techniques commonly deployed for classification and
regression purposes. Within the Operational Research (OR) domain,
supervised ML methods are designed to support better decision-making
and solve hard optimization problems (Gambella, Ghaddar, & Naoum-
Sawaya, 2021). To this end, a plethora of methodologies have been
devised and applied to various OR fields (De Bock et al., 2024). In
particular, combinatorial optimization (Bengio, Lodi, & Prouvost, 2021;
Wei, Hao, Ren, & Glover, 2023), customer churn prediction (Benítez-
Peña, Blanquero, Carrizosa, & Ramírez-Cobo, 2024; Chen, Fan, & Sun,
2012; Maldonado, López, & Vairetti, 2020; Szelag & Słowiński, 2024),
banking (Doumpos, Zopounidis, Gounopoulos, Platanakis, & Zhang,
2023; Katsafados, Leledakis, Pyrgiotakis, Androutsopoulos, & Fergadi-
otis, 2024; Yao, Crook, & Andreeva, 2017) and maritime industry (Mi
et al., 2019; Raeesi, Sahebjamnia, & Mansouri, 2023).

Currently, deep learning algorithms are adopted whenever classical
ML methods fail to capture complex relationships between input data
both for classification and regression tasks (Gambella et al., 2021).
Nevertheless, the advantage of mathematical programming approaches
to model deep neural networks has been explored only for small-
sized datasets, and without a guarantee on the effectiveness of the
performance (Gunnarsson, vanden Broucke, Baesens, Óskarsdóttir, &
Lemahieu, 2021). For this reason, the investigation of novel ML tech-
niques is a relevant ongoing research issue (Maldonado, López, &
Carrasco, 2022).
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E-mail address: francesca.maggioni@unibg.it (F. Maggioni).

Introduced in Vapnik and Chervonenkis (1974), SVM has out-
performed most other ML systems, due to its simplicity and better
performance. Therefore, it has been applied in many practical re-
search fields, such as finance (Luo, Yan, & Tian, 2020; Tay & Cao,
2001), chemistry (Li, Liang, & Xu, 2009; Marcelli & De Leone, 2020),
medicine (Maggioni, Faccini, Gheza, Manelli, & Bonetti, 2023; Wang,
Zheng, Yoon and Ko, 2018), and vehicles smog rating classification
(De Leone, Maggioni, & Spinelli, 2024; Maggioni & Spinelli, 2024), to
name a few.

Hard Margin-SVM (HM-SVM) is the original approach formulated
in Vapnik and Chervonenkis (1974), consisting in finding a hyperplane
classifying observations into two classes, such that the margin, i.e. the
𝓁2-distance from the hyperplane to the nearest point of each class, is
maximized. The underlying hypothesis of the HM-SVM is that train-
ing data can always be linearly separated, such that no observation
is misclassified. To overcome the assumption of linear separability,
in Cortes and Vapnik (1995) the Soft Margin-SVM (SM-SVM) is pro-
posed. In this case, the optimal hyperplane seeks a trade-off between
the maximization of the margin and the minimization of the training
error of misclassification.

In order to improve the accuracy of the method, several SVM
variants have been devised in the literature. Specifically, in this paper
we focus our attention on the one presented in Liu and Potra (2009).
The advantages of this technique over other SVM approaches are
mainly due to a two-step procedure. Indeed, rather than considering a
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single hyperplane, training data are firstly separated by means of two
arallel hyperplanes as solutions of a SM-SVM model. The final optimal
yperplane is then searched in the strip between them, such that the
otal number of misclassified points is minimized. Compared to classical
M-SVM, numerical experiments show that this formulation achieves
igher levels of computational accuracy.

Nevertheless, training observations may not be always separable by
eans of hyperplanes and, even with ad hoc variants of linear SVM, the
isclassification error may be significant. In Boser, Guyon, and Vapnik

(1992), the extension of the linear HM-SVM model is introduced, by
considering nonlinear transformation of the data. According to this
technique, kernel functions are used to embed data points onto a
igher-dimensional space (the so-called feature space), without increas-
ng the computational complexity of the problem. Several variants of
his methodology have been proposed in the ML literature (see for
xample Bennett & Mangasarian, 1992; Blanco, Puerto, & Rodríguez-

Chía, 2020; Cervantes, Garcia-Lamont, Rodríguez-Mazahua, & Lopez,
2020; Ding & Hua, 2014; Ding, Zhao, Zhang, Zhang, & Xue, 2019; Du
et al., 2021; Gao, Fang, Luo, & Medhin, 2021; Hao, 2010; Jayadeva,
Khemchandani, & Chandra, 2007; Jiménez-Cordero, Morales, & Pineda,
2021; Mangasarian, 1998; Peng, 2011; Schölkopf, Smola, Williamson,
& Bartlett, 2000; Yajima, 2005).

For the methods mentioned above, all data points are implicitly
assumed to be known exactly. However, in real-world observations
this condition may not be always true. Indeed, measurement errors
during data collection, random perturbations, presence of noise and
other forms of uncertainty may corrupt the quality of input values,
resulting in worsening performance of the classification process. In
recent years, different techniques have been investigated with the aim
of facing uncertainty in ML methods. Among them, Robust Optimization
(RO) is recognized as one of the main paradigms to protect optimization
models against uncertainty (see for example Ben-Tal, El Ghaoui, &
Nemirovski, 2009; Bertsimas, Brown, & Caramanis, 2011; Xu, Cara-
manis, & Mannor, 2009). RO assumes that all possible realizations of
he uncertain parameter belong to a prescribed uncertainty set. The

corresponding robust model is then derived by optimizing against the
worst-case realization of the parameter across the entire uncertainty
set (Bertsimas, Dunn, Pawlowski, & Zhuo, 2019). The application of RO
trategies typically results in higher predictiveness (Faccini, Maggioni,
 Potra, 2022; Maldonado et al., 2020). For this reason, it is worth
esigning novel RO models with the aim of improving the accuracy of
he classification process.

In this paper, we present novel SVM models aiming at separating
classes of data points. The formulation extends the approach of Liu and
otra (2009) to the context of multiclass and nonlinear classification.

In order to protect the model against perturbations, we introduce
bounded-by-norm uncertainty sets around each training observation
and rigorously derive the robust counterpart of the deterministic ap-
proach, providing computationally tractable reformulations. In addi-
tion, our proposal represents a valid contribution to the state of the
art on SVM thanks to the computation of the uncertainty set bounds in
he feature space as function of the bounds in the input space. This is

a novel development in the ML domain.
The main contributions of the paper are four-fold and can be

summarized as follows:

• To extend the binary linear SVM approach of Liu and Potra (2009)
to the cases of multiclass and nonlinear classification;

• To formulate the robust extension of the SVM model with non-
linear classifiers using bounded-by-𝓁𝑝-norm uncertainty sets and
provide computationally tractable reformulations;

• To rigorously derive bounds on the radii of the uncertainty sets
in the feature space for some of the most used kernel functions in
the ML literature;

• To provide extensive numerical experiments based on real-world
datasets with the aim of evaluating the performance of the pro-
posed models and comparing the results with extant SVM meth-
ods in the literature.
 d

2 
The remainder of the paper is organized as follows. Section 2
reviews the existing literature on the problem. In Section 3, the no-
tation is introduced, along with a brief discussion on related SVM-type
roblems. In Section 4, the novel deterministic model with nonlinear
lassifier is introduced for both binary and multiclass classification.

Section 5 considers the robust extension together with the construction
of the uncertainty sets. In Section 6, the computational results are
shown. Finally, Section 7 concludes the paper and discusses future

orks.

2. Literature review

The nonlinear SVM approach presented in Boser et al. (1992) has
een explored in several works, leading to alternative formulations.
n Lee, Mangasarian, and Wolberg (2000) and Mangasarian (1998) a

kernel-induced decision boundary is derived by considering quadratic
nd piecewise-linear objective function, resulting in a convex model.
n Schölkopf et al. (2000) the formulation of 𝜈-Support Vector Classi-

fication (𝜈-SVC) is proposed for both linear and nonlinear classifiers.
This algorithm differs from the classical SVM paradigm of Vapnik
(1995) since it involves a new parameter 𝜈 in the objective function,
controlling the number of support vectors. In Jayadeva et al. (2007)
the TWin Support Vector Machine (TWSVM) is designed. Contrary to
standard SVM, TWSVM determines a pair of nonparallel hyperplanes
by solving two small-sized SVM-type problems. TWSVM is combined
in Peng (2011) with a flexible parametric margin model (Hao, 2010),
eriving the Twin Parametric Margin Support Vector Machine (TPMSVM).

Recently, in Blanco et al. (2020) the classical 𝓁2-norm problem has been
extended to the general case of 𝓁𝑝-norm with 𝑝 > 1, resulting in a
Second-Order Cone Programming formulation (SOCP, Maggioni, Potra,
Bertocchi, & Allevi, 2009). Within the field of Double Well Potential
functions (DWP), a kernel-free DWP model for SVM is derived in Gao
et al. (2021) for classifying nonlinearly separable data. The problem
f feature selection in nonlinear SVM is explored in Jiménez-Cordero

et al. (2021), where a method based on a min–max optimization model
is proposed. With respect to the extant literature on nonlinear SVM,
the first contribution of this work is the extension of the linear SVM
ariant developed in Liu and Potra (2009) to the case of nonlinear

classifiers. The model benefits from such extension since it handles
cases of nonlinearly separable data with a low misclassification error.

In order to prevent low accuracies in the classification process when
training data are plagued by uncertainty, RO techniques are applied in
the SVM context (Wang & Pardalos, 2014). In Bhattacharyya (2004)
hyperellipsoids around data points are considered, and the robust

odel results in a SOCP problem. A tractable robust counterpart of
the linear SM-SVM approach is derived in Bertsimas et al. (2019).

he authors robustify the model by considering additive and bounded-
by-norm perturbations in the training data. In El Ghaoui, Lanckriet,

atsoulis, et al. (2003) the binary classification problem under feature
uncertainty is formulated with uncertainty sets in the form of hyper-
rectangles and hyperellipsoids around input data. The same choices
of uncertainty sets is made in Faccini et al. (2022), where the RO
extension of the linear SVM variant presented in Liu and Potra (2009) is
proposed. In this work, we further extend such approach by formulating
 robust SVM model tailored for a general class of bounded-by-𝓁𝑝-
orm uncertainty sets. This improves the generalization capability of

the model as the choice of the 𝓁𝑝-norm can be made according to the
nformation available on the training dataset and the desired degree of

conservatism.
As far as it concerns RO techniques applied to nonlinear SVM,

various approaches exist in the literature. In Ben-Tal, Bhadra, Bhat-
tacharyya, and Nemirovski (2012) and Bhadra, Bhattacharya, Bhat-
tacharyya, and Ben-Tal (2010) the kernel matrix is assumed to be
affected by uncertainty, due to feature perturbations in the input
ata. Such matrix is decomposed as a linear combination of positive
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semidefinite matrices with bounded-by-𝓁𝑝-norm coefficients. The main
limitation of this approach is that the functional form of the matrices
n the combination is typically unknown. Thus, it is not obvious how to
haracterize the elements in the uncertainty set, unless by using a sam-
ling procedure. In Bi and Zhang (2005) and Trafalis and Gilbert (2006)
raining data points are subject to uncertain but bounded-by-𝓁𝑝-norm
erturbations. Robustified models are derived for both linear and non-
inear classifiers. A related work on bounded-by-norm uncertainty sets
s Xu et al. (2009), where a link between regularization and robustness
s provided. In Trafalis and Alwazzi (2010) the stability of SVM models

with bounded perturbations is investigated by using discriminant func-
ions. Polyhedral uncertainty sets are considered in Fan, Sadeghi, and

Pardalos (2014), Fung, Mangasarian, and Shavlik (2002) and Ju and jie
ian (2012), based on the nonlinear classifier proposed in Mangasarian

(1998). In all these works on robust SVM with nonlinear classifiers,
nly the case with Gaussian kernel has been investigated. Indeed, for

such kernel there exists a closed-form expression for the radius of the
uncertainty set in the feature space based on the corresponding one in
the input space (see Xu et al., 2009). In this paper, we prove further
theoretical results valid for other classes of kernels, i.e. homogeneous
and inhomogeneous polynomial kernels. These findings are beneficial
for all robust SVM models with bounded-by-𝓁𝑝-norm uncertainty sets
and kernel-induced classifiers.

RO techniques are also applied to variants of the classical SVM
odel. In Peng and Xu (2013) a robust TWSVM classifier is proposed,

by including uncertainty in the variance matrices of the two classes.
In Qi, Tian, and Shi (2013) the robust extension of TWSVM is derived.
For the nonlinear case, only Gaussian kernel and ellipsoidal uncertainty
ets are considered, resulting in a SOCP formulation. In De Leone,

Maggioni, and Spinelli (2023) the robust and multiclass extension of
the TPMSVM is provided. A complete survey on recent developments
on TWSVM models can be found in Tanveer, Rajani, Rastogi, and Shao
(2022).

When partial or complete information on the probability distribu-
tion of the training data are available, other solution techniques dealing
with uncertainties such as Chance-Constrained Programming (CCP) and

istributionally Robust Optimization (DRO) have been considered in the
SVM literature (Jiang & Peng, 2024; Ketkov, 2024). The Minimax
Probability Machine (MPM) is the first distributionally robust SVM
approach that minimizes the worst-case probability of misclassifica-
tion (Lanckriet, Ghaoui, Bhattacharyya, & Jordan, 2002). In Maldonado
et al. (2020) the MPMs are extended and applied to the robust profit-
driven churn prediction. Within the MPM framework, the use of Cobb–
Douglas function for maximizing the expected class accuracies under a
worst-case distribution setting is proposed in Maldonado et al. (2022).
As far as it concerns DRO methods applied to SVM, we mention the
recent work of Faccini et al. (2022) where a moment-based distribu-
tionally robust extension of the Liu and Potra (2009) formulation is
designed. The problem of robust feature selection with CCP is explored
n López, Maldonado, and Carrasco (2018) by using difference of con-

vex functions. Within the multiclass context, in López, Maldonado, and
arrasco (2017) a robust CCP formulation for multiclass classification

via TWSVM is proposed. Finally, a combination of CCP and DRO tech-
niques applied to linear and nonlinear SVM models with uncertain data
is explored in Khanjani-Shiraz, Babapour-Azar, Hosseini-Nodeh, and
ardalos (2023), Wang, Fan and Pardalos (2018) and in Lin, Fang, Fang
nd Gao (2024a), Lin, Fang, Fang, Gao and Luo (2024b), respectively.

All the approaches discussed so far are listed in Table 1. For a
omprehensive review of RO techniques applied to SVM models the
eader is referred to Singla, Ghosh, and Shukla (2020).

In summary, the contributions of this paper differ from the lit-
erature described above in several aspects. First of all, we present
a novel optimization model with nonlinear classifiers, extending the
approach of Liu and Potra (2009), both in the case of binary and

ulticlass classification. Secondly, we consider general bounded-by-
-norm uncertainty sets around training observations. This increases
𝑝 𝐻

3 
the flexibility of the model, adapting the formulation to more complex
perturbations in input data. In addition, it results in a generalization
of the robust approach of Faccini et al. (2022) where only box and
ellipsoidal uncertainty sets have been considered. Thirdly, we derive
closed-form expressions of the bounds in the feature space for some
of typically used kernel functions in ML literature. Finally, we deduce
the robust counterpart of the deterministic formulations, protecting the
models against data uncertainty.

3. Background and notation

In this section, we report the notation (Section 3.1) and briefly recall
he methods that are relevant for our proposal (Section 3.2).

3.1. Notation

In the following, the set of nonnegative real numbers will be de-
noted by R+, whereas if zero is excluded we write R+

0 . Hereinafter, all
vectors will be column vectors, unless transposition by the superscript
‘‘⊤’’. If 𝑎 is a vector in R𝑛, then its 𝑖th component will be denoted by 𝑎𝑖.

he scalar product in a inner product space  will be denoted by ⟨⋅, ⋅⟩.
f  = R𝑛 and 𝑎, 𝑏 ∈ R𝑛, the dot product will be indifferently denoted as
⊤𝑏 or ⟨𝑎, 𝑏⟩. For 𝑝 ∈ [1,∞], ‖𝑎‖𝑝 is the 𝓁𝑝-norm of 𝑎. Finally, if 𝑐 ∈ R,
he indicator function 1(𝑐) has value 1 if 𝑐 is positive and 0 otherwise.
y convention, we assume that 1

∞ ∶= 0 and ‖𝑎‖∞∞ ∶= ‖𝑎‖∞.

3.2. A selected review of SVM models

Let {(𝑥(𝑖), 𝑦(𝑖))}𝑚𝑖=1 be the set of training data points, where 𝑥(𝑖) ∈ R𝑛

is the vector of features, and 𝑦(𝑖) ∈ {−1,+1} is the label representing
the class to which the 𝑖th data point belongs. In particular, we denote
by  and  the positive (label ‘‘+1’’) and negative (label ‘‘−1’’) classes,
respectively.

The Soft Margin-SVM approach (SM-SVM, Cortes & Vapnik, 1995)
finds the best separating hyperplane 𝐻 ∶= (𝑤, 𝛾) defined by the
quation 𝑤⊤𝑥 = 𝛾, where 𝑤 ∈ R𝑛 and 𝛾 ∈ R, as solution of the following
𝓁𝑞-model, 𝑞 ∈ [1,∞]:

min
𝑤,𝛾 ,𝜉 ‖𝑤‖

𝑞
𝑞 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)(𝑤⊤𝑥(𝑖) − 𝛾) ⩾ 1 − 𝜉𝑖 𝑖 = 1,… , 𝑚
𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.

(1)

The vector 𝜉 ∈ R𝑚 is the soft margin error vector and 𝜈 ⩾ 0 is a
egularization parameter. Data point 𝑥(𝑖) is correctly classified by the
eparating hyperplane 𝐻 if 0 ⩽ 𝜉𝑖 ⩽ 1, otherwise is misclassified.

Whenever a new observation 𝑥 ∈ R𝑛 occurs, it is classified as positive
or negative depending on the decision function 1

(

𝑤⊤𝑥 − 𝛾
)

.
Instead of a single hyperplane, in Liu and Potra (2009) a pair of

parallel hyperplanes 𝐻 and 𝐻 is constructed, satisfying the following
properties:

(P1) all points of class  lie on one halfspace of 𝐻;
(P2) all points of class  lie on the opposite halfspace of 𝐻;
(P3) the intersection of the convex hulls of  and  is contained in

the region between 𝐻 and 𝐻.

The starting point of the formulation consists in solving the SM-SVM
model (1) with 𝑞 = 1, determining an initial separating hyperplane
𝐻0 ∶= (𝑤, 𝛾) and the soft margin vector 𝜉. Then, 𝐻0 is shifted in order
to identify 𝐻 ∶= (𝑤, 𝛾 − 1 + 𝜔𝐴) and 𝐻 ∶= (𝑤, 𝛾 + 1 − 𝜔𝐵), where:

𝜔 ∶= max
𝑖∶𝑥(𝑖)∈

{

𝜉𝑖
}

, 𝜔 ∶= max
𝑖∶𝑥(𝑖)∈

{

𝜉𝑖
}

. (2)

The choice of 𝜔 and 𝜔 according to condition (2) guarantees that
and 𝐻 satisfy properties (P1)–(P3).
 
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Table 1
A selected SVM literature review. In the first row of the table the methodological contributions are listed in chronological order. Second and third rows specify the type of SVM
classifier (linear or nonlinear). Finally, the optimization under uncertainty methodologies employed in the articles are explored in rows four to ten.
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Finally, the optimal separating hyperplane 𝐻 ∶= (𝑤, 𝑏) is such
hat is parallel to 𝐻 and 𝐻, lies in their strip, and the number of
isclassified points is minimized. These conditions are satisfied finding

he optimal parameter 𝑏 as solution of the following problem:
in
𝑏

∑

𝑖∶𝑥(𝑖)∈

1
(

𝑤⊤𝑥(𝑖) − 𝑏
)

+
∑

𝑖∶𝑥(𝑖)∈

1
(

𝑏 −𝑤⊤𝑥(𝑖)
)

s.t. 𝛾 + 1 − 𝜔 ⩽ 𝑏 ⩽ 𝛾 − 1 + 𝜔.
(3)

From a computational perspective, model (3) is solved through a
inear search procedure. Specifically, the interval [𝛾+ 1 −𝜔, 𝛾− 1 +𝜔]
s divided into 𝑁max sub-intervals of equal length and the problem is
olved on each of them. The optimal solution 𝑏 is the one providing
he overall minimum value of the objective function.

Similarly to SM-SVM, a new data point 𝑥 ∈ R𝑛 is classified in class
or  depending on the decision rule 1

(

𝑤⊤𝑥 − 𝑏
)

.
Whenever training observations are not linearly separable, the so-

alled kernel trick can be applied (Cortes & Vapnik, 1995). The key idea
s to introduce a function 𝜙(⋅), usually referred to as feature map, to
ranslate data from the input space R𝑛 to a higher-dimensional space
, equipped with the dot product ⟨⋅, ⋅⟩. In , the transformed data
𝜙(𝑥(𝑖))}𝑚𝑖=1 are assumed to be linearly separable. Thus, model (1) can
e written in the feature space  as:

min
,𝛾 ,𝜉

‖

‖

𝑤‖

‖ + 𝜈
𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)(⟨𝑤, 𝜙(𝑥(𝑖))⟩ − 𝛾) ⩾ 1 − 𝜉𝑖 𝑖 = 1,… , 𝑚
𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.

(4)

Vector 𝑤 ∈  defines the linear classifier in the feature space and
he norm ‖⋅‖ is induced by the inner product ⟨⋅, ⋅⟩.

Unfortunately, the expression of the mapping 𝜙(⋅) is usually un-
nown and, consequently, model (4) cannot be solved in practice. To
vercome this limitation, a symmetric and positive semidefinite kernel
∶ R𝑛 × R𝑛 → R is introduced. Examples of kernel functions typically

sed in ML literature are reported in Table 2. For a comprehensive
verview, the reader is referred to Schölkopf and Smola (2001).

As in Cortes and Vapnik (1995), 𝑤 can be decomposed into a
inite linear combination of {𝜙(𝑥(𝑗))}𝑚𝑗=1, as 𝑤 =

∑𝑚
𝑗=1 𝑦

(𝑗)𝑢𝑗𝜙(𝑥(𝑗)), for
ome coefficients 𝑢𝑗 ∈ R. Consequently, for all 𝑖 = 1,… , 𝑚 the dot
roduct ⟨𝑤, 𝜙(𝑥(𝑖))⟩ in the first set of constraints of model (4) can be
ormulated as ⟨𝑤, 𝜙(𝑥(𝑖))⟩ =

∑𝑚
𝑗=1 𝐾𝑖𝑗𝑦(𝑗)𝑢𝑗 , where 𝐾𝑖𝑗 ∶= 𝑘(𝑥(𝑖), 𝑥(𝑗)) =

⟨𝜙(𝑥(𝑖)), 𝜙(𝑥(𝑗))⟩. The properties of the kernel function imply that the
Gram matrix 𝐾 = [𝐾𝑖𝑗 ] is a real, symmetric and positive semidefinite
𝑚 × 𝑚 matrix (Piccialli & Sciandrone, 2018).
4 
As in Lee et al. (2000) and Mangasarian (1998), in the objective
unction of model (4) the -norm ‖

‖

𝑤‖

‖ is replaced by ‖𝑢‖𝑞𝑞 , where 𝑢 ∶=
𝑢1,… , 𝑢𝑚]⊤. This choice guarantees the convexity of the optimization
roblem. Therefore, model (4) can be rewritten as:

in
𝑢,𝛾 ,𝜉 ‖𝑢‖𝑞𝑞 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)
( 𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗 − 𝛾
)

⩾ 1 − 𝜉𝑖 𝑖 = 1,… , 𝑚

𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.

(5)

Within this context, the separating hyperplane in the feature space
ranslates into a nonlinear decision boundary 𝑆 ∶= (𝑢, 𝛾) in the input
pace, defined by the following equation:
𝑚
∑

𝑖=1
𝑘(𝑥, 𝑥(𝑖))𝑦(𝑖)𝑢𝑖 = 𝛾 . (6)

Finally, each new observation 𝑥 ∈ R𝑛 is classified either in class 
r  according to the decision function 1

(
∑𝑚

𝑖=1 𝑘(𝑥, 𝑥(𝑖))𝑦(𝑖)𝑢𝑖 − 𝛾
)

.

. A novel approach for deterministic nonlinear SVM

In this section, we propose an extension of the SVM approach
resented in Liu and Potra (2009) to the nonlinear case. Specifically,
e classify input observations by means of kernel-induced decision
oundaries, such that the corresponding hyperplanes in the feature
pace satisfy properties (P1)–(P3).

In Section 4.1 we tackle binary classification tasks, whereas in Sec-
ion 4.2 we extend the approach to the case of multiclass classification.

.1. Binary classification

According to our proposal, binary classification problems are han-
led as follows. First of all, we start solving model (5), finding an
nitial decision boundary 𝑆0 ∶= (𝑢, 𝛾). In the input space, hypersurface
0 induces an initial nonlinear separation of training data points.
ccordingly, in the feature space the corresponding hyperplane 𝐻0
erforms a linear classification of transformed observations.

Then, for each of the two classes, we compute the greatest mis-
lassification error through the following extended version of formulas
2):

∶= max (𝐷 𝜉) 𝜔 ∶= max (−𝐷 𝜉) , (7)
 𝑖=1,…,𝑚 𝑖  𝑖=1,…,𝑚 𝑖
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Table 2
Examples of kernel functions. The first column reports the name of the functions. The second col-
umn provides their mathematical expressions. Finally, the third column contains the related relevant
parameters.
Kernel function 𝑘(𝑥, 𝑥′) Parameter

Homogeneous polynomial 𝑘(𝑥, 𝑥′) = ⟨𝑥, 𝑥′⟩𝑑 𝑑 ∈ N
Inhomogeneous polynomial 𝑘(𝑥, 𝑥′) = (𝑐 + ⟨𝑥, 𝑥′⟩)𝑑 𝑐 ∈ R+, 𝑑 ∈ N

Gaussian Radial Basis Function (RBF) 𝑘(𝑥, 𝑥′) = exp
(

−
‖𝑥 − 𝑥′‖22

2𝛼2

)

𝛼 ∈ R+
0

m

d

𝑆

w

(
c

o

m
u
t

where 𝐷 is a diagonal matrix with entries 𝐷𝑖𝑖 ∶= 𝑦(𝑖), for all 𝑖 = 1,… , 𝑚.
Due to the structure of problem (5), the modulus of −1 + 𝜔

represents the deviation of the farthest misclassified point of class 
from 𝐻0 and similarly for 1 −𝜔. Nevertheless, it may happen that 𝐻0
already correctly classifies all the data points of one or both classes.
In that case, the moduli are just the deviations of the closest data
points from hyperplane 𝐻0. According to the classic literature of SVM
(see Cortes & Vapnik, 1995), we call support vectors of class  and 
the transformed points that deviate |

|

−1 + 𝜔|| and |

|

1 − 𝜔|| from 𝐻0,
respectively.

At this stage, similarly to Liu and Potra (2009), we shift hyperplane
0 by −1 +𝜔 and 1 −𝜔, obtaining 𝐻 and 𝐻, respectively. Such a

pair of parallel hyperplanes passes through the support vectors of the
corresponding class and satisfies properties (P1)–(P3) in the feature
space. According to Eq. (6), the corresponding hypersurfaces 𝑆 ∶=
(𝑢, 𝛾 − 1 + 𝜔) and 𝑆 ∶= (𝑢, 𝛾 + 1 − 𝜔) are then derived in the input
space.

Finally, the optimal kernel-induced decision boundary 𝑆 ∶= (𝑢, 𝑏) is
deduced, where 𝑏 is the solution of the following nonlinear version of
model (3):

min
𝑏

𝑚
∑

𝑖=1
1

(

𝑦(𝑖)𝑏 − 𝑦(𝑖)
𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗

)

s.t. 𝛾 + 1 − 𝜔 ⩽ 𝑏 ⩽ 𝛾 − 1 + 𝜔.

(8)

We observe that hypersurface 𝑆 in the input space is induced by
hyperplane 𝐻 in the feature space, which is parallel to 𝐻 and 𝐻 and
ies in the region between them. Therefore, a new observation 𝑥 ∈ R𝑛 is

classified according to the decision function 1
(
∑𝑚

𝑖=1 𝑘(𝑥, 𝑥(𝑖))𝑦(𝑖)𝑢𝑖 − 𝑏
)

.
For the sake of clarity, all the steps of the approach discussed so far

re schematically reported in Pseudocode 1.

Pseudocode 1 A novel approach for nonlinear SVM.
Input: {(𝑥(𝑖), 𝑦(𝑖))}𝑚𝑖=1, 𝑞 ∈ [1,∞], 𝜈 ⩾ 0, 𝑘(⋅, ⋅) ∶ R𝑛 × R𝑛 → R.
1: Calculate matrix 𝐾 as 𝐾𝑖𝑗 = 𝑘

(

𝑥(𝑖), 𝑥(𝑗)), 𝑖, 𝑗 = 1,… , 𝑚.
2: Solve model (5).
3: Find the initial separating hypersurface 𝑆0 = (𝑢, 𝛾), defined by

equation Eq. (6).
4: Construct diagonal matrix 𝐷 as 𝐷𝑖𝑖 = 𝑦(𝑖), 𝑖 = 1,… , 𝑚, and compute

𝜔 and 𝜔 according to formulas (7).
5: Shift 𝑆0 to get the separating hypersurface for each class, 𝑆 =

(𝑢, 𝛾 − 1 + 𝜔) and 𝑆 = (𝑢, 𝛾 + 1 − 𝜔), defined by Eq. (6).
6: Solve model (8), obtaining parameter 𝑏.

Output: The optimal decision boundary 𝑆 = (𝑢, 𝑏), defined by Eq. (6).

The computational complexity of nonlinear SVM models is between
𝑂(𝑚2) and 𝑂(𝑚3) (Peng, 2011). Since model (8) requires at most 𝑁max
iterations to be solved through a linear search procedure, the compu-
ational complexity of our approach is between 𝑂(max{𝑚2, 𝑁max}) and
𝑂(max{𝑚3, 𝑁max}).

By way of illustration, in Fig. 1 we depict the separating surfaces
obtained by applying the proposed SVM methodology to a bidimen-
sional toy example. In model (5) we set 𝑞 = 1, 𝜈 = 1 and consider
inear and Gaussian RBF kernels. The graphical interpretation of the
ovel approach is illustrated in Fig. 2.
 r

5 
4.2. Multiclass classification

In this section, we derive the multiclass extension of the approach
presented so far. We focus our attention on one of the most com-

only used multiclass SVM framework, the one-versus-all (Vapnik,
1995; Weston & Watkins, 1998). According to this methodology, 𝐿
binary classifiers are constructed, where 𝐿 is the number of classifying
categories, such that each class is independently separated by all the
others grouped together. Formally, let {(𝑥(𝑖), 𝑦(𝑖))}𝑚𝑖=1 be the set of
training observations, with 𝑥(𝑖) ∈ R𝑛 and 𝑦(𝑖) ∈ {1,… , 𝐿}. For each class
𝑙 = 1,… , 𝐿, we find an initial separating hypersurface 𝑆𝑙 ,0 ∶= (𝑢𝑙 , 𝛾𝑙),
where 𝑢𝑙 ∈ R𝑛 and 𝛾𝑙 ∈ R are the solutions of the following multiclass
version of model (5):

min
𝑢𝑙 ,𝛾𝑙 ,𝜉𝑙

‖

‖

𝑢𝑙‖‖
𝑞
𝑞 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑙 ,𝑖

s.t. 𝑦(𝑖)𝑙

( 𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)
𝑙 𝑢𝑙 ,𝑗 − 𝛾𝑙

)

⩾ 1 − 𝜉𝑙 ,𝑖 𝑖 = 1,… , 𝑚

𝜉𝑙 ,𝑖 ⩾ 0 𝑖 = 1,… , 𝑚,

(9)

with 𝑦(𝑖)𝑙 = 1 if 𝑦(𝑖) = 𝑙, and 𝑦(𝑖)𝑙 = −1 otherwise. Then, we construct the
iagonal matrix 𝐷̂𝑙, with 𝐷̂𝑙 ,𝑖𝑖 ∶= 𝑦(𝑖)𝑙 , 𝑖 = 1,… , 𝑚, and compute:

𝜔𝑙 ∶= max
𝑖=1,…,𝑚

(𝐷̂𝑙𝜉𝑙)𝑖 𝜔−𝑙 ∶= max
𝑖=1,…,𝑚

(−𝐷̂𝑙𝜉𝑙)𝑖.

Hypersurface 𝑆𝑙 ,0 is then shifted to get 𝑆𝑙 ∶= (𝑢𝑙 , 𝛾𝑙 − 1 + 𝜔𝑙) and
−𝑙 ∶= (𝑢𝑙 , 𝛾𝑙+ 1 −𝜔−𝑙) in the input space. The corresponding hyperplanes

in the feature space satisfy properties (P1)–(P3). Finally, the optimal
decision boundary for class 𝑙 versus all the others is 𝑆𝑙 ,−𝑙 ∶= (𝑢𝑙 , 𝑏𝑙),

ith 𝑏𝑙 solution of the following model:

min
𝑏𝑙

𝑚
∑

𝑖=1
1

(

𝑦(𝑖)𝑙 𝑏𝑙 − 𝑦(𝑖)𝑙

𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)
𝑙 𝑢𝑙 ,𝑗

)

s.t. 𝛾𝑙 + 1 − 𝜔−𝑙 ⩽ 𝑏𝑙 ⩽ 𝛾𝑙 − 1 + 𝜔𝑙 .

(10)

The decision function of the 𝑙th class is given by 𝑓𝑙(𝑥) ∶=
∑𝑚

𝑖=1 𝑘
𝑥, 𝑥(𝑖))𝑦(𝑖)𝑙 𝑢𝑙 ,𝑖 − 𝑏𝑙, and each new observation 𝑥 ∈ R𝑛 is assigned to the
lass 𝑙∗ ∶= arg max𝑙=1,…,𝐿 𝑓𝑙(𝑥) (López et al., 2017).

Since the one-versus-all strategy generates 𝐿 binary classifiers, one
for each class, the computational complexity of our multiclass approach
is between 𝑂(𝐿 ⋅max{𝑚2, 𝑁max}) and 𝑂(𝐿 ⋅max{𝑚3, 𝑁max}).

We represent in Fig. 3 the results of the proposed methodology in
the case of a multiclass classification task. The parameters 𝑞 and 𝜈 are
the same as in Fig. 1. Similarly to the binary case (see Fig. 1(a)), it may
happen that either 𝑆𝑙 or 𝑆−𝑙 coincides with 𝑆𝑙 ,−𝑙. This is due to the fact
that in model (10) the optimal parameter 𝑏𝑙 may be equal to 𝛾𝑙 − 1 +𝜔𝑙
r 𝛾𝑙 + 1 − 𝜔−𝑙, respectively.

5. A robust model for nonlinear SVM

In this section, we derive the robust counterpart of the deter-
inistic approach discussed so far, when input data are plagued by
ncertainties. According to the RO framework, we construct an uncer-
ainty set around each observation and optimize against the worst-case
ealization across the entire uncertainty set (Bertsimas et al., 2019).
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Fig. 1. Separating surfaces obtained with linear and Gaussian RBF kernel functions. Support vectors are depicted as stars.
Fig. 2. Graphical representation of the implicit function defined by Eq. (6), in the case of Gaussian RBF kernel (𝛼 = 1.9), along with the separating hyperplanes and decision

boundaries. Support vectors are drawn as stars.
Fig. 3. Separating surfaces obtained with linear and Gaussian RBF kernel functions in the case of a three-classes classification task. For each class 𝑙 = 1, 2, 3, the dotted line and

the dashed line represent respectively 𝑆𝑙 and 𝑆−𝑙 .
Contrariwise to RO models dealing with linear classification (see,
for instance, Faccini et al., 2022), in the nonlinear context data points
𝑥(𝑖) are mapped into the feature space  via 𝜙(⋅) and uncertainty
sets 

(

𝜙(𝑥(𝑖))
)

have to be constructed. Unfortunately, a closed-form


6 
expression of 𝜙(⋅) is rarely available and an a priori control about


(

𝜙(𝑥(𝑖))
)

is not possible. Therefore, further assumptions on the un-

certainty set 
(

𝜙(𝑥(𝑖))
)

in the feature space are necessary.

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The remainder of the section is organized as follows. In Section 5.1
bounded-by-𝓁𝑝-norm uncertainty sets 𝑝(𝑥(𝑖)) are constructed, together
with the corresponding ones 

(

𝜙(𝑥(𝑖))
)

in the feature space. Bounds
on the radii of 

(

𝜙(𝑥(𝑖))
)

are derived in Section 5.2. Finally, in
ection 5.3 the robust counterpart of models (5) and (9) is rigorously
educed, together with computationally tractable reformulations.

5.1. The construction of the uncertainty sets

We assume that each observation 𝑥(𝑖) in the input space is subject to
an additive and unknown perturbation vector 𝜎(𝑖), whose 𝓁𝑝-norm, with
∈ [1,∞], is bounded by a nonnegative constant 𝜂(𝑖). Consequently, the
ncertainty set around 𝑥(𝑖) has the following expression:

𝑝(𝑥(𝑖)) ∶=
{

𝑥 ∈ R𝑛 ∶ 𝑥 = 𝑥(𝑖) + 𝜎(𝑖), ‖𝜎(𝑖)‖𝑝 ⩽ 𝜂(𝑖)
}

. (11)

Parameter 𝜂(𝑖) calibrates the degree of conservatism: if 𝜂(𝑖) = 0, then
(𝑖) is the zero vector of R𝑛 and 𝑝(𝑥(𝑖)) coincides with 𝑥(𝑖). Popular
hoices for the 𝓁𝑝-norm in the RO literature are 𝑝 = 1, 2,∞, leading to

polyhedral, spherical and box uncertainty sets, respectively.
In order to consider the extension towards the feature space, we

ow assume that, if 𝑥 belongs to 𝑝(𝑥(𝑖)), then:

𝜙(𝑥) = 𝜙(𝑥(𝑖) + 𝜎(𝑖)) = 𝜙(𝑥(𝑖)) + 𝜁 (𝑖),

where the perturbation 𝜁 (𝑖) belongs to the feature space  and its
-norm is bounded a nonnegative constant 𝛿(𝑖). The latter may be

nknown but it depends on the known bound 𝜂(𝑖) in the input space,
.e. 𝛿(𝑖) = 𝛿(𝑖)

(

𝜂(𝑖)
)

. If no uncertainty occurs in the input space, no
ncertainty will occur in the feature space too: 𝜂(𝑖) = 0 implies 𝛿(𝑖) = 0.
ence, the uncertainty set around 𝜙(𝑥(𝑖)) in the feature space is modeled
s:


(

𝜙(𝑥(𝑖))
)

∶=
{

𝑧 ∈  ∶ 𝑧 = 𝜙(𝑥(𝑖)) + 𝜁 (𝑖), ‖𝜁 (𝑖)‖ ⩽ 𝛿(𝑖)
}

. (12)

5.2. Bounds on the uncertainty sets in the feature space

Let 𝑘(⋅, ⋅) be a symmetric and positive semidefinite kernel, with
orresponding feature map 𝜙(⋅). In the following, we derive closed-form

expressions for the radius 𝛿(𝑖) in the feature space given the bound 𝜂(𝑖)

n the input space, when 𝑘(⋅, ⋅) is the polynomial kernel or the Gaussian
RBF kernel. Below, we provide the results and relegate the proofs to
Appendix A.

Proposition 1 (Polynomial Kernel). Let 𝑝(𝑥(𝑖)) and 
(

𝜙(𝑥(𝑖))
)

be the
uncertainty sets in the input and in the feature space as in (11) and (12),
respectively, with 𝑝 ∈ [1,∞]. Consider the inhomogeneous polynomial kernel
of degree 𝑑 ∈ N and additive constant 𝑐 ⩾ 0, with radius 𝛿(𝑖) ≡ 𝛿(𝑖)𝑑 ,𝑐 , and:

𝐶 = 𝐶(𝑛, 𝑝) =
⎧

⎪

⎨

⎪

⎩

1, 1 ⩽ 𝑝 ⩽ 2

𝑛
𝑝−2
2𝑝 , 𝑝 > 2.

(i) If 𝑑 = 1, then the radius of 
(

𝜙(𝑥(𝑖))
)

is:

𝛿(𝑖)1,𝑐 = 𝐶 𝜂(𝑖). (13)

(ii) If 𝑑 > 1, then:

𝛿(𝑖)𝑑 ,𝑐 =

√

√

√

√

√

(

𝛿(𝑖)𝑑 ,0
)2 +

𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[𝑑−𝑘
∑

𝑗=1

(

𝑑 − 𝑘
𝑗

)

‖

‖

𝑥(𝑖)‖
‖

𝑑−𝑘−𝑗
2

(

𝐶 𝜂(𝑖))𝑗
]2
,

(14)

where 𝛿(𝑖)𝑑 ,0 is the bound for the corresponding homogeneous polynomial
kernel:

𝛿(𝑖)𝑑 ,0 =
𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

(

𝐶 𝜂(𝑖))𝑘. (15)
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Notice that when 𝑐 = 0, Eq. (14) reduces to Eq. (15).

Proposition 2 (Gaussian RBF Kernel). Let 𝑝(𝑥(𝑖)) and 
(

𝜙(𝑥(𝑖))
)

be
he uncertainty sets in the input and in the feature space as in (11) and

(12), respectively, with 𝑝 ∈ [1,∞]. Consider the Gaussian RBF kernel with
parameter 𝛼 > 0 and radius 𝛿(𝑖) ≡ 𝛿(𝑖)𝛼 . If:

𝐶 = 𝐶(𝑛, 𝑝) =
⎧

⎪

⎨

⎪

⎩

1, 1 ⩽ 𝑝 ⩽ 2

𝑛
𝑝−2
2𝑝 , 𝑝 > 2,

then:

𝛿(𝑖)𝛼 =

√

2 − 2 exp
(

−
(𝐶 𝜂(𝑖))2
2𝛼2

)

. (16)

We observe that Propositions 1–2 are consistent with Lemma 7
presented in Xu et al. (2009). However, in this paper we specify the
ounds for particular choices of the kernel functions. In addition,

we extend the result for a bounded-by-𝓁𝑝-norm uncertainty set for a
eneric 𝑝 ∈ [1,∞].

5.3. The robust model

Robustifying model (5) against the uncertainty set 𝑝(𝑥(𝑖)) yields the
following optimization program:

min
𝑢,𝛾 ,𝜉 ‖𝑢‖𝑞𝑞 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)
𝑚
∑

𝑗=1
𝑘(𝑥, 𝑥(𝑗))𝑦(𝑗)𝑢𝑗 ⩾ 1 − 𝜉𝑖 + 𝑦(𝑖)𝛾 ∀𝑥 ∈ 𝑝(𝑥(𝑖)), 𝑖 = 1,… , 𝑚

𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.
(17)

Model (17) cannot be solved in practice due to the infinite possibil-
ties for choosing 𝑥 in 𝑝(𝑥(𝑖)). Nevertheless, it can be reformulated in
 tractable form, as stated in the following theorem.

Theorem 1. Let 𝑝(𝑥(𝑖)) and 
(

𝜙(𝑥(𝑖))
)

be the uncertainty sets in
he input and in the feature space as in (11) and (12), respectively, with
𝑝 ∈ [1,∞]. Model (17) is equivalent to:

min
𝑢,𝛾 ,𝜉 ‖𝑢‖𝑞𝑞 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)
𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗 − 𝛿(𝑖)
𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗 ||
|

𝑢𝑗
|

|

|

⩾ 1 − 𝜉𝑖 + 𝑦(𝑖)𝛾 𝑖 = 1,… , 𝑚

𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.
(18)

Proof. The first set of constraints of model (17) is equivalent to:

min
𝑥∈𝑝(𝑥(𝑖))

𝑦(𝑖)
𝑚
∑

𝑗=1
𝑘(𝑥, 𝑥(𝑗))𝑦(𝑗)𝑢𝑗 ⩾ 1 − 𝜉𝑖 + 𝑦(𝑖)𝛾 𝑖 = 1,… , 𝑚. (19)

Due to the definition of 𝑝(𝑥(𝑖)), for all 𝑖 = 1,… , 𝑚 the left-hand side
f (19) can be re-stated as follows:

min
𝜎(𝑖)

𝑦(𝑖)
𝑚
∑

𝑗=1
𝑘(𝑥(𝑖) + 𝜎(𝑖), 𝑥(𝑗))𝑦(𝑗)𝑢𝑗

s.t. ‖𝜎(𝑖)‖𝑝 ⩽ 𝜂(𝑖).

(20)

According to the definition of the kernel function and the assump-
ion on 

(

𝜙(𝑥(𝑖))
)

, we have that:

𝑘(𝑥(𝑖) + 𝜎(𝑖), 𝑥(𝑗)) = ⟨𝜙(𝑥(𝑖) + 𝜎(𝑖)), 𝜙(𝑥(𝑗))⟩ = ⟨𝜙(𝑥(𝑖)) + 𝜁 (𝑖), 𝜙(𝑥(𝑗))⟩.
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Moreover, the linearity of the dot product in the feature space 
implies that model (20) can be written as follows:

min
𝜁 (𝑖)

𝑦(𝑖)
𝑚
∑

𝑗=1
⟨𝜁 (𝑖), 𝜙(𝑥(𝑗))⟩ 𝑦(𝑗)𝑢𝑗

s.t. ‖𝜁 (𝑖)‖ ⩽ 𝛿(𝑖),

(21)

where the term 𝑦(𝑖)
∑𝑚

𝑗=1⟨𝜙(𝑥
(𝑖)), 𝜙(𝑥(𝑗))⟩ 𝑦(𝑗)𝑢𝑗 is equivalent to 𝑦(𝑖)

∑𝑚
𝑗=1

𝐾𝑖𝑗𝑦(𝑗)𝑢𝑗 . Being independent of 𝜁 (𝑖), it is moved to the right-hand side
of (19).

Then, the modulus of the objective function of model (21) can be
bounded by ∑𝑚

𝑗=1
|

|

|

⟨𝜁 (𝑖), 𝜙(𝑥(𝑗))⟩||
|

⋅ ||
|

𝑢𝑗
|

|

|

. By applying the Cauchy–Schwarz
inequality in  and the boundedness condition on ‖

‖

‖

𝜁 (𝑖)‖‖
‖

, we get:
|

|

|

⟨𝜁 (𝑖), 𝜙(𝑥(𝑗))⟩||
|

⩽ ‖

‖

‖

𝜁 (𝑖)‖‖
‖

⋅‖‖
‖

𝜙(𝑥(𝑗))‖‖
‖

⩽ 𝛿(𝑖) ⋅
√

⟨𝜙(𝑥(𝑗)), 𝜙(𝑥(𝑗))⟩ = 𝛿(𝑖) ⋅
√

𝐾𝑗 𝑗 .

The value 𝐾𝑗 𝑗 is nonnegative, due to the positive semidefiniteness
f the Gram matrix 𝐾. Therefore, we obtain:
|

|

|

|

|

|

𝑦(𝑖)
𝑚
∑

𝑗=1
⟨𝜁 (𝑖), 𝜙(𝑥(𝑗))⟩ 𝑦(𝑗)𝑢𝑗

|

|

|

|

|

|

⩽ 𝛿(𝑖)
𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗 ||
|

𝑢𝑗
|

|

|

. (22)

Thus, the optimal value of model (21) is −𝛿(𝑖)
∑𝑚

𝑗=1
√

𝐾𝑗 𝑗 ||
|

𝑢𝑗
|

|

|

. By

replacing the minimization term with this optimal value in the first set
of constraints of (19), the thesis follows. □

When no uncertainty occurs in the data, 𝛿(𝑖) = 0 for all 𝑖 = 1,… , 𝑚
and the robust model (18) reduces to the deterministic formulation (5).

Model (18) is a convex nonlinear optimization model due to the
resence of the 𝓁𝑞-norm of 𝑢. Nevertheless, it can be reformulated as
Linear Programming (LP) problem when 𝑞 = 1 or 𝑞 = ∞ and as a

OCP problem when 𝑞 = 2, as stated in the following result. The proof
s provided in Appendix A.

Corollary 1. Model (18) can be expressed as a LP problem or as a SOCP
roblem in the following cases:

(a) Case 𝑞 = 1: LP problem

min
𝑢,𝛾 ,𝜉 ,𝑠

𝑚
∑

𝑖=1
𝑠𝑖 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)
𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗 − 𝛿(𝑖)
𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗𝑠𝑗 ⩾ 1 − 𝜉𝑖 + 𝑦(𝑖)𝛾 𝑖 = 1,… , 𝑚

𝑠𝑖 ⩾ −𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠𝑖 ⩾ 𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠𝑖, 𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.

(23)

(b) Case 𝑞 = 2: SOCP problem

min
𝑢,𝛾 ,𝜉 ,𝑠,𝑟,𝑡,𝑣 𝑟 − 𝑣 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)
𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗 − 𝛿(𝑖)
𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗𝑠𝑗 ⩾ 1 − 𝜉𝑖 + 𝑦(𝑖)𝛾 𝑖 = 1,… , 𝑚

𝑡 ⩾ ‖𝑢‖2
𝑟 + 𝑣 = 1
𝑟 ⩾

√

𝑡2 + 𝑣2

𝑠𝑖 ⩾ −𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠𝑖 ⩾ 𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠𝑖, 𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.

(24)
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(c) Case 𝑞 = ∞: LP problem

min
𝑢,𝛾 ,𝜉 ,𝑠,𝑠∞ 𝑠∞ + 𝜈

𝑚
∑

𝑖=1
𝜉𝑖

s.t. 𝑦(𝑖)
𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗 − 𝛿(𝑖)
𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗𝑠𝑗 ⩾ 1 − 𝜉𝑖 + 𝑦(𝑖)𝛾 𝑖 = 1,… , 𝑚

𝑠∞ ⩾ −𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠∞ ⩾ 𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠𝑖 ⩾ −𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠𝑖 ⩾ 𝑢𝑖 𝑖 = 1,… , 𝑚
𝑠∞ ⩾ 0

𝑠𝑖, 𝜉𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.
(25)

As in the deterministic setting, once 𝑢, 𝛾 and 𝜉 are obtained as
solutions of model (18), then 𝜔 and 𝜔 are computed according to
formulas (7). Finally, the optimal separating hypersurface 𝑆 = (𝑢, 𝑏)
is derived, where 𝑏 is the optimal solution of the following robust
ounterpart of problem (8):

min
𝑏

𝑚
∑

𝑖=1
1

[(

𝑦(𝑖)𝑏 − 𝑦(𝑖)
𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)𝑢𝑗 + 𝛿(𝑖)
𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗 ||
|

𝑢𝑗
|

|

|

)

𝑖

]

s.t. 𝛾 + 1 − 𝜔 ⩽ 𝑏 ⩽ 𝛾 − 1 + 𝜔.

(26)

When dealing with a multiclass classification task, the robust exten-
ion of model (9) for the 𝑙th class is given by:

min
𝑢𝑙 ,𝛾𝑙 ,𝜉𝑙

‖

‖

𝑢𝑙‖‖
𝑞
𝑞 + 𝜈

𝑚
∑

𝑖=1
𝜉𝑙 ,𝑖

s.t. 𝑦(𝑖)𝑙

𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)
𝑙 𝑢𝑙 ,𝑗 − 𝛿(𝑖)

𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗 ||
|

𝑢𝑙 ,𝑗 ||
|

⩾ 1 − 𝜉𝑙 ,𝑖 + 𝑦(𝑖)𝑙 𝛾𝑙 𝑖 = 1,… , 𝑚

𝜉𝑙 ,𝑖 ⩾ 0 𝑖 = 1,… , 𝑚.
(27)

The optimal parameter 𝑏𝑙 is the solution of:

min
𝑏𝑙

𝑚
∑

𝑖=1
1

[(

𝑦(𝑖)𝑙 𝑏𝑙 − 𝑦(𝑖)𝑙

𝑚
∑

𝑗=1
𝐾𝑖𝑗𝑦

(𝑗)
𝑙 𝑢𝑙 ,𝑗 + 𝛿(𝑖)

𝑚
∑

𝑗=1

√

𝐾𝑗 𝑗 ||
|

𝑢𝑙 ,𝑗 ||
|

)

𝑖

]

s.t. 𝛾𝑙 + 1 − 𝜔−𝑙 ⩽ 𝑏𝑙 ⩽ 𝛾𝑙 − 1 + 𝜔𝑙 .

(28)

Since the structural form of the robust models (18) and (27) is the
same as their deterministic equivalent, the time complexity analysis
provides analogous results.

For the sake of illustration, we depict in Fig. 4 the kernel-induced
decision boundaries of the robust model (23), considering the same
dataset of Fig. 1. The model is trained for both spherical (see Fig. 4(a))
and box (see Fig. 4(b)) uncertainty sets.

6. Computational results

In this section, we evaluate the performance of the deterministic
odels presented in Section 4 and their robust counterparts of Section 5

on a selection of 12 benchmark datasets taken from the UCI Machine
Learning Repository (Kelly, Longjohn, & Nottingham, 2023). The mod-
els were implemented in MATLAB (v. 2021b) and solved using CVX
v. 2.2, see Grant & Boyd, 2008, 2014) and MOSEK solver (v. 9.1.9,

see MOSEK ApS, 2019). All computational experiments were run on a
MacBookPro17.1 with a chip Apple M1 of 8 cores and 16 GB of RAM
memory. The MATLAB codes developed for the current proposal are

ade publicly available on GitHub (https://github.com/aspinellibg/
NonlinearSVM).

https://github.com/aspinellibg/NonlinearSVM
https://github.com/aspinellibg/NonlinearSVM
https://github.com/aspinellibg/NonlinearSVM
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Fig. 4. Separating surfaces obtained with Gaussian RBF kernel function from the robust model (23). The 𝓁𝑝-norms defining the uncertainty sets are 𝑝 = 2 (on the left) and 𝑝 = ∞
(on the right).
The benchmark datasets are listed in the first column of Table 3,
along with the corresponding number of observations 𝑚 and of features
𝑛. In this study we examine 10 binary classification problems and 2
multiclass classification problems.

The experimental setting is as follows. Each dataset was split into
training set, composed by the 𝛽% of the observations, and testing set,
composed by the remaining (100 −𝛽)%. We accounted for three different
values of 𝛽, leading to the holdouts 75%–25%, 50%–50%, and 25%–
75%. The partition was performed inline with the proportional random
sampling strategy (Chen, Tse, & Yu, 2001), meaning that the original
class balance in the entire dataset was maintained in both training and
testing set. Once the partition was complete, a kernel function 𝑘(⋅, ⋅)
was chosen and the training set used to train the deterministic classifier
for different values of input parameter 𝜈. Specifically, the deterministic
formulation was solved on the training dataset through a grid-search
strategy with five logarithmically spaced values of 𝜈 between 10−3

and 100, and setting 𝑁max = 104 as number of sub-intervals in the
linear search procedure (see Faccini et al., 2022). The optimal classifier
was chosen among the five candidates as the one minimizing the
misclassification error on the training set. Finally, the out-of-sample
error on the testing set was computed, as the ratio between the total
number of misclassified points in the testing set and its cardinality.
In order to get stable results, the partition in training and testing set
was performed 96 times in a repeated holdout fashion (Kim, 2009). The
choice of this number is motivated by the use of the Parallel Computing
Toolbox in MATLAB, since the code was parallelized on the 8 cores of
the working machine. The final results were then averaged.

As in the original work of Liu and Potra (2009) and in the robust
linear extension presented in Faccini et al. (2022), we considered
𝑞 = 1 in the objective function of the models. This choice provides
a good compromise between structural risk minimization, related to
the misclassification error, and parsimony since it automatically per-
forms feature selection (Labbé, Martínez-Merino, & Rodríguez-Chía,
2019; Lee, Yoon, & Won, 2022; Liao, Dai, & Kuosmanen, 2024; López,
Maldonado, & Carrasco, 2019).

As far as it concerns the kernel function 𝑘(⋅, ⋅), we tested seven
different alternatives: homogeneous linear (𝑑 = 1, 𝑐 = 0), homogeneous
quadratic (𝑑 = 2, 𝑐 = 0), homogeneous cubic (𝑑 = 3, 𝑐 = 0); in-
homogeneous linear, inhomogeneous quadratic, inhomogeneous cubic;
Gaussian RBF. For simplicity, parameter 𝛼 in the Gaussian RBF kernel
was set as the maximum value of the standard deviation across features
for the dataset under consideration. Similarly for parameter 𝑐 in the
inhomogeneous polynomial kernels.

Since models (5), (9) and their robust extensions (18), (27) are
distance-based, imbalances in the order of magnitude of the features
may result in distorted weights when classifying. For this reason, we
9 
considered min–max normalization and standardization as pre-processing
techniques of data transformation (Han, Kamber, & Pei, 2011). On
one hand, in the min–max normalization each dataset was linearly
scaled feature-wise into the 𝑛-dimensional hypercube [0, 1]𝑛. On the
other hand, in the standardization the values of a specific feature 𝑗,
with 𝑗 = 1,… , 𝑛, were normalized based on its mean 𝜇𝑗 and standard
deviation 𝑠𝑡𝑑𝑗 .

Among all the optimal deterministic classifiers found for each pair
data transformation-kernel function, the best configuration was chosen
as the one minimizing the overall out-of-sample testing error. Within
this choice of data transformation-kernel function, the robust model
was solved. The bounds 𝜂(𝑖) on the perturbation vectors defining the
uncertainty sets 𝑝(𝑥(𝑖)) were adjusted as:

𝜂(𝑖) = 𝜂 ∶= 𝜌 max
𝑗=1,…,𝑛

𝑠𝑡𝑑𝑗 , ∀𝑖 ∶ 𝑥(𝑖) ∈ 

𝜂(𝑖) = 𝜂 ∶= 𝜌 max
𝑗=1,…,𝑛

𝑠𝑡𝑑𝑗 , ∀𝑖 ∶ 𝑥(𝑖) ∈ ,

where 𝜌 is a nonnegative parameter allowing the user to tailor the
degree of conservatism and max𝑗=1,…,𝑛 𝑠𝑡𝑑𝑗 , is the maximum standard
deviation feature-wise for training points of class . Similarly for 𝜌
and max𝑗=1,…,𝑛 𝑠𝑡𝑑𝑗 ,. Once 𝜂(𝑖) had been determined, the computation
of the bound 𝛿(𝑖) in the feature space was performed according to
Propositions 1–2. For simplicity, we set 𝜌 = 𝜌 = 𝜌, and considered
7 logarithmically spaced values for 𝜌 between 10−7 and 10−1. When
the number of classes is greater than two, an analogous approach was
applied class-wise. As in the deterministic setting, we averaged the
out-of-sample testing errors for 96 random partitions of the dataset.

For each dataset, we report in Table 3 the best configuration data
transformation-kernel function, along with the average out-of-sample
testing errors and standard deviations for the deterministic and ro-
bust models (holdout 75% training set–25% testing set). We consid-
ered three types of uncertainty set, defined respectively by 𝓁1-, 𝓁2-
and 𝓁∞-norm. Detailed results are reported in Tables B.7–B.21 in
Appendix B.

We notice that all the considered robust formulations outperform
the corresponding deterministic models. In 6 out of 12 datasets the best
results are achieved by the box robust formulation (𝑝 = ∞). Since box
uncertainty sets are the widest around data points, this implies that
the proposed formulations benefit from a more conservative approach
when treating uncertainties. The last column of Table 3 shows the
robust Improvement Ratio (IR) over the deterministic counterpart. The
IR was computed as in Faccini et al. (2022) and according to the
following formula:

det rob*

IR ∶= 𝜏 − 𝜏

𝜏det ,
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Table 3
Average out-of-sample testing errors and standard deviations over 96 runs for the deterministic and robust models. Best results are highlighted. The last column displays the robust
mprovement ratios over the deterministic counterparts. Holdout: 75% training set-25% testing set.
Dataset Data transformation Kernel Deterministic Robust Robust

𝑚 × 𝑛 𝑝 = 1 𝑝 = 2 𝑝 = ∞ improvement ratio

Arrhythmia – Gaussian RBF 20.47% ± 0.07 𝟏𝟗.𝟏𝟐% ± 𝟎.𝟎𝟖 19.30% ± 0.07 19.61% ± 0.07 6.60%
68 × 279

CPU time (s) 0.289 0.290 0.288 0.295

Parkinson Min–max normalization Hom. linear 13.19% ± 0.03 12.98% ± 0.03 𝟏𝟐.𝟑𝟕% ± 𝟎.𝟎𝟑 12.61% ± 0.04 6.22%
195 × 22

CPU time (s) 3.626 3.421 3.454 3.418

Heart Disease Standardization Inhom. linear 17.48% ± 0.04 16.84% ± 0.04 17.53% ± 0.03 𝟏𝟔.𝟑𝟔% ± 𝟎.𝟎𝟒 6.41%
297 × 13

CPU time (s) 12.253 11.602 11.477 11.417

Dermatology – Inhom. quadratic 1.64% ± 0.02 1.65% ± 0.01 1.57% ± 0.01 𝟎.𝟓𝟓% ± 𝟎.𝟎𝟏 66.46%
358 × 34

CPU time (s) 20.173 20.055 20.420 20.147

Climate Model Crashes – Hom. linear 5.01% ± 0.02 4.47% ± 0.02 4.50% ± 0.01 𝟒.𝟑𝟒% ± 𝟎.𝟎𝟏 13.37%
540 × 18

CPU time (s) 68.069 66.762 67.169 67.381

Breast Cancer Diagnostic Min–max normalization Inhom. quadratic 3.02% ± 0.02 2.63% ± 0.01 2.65% ± 0.01 𝟐.𝟑𝟗% ± 𝟎.𝟎𝟏 20.86%
569 × 30

CPU time (s) 77.786 77.968 78.267 77.543

Breast Cancer Standardization Hom. linear 3.17% ± 0.01 𝟐.𝟗𝟕% ± 𝟎.𝟎𝟏 3.07% ± 0.01 3.06% ± 0.01 6.31%
683 × 9

CPU time (s) 135.765 135.651 137.039 136.286

Blood Transfusion Standardization Inhom. cubic 20.72% ± 0.02 20.60% ± 0.02 𝟐𝟎.𝟓𝟓% ± 𝟎.𝟎𝟐 20.64% ± 0.02 0.82%
748 × 4

CPU time (s) 178.136 178.751 179.682 180.083

Mammographic Mass Standardization Inhom. quadratic 15.71% ± 0.02 15.49% ± 0.02 𝟏𝟓.𝟒𝟐% ± 𝟎.𝟎𝟐 15.54% ± 0.02 1.85%
830 × 5

CPU time (s) 241.205 241.810 242.614 241.929

Qsar Biodegradation Min–max normalization Gaussian RBF 12.88% ± 0.02 𝟏𝟏.𝟕𝟖% ± 𝟎.𝟎𝟏 12.72% ± 0.02 12.86% ± 0.02 8.54%
1055 × 41

CPU time (s) 484.908 498.235 495.073 491.748

Iris − Gaussian RBF 3.10% ± 0.03 3.07% ± 0.03 3.21% ± 0.03 𝟐.𝟖𝟕% ± 𝟎.𝟎𝟑 7.42%
150 × 4 (3 classes)

CPU time (s) 5.391 5.684 5.627 5.604

Wine Standardization Inhom. linear 2.77% ± 0.02 2.63% ± 0.02 2.63% ± 0.02 𝟐.𝟓𝟏% ± 𝟎.𝟎𝟐 9.39%
178 × 13 (3 classes)

CPU time (s) 7.916 8.361 8.352 8.605
d
d
a
t
a
t
m
c

c
(

where 𝜏det and 𝜏rob* are the average out-of-sample testing errors of the
deterministic and the best robust performing model, respectively. The
results on the IR further confirm that robust methods provide superior
ccuracy when the uncertainty is handled in the classification process.

Extensive results on the improvement ratio are reported in Table B.22
n Appendix B.

For the sake of completeness, we explore in details the performance
of the proposed models when classifying datasets ‘‘Parkinson’’ and
‘Breast Cancer Diagnostic’’. First of all, we discuss the results of the
eterministic approach, with respect to both data transformation and
ernel function. The out-of-sample testing errors for the holdout 75%–
5% are depicted in Fig. 5, while detailed results are reported in Table
.7 in Appendix B. We note that the worst performance occurs when

no data transformations are applied. Conversely, min–max normaliza-
tion and standardization provide good and comparable results. Similar
conclusions can be drawn for holdouts 50%–50% and 25%–75% (see
Tables B.8–B.9 in Appendix B).

In order to evaluate the performance of the robust model, we
consider 60 logarithmically spaced values of 𝜌 between 10−7 and 10−1.
The results are depicted in Fig. 6. We notice that increasing the value
of 𝛽 leads to better performance in terms of the overall out-of-sample
testing error (see Figs. 6(a), 6(c)), since more data points in the training
et are available as input of the optimization model. In addition, when
10 
perturbations are included in the model, the performance improves
with respect to the deterministic case. Indeed, the great majority of the
points lies below the corresponding horizontal line, representing the
out-of-sample testing error of the deterministic classifier. Interestingly,
the increase of the uncertainty impacts differently on the two classes
(see Figs. 6(b), 6(d)). For instance, the ‘‘Breast Cancer Diagnostic’’
ataset is not able to bear high levels of uncertainty (𝜌 > 10−3) since all
ata points of class , representing patients with a malignant tumor,
re misclassified. On the other hand, all observations in class  (pa-
ients with a benign tumor) are assigned to the correct category. From
 practical perspective, given that classifying people with a malignant
umor as people with a benign tumor is worse than the opposite, robust
odels with low degree of perturbation should be considered in this

ase.

In Table 4 we report a comparison between the best results of
Table 3 and the out-of-sample testing errors provided by the SVM
lassifier of scikit-learn, a popular ML library implemented in Python
Pedregosa et al., 2011). We tested the seven different kernels and

reported in column 5 the best choice in terms of the lowest out-of-
sample testing error. From column 6, it can be noted that in 8 out of
10 datasets the formulation proposed in this study outperforms the one
implemented in the scikit-learn library for SVM.
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Fig. 5. Out-of-sample testing error of the deterministic formulation applied to the datasets ‘‘Parkinson’’ and ‘‘Breast Cancer Diagnostic’’. Each triangle represents the lowest error
or the corresponding data transformation technique. Holdout: 75% training set–25% testing set.
Fig. 6. Out-of-sample testing error of the robust formulation applied to the datasets ‘‘Parkinson’’ and ‘‘Breast Cancer Diagnostic’’. Overall results are on the left, with the performance
f the deterministic classifier depicted as horizontal line for each holdout. Results divided by class are on the right. The values of 𝜌 are in logarithmic scale.
f

a

In addition, we compare the performance of our proposal with
esults from other SVM formulations present in the ML literature (see

Table 5). Specifically, as deterministic models we consider the linear
classifiers proposed in Bertsimas et al. (2019), Jayadeva et al. (2007),
and Liu and Potra (2009), as well as the kernelized TWSVM classi-
ier from Jayadeva et al. (2007). For all of these models, we tuned

the hyperparameter in the objective function using the same grid-
search strategy employed in this paper. Following Peng (2011), to
prevent issues related to ill-conditioning, we included a regularization
term in the objective function of the kernelized TWSVM approach
 t

11 
(see Suman, 2018 for further details on the MATLAB implementation).
Finally, our robust formulation was compared with the robust classi-
iers from Bertsimas et al. (2019) and Faccini et al. (2022). As shown

in Table 5a, in 5 out of 10 datasets the results of our determinis-
tic classifiers outperform the other methods. Consequently, the linear
approaches benefit from a generalization towards nonlinear classifier.
Table 5b further shows that our robust formulation achieves even better
ccuracy in most of the cases.

To assess the good performance of the proposed approach over
he other methods, we applied the Friedman test and the Holm test
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Table 4
Out-of-sample testing error comparison among best results of Table 3 and simulations from the scikit-learn SVM library (Pedregosa et al., 2011). The lowest out-of-sample testing
error within a dataset is highlighted.

Dataset Data transformation Table 3 Scikit-learn SVM library

Best kernel Result Best kernel Result

Arrhythmia − Gaussian RBF 𝟏𝟗.𝟏𝟐% ± 𝟎.𝟎𝟖 Gaussian RBF 19.48% ± 0.07
Parkinson Min–max normalization Hom. linear 12.37% ± 0.03 Inhom. cubic 𝟗.𝟒𝟏% ± 𝟎.𝟎𝟒
Heart Disease Standardization Inhom. linear 𝟏𝟔.𝟑𝟔% ± 𝟎.𝟎𝟒 Inhom. linear 16.63% ± 0.04
Dermatology − Inhom. quadratic 0.55% ± 0.01 Inhom. linear 𝟎.𝟏𝟏% ± 𝟎.𝟎𝟏
Climate Model Crashes − Hom. linear 𝟒.𝟑𝟒% ± 𝟎.𝟎𝟏 Inhom. linear 4.78% ± 0.01
Breast Cancer Diagnostic Min–max normalization Inhom. quadratic 𝟐.𝟑𝟗% ± 𝟎.𝟎𝟏 Hom. cubic 2.78% ± 0.01
Breast Cancer Standardization Hom. linear 𝟐.𝟗𝟕% ± 𝟎.𝟎𝟏 Gaussian RBF 3.04% ± 0.01
Blood Transfusion Standardization Inhom. cubic 𝟐𝟎.𝟓𝟓% ± 𝟎.𝟎𝟐 Inhom. cubic 21.65% ± 0.02
Mammographic Mass Standardization Inhom. quadratic 𝟏𝟓.𝟒𝟐% ± 𝟎.𝟎𝟐 Inhom. quadratic 16.05% ± 0.02
Qsar Biodegradation Min–max normalization Gaussian RBF 𝟏𝟏.𝟕𝟖% ± 𝟎.𝟎𝟏 Inhom. quadratic 12.57% ± 0.02
Table 5
Out-of-sample testing error comparison among deterministic and robust results obtained from SVM formulations in the literature. For each approach and dataset, the best result
s underlined.
(a) Deterministic formulations.

Dataset SVM classifier

This paper Linear Linear Linear TWSVM Kernelized TWSVM
Liu and Potra (2009) Bertsimas et al. (2019) Jayadeva et al. (2007) Jayadeva et al. (2007)

Arrhythmia 20.47% 25.65% 43.08% 20.34% 24.33%
Parkinson 13.19% 14.13% 14.36% 16.10% 15.71%
Heart Disease 17.48% 16.68% 15.93% 16.96% 16.31%
Dermatology 1.64% 0.56% 3.38% 1.12% 0.18%
Climate Model Crashes 5.01% 4.99% 5.00% 13.67% 5.92%
Breast Cancer Diagnostic 3.02% 4.89% 6.49% 3.62% 4.50%
Breast Cancer 3.17% 3.49% 5.00% 4.08% 4.00%
Blood Transfusion 20.72% 23.49% 23.62% 37.12% 23.22%
Mammographic Mass 15.71% – 18.07% 17.32% 17.92%
Qsar Biodegradation 12.88% – 12.51% 14.69% 13.24%

(b) Robust formulations.

Dataset SVM classifier

This paper Robust linear Robust linear
Faccini et al. (2022) Bertsimas et al. (2019)

Arrhythmia 19.12% 23.00% 29.23%
Parkinson 12.37% 13.00% 16.41%
Heart Disease 16.36% 16.20% 16.61%
Dermatology 0.55% 0.13% 1.13%
Climate Model Crashes 4.34% 4.34% 4.07%
Breast Cancer Diagnostic 2.39% 3.89% 4.04%
Breast Cancer 2.97% 3.12% 4.26%
Blood Transfusion 20.55% 22.55% 23.62%
Mammographic Mass 15.42% – 19.28%
Qsar Biodegradation 11.78% – 12.42%
t

t
t

(Demšar, 2006). First of all, we computed the average rank 𝑅𝑗 for
ach of the methods on the basis of the out-of-sample testing error
see columns 2 and 4 in Table 6). Then, the Friedman test with
man–Davenport correction is applied to verify whether such ranks are
tatistically similar (null hypothesis). The statistic 𝐹𝐹 associated with
he test is given by:

𝐹𝐹 =
(𝑁𝑑 − 1)𝜒2

𝐹

𝑁𝑑 (𝑁𝑚 − 1) − 𝜒2
𝐹

,

with

𝜒2
𝐹 =

12𝑁𝑑
𝑁𝑚(𝑁𝑚 + 1)

[𝑁𝑚
∑

𝑗=1
𝑅2
𝑗 −

𝑁𝑚(𝑁𝑚 + 1)2
4

]

,

where 𝑁𝑑 = 8 is the number of datasets (we excluded ‘‘Mammo-
graphic Mass’’ and ‘‘Qsar Biodegradation’’ since they were not consid-
ered in Faccini et al., 2022) and 𝑁𝑚 is the number of methodologies (5
or the deterministic and 3 for the robust). Under the null hypothesis,
𝐹 is distributed according to the 𝐹 -distribution with 𝑁𝑚 − 1 and
𝑁𝑚− 1)(𝑁𝑑− 1) degrees of freedom. In our case, the 𝑝-values associated
ith the Friedman test are 0.243 and 0.014 for the deterministic and

obust approach, respectively. This implies that for the robust classifiers
12 
the null hypothesis of equal ranks is rejected with a significance level
lower than 𝛼𝑅 = 5%. Since such hypothesis does not hold, we performed
pairwise comparisons between the robust classifier with the highest
rank 𝑅∗ and those remaining. To this extent, we considered the Holm
est (Demšar, 2006) whose statistic 𝑧𝑗 for comparing the best classifier

with the 𝑗th one is computed as follows:

𝑧𝑗 = (𝑅∗ − 𝑅𝑗 )

√

6𝑁𝑑
𝑁𝑚(𝑁𝑚 + 1) .

Under the null hypothesis of outperformance of the best method
over the others, the test statistic is distributed as a standard normal
distribution. The results of the Holm test are presented in Table 6 (see
columns 3–7). The null hypothesis is rejected when the 𝑝-value of the
est is below the significance thresholds of column 6. It can be seen that
he proposed model achieves the highest rank in both the deterministic

and robust formulation, outperforming the robust linear SVM approach
presented in Bertsimas et al. (2019). On the other hand, there are no
statistically significant differences between our proposal and the robust
method devised in Faccini et al. (2022), even if in most cases the
results confirm the good performance of the proposed methodology (see
Table 5b).
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Table 6
Mean ranks of the deterministic formulations (columns 1–2). Holm test for pairwise comparison of robust formulations, with 𝛼𝑅 = 0.05 and 𝑗 = 2, 3 (columns 3–7).

Deterministic formulation Robust formulation

SVM classifier Mean rank SVM classifier Mean rank 𝑝-value 𝛼𝑅∕(𝑗 − 1) Action

This paper 2.250 This paper 1.438 – – –
Faccini et al. (2022) 2.625 Faccini et al. (2022) 1.813 0.453 0.050 Not reject
Kernelized TWSVM (Jayadeva et al., 2007) 2.750 Bertsimas et al. (2019) 2.750 0.009 0.025 Reject
Linear TWSVM (Jayadeva et al., 2007) 3.625
Bertsimas et al. (2019) 3.750
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From Table 3 it can be noticed that the choice of the best data
transformation method strongly depends on the dataset. In order to
uide the final user among the three possible techniques, we report
n Table B.23 in Appendix B summary statistics on the 10 datasets

deployed for binary classification task. Specifically, for each feature
we compute the mean and the corresponding coefficient of variation,
defined as the ratio between the standard deviation and the mean.
In Table B.23 we list the minimum and the maximum values of the
two considered indices for each dataset, along with the correspond-
ing best data transformation. We argue that, whenever the values
of the observations are close, the best approach is to classify the
original data without any transformation (see datasets ‘‘Arrhythmia’’,
‘‘Dermatology’’ and ‘‘Climate Model Crashes’’). In the extreme case of
constant features, pre-processing techniques of data transformation
cannot be applied (see dataset ‘‘Arrhythmia’’). On the other hand,
the min–max normalization is a suitable choice when the order of
magnitude across the features varies a lot. For instance, in datasets
‘‘Parkinson’’ and ‘‘Breast Cancer Diagnostic’’ there are 7 and 5 orders
of magnitude of difference between the minimum and the maximum
value of the mean of the features, respectively. Finally, standardization
is an appropriate technique in all other cases, where no significant
differences occur among the orders of magnitude of the features (see
datasets ‘‘Heart Disease’’, ‘‘Breast Cancer’’, ‘‘Blood Transfusion’’ and
‘‘Mammographic Mass’’).

Finally, numerical results show that the computational time is sig-
nificantly high for datasets with a large number of observations, espe-
cially when considering 75% of the instances as training set (see Table
B.7 in Appendix B). The performing speed benefits from a reduction
of 𝛽, even if at the cost of worsening the accuracy. Nevertheless,
when datasets are equally split in training and testing set, the out-
of-sample testing error does not increase significantly if compared to
the holdout 75%–25% (see Table B.8). A similar conclusion can be
drawn for the robust model (see Tables B.13–B.16). Conversely, from
the time complexity analysis, it should be noticed that the number
𝑁max of sub-intervals chosen to solve problem (8) and its variants
impacts on the overall computational time especially when the number
of observations is not significantly high. Therefore, the final user should
properly choose the values of 𝛽 and 𝑁max to guarantee high accuracy
in a reasonable time.

7. Conclusions

In this paper, we have proposed novel optimization models for
solving binary and multiclass classification tasks through a Support
Vector Machine (SVM) approach. From a methodological perspective,
we have extended the techniques presented in Faccini et al. (2022) and
Liu and Potra (2009) to the nonlinear context through the introduction
f kernel functions. Data are mapped from the input space to the feature
pace where a first classification via kernelized SVM is performed. The
ptimal classifier is then constructed as the solution of a linear search
rocedure aiming to minimize the overall misclassification error.

Motivated by the uncertain nature of real-world data, we have
adopted a Robust Optimization (RO) approach by constructing around
each training data a bounded-by-𝓁𝑝-norm uncertainty set, with 𝑝 ∈
[1,∞]. Perturbation propagates from the input space to the feature
space through the feature map associated with the kernel function. To
13 
face this problem, we have rigorously derived closed-form expressions
for the uncertainty set bounds in the feature space, extending the
results present in the literature. Thanks to this, we have formulated
the robust counterpart of the deterministic models in the case of
nonlinear classifiers. To enhance generalization, in all the proposed
formulations we have considered a 𝓁𝑞-norm with 𝑞 ∈ [1,∞] as measure
of the SVM-margin. Since the resulting robust problem turns to be
convex but nonlinear, we have proved that in specific cases it can be
reformulated as a LP or a SOCP problem, with clear advantages in terms
of computational efficiency.

The proposed models have been tested on real-world datasets, con-
idering different combinations of data transformations and kernel
unctions. The results show that our robust formulation outperforms
ther linear and kernelized SVM approaches in most cases. This has
een confirmed by classical statistical tests deployed to compare the
erformance of machine learning techniques. Overall, the models ben-
fit from including uncertainty in the training process. The accuracy
s clearly affected by the choice of the kernel function and of the data
ransformation before training. Therefore, we have provided insights to
uide the final user in choosing the best configuration.

Regarding future advancements, various streams of research can
riginate from this work. First of all, extend the approach to handle
ncertainties in the labels of training data. This could increase the
eneralization capability of the models. Additionally, in this work
e have followed the classical RO approach of including uncertainty

during the training phase (see, for instance, Bertsimas et al., 2019).
t could be noteworthy to consider perturbations both in the training

and in the testing sets. However, this choice increases the complexity
of the models and novel measures to quantify the accuracy have to be
devised, since it is not obvious how to classify an entire uncertainty set
in one class or another as opposed to the case of single data point. The
main limitation of the current proposal is the complexity of the two-step
procedure, leading to a time-consuming process. Further techniques
could be employed to speed up the approach and to optimize the
tuning phase of the model’s parameters (see, for example, the Bayesian
ptimization in Snoek, Larochelle, & Adams, 2012). Finally, different

methodologies could be applied to further robustify the models. For in-
tance, Chance-Constrained Programming and Distributionally Robust
ptimization with ambiguity sets defined by moments, phi-divergences
r Wasserstein distance merit further research too.
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Appendix A. Supplementary proofs

We first recall a lemma that will be useful to prove Propositions 1–2.

Lemma 1 (Inequalities in 𝓁𝑝-norm). Let 𝑥 be a vector in R𝑛. If 1 ⩽ 𝑝 ⩽
𝑞 ⩽ ∞, then:

‖𝑥‖𝑞 ⩽ ‖𝑥‖𝑝 ⩽ 𝑛
1
𝑝 − 1

𝑞
‖𝑥‖𝑞 . (A.1)

Proof. We consider the two inequalities separately, starting from
𝑥‖𝑞 ⩽ ‖𝑥‖𝑝. First of all, if 𝑥 = 0, then the inequality is obviously

true. Otherwise, let 𝑦 ∈ R𝑛 such that 𝑦𝑖 ∶= |

|

𝑥𝑖|| ∕ ‖𝑥‖𝑞 for 𝑖 = 1,… , 𝑛.
Therefore, 0 ⩽ 𝑦𝑖 ⩽ 1. Indeed:

‖𝑥‖𝑞𝑞 =
𝑛
∑

𝑖=1

|

|

𝑥𝑖||
𝑞 ⩾ |

|

𝑥𝑖||
𝑞 ,

for all 𝑖 = 1,… , 𝑛 and thus |

|

𝑥𝑖|| ∕ ‖𝑥‖𝑞 ⩽ 1. The hypothesis 𝑝 ⩽ 𝑞 and the
decreasing property of the exponential function with basis lower than
ne imply that:

𝑦𝑝𝑖 ⩾ 𝑦𝑞𝑖 , 𝑖 = 1,… , 𝑛.

By summing we have:

‖𝑦‖𝑝 ⩾ ‖𝑦‖𝑞 .

Finally, by definition of 𝑦 we derive that:
‖𝑥‖𝑝
‖𝑥‖𝑞

⩾
‖𝑥‖𝑞
‖𝑥‖𝑞

= 1,

from which the thesis follows.
On the other hand, to prove the second inequality we recall the

Hölder inequality (see, for instance, Rudin, 1987). Let 𝑎 and 𝑏 be in R𝑛.
If 𝑟 and 𝑟′ are conjugate exponents, i.e. 1

𝑟 + 1
𝑟′ = 1, with 1 ⩽ 𝑟, 𝑟′ ⩽ ∞,

then:

‖𝑎𝑏‖1 ⩽ ‖𝑎‖𝑟 ⋅ ‖𝑏‖𝑟′ ,

or, equivalently:
𝑛
∑

𝑖=1

|

|

𝑎𝑖|| ||𝑏𝑖|| ⩽
( 𝑛
∑

𝑖=1

|

|

𝑎𝑖||
𝑟
)

1
𝑟
⋅
( 𝑛
∑

𝑖=1

|

|

𝑏𝑖||
𝑟′
)

1
𝑟′
. (A.2)

First of all, we rewrite the 𝓁𝑝-norm of 𝑥 as:

‖𝑥‖𝑝𝑝 =
𝑛
∑

𝑖=1

|

|

𝑥𝑖||
𝑝 =

𝑛
∑

𝑖=1

|

|

𝑥𝑖||
𝑝 ⋅ 1.

In the Hölder inequality (A.2), let 𝑎 = 𝑥 and 𝑏 = 𝑒, i.e. the vector
of ones in R𝑛, and consider as conjugate exponents 𝑟 = 𝑞

𝑝 and 𝑟′ = 𝑞
𝑞−𝑝 .

Both 𝑟 and 𝑟′ are greater than or equal to 1 because, by hypothesis,
𝑝 ⩽ 𝑞. Consequently, we can bound the 𝓁𝑝-norm of 𝑥 by:

‖𝑥‖𝑝𝑝 ⩽
( 𝑛
∑

𝑖=1

(

|

|

𝑥𝑖||
𝑝)

𝑞
𝑝
)

𝑝
𝑞
⋅
( 𝑛
∑

𝑖=1
1

𝑞
𝑞−𝑝

)1− 𝑝
𝑞

=
( 𝑛
∑

|

|

𝑥𝑖||
𝑞
)

𝑝
𝑞
𝑛
1− 𝑝

𝑞 = ‖𝑥‖𝑝𝑞 𝑛
1− 𝑝

𝑞 .

𝑖=1

14 
Fig. A.7. Graphical representation of Lemma 1 in the case of 𝑝 = 1.3, 𝑞 = 2, 𝑛 = 2.
The dashed 𝓁2 unit ball lies between the 𝓁1.3 unit ball and the 𝓁1.3 ball with radius

1
1.3

− 1
2 ≈ 1.205.

Finally, the thesis follows by taking the 𝑝th root of both sides of the
inequality. □

A graphical representation of inequality (A.1) is depicted in Fig. A.7.
As special cases, Lemma 1 implies that, whenever 1 ⩽ 𝑝 ⩽ 2, then:

‖𝑥‖2 ⩽ ‖𝑥‖𝑝 . (A.3)

Conversely, if 𝑝 > 2, then:

‖𝑥‖2 ⩽ 𝑛
𝑝−2
2𝑝

‖𝑥‖𝑝 . (A.4)

Thus, combining these results, we can write:

‖𝑥‖2 ⩽ 𝐶 ‖𝑥‖𝑝 ,

with:

𝐶 = 𝐶(𝑛, 𝑝) =
⎧

⎪

⎨

⎪

⎩

1, 1 ⩽ 𝑝 ⩽ 2

𝑛
𝑝−2
2𝑝 , 𝑝 > 2.

(A.5)

Proof of Proposition 1. The -norm of the vector of perturbation 𝜁 (𝑖)

in the feature space can be expanded as:
‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


= ‖

‖

‖

𝜙(𝑥) − 𝜙(𝑥(𝑖))‖‖
‖

2



= ‖

‖

‖

𝜙(𝑥(𝑖) + 𝜎(𝑖)) − 𝜙(𝑥(𝑖))‖‖
‖

2



= ⟨𝜙(𝑥(𝑖) + 𝜎(𝑖)) − 𝜙(𝑥(𝑖)), 𝜙(𝑥(𝑖) + 𝜎(𝑖)) − 𝜙(𝑥(𝑖))⟩

= ⟨𝜙(𝑥(𝑖) + 𝜎(𝑖)), 𝜙(𝑥(𝑖) + 𝜎(𝑖))⟩ − 2⟨𝜙(𝑥(𝑖) + 𝜎(𝑖)), 𝜙(𝑥(𝑖))⟩
+ ⟨𝜙(𝑥(𝑖)), 𝜙(𝑥(𝑖))⟩
= 𝑘(𝑥(𝑖) + 𝜎(𝑖), 𝑥(𝑖) + 𝜎(𝑖)) − 2𝑘(𝑥(𝑖) + 𝜎(𝑖), 𝑥(𝑖)) + 𝑘(𝑥(𝑖), 𝑥(𝑖)).

(A.6)

By definition of the inhomogeneous polynomial kernel of degree 𝑑,
the last right-hand side of (A.6) becomes:
‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


=
(

‖

‖

‖

𝑥(𝑖) + 𝜎(𝑖)‖‖
‖

2

2
+ 𝑐

)𝑑
− 2(⟨𝑥(𝑖) + 𝜎(𝑖), 𝑥(𝑖)⟩ + 𝑐

)𝑑

+
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+ 𝑐

)𝑑

=
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+‖‖
‖

𝜎(𝑖)‖‖
‖

2

2
+ 2 ⟨𝜎(𝑖), 𝑥(𝑖)⟩ + 𝑐

)𝑑

− 2
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+ ⟨𝜎(𝑖), 𝑥(𝑖)⟩ + 𝑐

)𝑑
+
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+ 𝑐

)𝑑
.
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By applying the Cauchy–Schwarz inequality in R𝑛 to the terms
ontaining the dot product, the previous expression simplifies further,
eading to:
‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


⩽
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+‖‖
‖

𝜎(𝑖)‖‖
‖

2

2
+ 2 ‖‖

‖

𝜎(𝑖)‖‖
‖2

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ 𝑐
)𝑑

− 2
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2
‖

‖

‖

𝑥(𝑖)‖‖
‖2
+ 𝑐

)𝑑
+
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+ 𝑐

)𝑑

=
[(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)2
+ 𝑐

]𝑑

− 2
[

‖

‖

‖

𝑥(𝑖)‖‖
‖2

(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)

+ 𝑐
]𝑑

+
(

‖

‖

‖

𝑥(𝑖)‖‖
‖

2

2
+ 𝑐

)𝑑
.

Applying the binomial expansion to the three 𝑑th powers implies
hat:

‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


⩽

𝑑
∑

𝑘=0

(

𝑑
𝑘

)

𝑐𝑘
(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)2(𝑑−𝑘)

− 2
𝑑
∑

𝑘=0

(

𝑑
𝑘

)

𝑐𝑘 ‖‖
‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)𝑑−𝑘

+
𝑑
∑

𝑘=0

(

𝑑
𝑘

)

𝑐𝑘 ‖‖
‖

𝑥(𝑖)‖‖
‖

2(𝑑−𝑘)

2
.

We now split all the three sums by considering separately the cases
hen 𝑘 = 0, 𝑘 = 𝑑 and, then, all the intermediate cases. Firstly, let us

call 𝑎0 the addendum of the sum corresponding to 𝑘 = 0. Therefore:

𝑎0 =
(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)2𝑑
− 2 ‖‖

‖

𝑥(𝑖)‖‖
‖

𝑑

2

(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)𝑑
+ ‖

‖

‖

𝑥(𝑖)‖‖
‖

2𝑑

2

=
[(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)𝑑
− ‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑

2

]2

=
[ 𝑑
∑

𝑘=0

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2
‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑘

2
− ‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑

2

]2

=
[ 𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2
‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑘

2
+ ‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑

2
− ‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑

2

]2

=
[ 𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2
‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑘

2

]2
.

We notice that 𝑎0 is the only addendum of the sum that does not
contain 𝑐. This implies that 𝑎0 is related to the bound 𝛿(𝑖)𝑑 ,0 for the
homogeneous polynomial kernel.

Secondly, if 𝑘 = 𝑑, we have no contribution because 𝑐𝑑− 2𝑐𝑑+𝑐𝑑 = 0.
efore considering the cases 𝑘 = 1,… , 𝑑 − 1, we now investigate what
appens when the degree 𝑑 is equal to 1. Here, the index 𝑘 of the sums
oes from 0 to 1, and therefore, as seen before:

‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


⩽
(

𝛿(𝑖)hom
)2 =

(

𝐶 𝜂(𝑖))2.

Hence, when 𝑑 = 1, then 𝛿(𝑖)1,𝑐 = 𝐶 𝜂(𝑖). Conversely, when 𝑑 > 1, we
have all the addenda between 𝑘 = 1 and 𝑘 = 𝑑 − 1. Thus, by combining
all the three sums together we have:

‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


⩽𝑎0 +

𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[ (

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)2(𝑑−𝑘)

− 2 ‖‖
‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)𝑑−𝑘
+ ‖

‖

‖

𝑥(𝑖)‖‖
‖

2(𝑑−𝑘)

2

]

= 𝑎0 +
𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)𝑑−𝑘
− ‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

]2
.

Again, by applying the binomial expansion to the (𝑑 − 𝑘)-th power
of

(

‖

‖

‖

𝑥(𝑖)‖‖
‖2

+ ‖

‖

‖

𝜎(𝑖)‖‖
‖2

)

and by splitting the sum, we are able to simplify

the last term. Hence:
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‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


⩽ 𝑎0 +

𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[𝑑−𝑘
∑

𝑗=0

(

𝑑 − 𝑘
𝑗

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘−𝑗

2
‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑗

2
− ‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

]2

= 𝑎0 +
𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[𝑑−𝑘
∑

𝑗=1

(

𝑑 − 𝑘
𝑗

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘−𝑗

2
‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑗

2

]2
.

Therefore, by taking the square root:

‖

‖

‖

𝜁 (𝑖)‖‖
‖

⩽

√

√

√

√

√𝑎0 +
𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[𝑑−𝑘
∑

𝑗=1

(

𝑑 − 𝑘
𝑗

)

‖

‖

𝑥(𝑖)‖
‖

𝑑−𝑘−𝑗
2

‖

‖

𝜎(𝑖)‖
‖

𝑗
2

]2
.

According to inequalities (A.3)−(A.4) and to hypothesis ‖

‖

‖

𝜎(𝑖)‖‖
‖𝑝

⩽
𝜂(𝑖), we obtain that:

‖

‖

‖

𝜎(𝑖)‖‖
‖2

⩽

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖

‖

‖

𝜎(𝑖)‖‖
‖𝑝

⩽ 𝜂(𝑖), 1 ⩽ 𝑝 ⩽ 2

𝑛
𝑝−2
2𝑝 ‖

‖

‖

𝜎(𝑖)‖‖
‖𝑝

⩽ 𝑛
𝑝−2
2𝑝 𝜂(𝑖), 𝑝 > 2.

Finally, whenever 1 ⩽ 𝑝 ⩽ 2, we have that:

𝑎0 ⩽
[ 𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2
‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑘

𝑝

]2
⩽
[ 𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

(

𝜂(𝑖)
)𝑘
]2

=
(

𝛿(𝑖)𝑑 ,0
)2,

and the second addendum in the square root can be bounded by:
𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[𝑑−𝑘
∑

𝑗=1

(

𝑑 − 𝑘
𝑗

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘−𝑗

2

(

𝜂(𝑖)
)𝑗
]2
.

On the other hand, if 𝑝 > 2, then:

𝑎0 ⩽
[ 𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2
𝑛
𝑘(𝑝−2)
2𝑝 ‖

‖

‖

𝜎(𝑖)‖‖
‖

𝑘

𝑝

]2

⩽
[ 𝑑
∑

𝑘=1

(

𝑑
𝑘

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘

2

(

𝑛
𝑝−2
2𝑝 𝜂(𝑖)

)𝑘]2
=
(

𝛿(𝑖)𝑑 ,0
)2,

and similarly the second addendum in the square root is always less
than or equal to:
𝑑−1
∑

𝑘=1

(

𝑑
𝑘

)

𝑐𝑘
[𝑑−𝑘
∑

𝑗=1

(

𝑑 − 𝑘
𝑗

)

‖

‖

‖

𝑥(𝑖)‖‖
‖

𝑑−𝑘−𝑗

2

(

𝑛
𝑝−2
2𝑝 𝜂(𝑖)

)𝑗]2
. □

Proof of Proposition 2. For all 𝑥 in R𝑛, we have that 𝑘(𝑥, 𝑥) = 1 and,
hus, Eq. (A.6) reduces to:

‖

‖

‖

𝜁 (𝑖)‖‖
‖

2


= 1 − 2 exp

(

−
‖

‖

‖

𝑥(𝑖) + 𝜎(𝑖) − 𝑥(𝑖)‖‖
‖

2

2

2𝛼2

)

+ 1 = 2 − 2 exp
(

−
‖

‖

‖

𝜎(𝑖)‖‖
‖

2

2

2𝛼2

)

.

Therefore:

‖

‖

‖

𝜁 (𝑖)‖‖
‖

=

√

√

√

√

√2 − 2 exp
(

−
‖

‖

‖

𝜎(𝑖)‖‖
‖

2

2

2𝛼2

)

.

The thesis follows by applying inequalities (A.3)−(A.4) and by
considering the monotonicity of function 𝑔(𝑥) = − exp(−𝑥2) when 𝑥 >
. □

Proof of Corollary 1.

(a) If 𝑞 = 1, model (18) can be rewritten as model (23) by introducing
an auxiliary vector 𝑠 ∈ R𝑚 such that each component 𝑠𝑖 is equal
to |

|

𝑢𝑖|| and adding the constraints 𝑠𝑖 ⩾ 0, 𝑠𝑖 ⩾ −𝑢𝑖 and 𝑠𝑖 ⩾ 𝑢𝑖 for
all 𝑖 = 1,… , 𝑚.
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(b) If 𝑞 = 2, the quadratic term ‖𝑢‖22 can be transformed from
the objective function to the set of constraints by introducing
auxiliary variables 𝑟, 𝑡, 𝑣 ∈ R such that 𝑡 ⩾ ‖𝑢‖2, 𝑟 + 𝑣 = 1 and
𝑟 ⩾

√

𝑡2 + 𝑣2 (Qi et al., 2013). With the same reasoning at point
(a), model (18) reduces to model (24).

(c) If 𝑞 = ∞, by introducing an auxiliary variable 𝑠∞ ⩾ 0 equal to
‖𝑢‖∞, and adding the constraints 𝑠∞ ⩾ −𝑢𝑖 and 𝑠∞ ⩾ 𝑢𝑖 for all
𝑖 = 1,… , 𝑚, model (18) is equivalent to model (25) with the same
reasoning at point (a). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.12.014.
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