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Abstract

We arrive at this conclusion by using a new family of models—the Long-

Memory Judgmental Protocol (LMJP)—where robust filtering and fractionally

integrated autoregressions are combined in an environment characterized by

several players—namely, Forecast Producer, Forecast User and Reality. Our

simulated and empirical evidence reveals that (i) knowledge of the LM param-

eter matters for the p-values of tests for spurious long memory; (ii) secondly

that the role of LM in belief formation is ambiguous.
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1 Introduction

Numerous economic time series processes are characterized by a delayed degrada-

tion of sample autocovariance or by power spectrum stability. This quality is known

as long-memory (LM, henceforth). See, for example, Robinson (2003) and Has-

sler (2018) for a comprehensive overview of the literature on this particular topic.

Recent evidence suggests that (i) the assumption that economic agents learn from

their macroeconomic system influences the long-run dynamics of economic time se-

ries, thereby generating long-memory (Chevillon and Mavroeidis, 2017); and (ii) the

network structure of an economic system is, per se, sufficient to cause LM without

using other explanations such as temporal aggregation, non-stationarity, or nonlin-

earity—and frequently all of these features coexist and conflate (Schennach, 2018).

In Section 2, we introduce a new, micro-funded explanation for the rise of LM:

the judgment, defined as everything outside the scope of an economic or statistical

model (Svensson, 2005)—or, in econometric terms, the non-sample information in-

troduced in the estimation phase by a forecaster or a decision maker (Manganelli,

2009). Therefore, anytime reality does not confirm the prediction, a judgmental bias

(JB) occurs. This does not, however, correlate with the ‘traditional’ one. In reality,

as stated and shown by Zanetti Chini (2023a), it may be seen as the outcome of a

recurrent game between two players, a forecast producer (FP) and a forecast con-

sumer (FU, say a Central Banker). Each of them has a subjective utility function

depending on the future realization and available information that causes the other to

think that the genuine forecasts/decisions have not been accurately communicated.

As a result, FU will misjudge FP, causing FP to get used to being misjudged and to

compensate for this loss by adding another JB in the subsequent period, etc. This

judgmental dynamics can effectively caught by a robust filtering.

By combining these two bodies of research, Section 3 presents evidence that (i)

the presence of JB is linked with significant changes in the spectral density of the

process and hence annihilates the presence of LM and (ii) the null hypothesis of false
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LM for certain traditional macroeconomic data is not rejected. Section 4 concludes.

2 Modelling Judgment and Long-Memory

We move on the idea that the JB is something that distorts any function based on

data available to the investigator.

Definition 1. Let x ∈ R and q the tuning parameter of a Lq-transform (or Box-Cox

transform) defined as follows:

Lq(x) =

log(x) if q = 1.

x1−q/(1− q) otherwise.
(1)

We then define deformation a realization of Lq with q 6= 1.

The way in which q distort the "true" values of x can be verified in Figure 1.

One of the most universally adopted functions linking data (that is, x) to unknown

parameter is the Likelihood. Hence, the Lq-Likelihood (or Deformed Likelihood)

estimator (MLqE) arises as a natural application of (1). Such an estimator, in its

original formulation assumes q as given. The estimation of q is explained in Appendix

as well as in the aforementioned reference.

After having defined the notion of deformation in an operational way, we need to

characterize its relation to the JB and its formation according to a simple microeco-

nomic model. This can be done via the following set of assumptions:

Assumption 1. (i) The economy is formed by three agents: FP, FU and Reality.

(ii) FU’s choice does not affect Reality when the process repeats, nor does FP respond

to FU throughout the process. (iii) Reality is impartial about FU and FP judgments.

In Assumption 1 (i) FP may represent both external experts or Central Bank’s

internal officers, but these latter have no participation in the ultimate decision. As-

sumption 1 (ii) follows because we don’t presume agents’ strategic conduct. Assump-

tion 1 (iii) may appear contradictory from a macroeconomic policy standpoint, but
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from a microeconomic perspective, it is crucial to isolate the involvement of the two

players in judgment creation across time. In this work, the judgment is denoted by

q ∈ (0, 1), where 0 represents pure judgment and 1 is no judgment.

Definition 2. Let denote yt a T-dimentional time series to be analyzed; Xt ∈ Rk

a set of explanatory variables; Ψ and Ξ the parameters of FU and FP, respectively;

U(·) the utility function that, depends on the Ψ or Ξ; D(X ,Y) the Bregman-type

divergence among X and Y; H(·, ·) the entropy measured in the system for the same

variables, d a fractional difference operator and q the aforementioned deformation

parameter. Then we can define the Long-Memory Judgmental Protocol the n-ple

LMJP := {yt, Xt,Ψ,Ξ, U,D,H, q, d}, which works according to the following steps:

for t = 1 . . . , T ,

1. FU and FP acquire, evaluate, and interpret data from a collection of explanatory

variables (Xt) to conduct out-of-sample inference on a target variable (yt) using

parameters Ψ and Ξ, respectively, while forming their own utility functions

(U(Ψ) and U(Ξ)).

2. FP makes (possibly biased) projections ŷt of the objective variable under alter-

native assumptions about the explanatory factors and/or scenarios;

3. FU gets the projection sets, adds judgment ˜̂yt to each, and selects which pro-

jection appears better based on her objectives and information;

4. FU releases next period’s official prediction ŷt+1|t;

5. Reality reveals and is characterized by a long-memory parameter d.

Remark 1. The deformation parameter q can be seen as the aggregate quote of judg-

ment in the estimation process, that is q =
∑T

t=1(˜̂yt/ŷt).

Remark 2. d arises naturally as the iterations of LMJP occurs. In the course of this

paper we treat it via fractionally integrated autoregressive moving average (ARFIMA)
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model for yt defined as

Φ(L)(1− L)dyt = Θ(L)ut, ut ∼ i.i.d.(0, σ2
u),

(1− L)d =
∞∑
j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Lj,

(2)

where Γ() is the Gamma distribution, L is the lag operator and Φ(L) = 1−φ1L−, . . . , φpLp

and Θ(L) = 1 + θ1L−, . . . , θrLp the autoregressive and moving-average polynomials

with all their roots outside the unit circle with no common factors. The term (1−L)d,

which is the fractional difference operator, induces the long memory feature. The pa-

rameter d defines the process’s long-memory degree: namely, if d > 1/2, the process

is invertible and has a linear description; if d = 1/2, the covariance is stationary.

Remarkably, if d > 0, the process is considered to have a LM because the autocor-

relations decay at a hyperbolic pace (and therefore no longer absolutely summable),

as opposed to the considerably quicker exponential rate in the case of weak depen-

dency. If d = 0, the spectral density is bound at the origin, and the process is an

AR with just a little dependency (short memory). An alternative definition (Beran

et al., 2013) is based on the frequency domain, see the Appendix for details. For easy

of treatment and economy of space we will assume y ∼ ARFIMA(p, d, 0)–that is a

pure (fractionally integrated) autoregression.

Then we are going to verify the following

Proposition 1. (a) The LMJP can be represented as dynamic system modelled via

ARFIMA models. (b) Moreover, it can be estimated by Deformed Kalman Filter.

Proof. See the Appendix.

Proposition 2. The judgmental parameter q deforms the LM parameter d in the

Power Spectrum.

Proof. See the Appendix.
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The Proposition 2 is a testable hypothesis to be verified by classical testing.

Namely, we are interested in testing the hypothesis system:

H0 : d = 0 vs H1 : d > 0, (3)

Two modelling strategies are possible: a ‘Judgment-First’ approach consists in

estimating the autoregressive order governing the DJP; alternatively, a ‘LM-First’

approach involves estimation of q̂t via LMDJP in Supplement and using it as initial

value to fit (2) via spectral density estimation exposed in Appendix.

3 Results

3.1 MonteCarlo Simulation

First of all, we apply the LMDJP to MonteCarlo simulated data to verify the effec-

tiveness of Proposition 1. We consider two different DGPs:

y
(i)
1,t = 0.5y

(i)
1,t−1 + ε

(i
1,t ε

(i)
1,t ∼ N(0, 1) (4)

and

y
(i)
2,t = 0.5y

(i)
2,t−1 − 0.88x

(i)
t,2 + ε

(i)
2,t, ε

(i)
2,t ∼ N(0, 1), (5)

where, in both (4) and (5), i = {1, . . . , I} denotes the i-th draw of the process {yt}Tt=1

with a total number of draws I = 5, 000. Both the DGPs run on a set of starting

q-values (q0 = {0.1, 0.5, 1.0} corresponding to extreme, medium and no amount of

JB) and d−values (d0 = {0.1, 0.5, 1.0} corresponding to no memory, moderate long-

memory and differenced process).

We propose paying specific attention to who looks at the analysis: in this example,

(4) reflects what FP sees and analyzes (the autoregressive model is her subjective

choice). More specifically, y(i)
1,t is a linear autoregressive model with substantially
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stationary behavior, allowing us to concentrate on the impacts of the starting value

of q0. The latter might be represented by a macroeconomic indicator evaluated with

a particular quantity of JB in order to reduce the chance of loss in the next period.

y
(i)
2,t, on the other hand, depicts a more comprehensive scenario: the autoregression

is triggered by an explanatory variable xt, in addition to the initial judgment q0. If

yt is assumed to be a time series of FU’s final announcement, the entire DJP can be

interpreted as a full dynamic system in which the FP’s output (in this case, xt) is an

input that coexists with reality, and the difference between them is the basis for an

ex-post evaluation of FU via utility function. This is integrated into the estimation

step via the Lq-Likelihood. As a result, q0 reflects a kind of a-priori of FU in relation

to which FP changes her projections.

There are two design options for estimating d̂: (a) ’LM-First’: estimate first (2)

and only after that d̂ is known, estimate the model LMDJP. In this scenario, d̂ serves

as a second a priori in addition to q0. (b) ‘Judgment-First’: the LMDJP is applied to

data, and d̂ is projected based on filtered yt. The LM is a fully endogenous product

of judgment in this case. As a result, the LMDJP is comparable to the framework of

Chevillon and Mavroeidis (without the necessity for explicit expectation modeling)

and to the theory of Schennach—though the network structure in our concept is

minimal.

The estimate of d̂ is extremely sensitive to algorithm design, according to the

findings of Tables 1 and 2, which pertain to sample sizes of T=100 and T=500, re-

spectively, since the differences in terms of power of the hypothesis test (3) are large.

Several facts emerge in more detail: first, not all estimators perform equally well, as

evidenced by the fact that LW and ELW estimators are the most performant in both

algorithmic techniques, but ELW2 is a close second and 2SFELW performs badly,

particularly in the "Long-Memory First" approach. Second, the first two estima-

tors show significant variations in power between "Judgment-First" and "LM-First"

procedures, whilst the others are insensitive to the two modeling strategies. Finally,
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the average q̂ varies significantly between estimation methodologies and sample sizes;

nevertheless, this fact does not indicate a flaw in the estimate approach per se, since

q0 is not the genuine level but only the beginning value. A first result of this exper-

iment can be appreciated in Figure 2, where the average Power Spectrum resulting

from the DGP is displayed taking the LM parameter d0 = 0 fixed: unless the pure

autoregressive case under no judgment, the spectra displays a shift which length de-

pends on the presence of exogenous regressors (more than 100% for pure AR, around

60% in ARX case). Why the two modelling strategies produces a difference in power

of the LM test? Figure 4 gives a possible explanation: when q0 is not 1 (that is, when

an initial judgment level exists), it raises the power spectral densities of the filtered

processes significantly in the majority of cases.

3.2 Three Empirical Examples

The LMDJP is applied to three separate real-world case studies. The first one is

to run a purely autoregressive LMDJP-AR(p) model on macroeconomic data using

Nelson and Plosser (1982)—a standard for applied Macroeconometrics and time series

analysis literature. This is composed of 14 macroeconomic variables on US economy

(GNP and its deflator, Employment, Industrial Production, Money Velocity and so

on) collected at yearly frequency and ranging from various starting dates up to 1970.

According to Table 3, the predicted level of d̂ varies significantly across time series and

estimation strategies. Noticeably almost all of the series fail the test for no LM in the

"LM-first" approach, while only a minority does in the "Judgment-First" strategy.

The 2SFELW estimator in the last approach is insensitive and fixed to 0.01—that is,

at 99% of judgment.

In the second case study, we investigate the role of explanatory variables in

LMDJP-ARX by using Federal Reserve Bank of Philadelphia survey data on Real

GDP for the US economy from 1970:Q1 to 2020:Q4; specifically, we consider all

available measurements (real data, nowcasts, and forecasts up to one year ahead);
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as explanatory variables, we consider production, consumption, money velocity, and

house prices—-all of which are downloadable by FRED. Table 4 shows that the gen-

erated estimates and tests are qualitatively quite comparable to Nelson-Plosser data.

The third case study investigate the performances of the LMDJP-AR in macro-

finance using the Robert Shiller’s online dataset at http://www.econ.yale.edu/

~shiller/data.htm. This is composed of 19 variables on US economy (prices, div-

idends, interest rates, inflation and related transformations) collected at yearly fre-

quency and ranging from various starting dates up to 1970, see Shiller (1992).1. Also

in this case, that over acceptation of the null is still more evident, as illustrated in

Table 5.

The erroneous over-rejection of the null hypothesis for the LM-first strategy is

clear in all the three illustrations. Two orders of economic arguments can explain

this fact. The first relates to the mechanism design of the JP: namely, the reality’s

neutrality in the game between FP and FU does not imply that revealed data are

unaffected by JB, but rather that the reality is unconcerned about who wins the

game—or, in other words, that it lacks its own utility function. The dominance of

FP over FU or vice versa can be viewed as a test of FU’s eventual utility gain: if

she has a capital and this capital does not increase as a function of a (significant)

spread between FP quotation and reality announcement—measured by a divergence

function between the utility of each agent having it—then FP effectively wins this

game. Vovk and Shafer (2005) contains the theory for such a strategic perspective

(and testing) of the JP. According to Zanetti Chini (2023b), professional forecasters

at some of the most influential central banks and the official forecasts of these last

exhibit strategic judgment. Thus, we may conclude that, in the long run, strategic

conduct based on judgment tends to exaggerate the process’ persistence; this final

trait is frequently confused with LM, although it is really the natural outcome of

a recurrent game. The second argument corresponds to the Bullard et al. (2008)’s
1Amonthly equivalent dataset is also available and the results of the application on it are available

under request
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notion of near-exuberance equilibria. According to these authors, these exist when (i)

agents face rational expectations equilibrium with limited information; (ii) each agent

makes a rational individual decision to include the judgment in her forecasting model,

given that all other agents are using it; and (iii) the forecasting model is stable and

converges to rational expectations under recursive estimation schemes. Our LMDJP

architecture fulfills all three of these assumptions.

4 Conclusions

Our simulated and actual data demonstrate that judgment and long memory are

interconnected. The Long-Memory Dynamic Judgmental Protocol provided here is

the first in the literature to parameterize this relationship. This is adaptable and may

replicate a variety of contemporary features in this strand of literature. However,

the evidence of spurious long memory with judgment is strong. More in detail,

when building an econometric model, ex-ante estimate of long memory parameter is

associated to an over-rejection of the null of spurious long memory. Thus, we advocate

identifying judgmental bias prior to measuring long memory. Further research on the

topic is necessary, in particular to design a feasible and correct statistical detection

of long memory with strategic judgment.
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Figure 1: The Deformed Logarithm function

(a) Case 1: 0<q<1
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(b) Case 2: q>1
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NOTE: This figure displays the Lq-function applied to the numerical sequence a = [−4; 4]
for different values of q and compares it with the natural logarithm function.
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Figure 2: MonteCarlo average of 1-order DJP-AR(X) Power spectra under different q0 and
assuming d0=0

(a) AR(1), q=1 (b) AR(1), q=0.1

(c) ARX(1), q=1 (d) ARX(1), q=0.1

NOTE: This figure displays the average of a Monte Carlo simulated periodograms of the
DJP-AR(1) and ARX(1) (in higher and lower panel, respectively) for q0 = 1 (left panels)
and q0 = 0.1 (right panels) using the DGP illustrated in Section 3.
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Figure 3: MonteCarlo average of DJP-AR(X)(1) Power spectra under different q0 and d0.

(a) AR(1), d=1, q=1 (b) AR(1), d=1, q=0.1

(c) AR(1), d=0.1, q=1 (d) AR(1), d=0.1, q=0.1

(e) ARX(1), d=1, q=1 (f) ARX(1), d=1, q=0.1

(g) ARX(1), d=0.1, q=1 (h) ARX(1), d=0.1, q=0.1

NOTE: This figure displays the average of a Monte Carlo simulated periodograms of the
LMDJP-AR(1) and LMDJP-ARX(1) several memory and judgmental parameters using the
DGP illustrated in Section 3.
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Table 1: Simulation results for the Long Memory estimators and tests in LMDJP for T=100

LMDJP-AR(1), "Judgment First"

q0 d0 Mean q̂ Mean d̂ Empirical Power

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.2067 0.7428 0.7536 0.7742 0.2918 0.9050 0.9120 0.1613 0.1155
0.50 0.5678 1.0843 1.0912 1.0912 0.2918 0.9085 0.9240 0.2041 0.1341
1.00 0.7981 1.1043 1.1373 1.1392 0.2918 0.9192 0.9273 0.2144 0.1354

0.10
0.5

0.3054 0.5531 0.5538 0.5543 0.2918 0.9220 0.9320 0.2052 0.1318
0.50 0.6682 1.0866 1.1110 1.1115 0.2918 0.9481 0.9640 0.2342 0.1318
1.00 0.6980 1.1012 1.1240 1.1223 0.2918 1.0000 1.0000 0.2452 0.1377

0.10
1

0.3054 0.7495 0.7803 0.7808 0.2918 1.0000 1.0000 0.1733 0.1294
0.50 0.6681 0.9172 0.9150 0.9151 0.2918 1.0000 1.0000 0.1929 0.1304
1.00 0.7819 1.9170 1.9359 1.9361 0.2918 1.0000 1.0000 0.2344 0.1354

LMDJP-ARX(1), "Judgment First",

0.10
0

0.2051 0.7594 0.7801 0.7847 0.2918 . 0.9082 0.9173 0.1813 0.1106
0.50 0.7678 1.0107 1.0137 1.0142 0.9126 0.9121 0.9288 0.1998 0.1109
1.00 0.6979 0.9464 0.9440 0.9441 0.2918 1.0000 1.0000 0.1613 0.1155

0.10
0.5

0.2501 0.7531 0.7820 0.7822 0.2918 0.9420 0.9320 0.1644 0.1324
0.50 0.6520 0.9310 0.9546 0.9370 0.2918 1.0000 1.0000 0.1834 0.1334
1.00 0.7197 1.1055 1.1241 1.1230 0.2918 1.0000 1.0000 0.2129 0.1354

0.10
1

0.2458 0.7531 0.7820 0.7822 0.2918 1.0000 1.0000 0.1582 0.1139
0.50 0.5702 1.0972 1.1130 1.1163 0.2918 1.0000 1.0000 0.1531 0.1177
1.00 0.7928 1.1121 1.1375 1.1377 0.2918 1.0000 1.0000 0.1608 0.1192

LMDJP-AR(1), "LM First"

q0 d0 Mean q̂ Mean d̂ Empirical Power

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.3945 0.1128 0.1236 0.1342 0.1309 0.1788 0.2258 0.3944 0.2133
0.50 0.5489 0.5522 0.9121 0.9121 0.5539 0.1920 0.2595 0.4063 0.2195
1.00 0.5924 0.6640 0.7360 0.7433 0.6600 0.2244 0.2681 0.4566 0.2240

0.10
0.5

0.4222 0.6030 0.6329 0.6425 0.6427 0.2899 0.2756 0.2803 0.1541
0.50 0.6382 0.6058 0.6374 0.6466 0.6404 0.2634 0.2763 0.2889 0.1582
1.00 0.6980 0.5931 0.6221 0.6328 0.6321 0.2031 0.2860 0.2733 0.1677

0.10
1

0.4353 1.0954 1.1204 1.1209 0.4209 0.4995 0.4820 0.3672 0.1959
0.50 0.6455 1.1133 1.1321 1.1330 0.1448 0.5431 0.4933 0.3892 0.2130
1.00 0.6702 1.1055 1.1245 1.1203 0.1218 0.5875 0.4964 0.3850 0.2304

LMDJP-ARX(1) "LM First"

0.10
0

0.4541 1.1244 1.1360 1.1378 0.3379 0.2024 0.2530 0.3181 0.1494
0.50 0.6564 1.1347 1.1427 1.1426 1.1451 0.1951 0.2509 0.3809 0.2583
1.00 0.6869 0.1264 0.1240 0.1241 0.1278 0.1990 0.2550 0.3903 0.2689

0.10
0.5

0.4534 0.6140 0.6422 0.6480 0.6542 0.4053 0.4120 0.5105 0.1590
0.50 0.6045 0.6212 0.6340 0.6355 0.6439 0.2093 0.4383 0.5927 0.1666
1.00 0.6990 0.6030 0.6351 0.6439 0.6480 0.2260 0.4455 0.6066 0.1646

0.10
1

0.4553 1.1024 1.1215 1.1237 1.1242 0.5995 0.3335 0.5845 0.2095
0.50 0.6088 1.1031 1.1232 1.1261 1.1262 0.6100 0.4154 0.5892 0.2021
1.00 0.6952 1.1024 1.1240 1.1252 1.1255 0.5875 0.4640 0.6250 0.2020

NOTES: This table reports the MonteCarlo average estimates of the strategic judgmental parameter
(column 3) and four estimators of long memory parameters, jointly with their empirical powers
(columns from 4 to the end) for different initial values of strategic judgment and memory. The
upper part displays the results where d̂ is estimated before applying Judgmental Filter, while the
lower half reports the results for the case that d̂ is estimated after that Judgmental Filter is run on
data. The DGP is explained in Section 3.
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Table 2: Simulation results for the Long-Memory estimators and tests in DJP for T=500.

LMDJP-AR(1), "Judgment First"

q0 d0 Mean q̂ Mean d̂ Empirical Power

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.5327 0.0363 0.0356 0.3561 0.2918 0.9956 0.9995 0.3054 0.2546
0.50 0.7589 0.0353 0.0345 0.0345 0.2918 1.0000 1.0000 0.2946 0.2556
1.00 0.8959 0.0344 0.0338 0.0338 0.2918 1.0000 1.0000 0.2709 0.2556

0.10
0.5

0.5334 0.5284 0.5352 0.5385 0.2918 0.9953 0.9945 0.2824 0.2566
0.50 0.7508 0.0527 0.0534 0.0537 0.2918 1.0000 1.0000 0.2813 0.2555
1.00 0.9963 0.5296 0.5363 0.5397 0.2918 1.0000 1.0000 0.2870 0.2556

0.10
1

0.4228 1.0334 1.0356 1.0357 0.2918 1.0000 1.0000 0.3445 0.2554
0.50 0.7508 1.0320 1.0345 1.0344 0.2918 1.0000 1.0000 0.3045 0.2556
1.00 0.9969 1.0310 1.0337 1.0336 0.2918 1.0000 1.0000 0.3082 0.2556

LMDJP-ARX(1), "Judgment First"

0.10
0

0.6463 0.6773 0.6867 0.6867 0.2918 0.9952 0.9963 0.3454 0.2576
0.50 0.7801 1.0125 1.0195 1.0195 0.2918 1.0000 1.0000 0.3214 0.2578
1.00 0.8991 1.0366 1.0366 1.0393 0.2918 1.0000 1.0000 0.3345 0.2577

0.10
0.5

0.6502 0.6754 0.6818 0.6837 0.2918 1.0000 1.0000 0.3810 0.2579
0.50 0.7806 1.0164 1.0193 1.0198 0.2918 1.0000 1.0000 0.4069 0.2767
1.00 . 0.8991 1.0296 1.0345 1.0377 0.2918 1.0000 1.0000 0.3456 0.2871

0.10
1

0.6553 0.6846 0.6932 0.6955 0.2918 1.0000 1.0000 0.3856 0.2556
0.50 0.7810 1.0123 1.0158 1.0156 0.2918 1.0000 1.0000 0.4056 0.2556
1.00 0.8991 1.0276 1.0304 1.0303 0.2918 1.0000 1.0000 0.3934 0.2567

LMDJP-AR(1), "LM First"

q0 d0 Mean q̂ Mean d̂ Empirical Power

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.5329 0.0350 0.0344 0.0344 0.0344 0.3838 0.2173 0.2917 0.1135
0.50 0.9509 0.0369 0.0364 0.0364 0.0364 0.3897 0.4178 0.2918 0.1136
1.00 0.9962 0.0358 0.0350 0.0350 0.0350 0.3945 0.4114 0.2923 0.1233

0.10
0.5

0.5336 0.5295 0.5295 0.5362 0.5393 0.3801 0.3145 0.2777 0.1145
0.50 0.9502 0.5273 0.5341 0.5374 0.5374 0.3836 0.4134 0.3845 0.1129
1.00 0.9962 0.5284 0.5352 0.5386 0.5387 0.3809 0.4125 0.3956 0.1159

0.10
1

0.5334 1.0330 1.0356 1.0356 1.0356 0.4737 0.3091 0.2788 0.1145
0.50 0.9494 1.0308 1.0334 1.0334 1.0334 0.4612 0.3960 0.2747 0.1104
1.00 0.9964 1.03134 1.0332 1.0338 1.0338 0.4834 0.4033 0.2824 0.1145

LMDJP-ARX(1) with d̂, "LM First"

0.10
0

0.6514 0.6718 0.6784 0.6803 0.2918 0.9654 0.9853 0.5088 0.2570
0.50 0.9809 1.0093 1.0124 1.0122 0.2918 1.0000 1.0000 0.5945 0.2576
1.00 0.9991 1.0309 1.0334 1.0335 0.2918 1.0000 1.0000 0.5133 0.2583

0.10
0.5

0.6532 0.5239 0.5303 0.5342 0.5347 0.3782 0.4134 0.5779 0.2230
0.50 0.9810 0.5243 0.5310 0.5481 0.5404 0.3043 0.4185 0.5240 0.2299
1.00 0.9991 0.5283 0.5331 0.5376 0.5376 0.3243 0.4385 0.5240 0.2599

0.10
1

0.6507 1.0324 1.0347 1.0347 1.0347 0.4725 0.4338 0.5883 0.2444
0.50 0.9810 1.0324 1.0343 1.0343 1.0342 0.4325 0.4755 0.5476 0.2224
1.00 0.9991 1.0334 1.0369 1.0373 1.0370 0.4720 05048 0.5755 0.2295

NOTES: This table reports the MonteCarlo average estimates of the strategic judgmental parameter
(column 3) and four estimators of long memory parameters (exposed in Appendix), jointly with their
empirical powers (columns from 4 to the end) for different initial values of strategic judgment and
memory. The upper part displays the results where d̂ is estimated before applying Judgmental
Filter, while the lower half reports the results for the case that d̂ is estimated after that Judgmental
Filter is run on data. The DGP is explained in Section 3.
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Table 3: Application of the LMDJP-AR model to Nelson-Plosser’s data.

DJP-AR(p), "Judgment First" DJP-AR(p), "LM First"

Series T p̂ Mean q̂ Mean d̂ Mean q̂ Mean d̂

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

Real GNP 62 1 0.0000 1.1132 1.2469 1.1993 1.9923 0.0000 1.6374 1.3469 1.2784 1.1931
Nominal GNP 62 1 0.0000 1.1872 1.6768 1.6973 1.6979 0.0000 0.9972 1.7769 1.8091 1.6984
Real per capita GNP 62 1 0.0000 0.8357 0.9399 0.9151 0.9157 0.0000 0.6432 1.0345 0.9924 0.9151
Industrial production 111 2 0.0262 1.0093 1.2547 1.1892 1.1897 0.0262 1.7245 1.3821 1.3136 1.2137
Employment 81 2 0.0000 0.5712 0.6622 0.6547 0.6692 0.0000 0.6679 0.7622 0.7682 0.7693
Unemployment rate 81 2 0.0650 0.7397 0.7661 0.8013 0.8014 0.0650 1.0067 0.8013 0.6413 0.6417
GNP deflator 82 2 0.0000 1.1708 1.1678 1.3199 1.3198 0.0000 1.4080 1.2673 1.3199 1.3198
CPI 111 2 0.0000 0.9655 1.3194 1.2395 1.2345 0.0000 1.2696 1.4194 1.3261 1.2345
Nominal wage 71 2 0.0000 1.2684 1.3805 1.5372 1.5372 0.0000 1.6825 1.4805 1.6338 1.5372
Real wage 71 2 0.0000 0.9769 1.0162 1.0352 1.0354 0.0000 1.5004 1.1162 1.1118 1.0357
Money stock 71 2 0.0000 1.2025 1.7048 1.7839 1.7839 0.0000 1.4553 1.8048 1.9233 1.7839
Velocity of money 102 2 0.0000 0.9926 1.0184 1.0552 1.0552 0.0000 0.0692 1.1182 1.1191 1.0552
Bond yield 71 2 0.0000 0.7724 1.6559 1.6605 1.6605 0.0000 0.0520 1.7559 1.7676 1.6608
Stock prices 100 2 0.0292 1.1489 1.2170 1.1167 1.1165 0.0262 1.4698 1.3451 1.2453 1.4250

Test for no Long Memory (p-values)

Real GNP 0.0583 0.0666 0.0636 0.0123 0.0651 0.0782 0.0685 0.0685
Nominal GNP 0.0629 0.0929 0.0942 0.0123 0.0623 0.0989 0.1003 0.0942
Real per capita GNP 0.0415 0.0477 0.0626 0.0123 0.0460 0.0538 0.0509 0.0462
Industrial production 0.0538 0.0643 0.0601 0.0123 0.0564 0.0732 0.0680 0.0622
Employment 0.0293 0.0357 0.0356 0.0123 0.0340 0.0415 0.0412 0.0356
Unemployment rate 0.0368 0.0392 0.0392 0.0123 0.0396 0.0423 0.0422 0.0363
GNP deflator 0.0609 0.0638 0.0698 0.0123 0.0652 0.0679 0.0711 0.0762
CPI 0.0483 0.0712 0.0631 0.0123 0.0512 0.0772 0.0715 0.0658
Nominal wage 0.0679 0.0749 0.0842 0.0123 0.0691 0.0811 0.0904 0.0845
Real wage 0.0499 0.0524 0.0535 0.0123 0.0556 0.0585 0.0582 0.0535
Money stock 0.0603 0.0941 0.0989 0.0123 0.0590 0.0999 0.1068 0.0982
Velocity of money 0.0502 0.0524 0.0547 0.0123 0.0562 0.0586 0.0587 0.0547
Bond yield 0.0378 0.0917 0.0923 0.0123 0.0412 0.0972 0.0920 0.0983
Stock prices 0.0605 0.0642 0.0582 0.0123 0.0608 0.0724 0.0662 0.0601

NOTES: This table reports the result of the application of the LMDJP-AR model to Nelson-Plosser
data on US economic variables. In the upper panel, the first three columns describe the variable
names, the sample size and the estimated autoregressive orders; columns from fourth to eighth
display the estimated q and the estimates of d for the "Judgment First" modelling strategy for
the four estimator here considered (and exposed in Appendix), while the equivalent estimates for
"LM First" is reported in the remaining columns. The lower panel displays the p-values of the
test corresponding to (3), still for each of the four estimators. In both the modelling strategies we
assume q0 = 0.1

Table 4: Application of the ARX-LMDJP model to SPF data.

DJS-AR(p), "Judgment First" DJS-AR(p), "LM First"

Series Mean q̂ Mean d̂ Mean d̂

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

Real data . 0.8747 0.8105 0.8292 0.8595 0.2918 1.1953 0.0544 0.0544 0.4522
Nowcasts 0.0831 0.1665 0.2052 0.2056 0.2918 0.2222 0.2226 0.1225 0.2245
1-q-ahead 0.7519 1.1051 1.11450 1.1415 0.2918 0.4533 0.4932 0.3932 0.5027
2-q-ahead 0.7245 1.1214 1.1581 1.1608 0.2918 0.4495 0.5336 0.5359 0.4336
3-q-ahead 0.6951 1.1570 1.1700 1.1806 0.2918 0.4767 0.5749 0.6055 0.5742
1-y-ahead 0.5652 1.2157 1.0442 1.0823 0.6951 0.2889 0.5791 0.7470 0.7017

Test for no Long Memory (p-values)

Real data . 0.0401 0.0415 0.0429 0.0123 0.0020 0.0021 0.0021 0.0021
Nowcasts 0.0067 0.0084 0.0084 0.0123 0.0074 0.0091 0.0092 0.0048
1-q-ahead 0.0578 0.0603 0.0601 0.0123 0.0186 0.0223 0.0224 0.0172
2-q-ahead 0.0590 0.0611 0.0612 0.0123 0.0214 0.0244 0.0246 0.0193
3-q-ahead 0.0610 0.0618 0.0625 0.0123 0.0249 0.0267 0.0283 0.0213
1-y-ahead 0.0643 0.0542 0.0563 0.0123 0.0361 0.0264 0.0364 0.0360

NOTES: This table reports the result of the application of the LMDJP-ARX model to SPF data on
US Real GDP for several forecasting horizons. In the upper panel, the first three columns describe
the variable names; columns from second to sixth display the estimated q and the estimates of
d for the "Judgment First" modelling strategy for the four estimator here considered (exposed in
Appendix), while the equivalent estimates for "LM First" is reported in the remaining columns.
The lower panel displays the p-values of the test corresponding to (3), still for each of the four
estimators. In both the modelling strategies we assume q0 = 0.1 and an autoregressive order p = 2.
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Table 5: Application of the LMDJP-AR model to Shiller’s annual data.

DJS-AR(p), "Judgment First" DJS-AR(p), "LM First"

Series T p̂ Mean q̂ Mean d̂ Mean q̂ Mean d̂

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

P 146 3 0.0068 0.7535 1.1358 1.0591 0.2918 0.0068 1.0522 1.2289 1.1564 1.0520
D 145 3 0.0200 0.7326 1.1776 1.1861 0.2918 0.0200 1.3029 1.3083 1.2082 1.3083
E 143 3 0.0070 0.6107 0.7908 0.8217 0.2918 0.0070 0.8838 0.9081 0.8153 0.9081
R 141 3 0.0286 0.5652 0.6489 0.6654 0.2918 0.0286 0.7203 0.7255 0.6453 0.7245
RLong 142 3 1.0000 0.8627 0.9995 1.0657 0.2918 0.0000 -6.5407 1.1745 1.0861 1.1888
CPI 142 3 1.0000 1.4005 1.3178 1.6206 0.2918 0.0000 1.4005 1.3178 1.6206 0.2918
RealR 142 3 1.0000 1.1692 1.1885 1.1919 0.2918 1.0000 2.3178 2.2752 1.6206 1.6206
C 121 2 0.0095 1.3180 1.3833 1.2737 0.2918 0.0099 2.4622 2.4660 1.5564 2.4660
RealP 144 3 0.0144 0.8543 0.7492 0.8004 0.2918 0.0144 1.7512 0.7872 1.7511 0.7872
P∗ 139 3 0.0084 1.1498 1.1498 1.9789 0.2918 0.0084 2.5538 2.5007 1.9789 2.5007
P × r 139 3 0.0075 1.2015 1.3062 1.3187 0.2918 0.0075 2.3062 2.3116 1.3187 2.3116
P × C 120 2 0.0075 1.1708 1.3618 1.3641 0.2918 0.0075 2.1741 2.1388 1.0925 2.1388
Real D 142 3 0.0146 0.6388 0.5684 0.6702 0.2918 0.0146 1.5537 1.5530 0.6617 1.5530
Return 142 3 0.9994 0.8178 0.8410 0.8448 0.2918 0.9994 2.0041 0.8417 0.8454 0.8582
ln(1 + Return) 142 3 1.0000 0.8180 0.8423 0.8461 0.2918 1.0000 1.6107 0.8423 0.8461 0.8461
RealE 141 3 0.9749 1.3742 1.2898 1.2958 0.2918 0.9749 1.3149 1.3206 0.3149 1.3205
P/E 141 3 0.9878 1.3754 1.3870 1.3852 0.2918 0.9878 1.3992 1.3974 0.3992 1.3974
E10 133 3 0.0077 1.3119 1.0905 1.2254 0.2918 0.0077 2.0905 2.1020 1.2254 2.1020
P/E10 132 3 0.9629 1.7005 1.7452 1.7426 0.2918 0.9629 1.7823 1.7792 0.7978 1.7792

Test for no Long Memory (p-values)

P 0.0341 0.0225 0.0563 0.0123 0.0631 0.0561 0.0569 0.0581
D 0.0355 0.0384 0.0382 0.0123 0.0563 0.0552 0.0540 0.0653
E 0.0483 0.0478 0.0514 0.0123 0.0662 0.0679 0.0585 0.0664
R 0.0471 0.0456 0.0450 0.0123 0.0593 0.0635 0.0644 0.0531
RLong 0.0256 0.0359 0.0395 0.0123 0.0483 0.0512 0.0532 0.0485
CPI 0.0338 0.0377 0.0490 0.0123 0.0753 0.0740 0.0734 0.0738
RealR 0.0509 0.0599 0.0480 0.0123 0.0807 0.0773 0.0822 0.0834
C 0.0518 0.0530 0.0500 0.0123 0.0774 0.0730 0.0981 0.0567
RealP 0.0496 0.0583 0.0579 0.0123 0.0692 0.0802 0.0775 0.0882
P∗ 0.0591 0.0694 0.0734 0.0123 0.0840 0.0899 0.0924 0.0740
P × r 0.0389 0.0325 0.0422 0.0123 0.0504 0.0562 0.0559 0.0485
P × C 0.0560 0.0604 0.0628 0.0123 0.0863 0.0935 0.0999 0.0705
Real D 0.0503 0.0562 0.0566 0.0123 0.0615 0.0638 0.0664 0.0662
Return 0.0488 0.0563 0.0542 0.0123 0.0690 0.0722 0.0713 0.0583
ln(1 + Return) 0.0267 0.0308 0.0402 0.0123 0.0482 0.0499 0.0553 0.0425
RealE 0.0372 0.0432 0.0562 0.0123 0.0553 0.0602 0.0645 0.0483
P/E 0.0456 0.0553 0.0593 0.0123 0.0643 0.0705 0.0739 0.0760
E10 0.0600 0.0663 0.0634 0.0123 0.0853 0.0886 0.0734 0.0604
P/E10 0.0583 0.0666 0.0605 0.0123 0.0793 0.0814 0.0853 0.0555

NOTES: This table reports the result of the application of the LMDJP-AR model to Shiller’s annual
data on US economic variables. In the upper panel, the first three columns describe the variable
labels, the sample size and the estimated autoregressive orders; columns from fourth to eighth
display the estimated q and the estimates of d for the "Judgment First" modelling strategy for
the four estimator here considered (and exposed in Appendix), while the equivalent estimates for
"LM First" is reported in the remaining columns. The lower panel displays the p-values of the
test corresponding to (3), still for each of the four estimators. In both the modelling strategies we
assume q0 = 0.1
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APPENDIX

A Estimation

A.1 Estimating Long Memory

The spectral density of the process (2) in Main Text can be represented as

fΦ(λ) ∼ G|λ|−2d as λ→ 0 (6)

whereG corresponds to the spectral density of an AR(p) process and can be estimated

via Local Whittle Likelihood (LW):

m∑
j=1

log fu(λ) +
m∑
j=1

Iu(λj)

fu(λj)
,

I(λ) = |w(λ)2|, w(λ) = (2πn)−1/2

n∑
x=1

yte
itλ, λj = 2πj/n

(7)

where w(), I() and λ()are the discrete Fourier transform, the periodogram, and the

frequency of yt, respectively. We consider four different estimators of d: the Local

Whittle Likelihood estimator (LW); the Exact Whittle Likelihood (ELW) the Modi-

fiedWhittle Likelihood (ELW2) and Two-Step Feasible Whittle Likelihood (2SFEWL);

for details, see Robinson (1995); Shimotsu and Phillips (2005, 2006); Shimotsu (2010).

A.2 The Deformed Likelihood

Let y1, . . . , yT be an i.i.d. sample from p(yi, θ0), θ0 ∈ Θ, where all the elements of

that vector Θ are part of the LMDJP defined in Section 2 of Main Document. Then

the maximum Lq-estimator (MLqE) of θ0 is

θ̂T
.
= max

θ̃∈Θ

T∑
t=1

Lq[p(yt; θ)], q > 0, (8)
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where Lq(x) is a Lq-transform. Moreover, if p(·) is Gaussian, its Deformed Likelihood

is:

Lq(θ; yt) = −0.5 ∗ [q0T log(2π) + (log p(yt) + u2
t )
q], (9)

where: θ = [µ, σ2], ut = (yt − µ)/σ2 and π is the usual Archimedean constant; the

estimated version has q̂ and ût instead of q and ut. Moreover, (8) is the result of the

maximization of:
T∑
t=1

wtU(yt, θ) = 0 (10)

which is a weighted version of the likelihood equation with U(yt, θ) = p(yt; θ)
′/p(yt; θ)

and weights wt = pt(yt; θ)
1−q. When q < 1, data points with high likelihoods are

assigned large weights. As q tends to 1, the MLqE coincides to standard Maximum

Likelihood Estimator (MLE, henceforth). Typically, outliers are associated to very

small weights.

When q < 1, data points with high likelihoods are assigned large weights. As q

tends to 1, the MLqE coincides to standard Maximum Likelihood estimator. Typ-

ically, outliers are associated to very small weights. According to Figure 4, a small

deviation from 1 is sufficient to modify drastically the log-likelihood. However, such

a contamination is not uniform. For example, according to the analytic results by

Ferrari and Yang (2010), if p(·, ·) is Gaussian, then the estimated mean of θ̂ does not

depends of q.

The parameter q is a point measure of judgmental bias in the estimated model due

to FP (or FU) singularly.

Finally, it is possible to prove that the q-Entropy coincides with the H-function

corresponding to the DJP.
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B Proof of Proposition 1

Part (a)

Let assume the state-space form for yt as the following system of equations, named

Dynamic Judgmental System (DJP, henceforth):

yt = Ztα +Xtβ +Gtεt, εt ∼ iid(0, σ2
ε )

αt+1 = Ttαt +Wβ +Htηt, ηt ∼ iid(0, σ2
η);

Z = [1, 0m−1]; X = [1, 0k−1]; H = φ′

G =

 Im−1

0m−1

 ; T =

 φ′
G

 ; W = [φ′, G]′,

(11)

where Zt is a (m × 1) vector of fixed effects, Xt a (1 × k) vector of covariates, β a

(k× 1) vector of parameters, αt an (m× 1) vector of states, T an (m×m) matrix of

fixed coefficients, G an (m × g) matrix, ηt a (g × 1) vector of disturbances and φ a

(p+ 1) vector of AR parameters. The initial conditions are:

α0 = [0m]; β0 = [0k]; Im2 = I ⊗ [T, T ];

H2 = HH ′; vec(P ) = I−1
m H2.

(12)

Then, we invoke the following standard assumptions:

Assumption 2. (i) E(εt, εs) = 0 for all t 6= s; (ii) E(ηt, ηs) = 0 for all t 6= s; (iii)

E(εt, ηt) = 0; (iv) E(α0, εt) = 0 for all t = 1 . . . n.

Lemma 1. Suppose {yt} is a stationary ARFIMA(p,d,q) process. Under assumption

A1 (i)—(iv), the finite state-space system (11) is stationary.

Proof. This is a re-proposition of Lemma 2.1 in Chan and Palma (1998) to which we

refers for proof.
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Remark 3. The system (11) and A1 (i)—(iv) are the same of Zanetti Chini (2023a)—

that is, the presence of long memory does not affect the the state-space autoregressive

form.

Now, we need to prove that our DJP is effectively an object that nests the q-

Entropy and H-function defined in the Main Document. This is possible by the

following.

Lemma 2. The q-Entropy is the H-function corresponding to the DJP.

Proof. Trivial if (i) remembering the definition of Hq := EfLq{g(X)}, where g and

f are two density functions and (ii) that system (11) is invariant to the fact that

long-memory parameter d 6= 0. See Ferrari and Yang (2010) and Zanetti Chini

(2023a).

Lemma 3. Consider the Deformed Logarithm in equation (1) in Main Document.

Then, (i) if q approaches to 1, Hq(·, ·) nests the Shannon Entropy and Dq(·, ·) the

Kullback-Leibler Divergence. (ii) The minimizer over θ of Dq(θ, θ0), where θ0 is the

true parameter, is the same as the minimizer Hq(θ0, θ) where q = 1/r and r > 0.

Proof. See Ferrari and Yang, pp. 755–756.

After these preliminary results we can link the equation (11) to JP:

Lemma 4. (i) The DJP is never isomorphic to JP;

(ii) The DJP is isomorphic to (11).

Proof. It descends directly from (a) the part (ii) of Lemma 3 and (b) Lemma 4. Lets

consider each of them separately.

(a) the part (ii) of Lemma 3 is necessary but not sufficient. If DJP were not isomorphic

to the state-space form in equation 11, there could exist an H-function different from

Hq that maximizes U(X,Y) given q. On the opposite side, assume there exists a

H-function different from Hq that maximizes U(X,Y) given q; in this case, there is

no implication of uniqueness of q nor H 6= Hq.
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(b) Lemma 4 is a sufficient, non-necessary condition for the next Proposition 1 to

hold. Part (i) of Lemma 4 ensures a one-to-one relation among q-Entropy, a known

D-function and the DJP; part (ii) of Lemma 3 ensures the one-to-one relationship

among the true parameter θ0 and the amount of the aggregate quote of judgment

represented by q.

In summary, the existence of a state-space form of a long-memory model is en-

sured by Lemma1; the feasibility of entropy-based method—and, specifically, the

Lq-Likelihood—to measure JP is ensured by Lemmas 2 and 3, respectively. Finally

by Lemma 4 proves the one-to-one relationship among (11) to be estimated. Hence,

the combination of Lemmas 1–4 implies part (a) of Proposition 1 in Main Document.

Part (b)

The proof is divided in two cases:

CASE 1 (q=1). This nests the the classical Log-Likelihood, hence the proof is iden-

tical to the one in Chan and Palma (1998), Theorem 2.2.

CASE 2 (0<q<1). The proof of this case requires to verify if the mentioned results

of (Chan and Palma, 1998) hold also for LqLikelihood.

Lemma 5. Under A1 (i)–(iv) and the MLqE in (8)–(10), we have that: (i) the DKF

recursive equations are:

for 1,. . . , t, . . . , n,

v = yt − Zαt −Xβ; F = ZPZ ′ +GG′; (13)

C = PZ ′/F ; t = v/
√
q0F (q0−1); (14)

vt = α + C
√
Fh; Pt = αt + Cq0FC

′(h/t); Q = HG′/F ; (15)

Pt+1|t = TVtT
′ +HH ′ − (QFQ′ +QFC ′T ′ + TCFQ′)(h/t); (16)

αt+1|t = Tvt +Wβ +Q
√

(q0F )(h/t); (17)
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where, for an arbitrary small number of time periods t∗,

h =

t if (t < t∗)

h(t, a, b) otherwise,
(18)

and

h(t, a, b) =



t; if |t| ≤ a

a
b−a(b− t) if a < t ≤ b,

a
b−a(b+ t) if − b < t ≤ t− a,

0 if |t| ≥ b.

(19)

(ii) The Deformed Likelihood and filtered yt are:

L = log(F ) + log(q0); S = v2/F ; (20)

yf = Zvt +GG′
√
q0Fh/(q0F ); ht = h/t; (21)

αt+1 = a; Σt+1 = diag(P ) (22)

where I = v and σ2
I = F .

(iii) The Deformed Likelihood’s weights and the averaged LogLikelihood, concen-

trated LogLikelihood, LqLikelihood and estimated Lq-Likelihood measures are:

wt = 1/(L)q0Gt (23)

L = −0.5[T log(2π) + L+ S]; Lc = −0.5[T (log(2πS) + 1] + L; (24)

Lq = 0.5((q0T log(2π) + (L+ S)q0); L̂q = 0.5((q̂T log(2π) + (L+ S)q̂). (25)

Proof. CASE 1: q=1. By Lemma 3, the Lq-Likelihood function coincides with the

standard Likelihood; thus, the DKF coincides with the (robust) KF (see also corollary

2 of Zanetti Chini (2023a)), to which the proof is delegated.

CASE 2: 0 < q < 1. Since q 6= 1 implies a bias to α̂ and β̂, these are no more
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the minimum mean square error of α and β. Thus, we only need to justify the

introduction of (a) t = v/
√
q0F q0−1 in eq. (10)–(12); (b) q0 in the second addend of

(11).

Let start from (b). By Lemma 1 in Zanetti Chini (2023a), we only need to notice that,

in the Harvey and Phillips (1979) notation here adopted, the variance is parametrized

by F via Pt, and that F is a scalar. Thus, there is no need of half-vectorizing P, as

instead required in case of higher dimentions. The same argument holds for equation

(13).

To prove (a), let us remark that, in exponential family, θ∗ = θ0/q, where θ = [µ, σ2].

By Lemma 2 in Zanetti Chini (2023a), µ is not influenced by q, thus it suffices to

consider σ2/q, where σ2 is known. Thus, the only unknown variable is 1/q. According

to the normal equation (10), the optimal solution is the first derivative of
√
F q.

(ii) Direct consequence of (i).

(iii) Trivial if defining S = S/T and q̂ =
∑T

1=1 ht
/
T and Gt = −0.5((q0T log(S2)S).

After having verified that MLqE is feasible in our state-space modelling, we need

to demonstrate that (11) is valid in finite samples to ensure that the Chan and Palma

(1998) results holds also in our case. This is possible by the following

Lemma 6. Let {yn} be a finite sample of an ARFIMA (p,d,q) process. If F1 is the

variance of the initial state α1. Then, the computation of the likelihood depends only

on the first n components of the Deformed Kalman equations.

Proof. Trivial if noticing how L in (19) works. Namely, it is formed by three parts:

the first depends on the sample size; the second on L, in turn depending on F and

q0 (that is, a constant); the third depends on estimated residuals v and the same F.

Thus, the issue is demonstrating that F and ν depends on the first n components. In

turn, this is immediate by noticing that v and F are linked by the object t in (9) and

that matrix P (necessary to have F) is a recursion on n.
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Remark 4. This last result points that DKF is feasible at least as the classical KF in

Chan and Palma (1998).

C Proof of Proposition 2

Trivial if considering the equation of Lq in (20) is function of q via L and that the last

element can be re-written by using spectral density as L =
∫ π
−π G(λ)eiω, ω = [−π, π].
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Additional Tables and Graphs

Figure 4: The Deformed Logarithm of a Standard Normal density
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NOTE: This figure displays the behavior of the Deformed Logarithm applied to a standard
normal probability density function f over the sequence [−4; 4] given a set of values of q.
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Figure 5: Examples of DJP-AR(1) and associated power-spectra for several q0 and d0= 0.

(a) (b)

(c) (d)

NOTE: This figure displays an example of simulated DJP-AR(1) process (left panels) and
estimated periodograms (right panels) for two different values of q0 = 1 (upper panels) and
q0 = 0.1 (lower panels). In all the cases the process is: yt = φ = 0.5yt−1 + εt, εt ∼ N(0, 1)
and T=50.
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