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In the last decades, the interest in non-ideal compressible fluid dynamics (NICFD) flows and high-

order accurate numerical methods, such as discontinuous Galerkin (dG), has quickly grown. In 
fact, advanced simulation capabilities are of paramount importance to develop new sustainable 
technologies with higher efficiency and low environmental impact, and to decrease the use of 
expensive experimental facilities. Nowadays however, the coupling of accurate Computational 
Fluid Dynamics (CFD) solvers with sophisticated thermodynamic models has been investigated 
mainly in the finite volume (FV) framework. Moreover, the solution of complex equations of state 
(EoS) has a too high computational cost for real-life use in industry, which is often overcome 
with the look-up table (LuT) interpolation approach. LuTs seem to be more suitable for FV 
solvers rather than high-order or finite element ones, since the interpolation error introduced 
may deteriorate the higher accuracy provided by these numerical methods. The novelty of this 
work lies in the assessment of an efficient implementation for real gas simulations in a high-

order solver, by resorting to structured LuTs and automatic differentiation (AD). The proposed 
implementation is assessed with the computation of the inviscid and turbulent flow around a 
NACA0012. This approach guarantees an overhead of the computational cost around 17% with 
respect to an ideal gas solver with manually derived jacobian matrix.

1. Introduction

In the last two decades, the interest in non-ideal compressible fluid dynamics (NICFD) flows has quickly grown, due to the 
engineering applications related to the conversion of renewable and waste energy sources, e.g., organic Rankine cycles (ORCs), 
supercritical carbon dioxide cycle power plants, combustors operating with supercritical fluids, gas liquefaction or carbon capture 
and storage (CCS) implants, and heat-pumps.

In this context, advanced CFD capabilities are of paramount importance to develop new sustainable technologies with higher 
efficiency and low environmental impact, and to decrease the use of expensive experimental facilities. The main problems that a CFD 
solver has to deal with in dense working conditions are the large compressibility effects that characterise a non-ideal gas, but also 
the possible presence of non-classical gas dynamic phenomena such as expansion shocks or compression fans.

These observations are pushing a continuous development in numerical models and schemes. The dense gas thermodynamic 
features strongly differ from those of an ideal gas and numerics based on an ideal gas behaviour may lose their consistency if strong 
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Nomenclature

AD Automatic Differentiation

CCS Carbon capture and storage

CFD Computational fluid dynamics

CFL Courant–Friedrichs–Lewy

dG discontinuous Galerkin

EoSs Equations of State

FD Finite differences

FEM Finite element methods

IG Ideal gas

LuT Look-up-Table

MD Manual differentiation

NICFD Non-ideal compressible fluid dynamics

NNPS Nearest neighbour point search

ORCs Organic Rankine cycles

PR Peng-Robinson

RANS Reynolds-Averaged Navier-Stokes equations

SW Span-Wagner

variations of the thermodynamic properties are present. This is the case, for example, of boundary conditions [1] or convective [2]

flux, or in general, of every numerical procedure that explicitly depends on the thermodynamic model used by the solver. For all these 
reasons a generalisation is required to work in such conditions, and the only effective solution is the use of a non-ideal gas model. 
Different thermodynamic models can be adopted, characterised by different levels of accuracy, but also different computational 
costs. Nowadays, the use of Equations of State (EoSs) that are cubic in the density, such as the Peng-Robinson [3] (PR) model, 
can represent a good compromise between the level of approximation of the non-ideal gas behaviour, and the computational cost. 
However, more accurate and costly models, e.g., multiparameter EoS, such as the Span-Wagner [4] (SW) model, can be mandatory 
for some applications.

The coupling of an accurate Computational Fluid Dynamics (CFD) solver with sophisticated thermodynamic models has been 
investigated, mainly in the finite volume framework [1,5]. However, the increasing computational power and the higher accu-

racy expected by the design offices worldwide, motivate the recent interest in higher-order accurate solvers, such as discontinuous 
Galerkin (dG) methods, which are particularly attractive for their geometrical flexibility, simple implementation of ℎ∕𝑝 adaptive 
algorithms [6,7], and compact stencil. Their drawback with respect to standard FV solvers is the higher computation cost, which 
prevents a widespread application. For this reason, the computational efficiency of a non-ideal gas models should be maximised in a 
high-order framework, obviously without spoiling the higher accuracy.

The present work aims to investigate the main aspects to perform efficient non-ideal gas simulations with an implicit dG 
solver [8,9], whose prediction capabilities have been recently extended to non-ideal gas [10,11]. In general, the non-ideal extension of 
a CFD code introduces an overhead in terms of computing time caused by the computation of thermodynamic properties/derivatives 
and thermodynamic dependent contributions to the jacobian matrix of the residual. A classical approach to reduce the compu-

tational cost associated to the EoS evaluation is the use of the look-up tables (LuTs) [12–16]. In a LuT method thermodynamic 
properties/derivatives are tabulated on a discrete set of values, which are used to interpolate values on the complete thermodynamic 
space. Normally, different tables are built for properties and derivatives, or properties tables are used to compute also derivative 
with a finite difference method. The former approach stores a huge number of tables that can increase excessively the memory 
consumption, while the latter can create convergence problem when complex transonic flow field is computed. Moreover, struc-

tured or unstructured tables can be used: the former allows a fast interpolation, while the latter allows a better representation of 
the saturation line and the possibility to exploit local adaptation algorithms. As the main goal is the non ideal simulation in the 
vapour zone maximising the computational efficiency, structured LuTs are adopted, where only properties tables are generated and 
derivatives are computed with an ad-hoc interpolant on the same properties tables. The computing time reduction with respect to 
EoS evaluation and the influence of the LuT interpolation error on the dG accuracy are investigated for inviscid and turbulent test 
cases. Moreover, two approaches are investigated for the efficient calculation of all the thermodynamic dependent contributions to 
the jacobian matrix of the residual, i.e., the Automatic Differentiation (AD) [17] and the Finite Differences (FD). Their computational 
efficiency are compared also with implicit computations based on a manually derived jacobian for the ideal gas. The main aspects 
investigated in this work are summarized in Fig. 1.

The paper is organized as follows: the main features of the solver are outlined in Sec. 2, where governing equations, thermody-

namic models, spatial and temporal discretization methods are described. In Sec. 3.1 the use of LuTs to approximate thermodynamic 
modelling is discussed and demonstrated. Section 3.2 describes possible solutions to compute the jacobian matrix, and an efficient 
choice based on AD is proposed, while Sec. 4 shows the performance of the proposed approach for the simulation of the inviscid 
and turbulent flow around a NACA0012 airfoil, using both the PR and SW models. Finally, concluding remarks are reported in 
Sec. 5. In Appendix A, examples of AD code generated by TAPENADE are reported in their original and modified (to improve the 
computational efficiency) version.

2. Implicit non-ideal gas dG solver

This section outlines the main features of the solver, with particular emphasis on the governing equations (Sec. 2.1), i.e., the 
RANS equations, the thermodynamic models (Sec. 2.2) and the spatial and temporal discretization methods (Sec. 2.3). For sake of 
2

briefness the Euler equations are here not reported.
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Fig. 1. Schematic representation of the building blocks investigated in this work to efficiently perform non-ideal gas simulations. The different blocks implemented in 
the solver concern: (𝑖) the flow model (Euler and RANS equations), (𝑖𝑖) the thermodynamic model (ideal gas, PR, and SW EoS), (𝑖𝑖𝑖) the resolution of the EoSs (direct 
evaluation of the EoS and LuT), and (𝑖𝑣) the jacobian computation (finite differences, automatic and manual differentiation). Each block can be used independently 
with the exception of the manually derived jacobian, which is available only for the ideal gas model.

2.1. Governing equations

The compressible Reynolds-Averaged Navier-Stokes (RANS) equations supplemented by the 𝑘-�̃� turbulence model [8,9,18] can 
be written as

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗 ) = 0, (1)

𝜕
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]
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𝜕𝑥𝑗
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, (5)

where 𝑢𝑖 is the flow velocity, 𝑝 the pressure, 𝜌 and 𝜇 the density and dynamic viscosity, 𝐸 and 𝐻 the total mass-specific internal 
energy and enthalpy, 𝜏𝑖𝑗 and 𝜏𝑖𝑗 the turbulent and overall shear stress tensors, 𝑞𝑗 the overall Fourier’s conductive heat flux, 𝜇𝑡 the 
turbulent dynamic viscosity, 𝑘 the limited mass-specific turbulent kinetic energy, and �̃� = log(𝜔) is the logarithm of the specific 
dissipation rate 𝜔. The different terms are

𝐸 = 𝑒+ 𝑢𝑘𝑢𝑘∕2, 𝐻 = ℎ+ 𝑢𝑘𝑢𝑘∕2,

𝜏𝑖𝑗 = 2𝜇𝑡
(
𝑆𝑖𝑗 −

1
3
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3
𝜌𝑘𝛿𝑖𝑗 , 𝜏𝑖𝑗 = 2𝜇
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𝛿𝑖𝑗
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+ 𝜏𝑖𝑗 ,( ) 𝜕𝑇 ∗ −�̃�
3

𝑞𝑗 = − 𝜆+ 𝜆𝑡 𝜕𝑥𝑗
, 𝜇𝑡 = 𝛼 𝜌𝑘𝑒 𝑟 , 𝑘 =max(0, 𝑘).
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𝛼, 𝛽, 𝛽∗, 𝜎, 𝜎∗ are the closure parameters of the turbulence model [19], while 𝜆 is the laminar thermal conductivity and 𝜆𝑡 the 
turbulent one (calculated using a constant turbulent Prandtl number). The value �̃�𝑟 satisfies the realizability condition for the 
turbulent stresses [9].

The compact form of Eqs. (1)-(5) is

𝐏(𝐰)𝜕𝐰
𝜕𝑡

+∇ ⋅ 𝐅𝑐(𝐰) + ∇ ⋅ 𝐅𝑣(𝐰,∇𝐰) + 𝐬(𝐰,∇𝐰) = 𝟎, (6)

where 𝐰 is the vector of the unknown variables, 𝐅𝑐 and 𝐅𝑣 are the convective and viscous fluxes, while 𝐬 is the source terms vector. 

The matrix 𝐏(𝐰) allows the change of variables from the standard conservative set to the primitive one 𝐰 =
[
𝑝, 𝑢1, 𝑢2, 𝑢3, 𝑇 , 𝑘, �̃�

]𝑇
, 

where 𝑝 = log(𝑝) and 𝑇 = log(𝑇 ) are used to enhance the solver’s robustness [9].

2.2. Thermodynamic models

The gas models used in this work are the cubic pressure-explicit PR EoS and the multiparameter Helmholtz-explicit SW EoS. The 
first one reads

𝑝(𝜌,𝑇 ) = 𝜌𝑅∗𝑇

(1 − 𝜌𝐵)
− 𝑎𝜌2𝛼2(𝑇 )

(1 + 2𝜌𝑏− 𝜌2𝑏2)
, (7)

where the coefficients 𝑎 = 0.45724(𝑅∗𝑇𝑐𝑟)2∕𝑝𝑐𝑟 and 𝑏 = 0.0778𝑅∗𝑇𝑐𝑟∕𝑝𝑐𝑟 are functions of the critical pressure and temperature of the 
fluid, 𝑝𝑐𝑟 and 𝑇𝑐𝑟, but also of the specific gas constant 𝑅∗ =𝑅∕𝑚𝑀 . 𝑅 = 8314.463𝐽∕(𝑘𝑚𝑜𝑙𝐾) is the universal gas constant and 𝑚𝑀 the 
molecular weight of the fluid. The function 𝛼(𝑇 ) = 1 + ℎ 

(
1 −

√
𝑇 ∕𝑇𝑐𝑟

)
is instead a function of ℎ = 0.37464 + 1.54226𝜃 − 0.26992𝜃2, 

which is in turn a function of the acentric factor of the fluid 𝜃. Thanks to an approximation, usually a polynomial, of the IG 
contribution to the isochoric specific heat 𝑐0𝑣 (𝑇 ), the IG internal energy and entropy are defined as

𝑒0(𝑇 ) = 𝑒0 +

𝑇

∫
𝑇0

𝑐0𝑣 (𝜂)𝑑𝜂, 𝑠0(𝜌,𝑇 ) = 𝑠0 +

𝑇

∫
𝑇0

𝑐0𝑣
𝜂
𝑑𝜂 −𝑅∗ log

(
𝜌

𝜌0

)
, (8)

where (𝜌0, 𝑇0, 𝑒0, 𝑠0) represents an arbitrary reference state. Then, by using Eq. (7), the non-ideal gas internal energy and entropy are 
calculated as

𝑒(𝜌,𝑇 ) = 𝑒0(𝑇 ) +

𝜌

∫
0

1
𝜉2

[
𝑝− 𝑇

(
𝜕𝑝

𝜕𝑇

)
𝜉

]
𝑑𝜉, (9)

𝑠(𝜌,𝑇 ) = 𝑠0(𝜌,𝑇 ) +

𝜌

∫
0

1
𝜉2

[
𝜉𝑅∗ −

(
𝜕𝑝

𝜕𝑇

)
𝜉

]
𝑑𝜉. (10)

The SW EoS is instead given in the form

𝑎(𝜌,𝑇 )
𝑅∗𝑇

= 𝑒(𝜌,𝑇 )
𝑅∗𝑇

− 𝑠(𝜌,𝑇 )
𝑅∗ = 𝜓(𝛿, 𝜏) = 𝜓0(𝛿, 𝜏) +𝜓𝑟(𝛿, 𝜏), (11)

where 𝜓(𝛿, 𝜏) is the non-dimensional free Helmholtz energy of the fluid, expressed as the sum of an ideal, 𝜓0(𝛿, 𝜏), and of a non-ideal, 
𝜓𝑟(𝛿, 𝜏), gas contribution. They are both functions of a non-dimensional density and temperature 𝛿 = 𝜌∕𝜌𝑐𝑟 and 𝜏 = 𝑇𝑐𝑟∕𝑇 , where 
𝜌𝑐𝑟 is the critical density of the fluid. The dimensional IG contribution can be calculated as 𝑎0(𝜌, 𝑇 ) = 𝑒0 − 𝑇 𝑠0 with Eq. (8), and an 
approximation of the IG contribution to the isochoric specific heat is

𝑐0𝑣 (𝑇 ) =
𝑛𝑝𝑜𝑙∑
𝑖=1

(
𝑐1,𝑖𝑇

𝑐2,𝑖
)
+
𝑛𝑒𝑥𝑝∑
𝑖=1

⎡⎢⎢⎣𝑐1,𝑖
(𝑐2,𝑖∕𝑇 )2𝑒−𝑐2,𝑖∕𝑇(
1 − 𝑒−𝑐2,𝑖∕𝑇

)2 ⎤⎥⎥⎦+
𝑛ℎ𝑦𝑐∑
𝑖=1

[
𝑐1,𝑖∕𝑇 2

(cosh(𝑐2,𝑖∕𝑇 2)2

]
+
𝑛ℎ𝑦𝑠∑
𝑖=1

[
𝑐1,𝑖∕𝑇 2

(sinh(𝑐2,𝑖∕𝑇 2)2

]
−𝑅∗, (12)

where the coefficients (𝑐1,𝑖, 𝑐2,𝑖) are parameters of the fluid. While the non-dimensional non-ideal gas contribution of Eq. (11) is

𝜓𝑟(𝛿, 𝜏) =
𝑛𝑝𝑜𝑙∑
𝑖=1

(
𝑐1,𝑖𝛿

𝑐2,𝑖 𝜏𝑐3,𝑖
)
+
𝑛𝑒𝑥𝑝∑
𝑖=1

(
𝑐1,𝑖𝛿

𝑐2,𝑖 𝜏𝑐3,𝑖 𝑒−𝛿
𝑐4,𝑖

)
+
𝑛𝑔𝑎1∑
𝑖=1

{
𝑐1,𝑖𝛿

𝑐2,𝑖 𝜏𝑐3,𝑖 𝑒
[
−𝑐4,𝑖(𝛿−𝑐5,𝑖)2−𝑐6,𝑖(𝜏−𝑐7,𝑖)2

]}
𝑛𝑔𝑎2∑{

𝑐2,𝑖
[
−𝑐7,𝑖(𝛿−1)2−𝑐8,𝑖(𝜏−1)2

]}
(13)
4

+
𝑖=1

𝑐1,𝑖𝛿Δ𝑖 𝑒 ,
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with Δ𝑖 =
{
(1 − 𝜏) + 𝑐3,𝑖

[
(𝛿 − 1)2

]1∕(2𝑐4,𝑖)}2
+ 𝑐5,𝑖

[
(𝛿 − 1)2

]𝑐6,𝑖 . The non-ideal gas pressure and entropy can be computed with the 
Maxwell relations as

𝑝(𝜌,𝑇 ) = 𝜌2
(
𝜕𝑎

𝜕𝜌

)
𝑇

, 𝑠(𝜌,𝑇 ) = −
(
𝜕𝑎

𝜕𝑇

)
𝜌
. (14)

For every model, the enthalpy is calculated as ℎ(𝜌, 𝑇 ) = 𝑒 + 𝑝∕𝜌, while the non-ideal gas isochoric and isobaric specific heats as 
𝑐𝑣(𝜌, 𝑇 ) = 𝜕𝑒∕𝜕𝑇 and 𝑐𝑝(𝜌, 𝑇 ) = 𝑐𝑣 + (𝑇 ∕𝜌2)[(𝜕𝑝∕𝜕𝑇 )2∕(𝜕𝑝∕𝜕𝜌)]. The speed of sound is instead 𝑐(𝜌, 𝑇 ) =

√
(𝑐𝑝∕𝑐𝑣)(𝜕𝑝∕𝜕𝜌). Both the 

PR and SW EoSs, use the generalised multiparameter correlations from Chung et al. [20] for the calculation of the laminar transport 
properties 𝜇(𝜌, 𝑇 ) and 𝜆(𝜌, 𝑇 ).

2.3. dG framework

The spatial discretization of the governing equations is performed through a high-order implicit dG solver. The continuous varia-

tional weak formulation of the problem with 𝑚 unknowns is obtained in two basic steps, which are: (𝑖) the multiplication of Eq. (6)

for an arbitrary smooth test function 𝐯 = {𝑣1, … , 𝑣𝑚} and (𝑖𝑖) the integration by parts over the physical domain Ω using the diver-

gence theorem. A geometrical approximation Ωℎ of Ω is then triangulated in a set of 𝑛𝑒 arbitrary shaped non-overlapping elements 
ℎ with faces ℎ. For each element 𝐾 ∈ ℎ, a set {𝜙} of 𝑁𝑑𝑜𝑓 orthonormal polynomial basis functions is defined hierarchically, 
and for 𝑗 = 1, ..., 𝑚 and 𝑙 = 1, ..., 𝑁𝑑𝑜𝑓 their convex combination with unknown degrees of freedom 𝑤ℎ,𝑗 = 𝜙𝑙𝑊𝑗,𝑙 provides the finite 
element approximation of 𝐰 in every 𝐾 . The set {𝜙} is such that {𝜙} ⊆ 𝐕ℎ = [ℙ𝑞

𝑑
(ℎ)]𝑚, and it also represents a finite dimension 

space of test functions 𝐯ℎ ∈𝐕ℎ, which are needed to perform a discrete variational weak formulation of the problem in every 𝐾 . By 
summing over all the elements in ℎ, for 𝑖 = 1, ..., 𝑁𝑑𝑜𝑓 and 𝑘 = 1, ..., 𝑛𝑒, the dG spatial discretization of Eq. (6) consists therefore in 

seeking at every time instant the elements of 𝐖 ∈ℝ𝑛𝑒×𝑚×𝑁
𝐾
𝑑𝑜𝑓 such that∑

𝐾∈ℎ ∫𝐾
𝜙𝑖𝑃𝑗,𝑘

(
𝐰ℎ

)
𝜙𝑙
𝑑𝑊𝑘,𝑙

𝑑𝑡
𝑑𝐱

−
∑
𝐾∈ℎ ∫𝐾

𝜕𝜙𝑖
𝜕𝑥𝑛

𝐹𝑗,𝑛
(
𝐰ℎ,∇ℎ𝐰ℎ + 𝐫

([[
𝐰ℎ

]]))
𝑑𝐱

+
∑
𝐹∈ℎ ∫𝐹

[[
𝜙𝑖

]]
𝑛
𝐹𝑗,𝑛

(
𝐰±
ℎ
,
(
∇ℎ𝐰ℎ + 𝜂𝐹 𝐫𝐹

([[
𝐰ℎ

]]))±)
𝑑𝜎

+
∑
𝐾∈ℎ ∫𝐾

𝜙𝑖𝑠𝑗
(
𝐰ℎ,∇ℎ𝐰ℎ + 𝐫

([[
𝐰ℎ

]]))
𝑑𝐱 = 0.

(15)

The functional approximation is however discontinuous at every 𝐹 ∈ ℎ, hence the sum of the convective and viscous flux functions 
F is substituted by the numerical flux ̂F in the contour integrals, to guarantee the discretization consistency. The convective part of ̂F
is calculated with the Vinokur-Montagné approximate Riemann solver [2], generalized to non-ideal gases [21], while the viscous part 
is discretized with the BR2 scheme [6]. A shock-capturing term is also added to the left-hand side of Eq. (15) to suppress spurious 
oscillations of the solution at high polynomial degrees. The term acts by introducing an artificial viscosity along the direction of the 
pressure gradient, but only where and when a shock sensor is triggered [7,18].

After a computation of the integrals in Eq. (15) with exact Gauss quadrature rules, a system of ordinary differential equations 
(ODEs) in time is obtained in the form

𝐌𝐏 (𝐖) 𝑑𝐖
𝑑𝑡

+𝐑 (𝐖) = 𝟎, (16)

where 𝐑 (𝐖) is the global vector of the residuals and 𝐌𝐏 (𝐖) is the global mass matrix coming from the first integral. For steady 
simulations, Eq. (16) is solved by the Linearized Backward Euler (LBE) scheme as[𝐌𝐏 (𝐖𝑛)

Δ𝑡
+ 𝜕𝐑 (𝐖𝑛)

𝜕𝐖

](
𝐖𝑛+1 −𝐖𝑛

)
= −𝐑 (𝐖𝑛) , (17)

where 𝜕𝐑 (𝐖𝑛) ∕𝜕𝐖 is the jacobian matrix of the residual at the time instant 𝑛 and a pseudo-transient continuation strategy is 
adopted [8]. In this case, an exponential CFL law, which is a function of the residuals norms, makes possible to use progressively 
higher values of Δ𝑡, and Eq. (17) is reduced to a Newton-Rhapson method. The resulting nonlinear systems are solved at every time-

step iteratively, with a restarted version of the Generalized Minimal RESidual (GMRES) Krylov’s subspace-type method, as available 
in the linear algebra library PETSc [22]. For unsteady simulations, the time integration of Eq. (16) is efficiently carried out by means 
of linearly implicit Rosenbrock-type Runge-Kutta schemes [9]. In particular, the ROS3PL scheme, i.e., a third order 𝐿-stable one-step 
method with four stages is employed in this work [23–25]. Rosenbrock-type schemes require only the solution of linear systems, 
and the evaluation of the jacobian matrix only once per time-step. These features, coupled with their high accuracy, are remarkably 
5

favourable for an efficient integration in time.
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Fig. 2. Shock tube. Density (left) and pressure (right) profiles at time 𝑡 = 29.46 × 10−3 𝑠. EoS(PR) ℙ2 , Guardone et al. [26] . (For interpretation of the colours 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Supersonic nozzle. Static-to-total pressure ratio (left) and compressibility factor (right) profiles on the nozzle axis. EoS(PR) ℙ4 , EoS(SW) ℙ4 , Spinelli 
et al. exp. [27] . (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

2.4. Validation of the implemented EoSs for inviscid flows

The implementation of the PR EoS is validated computing the one dimensional Riemann problem proposed by Guardone et 
al. [26] for the PP10 fluid (𝐶13𝐹22). The domain is a tube with length 5 𝑚, which is discretized with 400 uniform elements. 
Initially, the tube is separated in two regions by a diaphragm located at 𝑥 = 3 𝑚, characterized by the following initial conditions: 
{𝑝, 𝜌, 𝑇EoS(PR)}𝑙𝑒𝑓 𝑡 = {15.746 𝑏𝑎𝑟, 398.883 𝑘𝑔∕𝑚3, 632.01 𝐾} and {𝑝, 𝜌, 𝑇EoS(PR)}𝑟𝑖𝑔ℎ𝑡 = {13.760 𝑏𝑎𝑟, 254.712 𝑘𝑔∕𝑚3, 634.98 𝐾} (the 
temperature is calculated with the direct evaluation of the PR EoS). At time 𝑡 = 0 𝑠 the diaphragm is removed and a right-running 
compression shock wave, a contact discontinuity and a left-running rarefaction shock wave are generated. The unsteady simulation 
is carried out until 𝑡 = 29.46 × 10−3 𝑠 with 400 time-steps, i.e., Δ𝑡 = 7.37 × 10−5. Fig. 2 compares the density and pressure profiles 
along the tube with EoS(PR) and ℙ2 solution approximation with a reference solution, showing a satisfactory agreement. To validate 
SW EoS implementation, the supersonic non-ideal nozzle of Spinelli et al. [27] is considered. The working fluid is the linear siloxane 
MDM (𝐶8𝐻24𝑂2𝑆𝑖3) and the operating conditions are: inlet total pressure 𝑝0 = 9.02 𝑏𝑎𝑟, inlet total temperature 𝑇0 = 269 ◦𝐶 and 
total-to-static expansion ratio 𝛽 = 9.16. The employed grid is structured and consists of 100 quadrilateral elements with quadratic 
edges, and a ℙ4 solution approximation is used. Fig. 3 compares the static-to-total pressure ratio (left) and the compressibility factor 
𝑧 = 𝑝∕(𝜌𝑅∗𝑇 ) (right) profiles on the nozzle axis with respect to the experimental measurements reported in [27] for the M2.0H test 
case. A satisfactory agreement is obtained, thus demonstrating the correct implementation of the EoSs.

3. Efficient implementation of the thermodynamics models

For an efficient calculation of the thermodynamic properties, the use of LuTs is discussed in Sec. 3.1, while for an efficient 
calculation of the jacobian, the use of automatic differentiation (AD) is discussed in Sec. 3.2. The performance of LuT and AD are 
6

compared with the direct evaluation of the EoS and the finite difference approach, respectively.
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3.1. Approximated thermodynamic modelling

In order to decrease the computational cost for the calculation of the thermodynamic properties without spoiling the level of 
accuracy, LuTs are widely used in literature [12–15,28,29,16]. The generation and use of a LuT consists of three basic steps: (𝑖) the 
calculation of a discrete set of values for the thermodynamic properties using an EoS on the nodes of the mesh and the storing in a 
data structure, (𝑖𝑖) a search algorithm to retrieve neighbours of a specific set of thermodynamic coordinates, and (𝑖𝑖𝑖) an interpolation 
formula that uses a combination of these retrieved values to calculate the properties in the point of interest.

The generation of the table is carried out only once, in the pre-processing phase, and this greatly reduces the cost of the simulation 
with respect to the solution of EoSs. In particular, the computational cost for the evaluation of the properties is independent from 
the EoS, providing increased computational savings with the complexity of the thermodynamic model. Instead, the cost of the LuT 
is mainly affected by the efficiency of the search algorithm. For this reason, the interpolation formula must be carefully chosen in 
order to guarantee a sufficient accuracy for the numerical simulation without being too costly.

Many authors in literature proposed different LuT approaches, both based on structured and unstructured meshes. In particular, 
Boncinelli et al. [12], Dumbser et al. [13], Pini et al. [14], and De Lorenzo et al. [15] based the LuT on structured meshes, while 
Rubino et al. [16] on unstructured meshes. Wilhelmsen et al. [29] and Xia et al. [28] proposed LuTs based on an adaptive Cartesian 
mesh in order to increase the accuracy and decrease the number of discretization points for the thermodynamic region of interest. 
Rubino et al. [16] spotlighted that the use of quadrilateral meshes, in combination with local refinement, can lead to local discon-

tinuities and poor interpolation accuracy of properties in the proximity of smooth boundaries [30,28]. This can especially occur for 
properties reconstruction or for interpolation close to the vapour–liquid saturation line. For this reason other authors based LuTs on 
adaptive unstructured triangular meshes, which allow the local mesh refinements to increase the accuracy in case of strong property 
variations, such as in proximity of the vapour–liquid critical point and/or of the vapour–liquid saturation line. The use of adaptive 
unstructured meshes can be time consuming for the high computational cost of the search and interpolation algorithms. Rubino et 
al. [16] proposed a search algorithm based on a trapezoidal map of the tabulated region to reduce the computational cost.

In summary, the great advantage of the unstructured meshing approach resides in the possibility to obtain local refinements of 
any grade and everywhere in the thermodynamic region of interest, with a potentially reduction of memory requirements. On the 
other hand, as it emerges from the literature, the nearest neighbour point search (NNPS) problem on an unstructured dataset has a 
cost that is always proportional to the dimension of the dataset itself. Nowadays some of the most efficient searching algorithms for 
unstructured grids are still the octree and the kd-tree ones [31,32], which are characterized by a complexity cost 𝑂(log𝑁), where 
𝑁 is the total number of points in the datasets. Moreover, some algorithms may experience a performance degradation when points 
are too close to each other [33]. This behaviour is called curse of dimensionality, and in the worst cases the complexity cost is 
comparable to a linear search, i.e., 𝑂(𝑁).

Due to these limits, a structured approach is adopted in this work, since the main objective of the LuT implementation is to 
guarantee an almost constant computational saving. In this context the NNPS problem can in fact be easily solved with a complexity 
cost of 𝑂(1), and without any performance degradation in the limit of extremely close data points. Furthermore, without an increment 
of the computational cost with the number of nodes, LuTs could be generated with very high accuracy to deal with regions of the 
thermodynamic plane with strong properties variations.

Fig. 4 shows the flow chart that summaries the generation of a LuT. The first step for the generation is the choice of the input 
parameters, i.e., the working fluid, the EoS and the upper and lower limits 

{
𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥

}
and 

{
𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥

}
for a 𝑥-𝑦 thermodynamic 

plane. In addition, the number of points on each axis 𝑛𝑝𝑥 and 𝑛𝑝𝑦 must be specified, together with a number of additional nodes 
at their ends 𝑛𝑜𝑥 and 𝑛𝑜𝑦 which work as ghost points to preserve the interpolation formula accuracy also at LuT boundaries. At the 
coordinates of the nodes the generic thermodynamic property 𝑧𝑖𝑗 (𝑥𝑖, 𝑦𝑗 ) is calculated with an EoS, and the accuracy of each new 
table is evaluated also with a Root-Mean-Square (RMS) error estimator [16]. This estimator compares the interpolated values of 
the properties with the exact solution of the EoS, avoiding to query the nodes where the error is zero by definition. A comparison 
between the retrieved RMS error and an user-defined tolerance allows to decrease or increase automatically the number of nodes in 
each direction and for each LuT before starting the simulations.

Three different thermodynamic properties are used in pairs as independent variables, to generate a total of 18 LuT. In particular, 
the independent variables are the density 𝜌, temperature 𝑇 and pressure 𝑝, while the output properties are: the internal energy 
𝑒(𝑝, 𝑇 ) or 𝑒(𝜌, 𝑇 ), the enthalpy ℎ(𝑝, 𝑇 ) or ℎ(𝜌, 𝑝), the speed of sound 𝑐(𝑝, 𝑇 ), the entropy 𝑠(𝑝, 𝑇 ) or 𝑠(𝜌, 𝑝), the compressibility factor 
𝑧(𝑝, 𝑇 ), the fundamental derivative of gas dynamics Γ(𝜌, 𝑇 ), the isobaric and isochoric specific heat capacity 𝑐𝑝(𝜌, 𝑇 ) and 𝑐𝑣(𝜌, 𝑇 ), 
the temperature 𝑇 (𝜌, 𝑝) or 𝑇 (𝜌, 𝑒), the pressure 𝑝(𝜌, 𝑇 ) or 𝑝(𝜌, 𝑒), the density 𝜌(𝑝, 𝑇 ), the dynamic viscosity 𝜇(𝜌, 𝑇 ) and the thermal 
conductivity 𝜆(𝜌, 𝑇 ). The values of the upper and lower limits 𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 are defined by the user, while 
the limits of 𝑒 are calculated as 𝑒𝑚𝑖𝑛 = 𝑒(𝑝𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛) and 𝑒𝑚𝑎𝑥 = 𝑒(𝑝𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥). Even if in principle also the density bounds could be 
computed as 𝜌𝑚𝑖𝑛 = 𝑒(𝑝𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥) and 𝜌𝑚𝑎𝑥 = 𝑒(𝑝𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛), this choice is not here used to avoid an excessive spread of the density axis 
that would require to use a high number of nodes. This problem is not so frequent with the internal energy, whose bounding values 
would be also trickier to estimate manually.

For each table the spacing between neighbouring nodes in each direction is given by

Δ𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
𝑛𝑝𝑥 + 2𝑛𝑜𝑥 − 1

, Δ𝑦 =
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
𝑛𝑝𝑦 + 2𝑛𝑜𝑦 − 1

, (18)

where 𝑛𝑝𝑥 and 𝑛𝑝𝑦 can be different between the various tables, while 𝑛𝑜𝑥 and 𝑛𝑜𝑦 are the same. The coordinates of each node of the 
7

table (𝑥𝑖, 𝑦𝑗 ), with 1 ≤ 𝑖 ≤ 𝑛𝑥 and 1 ≤ 𝑗 ≤ 𝑛𝑦, are given by
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Fig. 4. Flow chart that summaries the generation of a LuT. The input parameters are the fluid, the EoS, the number of nodes of the structured mesh 𝑛𝑥 , 𝑛𝑦 , and the 
limits of the temperature 𝑇 , the pressure 𝑝, and the density 𝜌 in terms of the minimum and maximum values.

Fig. 5. Schematic representation of an element containing a query point (left) and of the nodal values needed to perform a bicubic interpolation for a query point 
(right).

𝑥𝑖 = 𝑥𝑚𝑖𝑛 + (𝑖− 1)Δ𝑥, 𝑦𝑗 = 𝑦𝑚𝑖𝑛 + (𝑗 − 1)Δ𝑦, (19)

where 𝑛𝑥 = 𝑛𝑝𝑥 + 2𝑛𝑜𝑥 and 𝑛𝑦 = 𝑛𝑝𝑦 + 2𝑛𝑜𝑦 . The search and interpolation algorithms are based on the structured nature of LuTs. In 
particular, given a point to query with coordinates (𝑥𝑞, 𝑦𝑞), inside the element of interest 𝑒𝑞 , with nodes (𝑥𝑖, 𝑦𝑗 ), (𝑥𝑖+1, 𝑦𝑗 ), (𝑥𝑖+1, 𝑦𝑗+1)
and (𝑥𝑖, 𝑦𝑗+1), the search algorithm allows to find these nodes and the neighbouring nodes for the interpolation formula (Fig. 5). 
In fact, thanks to the structured mesh, the coordinates of the points satisfy the relations 𝑥𝑖 ⩽ 𝑥𝑞 ⩽ 𝑥𝑖+1 and 𝑦𝑗 ⩽ 𝑦𝑞 ⩽ 𝑦𝑗+1, and the 
indices 𝑖 and 𝑗 can be calculated as

𝑖 = 𝑖𝑛𝑡
(
𝑥𝑞 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

)
+ 1, 𝑗 = 𝑖𝑛𝑡

(
𝑦𝑞 − 𝑦𝑚𝑖𝑛
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

)
+ 1. (20)

As expected, the searching cost does not depend on the number of points.

The interpolation formula allows then to calculate the value of a generic thermodynamic property in the point of interest 𝑧(𝑥𝑞, 𝑦𝑞), 
by combining values from the neighbouring nodes. The interpolation formula here used is a bicubic polynomial in 𝑥 and 𝑦 and is 
based on the local coordinates system (𝜉, 𝜂) inside the element 𝑒𝑞 , given by

𝑥− 𝑥𝑖 𝑦− 𝑦𝑗
8

𝜉(𝑥) =
Δ𝑥

, 𝜂(𝑦) =
Δ𝑦

, (21)
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where 0 ⩽ 𝜉 ⩽ 1 and 0 ⩽ 𝜂 ⩽ 1, while 𝑟(𝜉(𝑥𝑞), 𝜂(𝑦𝑞)) = 𝑧(𝑥𝑞, 𝑦𝑞) is the polynomial approximation of the thermodynamic property in 
the point of interest. The bicubic interpolation function 𝑟(𝜉, 𝜂) is given by

𝑟(𝜉, 𝜂) =𝐴(𝜉)𝑆𝐵𝑇 (𝜂), (22)

where

𝐴(𝜉) = [𝑓1(𝜉), 𝑓2(𝜉), 𝑓3(𝜉), 𝑓4(𝜉)], 𝐵(𝜂) = [𝑔1(𝜂), 𝑔2(𝜂), 𝑔3(𝜂), 𝑔4(𝜂)],

𝑓1(𝜉) = 2𝜉3 − 3𝜉2 + 1, 𝑓2(𝜉) = −2𝜉3 + 3𝜉2,

𝑓3(𝜉) = 𝜉3 − 2𝜉2 + 𝜉, 𝑓4(𝜉) = 𝜉3 − 𝜉2,

𝑔𝑖(𝜂) = 𝑓𝑖(𝜂),

and 𝑆 is the matrix

𝑆 ≡
⎛⎜⎜⎜⎝
𝑟(0,0) 𝑟(0,1) 𝑟𝜂(0,0) 𝑟𝜂(0,1)
𝑟(1,0) 𝑟(1,1) 𝑟𝜂(1,0) 𝑟𝜂(1,1)
𝑟𝜉(0,0) 𝑟𝜉(0,1) 𝑟𝜉𝜂(0,0) 𝑟𝜉𝜂(0,1)
𝑟𝜉(1,0) 𝑟𝜉(1,1) 𝑟𝜉𝜂(1,0) 𝑟𝜉𝜂(1,1)

⎞⎟⎟⎟⎠ , (23)

which includes the interpolation function and its derivatives for the generic element 𝑒 (Fig. 5). The derivatives 𝑟𝜉 ≃ 𝜕𝑟∕𝜕𝜉, 𝑟𝜂 ≃
𝜕𝑟∕𝜕𝜂 and 𝑟𝜉𝜂 ≃ 𝜕2𝑟∕𝜕𝜉𝜕𝜂 ≃ 𝑟𝜂𝜉 are calculated with centred FD approximations. As an example, 𝑟𝜉(0, 0) is computed as 𝑟𝜉(0, 0) =
[𝑧(𝑥𝑖+1, 𝑦𝑗 ) − 𝑧(𝑥𝑖−1, 𝑦𝑗 )]∕2 since 𝑟(0, 0) is 𝑧(𝑥𝑖, 𝑦𝑗 ).

During a simulation, many numerical procedures require the values of some derivative of the tabulated thermodynamic properties, 
which in turn should be tabulated or approximated with a sufficient accuracy. Since the implicit solver uses potentially all the pure 
and mixed derivatives of the thermodynamic properties up to the second order, the generation of a LuT for every derivative would 
result in unbearable memory requirements. A possible solution is the use of a FD approximation for each derivative based on the LuT 
of the corresponding properties. However, this approach needs at least two evaluations of the interpolation function, which increases 
the computational cost (two times the cost of a property evaluation) and the truncation error. For these reasons, a different approach 
is used in this work, which is based on the exact derivatives of the interpolation function 𝑟[𝜉(𝑥), 𝜂(𝑦)]. With a direct application of 
the differentiation chain rule on Eq. (22), the first and second order derivatives are

𝜕𝑟

𝜕𝑥
[𝜉(𝑥), 𝜂(𝑦)] = 𝜕𝑟

𝜕𝜉

𝑑𝜉

𝑑𝑥
, (24)

𝜕𝑟

𝜕𝑦
[𝜉(𝑥), 𝜂(𝑦)] = 𝜕𝑟

𝜕𝜂

𝑑𝜂

𝑑𝑦
, (25)

𝜕2𝑟

𝜕𝑥2
[𝜉(𝑥), 𝜂(𝑦)] = 𝜕2𝑟

𝜕𝜉2

(
𝑑𝜉

𝑑𝑥

)2
+ 𝜕𝑟

𝜕𝜉

𝑑2𝜉

𝑑𝑥2
, (26)

𝜕2𝑟

𝜕𝑦2
[𝜉(𝑥), 𝜂(𝑦)] = 𝜕2𝑟

𝜕𝜂2

(
𝑑𝜂

𝑑𝑦

)2
+ 𝜕𝑟

𝜕𝜂

𝑑2𝜂

𝑑𝑦2
, (27)

𝜕2𝑟

𝜕𝑥𝜕𝑦
[𝜉(𝑥), 𝜂(𝑦)] = 𝜕

𝜕𝑦

(
𝜕𝑟

𝜕𝜉

𝑑𝜉

𝑑𝑥

)
= 𝜕2𝑟

𝜕𝜉𝜕𝜂

𝑑𝜉

𝑑𝑥

𝑑𝜂

𝑑𝑦
+ 𝜕𝑟

𝜕𝜉

𝑑2𝜉

𝑑𝑥𝑑𝑦
. (28)

In Eqs. (24)-(28), the derivatives of the local coordinates 𝜉 and 𝜂 are trivial, since 𝑑𝜉∕𝑑𝑥 = 1∕Δ𝑥, 𝑑𝜂∕𝑑𝑦 = 1∕Δ𝑦, 𝑑2𝜉∕𝑑𝑥2 =
𝑑2𝜂∕𝑑𝑦2 = 𝑑2𝜉∕𝑑𝑥𝑑𝑦 = 0. For this reason, the second addend on the right hand side of Eqs. (26)-(28) is always zero. The derivatives 
of the interpolation function with respect to the local coordinates are obtained by differentiating Eq. (22) with respect to 𝜉 and 𝜂 as

𝜕𝑟

𝜕𝜉
= 𝑑𝐴
𝑑𝜉
𝑆𝐵𝑇 ,

𝜕𝑟

𝜕𝜂
=𝐴𝑆

[
𝑑𝐵

𝑑𝜂

]𝑇
, (29)

𝜕2𝑟

𝜕𝜉2
= 𝑑

2𝐴

𝑑𝜉2
𝑆𝐵𝑇 ,

𝜕2𝑟

𝜕𝜂2
=𝐴𝑆

[
𝑑2𝐵

𝑑𝜂2

]𝑇
,

𝜕2𝑟

𝜕𝜉𝜕𝜂
= 𝑑𝐴
𝑑𝜉
𝑆

[
𝑑𝐵

𝑑𝜂

]𝑇
, (30)

where the first and second order derivatives of the vectors 𝐴(𝜉) and 𝐵(𝜂) contain just the first and the second order derivatives of 
the functions 𝑓𝑖(𝜉) and 𝑔𝑖(𝜂):

𝑑𝑓1
𝑑𝜉

= 6𝜉2 − 6𝜉,
𝑑2𝑓1
𝑑𝜉2

= 12𝜉 − 6,
𝑑𝑓2
𝑑𝜉

= −6𝜉2 + 6𝜉,
𝑑2𝑓2
𝑑𝜉2

= −12𝜉 + 6,

𝑑𝑓3
𝑑𝜉

= 3𝜉2 − 4𝜉 + 1,
𝑑2𝑓3

𝑑𝜉2
= 6𝜉 − 4,

𝑑𝑓4
𝑑𝜉

= 3𝜉2 − 2𝜉,
𝑑2𝑓4
𝑑𝜉2

= 6𝜉 − 2,

𝑑𝑔𝑖 𝑑𝑓𝑖 𝑑2𝑔𝑖 𝑑2𝑓𝑖
9

𝑑𝜂
(𝜂) =

𝑑𝜉
(𝜂),

𝑑𝜂2
(𝜂) =

𝑑𝜉2
(𝜂).
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Table 1

Relative memory storage, maximum error ErrMAX , RMS error ErrRMS and percentage differ-

ence of the computational cost with respect to EoS(IG) for the calculation of the thermody-

namics properties of 𝑛𝑞 = 10 000 random points using different LuTs(SW).

LuT nodes Relative memory storage ErrMAX ErrRMS ΔtLuT(SW)−EoS(IG)

15 625 1.000 5.200E-02 1.784E-03 37.895%

62 500 3.957 2.717E-02 4.745E-04 35.417%

250 000 15.359 4.750E-03 7.468E-05 36.458%

1 000 000 60.500 6.247E-04 3.453E-06 38.636%

Table 2

Maximum ErrMAX and RMS ErrRMS errors for different 
LuTs(IG) sizes, Ringleb flow case.

LuT nodes 104 106 108

ErrMAX 3.28E-03 4.59E-06 3.91E-09

ErrRMS 3.01E-04 4.27E-07 3.85E-10

With this implementation, the derivatives of any tabulated thermodynamic property generated by the bicubic interpolation function 
have an exact and consistent approximation. Moreover, the cost for the calculation of a thermodynamic property and its derivative 
is comparable. Notice that, bicubic polynomial interpolants are necessary to guarantee the existence of derivatives up to the second 
order, which are represented by bilinear maps.

In order to assess the accuracy and memory storage of LuTs a test is performed, where 𝑛𝑞 = 10000 thermodynamic points are 
evaluated for a heavy cyclic siloxane, i.e., D5. The following ranges are considered for density, temperature and pressure: 0.034 <
𝜌∕𝜌𝑐𝑟 < 0.889, 1.009 < 𝑇 ∕𝑇𝑐𝑟 < 1.090, and 0.087 < 𝑝∕𝑝𝑐𝑟 < 1.748. The choice of slightly supercritical temperatures guarantees that 
the considered zone of the thermodynamic plane lies in a single-phase region. A compressibility factor range of 0.229 < 𝑧 < 0.981
is guaranteed, which is representative of strong continuous variations in the properties. Temperature variations are kept smaller 
than the ones of density and pressure since this also happens in many applications. The exact and approximated values of the 
thermodynamics properties are compared by calculating the maximum and RMS error, ErrMAX and ErrRMS, on a number 𝑛𝑞 of 
random points (𝑥𝑘, 𝑦𝑘) as

ErrRMS = max
𝑘=1,...,𝑛𝑞

{
𝑧(𝑥𝑘, 𝑦𝑘) − 𝑟[𝜉(𝑥𝑘), 𝜂(𝑦𝑘)]

}
(31)

ErrMAX =
𝑛𝑞∑
𝑘=1

√√√√{
𝑧(𝑥𝑘, 𝑦𝑘) − 𝑟[𝜉(𝑥𝑘), 𝜂(𝑦𝑘)]

}2
𝑛𝑞

. (32)

Table 1 reports the interpolation errors, ErrMAX and ErrRMS, the memory storage, and the computational cost for different 
LuTs(SW) nodes. The memory storage is normalized with respect to the lowest one, which is 440𝑘𝑏 (ASCII format), while the 
computational cost is shown as the difference with respect to the ideal gas (IG) EoS, because IG computational time is independent 
from the number of evaluations. The LuT relative memory storage increases almost linearly with the number of nodes and, as 
expected, the interpolation cost does not depend appreciably on the LuT size.

To highlight the effects of the LuTs interpolation error on the solution of a simulation, a spatial convergence analysis is here 
carried out using the IG model on the inviscid isentropic test case of Ringleb [34]. The analytical solution for this problem is well 
known, only for the IG model, and can be derived using the hodograph method [35]. Table 2 shows the interpolation errors, ErrMAX
and ErrRMS for different LuTs(IG) with different number of nodes. Fig. 6 shows the 𝐿2 norm of the pressure errors for simulations 
with different (𝑖) sizes of the LuT, (𝑖𝑖) number of elements 𝑛𝑒 for the mesh, and (𝑖𝑖𝑖) solution approximations. The number of nodes 
of the LuT, if enough, does not affect the convergence order of the spatial discretization. However, if coarser LuTs are used, e.g., 
with 104 and 106, a lower limit appears on the error of the solution. This limit is lower, around two order of magnitude, than 
ErrMAX and ErrRMS interpolation errors of each LuT. From a practical point of view, LuTs with a number of nodes from 104 to 106
guarantee an accuracy comparable to the EoS up to ℙ4. To fully exploit higher degrees of discretization, a refinement of the LuTs 
is mandatory. As a reference for the reader, the pressure, temperature and density spacing for the medium size LuT (106 nodes) is 
{𝑑𝑝, 𝑑𝑇 , 𝑑𝜌} = {2.50 𝑘𝑃𝑎, 0.65 ◦𝐶, 1.50 𝑘𝑔∕𝑚3}. The error plots for temperature, 𝑥-component and 𝑦-component of the velocity show 
identical trends and are not reported here for sake of briefness.

3.2. Efficient calculation of jacobian matrices

As shown in Sec. 2.2, the implementation of a non ideal gas model is usually a task that requires the computation of a great number 
of derivatives. In fact, if an implicit time integration is used, the jacobian matrix of the residual vector with respect to the solution 
must be computed at each time-step. In particular, given a generic function 𝐟(𝐱) = [𝑓1, ..., 𝑓𝑚]𝑇 ∶ℝ𝑛 →ℝ𝑚 with 𝐱 = [𝑥1, ..., 𝑥𝑛]𝑇 , the 
10

jacobian matrix of 𝐟(𝐱) can be written as
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Fig. 6. 𝐿2 norm of the pressure error with respect to the analytical solution as a function of the number of elements of the mesh 𝑛𝑒 in the Ringleb flow case: LuT(IG) 
with 104 nodes (top left), LuT(IG) with 106 nodes (top right), LuT(IG) with 108 nodes (bottom left) and EoS(IG) (bottom right). ℙ1 , ℙ2 , ℙ3 , ℙ4 , 
ℙ5 solution approximation. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

𝐉 = 𝜕𝐟
𝜕𝐱

=
⎡⎢⎢⎣
𝜕𝑓1∕𝜕𝑥1 … 𝜕𝑓1∕𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚∕𝜕𝑥1 … 𝜕𝑓𝑚∕𝜕𝑥𝑛

⎤⎥⎥⎦ . (33)

A possible approach to compute the jacobian matrix is the numerical differentiation through the FD approximation, where 𝐉 is 
generated column by column. In this case, the function 𝐟 is numerically differentiated 𝑛 times with a formula of variable order of 
accuracy, which requires some evaluations of 𝐟 . The first order forward FD approximation is the simplest and uses the lowest number 
of evaluations:

𝜕𝐟
𝜕𝑥1

=
𝐟(𝑥1 + ℎ1, ..., 𝑥𝑛) − 𝐟(𝑥1, ..., 𝑥𝑛)

ℎ1
+ 𝑜(ℎ1),

⋮

𝜕𝐟
𝜕𝑥𝑛

=
𝐟(𝑥1, ..., 𝑥𝑛 + ℎ𝑛) − 𝐟(𝑥1, ..., 𝑥𝑛)

ℎ𝑛
+ 𝑜(ℎ𝑛),

(34)

where ℎ𝑖 for 𝑖 = 𝑖, ..., 𝑛 are small positive increments. The main drawback of the FD approach is the computational cost, since every 
approximation requires more than one evaluation of the function to derive. Equation (34) requires 𝑛 + 1 evaluations of 𝐟 , second 
order formulae may require up to 2𝑛 + 1 evaluations and so on for higher orders. Moreover, the derivatives are not exact, and their 
accuracy may deteriorate in presence of strong gradients or when the step size ℎ𝑖 is too small or too large.

A second approach to calculate 𝜕𝐟∕𝜕𝐱 is the manual differentiation (MD). This procedure is the most rigorous one, since it requires 
to derive and implement manually the mathematical expressions of the derivatives of every procedure involved in the calculation 
of the jacobian, by accounting explicitly for any dependence of the residual from the solution values. This approach guarantees 
the exactness of the computed derivatives and the possibility to minimise the computational cost by omitting any unnecessary or 
repeated calculation. On the other hand, the time required for such derivation may be too long, because very complex functions may 
arise when real gas models are adopted. Also, even if correct expressions are obtained, their implementation is prone to errors.

Another approach, that can be viewed as a combination of the previous ones, is AD. AD algorithms interpret some selected outputs 
11

of a main program, i.e., the components of the function 𝐟 , as functions that depends on all code lines which come before them. In 
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Table 3

Critical properties, molecular weight and acentric factor of D5 fluid [37].

𝑝𝑐𝑟 [MPa] 𝑇𝑐𝑟 [K] 𝜌𝑐𝑟 [kg∕m3] 𝑀𝑚 [g/mol] 𝜃 [adim]

1.161 619.235 292.571 370.770 0.6658

Table 4

Coefficients for the ideal gas isobaric specific heat of D5 fluid [37].

𝑐0 [J∕(kgK1)] 𝑐1 [J∕(kgK2)] 𝑐2 [J∕(kgK3)] 𝑐3 [J∕(kgK4)]

-9.412E+01 +5.021E+00 -3.785E-03 +1.349E-06

this way, the chain rule of differentiation can be applied from the first to the last line, generating the derivatives of all the outputs 
in the end. The chain can be travelled either from top to bottom or from bottom to top, generating two different approaches called 
direct or reverse differentiation. The main advantage of AD is the exactness of the computed derivatives, since they are generated 
with repeated basic analytical differentiation rules. The implementation impact is therefore dramatically lower with respect to MD, 
but the cost of a derivative generated with a standard AD approach can be comparable with a first order FD. Appendix A shows 
examples of AD codes generated by TAPENADE for the calculation of a generic function 𝐟(𝐱) through the subroutine fun, using also 
an external procedure g, to better understand how an AD-generated derivative is and how it can be made more efficient.

4. Results

In this section, the implementation of LuTs and AD-derived jacobian matrices of the residual are discussed, and their computa-

tional efficiency is compared with the direct evaluation of the EoS and FD-derived jacobian matrices. In particular, the LuTs accuracy 
is investigated in Sec. 4.1, while the efficiency of the approach LuT+AD is compared with EoS+FD in Sec. 4.2. In the following, this 
nomenclature is adopted: 𝑖) EoS(name of the model) is the direct evaluation of the EoS “name of the model”, 𝑖𝑖) LuT(name of the 
model) is the LuT built with the EoS “name of the model”.

The assessment of the proposed implementations is performed by computing a test case from [36], the subsonic flow around a 
NACA0012 airfoil for the fluid D5, i.e., decamethylcyclopentasiloxane (C10H30O5Si5). The fluid critical pressure, temperature and 
density, as well as its molecular weight and acentric factor, are reported in Table 3, while Table 4 reports the coefficients used for 
the polynomial approximation of its ideal gas contribution to the isobaric specific heat as a function of the temperature. The set of 
coefficients for the residual part of the free Helmholtz energy function used by the SW model are given in [37].

A freestream pressure 𝑝∞ = 0.985𝑝𝑐𝑟, density 𝜌∞ = 0.622𝜌𝑐𝑟 and velocity 𝑈∞ = 30.151 𝑚∕𝑠 are used, with a reference axial chord 
length 𝑐𝑎𝑥 = 2.346 × 10−2 𝑚. In these conditions, EoS(SW) provides a freestream Reynolds number 𝑅𝑒∞ = (𝜌∞𝑈∞𝑐𝑎𝑥)∕𝜇∞ = 6 × 106
and Mach number 𝑀𝑎∞ = 𝑈∞∕𝑐∞ = 0.630, with a compressibility factor 𝑧∞ = 0.451. The angle of attack is 𝛼 = 2◦. Both the Euler 
and RANS equations are used to test non-ideal gas approaches.

4.1. LuTs accuracy

Three different meshes are used with 𝑛𝑒 = 5 288, 8 087, and 15 484 quadrilateral elements with quadratic edges with ℙ5 and 
ℙ3 maximum solution approximation for the Euler and RANS equations, respectively (see Fig. 7). Three different LuTs are used, 
characterized by 104 (coarse), 0.25 × 106 (medium), and 6.25 × 106 (fine) nodes, and the resulting spacings of pressure, temperature 
and density for each table are:

• {𝑑𝑝, 𝑑𝑇 , 𝑑𝜌}𝑐𝑜𝑎𝑟𝑠𝑒 = {5.00 𝑘𝑃𝑎, 0.50 ◦𝐶, 1.750 𝑘𝑔∕𝑚3},

• {𝑑𝑝, 𝑑𝑇 , 𝑑𝜌}𝑚𝑒𝑑𝑖𝑢𝑚 = {1.00 𝑘𝑃𝑎, 0.10 ◦𝐶, 0.35 𝑘𝑔∕𝑚3},

• {𝑑𝑝, 𝑑𝑇 , 𝑑𝜌}𝑓𝑖𝑛𝑒 = {0.20 𝑘𝑃𝑎, 0.02 ◦𝐶, 0.07 𝑘𝑔∕𝑚3}.

The following bounds are used to generate the LuTs: 0.410 < 𝜌∕𝜌𝑐𝑟 < 0.990, 0.950 < 𝑇 ∕𝑇𝑐𝑟 < 1.050 and 0.785 < 𝑝∕𝑝𝑐𝑟 < 1.250. From 
hereafter, unless otherwise specified, the use of the finest LuT is always assumed. Fig. 8 shows contours of the Mach number for the 
inviscid (left) and turbulent (right) case with EoS(SW) on the coarse mesh and with the maximum solution approximation.

Initially, the effect of the LuT discretization error on the spatial accuracy is investigated for inviscid and turbulent simulations. 
Fig. 9 shows the RMS of the entropy error 𝑠 − 𝑠∞ for inviscid simulations with different (𝑖) size of the LuT, (𝑖𝑖) number of mesh 
elements 𝑛𝑒, and (𝑖𝑖𝑖) solution approximation. As expected, a satisfactory spatial convergence is achieved using EoS(PR). For example, 
the last measured convergence rate for ℙ5 is 𝑂(ℎ6.047), where ℎ is the mesh size and 6 the expected theoretical order, while it 
deteriorates rapidly when the coarse LuT is employed. From a practical point of view, the medium size LuT is sufficient to preserve 
spatial convergence up to ℙ3, which is a reasonable target for more complex flow configurations. Respect to the Ringleb test case, 
presented in Sec. 3.1, the use of a non-ideal thermodynamic model in a dense gas state requires LuTs with smaller spacings for 
pressure, temperature and density. The increase of the LuT storage size for dense states can be mitigated with a proper choice of the 
12

upper and lower bounds of pressure, temperature and density. Same trends are verified also for the turbulent test case.
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Fig. 7. Detail of the computational meshes, coarse (top left), medium (top right), and fine (bottom), around the airfoil with 𝑛𝑒 = 5 288, 8 087, and 15 484 quadrilateral 
elements with quadratic edges.

Fig. 8. Mach number contours with EoS(SW) for the Euler (left) and RANS (right) equations around the NACA0012 airfoil, on the coarse mesh with ℙ5 (Euler) and 
ℙ3 (RANS) solution approximation.

Finally, a convergence study of the EoS and LuT accuracy is performed for Euler and RANS equations, exploiting the three meshes 
described above and ℙ1→3 solution approximations. Fig. 10 compares the predicted profile of pressure around the airfoil for EoS(PR) 
in the turbulent case, that show the expected spatial convergence both in ℎ and 𝑝. Also EoS(SW), LuT(PR) and LuT(SW) show the 
same behaviour for the predicted profiles, and for brevity they are omitted.

A qualitative investigation of the LuTs accuracy is also performed, and Fig. 11 shows the profiles of pressure and temperature 
around the airfoil with EoS(PR), EoS(SW), LuT(PR), and LuT(SW). The predicted curves with EoS and LuTs are coincident.

4.2. Comparison of the computational efficiency for EoS/LuT and AD/FD

Tables 5 and 6 show the cost per iteration [𝑠∕𝑖𝑡𝑒𝑟] to solve the Euler and RANS equations, with EoS(PR), EoS(SW), LuT(PR), 
and LuT(SW). Jacobian matrices are computed with both AD and first order FD. As expected, EoS(SW), with both AD and FD, has 
a higher cost than EoS(PR), for the huge complexity of the SW thermodynamic model, while the two models have similar costs 
using LuTs. The difference between EoS(SW) and EoS(PR) is maximum at ℙ0 (simulation with EoS(SW) is ≈ 65 times slower for the 
Euler equations), and decreases with the polynomial order (≈ 7 times slower at ℙ5 for the Euler equations). The reduction of the 
thermodynamic evaluations cost with the solution approximation is motivated by the increase of the computational time needed 
13

to assembly the dG spatial discretization. The trend is confirmed also for the RANS equations, even if the overhead of EoS(SW) is 
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Fig. 9. RMS of the entropy error as a function of the number of elements in the mesh 𝑛𝑒 for the NACA0012 flow case with Euler equations: LuT(PR) with 1.00 × 104
nodes (top left), LuT(PR) with 2.50 × 105 nodes (top right), LuT(PR) with 6.25 × 106 nodes (bottom left) and EoS(PR) (bottom right). ℙ0 , ℙ1 , ℙ2 , ℙ3

, ℙ4 , ℙ5 solution approximation. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 10. Distribution around NACA0012 airfoil of pressure with EoS(PR) using different solution approximations on the coarse mesh (left) and different meshes 
with a ℙ3 solution approximation (right). RANS equations. Left: ℙ1 , ℙ2 , ℙ3 ; Right: coarse mesh , medium mesh , fine mesh . (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

lower, since the thermodynamic model decreases its computational impact with respect to the assembly of the spatial discretization 
(diffusive flux and turbulent source term are added in the spatial discretization).

The use of AD allows a computational saving with respect to FD, which increases with the thermodynamic and flow mod-

els complexity, and decreases with the solution approximation. For the Euler equations at ℙ0 EoS(PR)+AD is 10% faster than 
14

EoS(PR)+FD, while EoS(SW)+AD is 32% faster than EoS(SW)+FD. When RANS equations are solved, AD allows reductions ≈ 37%
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Fig. 11. Distribution around NACA0012 airfoil of pressure (left) and temperature (right) with RANS, fine mesh and ℙ3 solution approximation. The profiles of LuT(PR) 
and LuT(SW) are here discretized with one mark each 𝑥∕𝑐 = 0.01 to prove the overlap with respect to EoS(PR) and EoS(SW) respectively. EoS(PR) , LuT(PR) , 
EoS(SW) , LuT(SW) . (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Table 5

Comparison of the mean computational cost per iteration ([𝑠∕𝑖𝑡𝑒𝑟]) required for the 
solution of the Euler equations around the NACA0012 airfoil with EoS+AD, EoS+FD, 
LuT+AD and LuT+FD.

Approach 𝑡(ℙ0) 𝑡(ℙ1) 𝑡(ℙ2) 𝑡(ℙ3) 𝑡(ℙ4) 𝑡(ℙ5)

EoS(PR) + AD 0.161 1.781 3.684 8.837 18.208 35.562
EoS(PR) + FD 0.180 1.845 3.737 8.918 17.436 36.543
LuT(PR) + AD 0.144 1.536 3.279 8.193 15.501 33.785
LuT(PR) + FD 0.153 1.641 3.509 7.679 15.786 32.469

EoS(SW) + AD 8.824 28.278 60.070 109.709 166.460 249.606
EoS(SW) + FD 13.101 39.924 80.180 135.857 205.350 289.910
LuT(SW) + AD 0.153 1.511 3.430 7.686 15.650 31.931
LuT(SW) + FD 0.160 1.656 3.521 8.433 16.931 34.605

Table 6

Comparison of the mean computational cost per it-
eration ([𝑠∕𝑖𝑡𝑒𝑟]) required for the solution of the 
RANS equations around the NACA0012 airfoil with 
EoS+AD, EoS+FD, LuT+AD and LuT+FD.

Approach 𝑡(ℙ0) 𝑡(ℙ1) 𝑡(ℙ2)

EoS(PR) + AD 0.148 0.660 3.553
EoS(PR) + FD 0.236 1.260 5.224
LuT(PR) + AD 0.145 0.649 3.527
LuT(PR) + FD 0.210 1.076 4.875

EoS(SW) + AD 1.899 8.910 24.813
EoS(SW) + FD 14.085 74.549 326.364
LuT(SW) + AD 0.151 0.644 3.552
LuT(SW) + FD 0.225 1.163 5.175

for the EoS(PR)+AD, and ≈ 86% for the EoS(SW)+AD with respect to first order FD. The higher savings provided by AD with RANS 
equations is motivated by the higher number of procedures which need a jacobian counterpart for implicit time integration.

When LuTs are used for the solution of the Euler equations, AD and FD show very similar costs for both PR and SW models, while 
for RANS equations AD allows a reduction of the computational cost with respect to FD around 30% for both LuTs(PR)+AD and 
LuT(SW)+AD.

As expected, the most efficient approach to perform non-ideal gas simulation is provided by AD and LuTs, while FD and EoSs 
show worst performance.

Finally, the overhead of AD with respect to the best scenario, i.e., EoS(IG) with MD-derived jacobian, is investigated. In fact, 
Table 1 in Sec. 3.1 compares only the computing times to evaluate thermodynamic properties between LuT(SW) and EoS(IG), 
showing a LuT overhead around 36%. However, the real impact on the simulation time is quite different increasing the solution 
approximation. In particular, the difference decreases for higher polynomial orders, as the assembly of the spatial discretization 
15

and the linear system solution are predominant on the computational cost. At ℙ0 the mean time increment per iteration ([%]) 
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Fig. 12. Time per iteration spent for the solution of the linear systems, the assembly of the residual and of the jacobian matrix for the Euler equations with PR (left) 
and SW (right) model around the NACA0012 airfoil. The time of each contribution is normalized with respect to the corresponding mean computational cost per 
iteration 𝑡(ℙ𝑛) (𝑛 is the polynomial degree), reported in Table 5. EoS + AD , EoS + FD , LuT + AD , LuT + FD . (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

of the LuT(SW)+AD approach with respect to the EoS(IG)+MD for the solution of the RANS equation around NACA0012 airfoil is 
Δ𝑡(ℙ0) ≈ 35%, which is comparable with results reported in Table 1, but decreases for higher solution approximations (Δ𝑡(ℙ2) ≈ 17%).

4.3. Cost of the residual and jacobian assembly, and linear system solution for a non-ideal gas simulation

In this paragraph the effect of a non-ideal gas code extension is investigated in depth, and the mean computational cost per 
iteration to perform Euler and RANS simulations reported in Tables 5 and 6 are exploded, to compare the differences in terms of 
residual and jacobian assembly, and linear system solution.

Figs. 12 and 13 show at each iteration the time spent for the solution of the linear systems, the assembly of the residual and of 
the jacobian matrix of the residual for the Euler and RANS equations and different solution approximations, with PR and SW models. 
The time of each contribution is normalized with respect to the corresponding mean computational cost per iteration 𝑡(ℙ𝑛) (𝑛 is the 
polynomial degree), reported in Tables 5 and 6.

Euler simulations, see Fig. 12, show that the main cost of an iteration for simple EoS, e.g., the PR model, can be ascribed to the 
linear system solution (≈ 80%), ≈ 10% is spent for the assembly of the jacobian matrix, while the cost of the residual assembly is 
negligible. When complex thermodynamic models are adopted, e.g., SW model, the use of the LuT is mandatory to recover the time 
distribution obtained with PR model. In fact, the direct evaluation of the EoS entails a huge amount of time spent for the residual 
(≈ 20%) and the jacobian (≈ 30% with AD and ≈ 40% with FD) assembly. As a consequence, the relative time spent for the linear 
system solution decreases and it is around 40%. These results suggest that the non-ideal gas extension (LuT+AD or LuT+FD) for the 
Euler equation has a small impact on the iteration time, as most of the time is spent to solve the linear system.

RANS simulations, see Fig. 13, show a different behaviour in comparison to Euler results. In fact, the time spent for the assembly 
of the jacobian matrix is predominant (50% − 60%), while the linear system solution requires ≈ 30% of the iteration time. The direct 
evaluation of the EoS for the SW model shows the higher time for the assembly, and as a consequence, lower values for the solution 
16

of the linear system. In general, turbulent simulations show a stronger dependence on the thermodynamic model.
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Fig. 13. Time per iteration spent for the solution of the linear systems, the assembly of the residual and of the jacobian matrix for the RANS equations with PR (left) 
and SW (right) model around the NACA0012 airfoil. The time of each contribution is normalized with respect to the corresponding mean computational cost per 
iteration 𝑡(ℙ𝑛) (𝑛 is the polynomial degree), reported in Table 6. EoS + AD , EoS + FD , LuT + AD , LuT + FD . (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

5. Conclusions

In this work, two candidate ways to perform efficient non-ideal gas simulation are implemented and assessed in an implicit dG 
solver. In particular, for the calculation of thermodynamic properties and derivatives, a structured LuT approach based on bicubic 
interpolation is used rather than a direct resolution of the EoSs. For the calculation of the thermodynamic dependent contributions to 
the jacobian matrix of the residual, the open source AD tool TAPENADE [17] is used through an automated Python program devel-

oped to obtain non-redundant and mathematically exact procedures, as an alternative to first order FD jacobians. The performance 
of the new the solver is assessed in the computation of the inviscid and turbulent flow around a NACA0012 airfoil, using the PR and 
SW gas models in dense free stream conditions.

Results show that medium size LuTs (nodes in the range 104 − 106) guarantee 𝑖) a correct approximation of the thermodynamic 
plane that does not deteriorate the accuracy of the final solution, and 𝑖𝑖) a reduction of the time required to perform non-ideal gas 
simulations. LuTs allow great benefits for both inviscid and turbulent flows, especially when complex thermodynamic models are 
used, e.g., the SW model.

Moreover, the use of AD to build the jacobian matrix guarantees a speed-up with respect to first order FD, which is more evident 
in turbulent simulations, where more dependencies from the thermodynamic model are present in the jacobian matrix. As expected, 
the LuT + AD approach is the most efficient, while the EoS + FD is the worst. The LuT + AD approach guarantees a computational 
saving up to 99% with respect to EoS + FD, when RANS equations are solved with SW model. The computational overhead of the 
LuT + AD approach in the worst condition, i.e., against an ideal gas solver with MD-derived jacobian, shows a decreasing behaviour 
with the polynomial order of the solution approximation, and is around 17% for a ℙ2 solution approximation.

Future works will investigate 𝑖) the use of AD and LuTs for non-ideal gas simulations of complex geometries characterised 
by complex flow features, e.g., ORC’s turbomachinery, both with RANS and implicit LES models, and 𝑖𝑖) new strategies to create 
17

structured LuT that are able to capture correctly the saturation curves.
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Appendix A. Examples of AD

To better understand how an AD-generated derivative is and how it can be made more efficient, an example is shown in Fig. A.14, 
where a generic function 𝐟(𝐱) is computed through the subroutine fun, using also an external procedure g. To generate the jaco-

bian matrix 𝜕𝐟∕𝜕𝐱, TAPENADE needs both fun and g as source programs, and differentiates the target fun with respect to the 𝑛
components of 𝐱 = [𝑥1, ..., 𝑥𝑛]𝑇 . The result of the differentiation with respect to 𝑥1, after a split of the input vector 𝐱 into its single 
components, is shown in Fig. A.15. The structure of the differentiated code resembles the typical output of TAPENADE.

The new routine fun_d generated by TAPENADE returns fd = f for x1d = 0, or fd= 𝜕f∕𝜕x1 for x1d = 1, which is the exact first 
column of 𝜕𝐟∕𝜕𝐱, as reported in Eq. (33). The new subroutine g_d computes the derivative of the output of g, that is called by fun

and does not depend on x1, ..., xn. Notice that both fun_d and g_d contain also the code lines of fun and g. Therefore, during the 
calculation of every column of 𝜕𝐟∕𝜕𝐱, the lines of fun and g are repeated uselessly. This roughly equals the cost of evaluating 𝐟(𝐱)
twice for every jacobian column, leading to a computational cost comparable with a first order FD approximation.

However, AD allows to extract these lines and calculate them just once for every column. The benefit provided by this operation 
increases with the number of extracted lines. Moreover, AD detects automatically if f has no dependencies from the input variables 
x1, ..., xn, and does not create the corresponding routine for the relative jacobian column, which can be set to zero avoiding some 
calculations. By applying these considerations, modified routines fun_d1m and g_dm can be created, where only the differential 
contribution is computed and the results from fun and g are given to them as new inputs (see Fig. A.16).

Finally, a wrapping routine funj is created for the assembly of the whole jacobian, as shown in Fig. A.17. Notice that fun_dim

is not a null vector just for i= 1, 2, n, and that a, b, c, y and temp are calculated just once in the routine funj_p, which contains all 
the non differentiated code lines. In this work, the AD-workflow has been fully automated through a Python code that was designed 
to generate efficient jacobian matrices for convective and diffusive fluxes, turbulence model source terms and boundary conditions.

1 SUBROUTINE fun(n,m,x,f)

2

3 integer :: n, m, i

4 real :: x(n), f(m), y(m)

5 real :: a, b, c

6

7 a = x(1)+x(2)+x(n)

8 b = x(1)*x(n)

9 c = b/a

10

11 CALL g(m,a,b,c,y)

12

13 DO i = 1, m

14 f(i) = 2*a*i*y(i)

15 END DO

16

17 END SUBROUTINE

1 SUBROUTINE g(m,a,b,c,y)

2

3 integer :: m, i

4 real :: a, b, c, y(m)

5

6 y(1) = a**3/b

7

8 DO i = 2, m-1

9 y(i) = a

10 END DO

11

12 y(m) = y(1)*exp(c/a)

13

14 END SUBROUTINE
18

Fig. A.14. Example of source code that is automatically differentiated for the computation of its jacobian matrix.
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1 SUBROUTINE fun_d(m,x1,x1d,x2, &

2 ...,xn,f,fd)

3

4 integer :: m, i

5 real :: x1, x1d, x2, ..., xn

6 real :: f(m), y(m)

7 real :: fd(m), yd(m)

8 real :: a, b, c

9 real :: ad, bd, cd

10

11 a = x1+x2+xn

12 ad = x1d

13 b = x1*xn

14 bd = x1d*xn

15 c = b/a

16 cd = (bd*a-b*ad)/a**2

17

18 CALL g_d(m,a,ad,b,bd,c,cd,y,yd)

19

20 DO i = 1, m

21 f(i) = 2*a*i*y(i)

22 fd(i) = 2*i*(ad*y(i) &

23 +a*yd(i))

24 END DO

25

26 END SUBROUTINE

1 SUBROUTINE g_d(m,a,ad,b,bd,c,cd,y,yd)

2

3 integer :: m, i

4 real :: a, b, c, y(m), temp

5 real :: ad, bd, cd, yd(m), tempd

6

7 y(1) = a**3/b

8 yd(1) = (b*3*ad*a**2 &

9 -bd*a**3)/b**2

10

11 DO i = 2, m-1

12 y(i) = a

13 yd(i) = ad

14 END DO

15

16 temp = c/a

17 tempd = (cd*a-c*ad)/a**2

18 y(m) = y(1)*exp(temp)

19 yd(m) = yd(1)*exp(temp) &

20 +y(1)*exp(temp)*tempd

21

22 END SUBROUTINE

Fig. A.15. AD code generated by TAPENADE with respect to the input variable x1.

1 SUBROUTINE fun_d1m(m,x1,x1d,x2, &

2 ...,xn,fd,a,b,c,y,temp)

3

4 integer :: m, i

5 real :: x1, x1d, x2, ..., xn

6 real :: a, b, c, y(m), temp

7 real :: ad, bd, cd

8 real :: yd(m), fd(m)

9

10 ad = x1d

11 bd = x1d*xn

12 cd = (bd*a-b*ad)/a**2

13

14 CALL g_dm (m,a,ad,b,bd,c,cd, &

15 y,yd,temp)

16

17 DO i = 1, m

18 fd(i) = 2*i*(ad*y(i) &

19 +a*yd(i))

20 END DO

21

22 END FUNCTION

1 SUBROUTINE g_dm(m,a,ad,b,bd,c,cd, &

2 y,yd,temp)

3

4 integer :: m, i

5 real :: a, b, c, y(m), temp

6 real :: ad, bd, cd, yd(m), tempd

7

8 yd(1) = (b*3*ad*a**2 &

9 -bd*a**3)/b**2

10

11 DO i = 2, m-1

12 yd(i) = ad

13 END DO

14

15 tempd = (cd*a-c*ad)/a**2

16 yd(m) = yd(1)*exp(temp) &

17 +y(1)*exp(temp)*tempd

18

19 END SUBROUTINE

Fig. A.16. Efficient version (fun_d1m and g_dm) of TAPENADE routines fun_d and g_d.
19
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1 SUBROUTINE funj(n,m,x,fj)

2

3 integer :: n, m, i

4 real :: x1, x2, ..., xn

5 real :: x1d, x2d, ..., xnd

6 real :: x(n), fd(m), fj(m,n)

7 real :: a, b, c, y(m), temp

8

9 x1 = x(1)

10 x1d = 1d0

11 ...

12 xn = x(n)

13 xnd = 1d0

14

15 CALL funj_p(m,x1,...,xn, &

16 a,b,c,y,temp)

17

18 CALL fun_d1m(m,x1,x1d,x2, &

19 ...,xn,fd,a,b,c,y,temp)

20 DO i = 1, m

21 fj(i,1) = fd(i)

22 END DO

23 ...

24 CALL fun_dnm(m,x1,x2, &

25 ...,xn,xnd,fd,a,b,c,y,temp)

26 DO i = 1, m

27 fj(i,n) = fd(i)

28 END DO

29

30 END SUBROUTINE

1 SUBROUTINE funj_p(m,x1,...,xn, &

2 a,b,c,y,temp)

3

4 integer :: m, i

5 real :: x1, x2, ..., xn

6 real :: a, b, c, y(m), temp

7

8 a = x1+x2+xn

9 b = x1*xn

10 c = b/a

11

12 y(1) = a**3/b

13

14 DO i = 2, m-1

15 y(i) = a

16 END DO

17

18 temp = c/a

19 y(m) = y(1)*exp(temp)

20

21 END SUBROUTINE

Fig. A.17. Wrapping routine to assembly the whole jacobian matrix.
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