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Series Foreword

Dear reader,
The series Simula SpringerBriefs on Computing was established in 2016, with

the aim of publishing compact introductions and state-of-the-art overviews of se-
lect fields in computing. Research is increasingly interdisciplinary, and students and
experienced researchers both often face the need to learn the foundations, tools,
and methods of a new field. This process can be demanding, and typically involves
extensive reading of multidisciplinary publications with different notations, termi-
nologies and styles of presentation. The briefs in this series are meant to ease the
process by explaining important concepts and theories in a specific interdisciplinary
field without assuming extensive disciplinary knowledge and by outlining open re-
search challenges and posing critical questions in the field.

Simula has a major research program in computational physiology that includes
a long and close collaboration with the University of California (UC) San Diego. To
reflect this research focus, we established in 2020 a new subseries entitled Simula
Springer Briefs on Computing - Reports on Computational Physiology. The subseries
includes both introductory and advanced texts on select fields of computational
physiology, designed to advance interdisciplinary scientific literacy and promote
effective communication and collaboration in the field. This subseries is also the
outlet for collections of reports from the annual Summer School in Computational
Physiology, organized by Simula, University of Oslo, and UC San Diego. The school
starts in June each year with students spending two weeks in Oslo learning the
principles underlying mathematical models commonly used in studying the heart
and the brain. During their stay in Oslo, students are assigned a research project to
work on over the summer. In August, they travel to San Diego for another week of
training and project work, and a final presentation of their findings. Every year, we
have been impressed by the students’ creativity and we often see results that could
lead to a scientific publication. Starting with the 2021 edition of the summer school,
we have taken the course one step further by having each team conclude their project
with a scientific report that can pass rigorous peer review as a publication in this
new series.
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vi Series Foreword

All items in the main series and the subseries are published within the
SpringerOpen framework, as this will allow authors to use the series to publish
an initial version of their manuscript that could subsequently evolve into a full-scale
book on a broader theme. Since the briefs are freely available online, the authors do
not receive any direct income from the sales; however, remuneration is provided for
every completed manuscript. Briefs are written on the basis of an invitation from a
member of the editorial board.

Suggestions for possible topics are most welcome, and interested authors are
encouraged to contact a member of the editorial board.
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Preface

Since 2014, we have organized an annual summer school in computational physiol-
ogy. The school starts in June each year and the graduate students spend two weeks
in Oslo learning the principles underlying mathematical models commonly used in
studying the heart and the brain. At the end of their stay in Oslo, the students are
assigned a research project to work on over the summer. In August the students travel
to the University of California, San Diego to present their findings. Each year, we
have been duly impressed by the students’ progress and we have often seen that the
results contain the rudiments of a scientific paper.

Starting in the 2021 edition of the summer school, we have taken the course one
step further and aim to conclude every project with a scientific report that passes
rigorous peer review as a publication in this new series called Simula SpringerBriefs
on Computing – reports on computational physiology.

One advantage of this course adjustment is that we have the opportunity to intro-
duce students to scientific writing. To ensure the students get the best introduction
in the shortest amount of time, we have commissioned a professional introduction to
science writing by Nature. The students participate in a Nature Masterclasses work-
shop in order to strengthen skills in high quality scientific writing and publishing.
The workshop is tailored to publications in the field of computational physiology
and allows students to gather real-time feedback on their reports.

We would like to emphasise that the contributions in this series are brief re-
ports based on the intensive research projects assigned during the summer school.
Each report addresses a specific problem of importance in physiology and presents
a succinct summary of the findings (8-15 pages). We do not require that results
represent new scientific results; rather, they can reproduce or supplement earlier
computational studies or experimental findings. The physiological question under
consideration should be clearly formulated, the mathematical models should be de-
fined in a manner readable by others at the same level of expertise, and the software
used should, if possible, be made publicly available. All reports in this series are
subjected to peer-review by the other students and supervisors in the program.
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We would like to express our gratitude for the very fruitful collaboration with
Springer -Nature and in particular with Dr. Martin Peters, the Executive Editor for
Mathematics, Computational Science and Engineering.
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Chapter 1
Studying the Role of Astrocytic Membrane
Properties on Microscopic Fluid Flow in Brain
Tissue

Nigar Abbasova, Adyant Balaji, Elena Bernardelli, Ada J Ellingsrud, and Marte J
Sætra

Abstract The role of astrocyte networks in brain volume homeostasis and waste
clearance has not received enough attention from the neuroscience community.
However, recent research efforts indicate that glial cells are crucial for fluid flow
through brain tissue, contributing to clearance and maintenance of brain volume.
We examine the role of various glial cotransporters in the spatial and temporal
changes of the intra- and extracellular volume fractions and fluid dynamics via
computational modelling. The model is incorporated within the Kirchhoff-Nernst-
Planck electrodiffusive framework and takes into account ionic electrodiffusion and
fluid dynamics. Our research shows that all model configurations demonstrate similar
fluid fluxes, except those involving HCO−

3 dynamics. The model configuration that
included the NBC cotransporter was observed to have the greatest intracellular total
volume-weighted fluid velocity of 16 µm/s.
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2 Microscopic Fluid Flow in the Brain

1.1 Introduction

Although astrocytes comprise a large part of the glial cell population in the mam-
malian brain [1], the role of astrocyte networks has not received enough attention
from the neuroscience community. However, recent research within astrocytic net-
works and brain clearance pathways shows that astrocytes are likely to be crucial
for fluid flow through brain tissue, which contributes primarily to brain volume
homeostasis and waste clearance [2]. One of the key questions that has yet to be
understood relates to the role of the astrocytic membrane and its effect on the flow
of transmembrane and compartmental fluid. Another closely related phenomenon is
the shrinkage of the extracellular space between neurons and surrounding astrocytes
during neuronal stimulation [3].

Østby et al. 2009 [3] studied the extracellular shrinkage induced by neural activity
by investigating the astrocytic membrane mechanisms. They report that Na+/K+/Cl−
(NKCC1) and Na+/HCO−

3 (NBC) cotransporters appear to be crucial factors in
achieving the measurable extent of the shrinkage of the extracellular space (ECS).
Jin et al. [4] studied the dynamics of extracellular K + ions during neural stimulation
and the effect of the membrane water channel aquaporin-4 (AQP4) in astrocytes.
However, both authors ([3, 4]) excluded spatial effects from consideration, thus
preventing them from looking into intracompartmental gradients. Afterwards, Sætra
et al. 2023 [2] introduced a computational framework to characterise the spatial and
temporal dynamics of the astrocytic network triggered by neural activity. However,
the authors were able to estimate the electrochemomechanical response as well as the
water movement within the compartments of the astrocytic network without studying
the effects of different membrane mechanisms.

In this work, we implement other membrane mechanisms in the framework of
Sætra et al. 2023 [2] and evaluate how they affect microscopic fluid flow in brain
tissue. We do so by analysing the fluid velocities in the astrocyte network and the ex-
tracellular space surrounding it. We also investigate the effect of the new membrane
mechanisms on the spatial and temporal dynamics of the intra- and extracellular vol-
ume fractions. Our base model for membrane mechanisms includes Na+, K+ and Cl−
leak channels with a Na+/K+ pump. We explore other model configurations by ex-
panding on the base model by adding different combinations of the K+-coupled Cl−
transporter (KCC1), the Na+-coupled HCO−

3 transporter (NBC) and the Na+/K+/Cl−
(NKCC1) cotransporter. The different model configurations are adopted from Østby
et al. 2009 [3]. Our research revealed that all models demonstrate similar ionic fluxes,
apart from those involving HCO−

3 dynamics. Additionally, these model configura-
tions had the highest total fluid velocities, both in the intra- and extracellular spaces.
The highest intracellular and extracellular fluid velocity observed was 16 µm/min in
the model configuration that involved the NBC cotransporter.



1 Microscopic Fluid Flow in the Brain 3

1.2 Methods

1.2.1 Modelling Fluid Flow Through Astrocyte Networks

Our aim is to predict the temporal and spatial evolution of the volume fraction 𝛼𝑟 ,
ion concentrations [Na+]𝑟 , [K+]𝑟 , [Cl−]𝑟 and [HCO−

3 ]𝑟 , electric potential 𝜙𝑟 , and
hydrostatic pressure 𝑝𝑟 in the intracellular space (ICS, 𝑟 = 𝑖) and the extracellular
space (ECS, 𝑟 = 𝑒). To do so, we build on a model developed by Sætra et al. [2],
which models the system as a 1D domain of length 300 𝜇m representing the tissue
between two blood vessels. See Figure 1 for a visualisation of the system.

To model compartmental fluid flow, we implement the M3 model scenario from
Sætra et al. 2023 [2]. The intracellular fluid flow is driven by hydrostatic and osmotic
forces, while the extracellular fluid flow is driven by hydrostatic and electro-osmotic
forces. The fundamental basis of the model is the electrodiffusive Kirchhoff-Nernst-
Planck framework, and the model dynamics is described using coupled partial dif-
ferential equations. See Sætra et al. 2023 [2] Section 4.2 for more details.

Fig. 1: Representation of the model devised by Sætra et al. (reproduced with per-
mission from Sætra et al. 2023) [2]. A: Brain tissue between two blood vessels with
astrocytes (purple), neurons (grey), and ECS with neuronal activity in the middle.
B: System represented as 1D domain, including ICS (astrocytes) and ECS. The neu-
ronal activity is represented by the input currents of Na+ and K+ ( 𝑗Kinput and 𝑗Na

input) in
the input zone and the decay currents ( 𝑗Kdecay and 𝑗Na

decay) throughout the domain. The
transmembrane currents are modelled as an inward rectifying K+ current ( 𝑗Kir), Na+
and Cl− leak currents ( 𝑗Na

leak and 𝑗Cl
leak), as well as a Na+/K+ pump current ( 𝑗pump).

Intracellular and extracellular currents ( 𝑗ki and 𝑗ke ) are driven by electrodiffusion and
advection. The compartmental fluid flow in the intracellular and extracellular space
is denoted by ui and ue, respectively, and the transmembrane fluid flow is denoted
by 𝑤m.
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1.2.2 Modelling Neuronal Activity

Sætra et al. 2023 model neuronal activity as a stimulus in the form of an external
input flux of K+ ions into the ECS and the simultaneous removal of Na+ ions from
active neurons within the input zone. We implement the same method with the input
zone defined in the interval [L1,L2] with L1 = 1.35 ·10−4 m and L2 = 1.65 ·10−4 m,
during time interval [10 s, 20 s]. We model the input fluxes by following the same
framework:

𝑗Kinput = − 𝑗Na
input = 𝑗in. (1.1)

Here, 𝑗Kinput is the input flux for potassium, 𝑗Na
input is the input flux for sodium and 𝑗in

(mol/(m2s)) is a constant.
Similarly, the decay of both of these ions from the extracellular space due to

neuronal pumps and cotransporters is represented by the decay fluxes,

𝑗Kdecay = − 𝑗Na
decay = −𝑘dec ( [K+]e − [K+]e,init), (1.2)

where the decay current 𝑗Kdecay is defined across the whole domain: 𝑗Kdecay : Ω ×
(0, 𝑇] → R (mol/(m2s)). 𝑘dec here denotes the decay factor for the concentration
of extracellular potassium [K+]e, and [K+]e,init is the initial extracellular potassium
concentration.

1.2.3 Membrane Mechanisms

In Table 1.1, we present a summary of membrane mechanisms, derived from the
study by Østby et al. 2009 [3]. We modify the transmembrane flux density of the
ions 𝑗 𝑘m for each ion species 𝑘 as described in each model configuration.

Table 1.1: Model configurations implemented in the study.

Model configuration Membrane mechanisms

MC1 (base model) Na+, K+, Cl− leak channels + Na+/K+ pump
MC2 MC1 + cotransporter KCC1
MC3 MC1 + cotransporter NBC
MC4 MC1 + cotransporter NKCC1
MC5 MC1 + cotransporters NBC and NKCC1

For all the parameters in the following sections, we refer to Table 1.2 in Section
1.2.4.
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1.2.3.1 Model Configuration 1

Model configuration 1 (MC1) models the transport of water by osmosis across the
membrane, as well as hydrostatic pressure gradients. We also adopt the mechanisms
of the ionic transport, such as a Na+ leak channel, a Cl− leak channel, a K+ leak
channel, and a Na+/K+ pump. The membrane flux densities (mol/(m2s)) are given
by:

𝑗Na
m =

𝑔Na
𝐹𝑧Na

(𝜙m − 𝐸Na) + 3 𝑗pump, (1.3)

𝑗Km =
𝑔K
𝐹𝑧K

(𝜙m − 𝐸K) − 2 𝑗pump, (1.4)

𝑗Cl
m =

𝑔Cl
𝐹𝑧Cl

(𝜙m − 𝐸Cl). (1.5)

The reversal potentials are given by the Nernst equation:

𝐸𝑘 =
RT
𝐹𝑧𝑘

ln
(
[k]e
[k]i

)
, (1.6)

where R is the gas constant, T is the temperature at which we compute the reversal
potential and the pump flux density 𝑗pump is given by:

𝑗pump = 𝜌pump

( [Na+]1.5
i

[Na+]1.5
i + 𝑃1.5

Nai

) (
[K+]e

[K+]e + 𝑃Ke

)
, (1.7)

where 𝜌pump is the maximum pump rate, 𝑃Nai is the [Na+]i threshold and 𝑃Ke is the
[K+]e threshold.

1.2.3.2 Model Configuration 2

Model configuration 2 (MC2) is a derivation of MC1, with an additional cotransporter
KCC1 responsible for the transport of K+ and Cl− both inward and outward across
the neuronal membrane. We implement the cotransporter by modifying equations
(1.4) and (1.5) by adding a term describing the flux of K+ and Cl− ions through the
cotransporter given as

𝐽KCC1 =
𝑔KCC1
𝐹

RT
𝐹

ln
(
[K+]e [Cl−]e
[K+]i [Cl−]i

)
. (1.8)

1.2.3.3 Model Configuration 3

Model configuration 3 (MC3) is a derivation of MC1, with an additional cotransporter
NBC responsible for the transport of Na+ and HCO−

3 inward across the neuronal
membrane.
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We implement the cotransporter by modifying equation (1.3) by adding the term
describing the flux of Na+:

𝐽NBC =
𝑔NBC
𝐹𝑧NBC

(𝜙m − 𝐸NBC), (1.9)

and considering a new equation describing the ion flux of HCO−
3 , that is

𝑗
HCO−

3
m = 2𝐽NBC (1.10)

Here, 𝑔NBC is the conductance per unit area for the NBC cotransporter. The reversal
potential of NBC is

𝐸NBC =
RT

𝑧NBC𝐹
ln

( [Na+]e [HCO−
3 ]2

e

[Na+]i [HCO−
3 ]2

i

)
, (1.11)

where 𝑧NBC is the effective valence of the NBC cotransporter complex, here taken
to be -1, setting 𝑧NBC = −(𝑛 − 1) = −1 where 𝑛 is the stoichiometry, and adopting
𝑛 = 2.

1.2.3.4 Model Configuration 4

Model configuration 4 (MC4) is a derivation of MC1, with an additional cotrans-
porter NKCC1 responsible for the transport of Na+, K+ and Cl− . We implement the
cotransporter by modifying equations (1.3) and (1.4) by adding a term that describes
the flux of Na+ and K+ ions, given as

𝐽NKCC1 =
𝑔NKCC1
𝐹

RT
𝐹

ln
(
[Na+]e [K+]e
[Na+]i [K+]i

(
[Cl−]e
[Cl−]i

)2)
. (1.12)

We also modify equation (1.5) by adding (1.12) multiplied by a factor of two to
describe the flux of two Cl− ions. Here, 𝑔NKCC1 is the conductance per unit area for
the NKCC1 cotransporter.

1.2.3.5 Model Configuration 5

Model configuration 5 (MC5) is a derivation of MC1 with two additional cotrans-
porters, NBC and NKCC1, responsible for transport Na+, K+, Cl− and HCO−

3 inward
across the neuronal membrane. We implement MC5 by modifying equations (1.3),
(1.4) and (1.5) by adding the two terms describing the flux of Na+, K+ and Cl− ,
given as (1.12) and considering new equations describing the ions flux of HCO−

3 as
in equations (1.10).
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1.2.4 Model Implementation

1.2.4.1 Boundary Conditions

The boundary conditions incorporated into the model have been adopted from Sætra
et al. 2023 [2]. This includes sealed-end boundary conditions to ensure that no ions
or fluids are entering of leaving the system on the boundary Γ:

𝛼𝑟 𝑗
𝑘
𝑟 · 𝑛Γ = 0 on Γ, (1.13)

𝛼𝑟𝑢𝑟 · 𝑛Γ = 0 on Γ, (1.14)

where 𝑛Γ is the outward pointing normal vector.
We constraint the electrical potential by requiring that∫

Ω

𝜙e 𝑑𝑥 = 0, (1.15)

where 𝜙o is the extracellular electric potential. To enforce this zero-average con-
straint, we introduce an additional unknown Lagrange multiplier 𝑐e, as described
by Sætra et al. 2023 in Section 4.7. Following the same set up as in [2] for the
extracellular hydrostatic pressure 𝑝e, we set

𝑝o = 0 on Γright. (1.16)

1.2.4.2 Initial Conditions

We first set a collection of pre-established initial values from empirical measurements
of ion concentrations as shown in Table 1.2 and Table 1.3. We then calibrated the
models by running simulations for 104 s, with 𝑁 = 400 and Δ𝑡 = 10−2, setting
the transmembrane water permeability 𝜂m to zero. Values of the intracellular and
extracellular ion concentrations from the final timestep were then used as initial
conditions throughout the paper. When running the simulations with stimulus, we
set the water permeability to a nonzero value from Table 1.2, and change the time
step from Δ𝑡 = 10−2 to Δ𝑡 = 10−3 for a total simulation time of 60 s.

1.2.4.3 Model Parameters

We implement the model parameters shown in Table 1.2.
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Table 1.2: Model parameters.

Symbol Definition Value Ref.

𝐿 Length of domain 3.0·10−4 m [2]
𝐹 Faraday’s constant 96485.3 C/mol
𝑅 Gas constant 8.314 J/(molK)
𝑇 Temperature 300 K
𝐷Na Na+ diffusion constant 1.33·10−9 m2/s [2]
𝐷K K+ diffusion constant 1.96·10−9 m2/s [2]
𝐷Cl Cl− diffusion constant 2.03·10−9 m2/s [2]
𝐷HCO3 HCO−

3 diffusion constant 1.09·10−9 m2/s [3]
𝑧Na Na+ valence 1
𝑧K K+ valence 1
𝑧Cl Cl− valence -1
𝑧HCO−

3
HCO−

3 valence -1
𝑧NBC NBC cotransporter valence -1
𝑔Na Membrane conductance for Na+ 1 S/m2 [2]
𝑔K Membrane conductance for K+ 16.96 S/m2 [5]
𝑔Cl Membrane conductance for Cl− 1 S/m2 [2]
𝑔NKCC1 Membrane conductance for 𝑔NKCC1 2·10−2 S/m2 [3]
𝑔KCC1 Membrane conductance for 𝑔KCC1 7·10−1 S/m2 [3]
𝑔NBC Membrane conductance for 𝑔NBC 8·10−1 S/m2 [3]
𝜌pump Maximum pump rate 1.12·10−6 mol/(m2s) [2]
𝑃Nai [Na+ ]i threshold for Na+/K+ pump 10 mol/ m3 [2]
𝑃Ke [K+ ]e threshold for Na+/K+ pump 1.5 mol/ m3 [2]
𝑗in Constant input flux density 9.05·10−7 mol/(m2s)
𝑘dec Decay factor for [K+ ]e 2.9·10−8 m/s [2]

The implemented code is openly available at
https://github.com/hittheant/Simula_Summer_Project_1.

1.3 Results

1.3.1 Calibration

We calibrate the system as described in the Methods section. Figure 1.2 illustrates
the temporal and spatial dynamics of the system after calibrating the model and
running the simulation for 30 s without stimulus for base model MC1.

https://github.com/hittheant/Simula_Summer_Project_1
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Fig. 1.2: Post-calibration dynamics of the system with model configuration 1 (MC1)
without stimulus. For this simulation, the water permeability was set to zero. Left two
columns: Spatial dynamics post-calibration, measured at the end of the simulation
(t = 30 s). Right two columns: Time evolution measured at L = 1.50·10−4 m.

We expect the ionic concentrations to remain constant in time and space when
no stimulus is applied, which is what we observe for MC1 (Figure 1.2 C-D). We
anticipate that our system will demonstrate the same behaviour in space and time
for other physical quantities, such as variations in the transmembrane hydrostatic
pressure difference (Figure 1.2 G), membrane potential (Figure 1.2 H) and com-
partmental volume fractions (Figure 1.2 E-F). The expected result is the same for
all model setups; however, we only demonstrate the results for MC1 since the other
model configurations appear to behave the same after calibration.

The post-calibrated ion concentrations are summarised in Table 1.3 for each model
configuration. We observe that the ionic concentrations of the different species do not
vary drastically between the different models. The largest difference appears between
MC2 and MC5, where we see that MC5 has the lowest intracellular Na+ concentration
of 14.873 mM, and MC2 has the highest intracellular Na+ concentration of 16.017
mM. We observe a similar pattern between all ionic species in these two model
configurations, where MC2 has the highest intracellular concentration of all ions
and MC5 has the lowest. We also note that MC3 and MC4 have almost identical
baseline concentrations for all ions, with the exception of small differences of 0.001
mM between the intracellular K+ concentration and the extracellular Na+ and K+

concentrations.
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Table 1.3: Ionic concentrations after calibration for different model scenarios. Em-
pirical concentrations are taken from [5] and [6] and were used as initial values for
the model pre-calibration.

[Na+]i [K+]i [Cl−]i [HCO+
3 ]i [Na+]e [K+]e [Cl−]e [HCO+

3 ]e
(mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM)

Empirical 15.189 99.959 5.145 11.300 144.662 3.082 133.71 15.000
MC1 15.510 99.190 5.064 146.580 3.019 133.872
MC2 16.017 101.812 8.178 140.498 2.844 127.644
MC3 15.510 99.189 5.064 8.416 146.581 3.020 133.872 14.069
MC4 15.510 99.190 5.064 146.580 3.019 133.872
MC5 14.873 98.520 3.691 8.526 149.173 3.040 136.618 13.848

The membrane potentials are also very similar for all models with 𝜙m = −85 mV,
with the exception of MC2, where 𝜙m = −86 mV (Table 1.4). We also observe the
same deviation for MC2 and MC5 as before, with different 𝑗pump values compared
to the rest of the configurations. Specifically, for MC2, the 𝑗pump value is 0.491
mol/m2s, while MC5 has the lowest 𝑗pump value of 0.483 mol/m2s. Generally, the
membrane potential 𝜙m, pump flux 𝑗pump, and reversal potentials for each ionic
species appear to remain within a similar range (Table 1.4). We also see on Table
1.4 that the reversal potential of Cl− varies widely across the different models, with
the highest and lowest ECl values 22mV apart.

Table 1.4: Physical quantities after calibration for different model scenarios.

𝜙m jpump ENa EK ECl
(mV) (mol/m2s) (mV) (mV) (mV)

MC1 -85 0.493 -58 90 85
MC2 -86 0.491 -56 92 71
MC3 -85 0.493 -58 90 85
MC4 -85 0.493 -58 90 85
MC5 -85 0.483 -60 90 93

1.3.2 Stimulus Dynamics

We show the results of our simulation with a stimulus for each model configuration
(MC1-MC5) in Figures 1.3 and 1.4. These figures show the temporal and spatial
changes, respectively, in ionic concentrations in the ICS and ECS. We also present
the time evolution of the changes in the volume fractions of the ICS and ECS in
Figure 1.5, subfigures a and b, respectively.
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Fig. 1.3: Temporal dynamics in changes in ionic concentrations in ICS and ECS
for different model configurations (MC1-MC5). The system is simulated for 60 s,
with stimulation activated between [10 s, 20 s]. We measure the system at L =
1.50·10−4 m. The change in HCO−

3 concentration is only shown for MC3 and MC5.



12 Microscopic Fluid Flow in the Brain

0 50 100 150 200 250 300

x (um)

−8

−7

−6

−5

−4

−3

−2
∆

[N
a+

] i
(m

M
)

MC1

MC2

MC3

MC4

MC5

(a) Change in Na+ concentration in the
ICS.

0 50 100 150 200 250 300

x (um)

−30

−20

−10

0

∆
[N

a+
] e

(m
M

)

MC1

MC2

MC3

MC4

MC5

(b) Change in Na+ concentration in the
ECS.

0 50 100 150 200 250 300

x (um)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

∆
[K

+
] i

(m
M

)

MC1

MC2

MC3

MC4

MC5

(c) Change in K+ concentration in the
ICS.

0 50 100 150 200 250 300

x (um)

0

2

4

6

8

∆
[K

+
] e

(m
M

)

MC1

MC2

MC3

MC4

MC5

(d) Change in K+ concentration in the
ECS.
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(e) Change in Cl− concentration in the
ICS.
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(f) Change in Cl− concentration in the
ECS.
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Fig. 1.4: Spatial profiles of the change in ionic concentrations in ICS and ECS for
different model configurations (MC1-MC5). The system is simulated for 60 s, with
stimulation activated between [10 s, 20 s]. We measure the system at the end of the
stimulation, t = 20 s. The change in HCO−

3 concentration is only shown for MC3 and
MC5.
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(a) Time evolution of the change in ICS vol-
ume fraction with stimulus, measured at L =
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(b) Time evolution of the change in ECS vol-
ume fraction with stimulus, measured at L =
1.50·10−4 m.

Fig. 1.5: Changes in volume fraction 𝛼𝑟 as a function of time in ICS and ECS for all
model configurations (MC1-MC5).

We anticipate that the ionic concentrations in the compartments will remain
constant until the stimulus is applied. This is seen in Figure 1.3 for all model
configurations. For example, in subfigure a, we can observe that the intracellular Na+
concentration remains the same until the stimulus begins in all model configurations.
We can observe that the behaviour of MC3 and MC5 are very similar throughout the
temporal evolution of all ionic species (Figure 1.3, subfigures a - h). The increase
of [K+]e and [K+]i can be seen most prominently in MC1 and MC2, and we see a
similar effect of stimulation on these models in terms of extracellular and intracellular
[Na+]. MC4 has the lowest magnitude change in [Cl−]e among the models that do
not simulate HCO−

3 dynamics (MC1, MC2 and MC4). The model configurations
that contain the NBC cotransporter for HCO−

3 (MC3 and MC5) show a much lower
influx of Cl− .

In terms of spatial dynamics, we can see in Figure 1.4 that the behaviour of
models MC3, MC4 and MC5 is similar for all ions concentrations in ICS and ECS,
except for extracellular Cl− concentration as shown in subfigure f.

In both subfigures a and b, the volume fraction remains constant before applying
the stimulus, as expected. After the stimulus was applied, we can see an increase in
the volume fraction in the intracellular space and a decrease in the extracellular space.
In fact, in response to ionic changes, the volume of the intracellular compartment
increases by more than 6% for MC3 and MC5. The two model configurations where
we can see the smallest increase are MC1 and MC2. Conversely, in response to
the ionic changes, the volume of the extracellular compartment decreases to 12.5%
for MC3 and MC5. As before, the model configurations where we see the smallest
decrease are MC1 and MC2.

The total intracellular and extracellular volume-weighted fluid velocities as ob-
served at the end of stimulation (at t = 20 s) are shown in Figure 1.6, subfigures
a and b, respectively. All fluid velocities are multiplied by the volume fraction of
each compartment to obtain a volume-weighted result. The maximal ICS volume-
weighted fluid velocities for all model configurations are also summarised in Table
1.5. Here, we see that MC1 and MC2 have similarly low maximum water velocities
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in ICS, while MC3, MC4 and MC5 have similarly high maximum values (with MC3
and MC5 having the maximum ICS water velocity of 16 µm/min). We also note
that MC3 and MC5 have almost identical fluid velocity plots. All models show fluid
flowing in the same direction; positive intracellular fluid velocities for 𝑥 > 150 µm
and negative intracellular fluid velocities for 𝑥 < 150 µm and vice versa in the case
of extracellular velocities.
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(a) Spatial profiles of the total volume-
weighted fluid velocity in the ICS, measured
at the end of the stimulus (𝑡 = 20 s).
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(b) Spatial profiles of the total volume-
weighted fluid velocity in the ECS, measured
at the end of the stimulus (𝑡 = 20 s).

Fig. 1.6: Spatial profile of the total volume-weighted fluid velocity in the ICS and
ECS for all model configurations (MC1-MC5).

Table 1.5: Maximal total compartmental volume-weighted fluid velocities for dif-
ferent model configurations (MC1-MC5) during neuronal stimulus measured at the
end of the stimulation (t = 20 s).

ui, max
(µm/min)

MC1 0.96
MC2 1.1
MC3 16
MC4 14
MC5 16

We also present the osmotic and hydrostatic components of the ICS fluid velocity
for MC1 and MC3 in Figure 1.7. When comparing the osmotic and hydrostatic
components of the ICS fluid velocity between the model with the highest maximum
velocity, MC3, and the model with the lowest maximum velocity, MC1, we see that
the higher total ICS velocity in MC3 is due to the ratio of the osmotic contribution
to the hydrostatic contribution.
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Fig. 1.7: Comparing the volume-weighted osmotic and hydrostatic components of
intracellular fluid velocity for MC1 and MC3.

1.4 Discussion

We have expanded on a previous computational model for predicting ionic electrod-
iffusion and fluid dynamics in brain tissue by adding glial KCC1, NBC and NKCC1
cotransporters. Further, we assess how the various cotransporters affect character-
istics such as the energy required to maintain equilibrium, spatial and temporal
dynamics of ions, and water velocities during neuronal activity. Our findings show
that with no stimulus, MC5 has a lower Na+/K+ pump flux value than the other
models, from which we can infer that the astrocyte expends less energy with this
configuration of membrane mechanisms. When the stimulus is applied, MC1, MC2
and MC4 showed the most similarity for all the ion concentration dynamics. We also
found that MC3 has the highest total intracellular of 16 µm/s.

1.4.1 Calibration and Zero Stimulus Dynamics

When there is no stimulus, we found very similar steady state ion concentration values
across our model configurations, with the exception of intracellular and extracellular
Cl− concentrations (with [Cl−]e and [Cl−]i for MC2 the biggest deviation: not
significant, 𝑝 > 0.05). The Na+/K+ pump is the only ionic transport mechanism
in our model that requires chemical energy to move ions against concentration
gradients. Therefore, we were interested in seeing whether the flux through the
Na+/K+ pump ( 𝑗pump) would have different values at equilibrium for the different
configurations of the model. We see from Table 1.4 that MC5 has a significantly
(𝑝 < 0.05) lower pump flux value than the other models. As MC5 has both the
NBC and NKCC1 cotransporters, this low pump flux can be attributed to their net
action in equilibrium. The flux values for MC1, MC3, and MC4 are identical to three
significant figures, while MC5 has the lowest flux value. This is interesting as MC5
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has both cotransporters, NBC and NKCC1, and needs the least energy to maintain
equilibrium due to its low pump flux value.

1.4.2 Stimulus Dynamics

Focusing on the temporal Na+/K+ dynamics in Figure 1.3, we can see that there is
a decrease in the ionic concentration of Na+ in the extracellular space due to the
efflux of sodium ions due to the neuronal activities represented by the stimulus. The
decrease in [Na+]i as shown in Figure a is due to the shrinkage of the extracellular
space (and thereby the expansion of the astrocytic volume) resulting in a lower
concentration of Na+ (in spite of the influx of Na+ ions (as [Na+]e > [Na+]i during
stimulation).

Neuronal stimulation results in an increase of [K+]i at a greater rate than the
decrease in [Na+]i. This creates an outward electrostatic gradient. To balance this
gradient, we see an inward flux of Cl− ions in all the model configurations. This
behaviour is different in MC3 and MC5, where we see an exponential decrease
in [Cl−]e (subfigure f) as in the other models followed by a linear increase for
the remaining period of stimulation and an exponential increase at the end of the
constant stimulus period above the baseline concentration before decaying back to its
equilibrium. We believe that this is due to the dynamics of HCO−

3 (subfigures h and
g), which sees an exponential influx, in a sense playing the role of Cl− as seen by the
other model. Therefore, since Cl− has an outward flux from the astrocytic membrane
during stimulation, the intracellular concentration of HCO−

3 continues to increase
exponentially throughout stimulation. Analysing subfigures g and h, intracellular and
extracellular HCO−

3 concentrations are quite similar in both MC3 and MC5. This
means that the NKCC1 cotransporter does not influence the spatial dynamics in the
changes in HCO−

3 concentrations.
The magnitude of the osmotic and hydrostatic flows in the ICS for MC1 are nearly

equal and in opposite directions, as seen in Figure 1.7. However, this is not the case
for MC3, where the osmotic flow is more powerful than the hydrostatic, leading to
a higher net water velocity. The osmotic water velocity depends on the immobile
ions. As we see similarly high net fluid flows for MC3, MC4, and MC5 compared to
MC1 and MC2, we believe that the cotransporters involving Na+ ions could be one
of the common factors among the former group that causes this. The presence of
HCO−

3 ions and its effect on the valency and number of immobile ions could lead to
increased osmotic flow. This could explain the higher total water velocities observed
in MC3 and MC5, as demonstrated in Table 1.5.

We opted to adjust the initial concentrations of the ions to obtain new steady states
for our model configurations, while empirically setting the membrane conductance
for each ion channel. This was a deliberate choice, and one could instead make
the case for setting the concentrations empirically and adjusting the membrane
conductivity to reach equilibrium (as done by Østby et al. 2009 [3]).



1 Microscopic Fluid Flow in the Brain 17

Although the comparison between each of our model configurations is useful,
validation with empirical data could provide more biologically relevant information.
While we are able to determine the effect of different mechanisms and their effect
on shrinkage, a future goal is to compare these results with in vivo experiments and
measurements of volume changes along with knockout experiments to identify the
contribution of each membrane mechanism to determine the validity of our model.
Future objectives to extend this model include incorporating additional membrane
processes found in astrocytes, such as active water transport through the NKCC1
channel and the inward rectifying K+ current described in [2].

1.5 Conclusion

In conclusion, our research underscores the role of astrocyte networks and glial
cotransporters in the regulation of brain volume and waste clearance. Through our
computational model within the Kirchhoff-Nernst-Planck electrodiffusive frame-
work, we have identified the NBC cotransporter as a key player, exhibiting the
highest fluid velocities. These findings highlight the implications of targeting glial
cotransporters to modulate brain volume homeostasis and waste clearance, offering
new directions for neuroscience research.
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Chapter 2
Computational Modeling of Ephaptic coupling
in Myelinated and Unmyelinated Axon Bundles
Using the EMI Framework

Alessandro Gatti, Ramón Nartallo-Kaluarachchi, Abhinav Uppal, and Pietro
Benedusi

Abstract This report examines the Extracellular-Membrane-Intracellular (EMI)
framework for modeling action potentials along 3D axons. We investigate the effect
of myelination and the potential for ephaptic coupling in this model. Additionally,
we assess the convergence and stability of a range of Runge-Kutta time-stepping al-
gorithms on simple geometries with manufactured solutions. We first analyze single
axons and the influence of myelin on the speed of action potentials. Then, we use a
3D geometry of nine cylinders to represent an axonal bundle and study the induced
potential in the central axon in both myelinated and unmyelinated cases. Finally, we
discuss the biological implications of ephaptic coupling and the importance of 3D
modeling for precise simulations of spiking neurons.

2.1 Introduction

Hodgkin and Huxley’s 1952 work [1] was a pioneering effort to quantitatively
describe the chemical processes that cause excitatory neurons to fire. Since then, a
variety of alternative models, such as FitzHugh-Nagumo [2] and Hindmarsh-Rose
[3] ODE models, have been developed to model excitable cells. The emergence
of neural networks has further led to the modeling of neurons as single points in
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space with only time-dependent dynamics. In this report, we explore two biological
scenarios in which spatial and temporal dynamics are necessary to accurately model
the propagation and induction of action potentials. Specifically, we investigate the
effects of myelination [4] and ephaptic coupling in axonal bundles [5]. To do this, we
use the recent EMI model to incorporate spatial dynamics into a partial differential
equation (PDE) framework [6].

2.1.1 Myelination

The myelin sheath is an extended and modified plasma membrane that is wrapped
around the nerve axon in a spiral pattern [7]. It is derived from and is part of Schwann
cells in the peripheral nervous system (PNS) and oligodendroglial cells in the central
nervous system (CNS). Each myelin-generating cell provides myelin for only one
segment of the axon. The nodes of Ranvier, which are short portions of the axon left
uncovered, are essential for the functioning of myelin. This myelin sheath increases
the resistance of the axonal membrane, lengthening its electrical space constant, and
thus facilitating signal transmission along the axon. Additionally, myelin decreases
the capacitance of the axonal membrane, so that less charge (in the form of 𝑁𝑎+)
is required to depolarize the cell. Both of these effects increase the speed of action
potential propagation.

2.1.2 Ephaptic Coupling

The term ephapse was proposed in 1941 by Arvanitaki [8] to describe neural struc-
tures coming into contact or in close proximity, without coupling via anatomically
differentiated synapses. Where Arvanitaki had been studying an experimental prepa-
ration with two giant axons (from Sepia officinalis) forming an ephapse by making
the axons touch (for 5 𝑚𝑚 in 4 to 5 𝑐𝑚 long axons), the term ephaptic coupling
has since come to describe short-range coupling between non-contiguous neuronal
membranes [9], alternatively described as ‘electric field effects’ [10].

Similarly to how spiking individual neurons can give rise to extracellular action
potentials, network-level activity can alter the local electric environment in nervous
tissue. This spatiotemporal variation in extracellular potential and its gradient elec-
tric field feed back into the same network, inducing ephaptic coupling [5]. This
electric ephaptic coupling can be contrasted with ionic ephaptic coupling, where
local changes in extracellular ion concentrations can alter Nernst potentials [11].

Although ephaptic coupling between neurons can be considered a weak effect
compared to chemical or electrical synapses (measurements of endogenous electric
fields are on the order of a few 𝑚𝑉/𝑚𝑚, see [12] for a summary of experimental
data), it can still have network-level implications in healthy and pathological nervous
tissue [10]. For instance, weak electric fields can entrain slow neocortical oscillations
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[13]. Additionally, mathematical models of ephaptic coupling in axon bundles show
induced synchronization of firing activity [14] and modulation of transmission delays
[15].

In pathological scenarios, ephaptic entrainment has been implicated in neurode-
generative disease models considering damaged neurons [16]. Ephaptic coupling
is also hypothesized to play a role in pathologies resulting from demyelination of
cranial nerves under compression, such as trigeminal neuralgia (facial pain) through
the fifth cranial nerve [17] and vestibular paroxysmia (short episodic vertigo) from
the eighth cranial nerve ([18], [19]).

Thus, studying ephaptic coupling can improve our understanding of network-level
feedback under healthy and pathological conditions. Modeling studies of ephaptic
coupling also offer the translational benefit of providing an evaluation framework in
the design of exogenous (transcranial) stimulation protocols [12]. Given the key role
of extracellular potentials in ephaptic coupling, here we extend previous work on
modeling axon bundles using the EMI framework [11] by contrasting unmyelinated
and myelinated axons in a bundle.

2.2 Methods

2.2.1 The EMI Model

The EMI model is a PDE framework that has recently been developed to simulate
excitable cells, such as neurons and cardiac cells, from the first principles [6].
It divides the extracellular space, the cell membrane, and the intracellular space
into distinct components. When both spatial and temporal dynamics are taken into
account, it is suitable for modeling the effects of myelination and ephaptic coupling.

For a single cell, denoted Ω𝑖 , surrounded by an extracellular domain, Ω𝑒, the EMI
model is given by the following coupled PDE-ODE,

∇ · 𝜎𝑖∇𝑢𝑖 = 𝑓 , in Ω𝑖 ,

∇ · 𝜎𝑒∇𝑢𝑒 = 𝑔, in Ω𝑒,

𝜎𝑒∇𝑢𝑒 · n𝑒 = −𝜎𝑖∇𝑢𝑖 · n𝑖 ≡ 𝐼𝑚, at Γ, (2.1)
𝑣 = 𝑢𝑖 − 𝑢𝑒, at Γ,

𝜕𝑣

𝜕𝑡
=

1
𝐶𝑚

(𝐼𝑚 − 𝐼𝑖𝑜𝑛), at Γ,

where 𝑢𝑖 , 𝑢𝑒, and 𝑣 are intracellular, extracellular, and membrane potentials, respec-
tively, which are commonly given in 𝑚𝑉 . Furthermore, 𝜎𝑖 and 𝜎𝑒 are intracellular
and extracellular conductances, respectively (typically in 𝑚𝑆/𝑐𝑚), 𝐶𝑚 is the mem-
brane capacitance (typically in 𝜇𝐹/𝑐𝑚2), and Γ denotes the cell membrane. ni and ne
represent the outward-pointing normal vectors. The ionic currents through channels,
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pumps, and exchangers at the membrane are denoted by 𝐼𝑖𝑜𝑛 and are typically given
in 𝜇𝐴/𝑐𝑚2. A schematic representation of the model domain is given in Fig. 2.1.
We assumed that the external boundary 𝜕Ω𝑒 is insulated, which leads to the following
Neumann boundary condition

𝜎𝑒∇𝑢𝑒 · n𝑒 = 0, at 𝜕Ω𝑒 . (2.2)

Fig. 2.1: Illustration of an EMI model domain consisting of an extracellular domain,
Ω𝑒, a cell membrane, Γ, and an intracellular domain, Ω𝑖 . ne, ni represent normal
vectors and 𝜕Ω𝑒 represents the boundary of the extracellular space.

2.2.2 Numerical Methods

2.2.2.1 Multi-Dimensional Primal Formulation of the EMI Model

In order to numerically integrate the EMI model, we derive a weak formulation [6].
In particular, we use the multi-dimensional primal formulation which is expressed
as follows: find 𝑢𝑖 ∈ 𝑉𝑖 = 𝐻1 (Ω𝑖), 𝑢𝑒 ∈ 𝑉𝑒 = 𝐻1 (Ω𝑒), 𝐼𝑚 ∈ 𝑄∗ = 𝐻−1/2 (Γ) such
that ∫

Ω𝑖

𝜎𝑖∇𝑢𝑖 · ∇𝑣𝑖𝑑𝑥 −
∫
Γ

𝐼𝑚𝑣𝑖𝑑𝑠 =

∫
Ω𝑖

𝑓 𝑣𝑖𝑑𝑥,∫
Ω𝑒

𝜎𝑒∇𝑢𝑒 · ∇𝑣𝑒𝑑𝑥 −
∫
Γ

𝐼𝑚𝑣𝑒𝑑𝑠 =

∫
Ω𝑖

𝑔𝑣𝑒𝑑𝑥, (2.3)∫
Γ

−𝑢𝑒 𝑗𝑚𝑑𝑠 +
∫
Γ

𝑢𝑖 𝑗𝑚𝑑𝑠 −
∫
Γ

Δ𝑡𝐶−1
𝑚 𝐼𝑚 𝑗𝑚𝑑𝑠 =

∫
Γ

ℎ 𝑗𝑚𝑑𝑠,

for all the test functions 𝑣𝑖 ∈ 𝑉𝑖 , 𝑣𝑒 ∈ 𝑉𝑒 and 𝑗𝑚 ∈ 𝑄∗ [6]. In this formulation, the
time-dependent equations are discretized according to an implicit Euler scheme. The
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known right-hand side ℎ combines the previous transmembrane potential solution,
𝑣0, and the evaluation of the ionic current, 𝐼𝑖𝑜𝑛, into ℎ ≡ 𝑣0 − 𝐶−1

𝑚 Δ𝑡 𝐼𝑖𝑜𝑛. However,
as discussed in the following section, this final equation can be modified according
to any time discretization.

2.2.2.2 Runge-Kutta Time-Stepping in the EMI Model

As discussed above, the derivation of the weak formulation requires a choice of
time discretization. Depending on the choice of the time-stepping algorithm, the
final equation will differ. We consider the well-studied Runge-Kutta (RK) methods,
a family of classical ODE integrators [20]. For a homogeneous differential equation
of the form

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑦(𝑡)), (2.4)

an 𝑠-order RK scheme is a one-step method of the following form,

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 , (2.5)

where,

𝑘1 = 𝑓 (𝑦𝑛), (2.6)
...

𝑘𝑠 = 𝑓 (𝑦𝑛 + ℎ
𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 ). (2.7)

Thus, the method is uniquely defined by the matrix vector pair 𝑨, 𝒃, where 𝑨 = (𝑎𝑖 𝑗 )
and 𝒃 = (𝑏1, ..., 𝑏𝑠). We can also define the vector 𝒌 = (𝑘1, ..., 𝑘2). To make this
method consistent with the order 𝑠, certain conditions on 𝑨, 𝒃 must be satisfied,
limiting the number of RK methods for each given order. When 𝑨 is lower triangular
with zero diagonal, the method is explicit; otherwise, it is implicit. We investigate
the form of final EMI equation for a generalized RK scheme for both the passive and
Hodgkin-Huxley conductance dynamics.

2.2.2.3 The Passive Conductance EMI Model

We consider the time-dependent equation from the EMI model with passive conduc-
tance, corresponding to 𝐼𝑖𝑜𝑛 (𝑣) = 𝑣 [6],
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𝑑𝑣

𝑑𝑡
=

1
𝐶𝑚

(𝐼𝑚 − 𝑣(𝑡)) . (2.8)

Considering an RK method of order 𝑠, we discretise this equation as,

𝑣𝑡+1 = 𝑣𝑡 + ℎ
𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 , (2.9)

= 𝑣𝑡 + ℎ𝒃⊤𝒌 . (2.10)

We further notice that

𝑘𝑖 =
1
𝐶𝑚

(𝐼𝑚 − 𝑣𝑡 − ℎ
𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 ), (2.11)

which we write in vector notation as,

𝒌 =
1
𝐶𝑚

(𝐼𝑚 − 𝑣𝑡 )𝒖 − ℎ𝑨𝒌, (2.12)

where 𝒖 is a 𝑠-vector of 1s. Defining 𝛽 = ℎ
𝐶𝑚

and 𝑰 to be the 𝑠-dimensional identity
matrix, we assume 𝑰 + 𝛽𝑨 to be invertible and write 𝒌 explicitly as

𝒌 =
1
𝐶𝑚

(𝐼𝑚 − 𝑣𝑡 ) (𝑰 + 𝛽𝑨)−1𝒖. (2.13)

As such, our RK scheme can be written as

𝑣𝑡+1 = (1 − 𝛽𝒃⊤ (𝑰 + 𝛽𝑨)−1𝒖)𝑣𝑡 + 𝛽𝒃⊤ (𝑰 + 𝛽𝑨)−1𝒖𝐼𝑚. (2.14)

According to the weak formulation of the EMI model, this yields conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 − 𝛽𝒃⊤ (𝑰 + 𝛽𝑨)−1𝒖

∫
Γ

𝐼𝑚 𝑑𝑠

= (1 − 𝛽𝒃⊤ (𝑰 + 𝛽𝑨)−1𝒖)
∫
Γ

𝑣𝑡 𝑑𝑠. (2.15)

Given the Butcher tableau, (𝑨, 𝒃), one can use this formulation to calculate the
function,

𝑔RK (𝛽) = 𝛽𝒃⊤ (𝑰 + 𝛽𝑨)−1𝒖, (2.16)

which can then be used to implement any RK scheme on the EMI model. Further-
more, we notice that 𝑔RK (𝛽) is related to the well-studied stability function of the
RK family, which is defined [20],

𝑅(𝑧) = 1 + 𝑧𝒃⊤ (𝑰 − 𝑧𝑨)−1𝒖, (2.17)
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namely, the relation is,

𝑔RK (𝛽) = 1 − 𝑅(−𝛽), (2.18)

yielding conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 + (𝑅(−𝛽) + 1)
∫
Γ

𝐼𝑚 𝑑𝑠 = 𝑅(−𝛽)
∫
Γ

𝑣𝑡 𝑑𝑠. (2.19)

The stability function can be written as

𝑅(𝑧) = det(𝑰 − 𝑧𝑨 + 𝑧𝒖𝒃⊤)
det(𝑰 − 𝑧𝑨) , (2.20)

where for explicit scheme, due to their lower triangularity, the denominator is 1.
Therefore, for explicit schemes, the stability function 𝑅 and therefore 𝑔RK is a
polynomial of degree 𝑠, which we denote 𝑝𝑠 (𝛽) that has form,

𝑝𝑠 (𝛽) =
𝑠∑︁
𝑛=1

(−1)𝑛+1𝛽𝑛Θ(𝑨, 𝒃, 𝑛), (2.21)

with,

Θ(𝑨, 𝒃, 𝑛) =
𝑠∑︁
𝑖0=𝑛

𝑏𝑖0

𝑖0−1∑︁
𝑖1=𝑛−1

𝑎𝑖0 ,𝑖1 . . .

𝑖𝑘−1−1∑︁
𝑖𝑘=𝑛−𝑘

𝑎𝑖𝑘−1 ,𝑖𝑘 . . .

𝑖𝑛−2−1∑︁
𝑖𝑛−1=𝑛−1

𝑎𝑖𝑛−2 ,𝑖𝑛−1 , (2.22)

for 𝑛 = 2, ..., 𝑠 and extended to 𝑛 = 1 by,

Θ(𝑨, 𝒃, 1) =
𝑠∑︁
𝑖0=1

𝑏𝑖0 (2.23)

This yields conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 − 𝑝𝑠 (𝛽)
∫
Γ

𝐼𝑚 𝑑𝑠 = (1 − 𝑝𝑠 (𝛽))
∫
Γ

𝑣𝑡 𝑑𝑠. (2.24)

Following this process, we can derive the functions 𝑔RK associated with a range of
explicit and implicit RK schemes. In addition, we note that for explicit RK schemes
of order 𝑝, we have the following approximation,

𝑅(𝑧) = 1 + 𝑧 + 𝑧
2

2!
+ 𝑧

3

3!
+ ... + 𝑧

𝑝

𝑝!
+𝑂 (𝑧𝑝+1), (2.25)

therefore 𝑅(𝑧) = 𝑒𝑧 + 𝑂 (𝑧𝑝+1). Using this property, we can define the following
scheme that approximates any explicit, 𝑝-order RK scheme to order 𝑝,



26 Modeling Ephaptic Coupling with EMI

Table 2.1: Common Runge-Kutta schemes and the associated functions 𝑔RK (𝛽).

Scheme Abbrev. Order Implicit/ 𝑔RK (𝛽)
Explicit

Explicit Euler EE 1 E 𝛽

Explicit Midpoint EMP 2 E 𝛽 − 𝛽2

2
Runge-Kutta 4 RK4 4 E 𝛽 − 𝛽2

2 + 1
6 𝛽

3 − 1
24 𝛽

4

Implicit Euler IE 1 I 𝛽

1+𝛽
Trapezoidal Rule TPR 2 I 𝛽

2 + 𝛽−𝛽2

2+𝛽
Exponential function EF 𝑝 ∈ N E 1 − 𝑒−𝛽

∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 + (𝑒−𝛽 + 1)
∫
Γ

𝐼𝑚 𝑑𝑠 = 𝑒
−𝛽

∫
Γ

𝑣𝑡 𝑑𝑠, (2.26)

which is referred to in Table 2.1 as “Exponential function” (EF). This scheme
represents the exact solution of the linear time-dependent equation.

As shown above, using both higher-order and implicit schemes in the passive
conductance model can be done via direct calculation, and therefore at no additional
computational cost.

2.2.2.4 Numerical Convergence of RK Schemes

In order to compare the convergence and stability of the different RK schemes, we
consider the simple square unit domain shown in Fig. 2.2.

(0, 0) (1, 0)

(1, 1)
Ω𝑒

(0, 1)

(0.25, 0.25) (0.75, 0.25)

(0.75, 0.75)
Ω𝑖

(0.25, 0.75)
Γ →

Fig. 2.2: Domain of integration. Ω𝑒,Ω𝑖 , Γ represent the extracellular space, the
intracellular space and the membrane, respectively.

Using the manufactured solution method [21], we define the source functions
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𝑓 = 𝑓 (𝑥, 𝑦, 𝑡) = −8𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦) (1 + 𝑒−𝑡 ), (2.27)

𝑔 = 𝑔(𝑥, 𝑦, 𝑡) = −8𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦). (2.28)

In this case, the exact solution is given by,

𝑢𝑖 (𝑥, 𝑦, 𝑡) = (1 + 𝑒−𝑡 ) sin(2𝜋𝑥) sin(2𝜋𝑦), (2.29)
𝑢𝑒 (𝑥, 𝑦, 𝑡) = sin(2𝜋𝑥) sin(2𝜋𝑦), (2.30)
𝑣(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(2𝜋𝑥) sin(2𝜋𝑦). (2.31)

We calculate the 𝐿2 error between the numerical solutions, �̃�𝑁,Δ𝑡
𝑖

, �̃�
𝑁,Δ𝑡
𝑒 , �̃�𝑁,Δ𝑡 , using

the finite element method (FEM) and the exact solutions above. We present the two
error terms,

𝑒𝑁,Δ𝑡𝑢 =

√︃
| |𝑢𝑖 − �̃�𝑁,Δ𝑡𝑖

| |2 + ||𝑢𝑒 − �̃�𝑁,Δ𝑡𝑒 | |2, (2.32)

𝑒𝑁,Δ𝑡𝑣 =
√︁
| |𝑣 − �̃�𝑁,Δ𝑡 | |2. (2.33)

We assess the convergence with respect to both temporal and spatial resolution.
For the spatial convergence test, we fix Δ𝑡 = 0.01/64 and vary the mesh resolution
parameter,𝑁 = 16, 32, ..., 256, which equals the number of intervals in each direction
of spatial discretisation of the domain, as shown in Fig. 2.5. For the temporal
resolution, we fix 𝑁 = 512 and perform two experiments. Firstly, we useΔ𝑡 = 0.01/𝑛
for 𝑛 = 0.1, 0.5, 1, 2, 4, 8, 16, 32, as shown in Fig. 2.6.

2.2.2.5 The Active Conductance Model

For the EMI model with active conductance, the time-dependent equation becomes
[6],

𝑑𝑣

𝑑𝑡
=

1
𝐶𝑚

(𝐼𝑚 − 𝐼ion (𝑣(𝑡))) , (2.34)

where 𝐼ion (𝑣(𝑡)) is a non-linear function, for example of Hodgkin-Huxley type. In
this case, explicit expressions cannot be derived when applying RK schemes. Given
an implicit RK scheme with Butcher tableau, (𝑨, 𝒃), the scheme is again,

𝑣𝑡+1 = 𝑣𝑡 + ℎ
𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 , (2.35)

= 𝑣𝑡 + ℎ𝒃⊤𝒌 . (2.36)

However, the equations for 𝑘𝑖 yield a non-linear system of equations to be solved at
each time-step,
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𝑘𝑖 =
1
𝐶𝑚

(𝐼𝑚 − 𝐼ion(𝑣𝑡 − ℎ
𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 )), (2.37)

which we write in vector notation as,

𝒌 =
1
𝐶𝑚

(𝐼𝑚 − 𝐹ion (𝑣𝑡 , 𝑨, 𝒌)), (2.38)

where,

𝐹ion(𝑣𝑡 , 𝑨, 𝒌) =
©«
𝐼ion(𝑣𝑡 + 𝒆⊤1 𝑨𝒌)

...

𝐼ion(𝑣𝑡 + 𝒆⊤𝑠 𝑨𝒌)

ª®®¬ , (2.39)

where {𝒆𝑖}𝑠𝑖=1 are the standard basis vectors in R𝑠 .

Most frequently, one considers an active conductance of Hodgkin-Huxley type [1],

𝐼ion (𝑣) = 𝑔Na (𝑣) (𝑣 − 𝐸Na) + 𝑔K (𝑣) (𝑣 − 𝐸K) + 𝑔L (𝑣) (𝑣 − 𝐸L) + 𝑔(𝑣) (𝑣 − 𝐸Na),
(2.40)

where the gating variables, 𝑔ion, for each ion, are non-linear functions of 𝑣 given by
the solution to an ODE. This form allows us to define semi-implicit schemes for this
model. At each time step, the gating variables are updated according to a numerical
method, typically the Rush-Larsen method [22]. To define a semi-implicit scheme,
we update the gating variables with membrane potential 𝑣𝑡 rather than the value
𝑣𝑡 + ℎ

∑𝑠
𝑗=1 𝑎𝑖 𝑗 𝑘 𝑗 . This now yields a simplified system of equations for 𝑘𝑖 ,

𝑘𝑖 =
1
𝐶𝑚

[𝐼𝑚 − 𝑔Na (𝑣𝑡 ) (𝑣𝑡 + ℎ
𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸Na) − 𝑔K (𝑣𝑡 ) (𝑣𝑡 + ℎ

𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸K)

− 𝑔L (𝑣𝑡 ) (𝑣𝑡 + ℎ
𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸L) − 𝑔(𝑣𝑡 ) (𝑣𝑡 + ℎ

𝑠∑︁
𝑗=1
𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸Na)], (2.41)

which is linear. In vector notation, the system becomes

𝒌 =
1
𝐶𝑚

[𝐼𝑚 − 𝐼ion (𝑣𝑡 )]𝒖 − 𝛽𝐺𝑨𝒌, (2.42)

where 𝐺 = 𝑔Na (𝑣𝑡 ) + 𝑔K (𝑣𝑡 ) + 𝑔L (𝑣𝑡 ) + 𝑔(𝑣𝑡 ). This has solution,

𝒌 =
1
𝐶𝑚

[𝐼𝑚 − 𝐼ion(𝑣𝑡 )] (𝑰 + 𝛽𝐺𝑨)−1𝒖. (2.43)

Thus, the scheme becomes as follows:
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𝑣𝑡+1 = 𝑣𝑡 + 𝛽𝒃⊤ [𝐼𝑚 − 𝐼ion (𝑣𝑡 )] (𝑰 + 𝛽𝐺𝑨)−1𝒖. (2.44)

Under the weak formulation this gives us conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 − 𝛽𝒃⊤ (𝑰 + 𝛽𝐺𝑨)−1𝒖

∫
Γ

𝐼𝑚 𝑑𝑠

=

∫
Γ

𝑣𝑡 − 𝐼ion (𝑣𝑡 )𝒃⊤ (𝑰 + 𝛽𝐺𝑨)−1𝒖 𝑑𝑠. (2.45)

However, this inverse matrix that must be calculated equates to solving a linear
system at each time step.

2.2.3 Model Setup and Geometries

We employ the multi-dimensional EMI formulation (eq. 2.1) with an implicit Euler
scheme (eq. 2.4). We use a Hodgkin-Huxley active conductance model [1] integrated
with a Rush-Larsen scheme [22]. The source terms 𝑓 and 𝑔 in eq. 2.1 are set to 0 [6].

The model parameters were chosen as shown in Table 2.2. The conductance values
for the unmyelinated axons correspond to the giant squid axon [1]. For the myelinated
axons, we scaled the corresponding unmyelinated conductances such that the total
number of ion channels would match for the two axon types. The axon length, radii,
and node lengths were chosen to make the geometry and results easier to visualize.
The synaptic conductance 𝑔(𝑣𝑡 ) in 𝐼𝑖𝑜𝑛 represents a stimulation current applied to a
synapse of length 𝑙𝑛𝑜𝑑𝑒 on one edge of unmyelinated and myelinated axons.

2.2.3.1 Single Axon with and without Myelination

Fig. 2.3 illustrates the geometries we employed in our simulation to compare the ve-
locity of the action potential in a single axon for the unmyelinated (𝑎) and myelinated
(𝑏) scenarios. Table 2.2 contains the parameters used for the axons.
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Fig. 2.3: ParaView renders of the gmsh geometries for (top left) unmyelinated, and
(top right) myelinated single axons, where (bottom) shows a schematic representation
of both axon types using parameters from Table 2.2.

Table 2.2: Parameters used for single axon simulations with and without myelin.

Parameter Value
Unmyelinated Myelinated

Axon length 𝐿 (𝑚𝑚) 10 10
Intracellular radius 𝑟𝑖𝑛 (𝑚𝑚) 0.2 0.2
Extracellular radius 𝑟𝑒𝑥 (𝑚𝑚) 1 1
Myelin thickness 𝑡𝑚𝑦𝑒𝑙 (𝑚𝑚) – 0.2
Number of nodes of Ranvier – 10
Length of node 𝑙𝑛𝑜𝑑𝑒 (𝑚𝑚) – 0.1
Internodal distance 𝑙𝑚𝑦𝑒𝑙 (𝑚𝑚) – 1
�̄�𝐿 (𝑚𝑆/𝑐𝑚2 ) 0.3 3
�̄�𝑁𝑎 (𝑚𝑆/𝑐𝑚2 ) 120 1200
�̄�𝐾 (𝑚𝑆/𝑐𝑚2 ) 36 360
𝐸𝐿 (𝑚𝑉 ) -54.38 -54.38
𝐸𝑁𝑎 (𝑚𝑉 ) 54.8 54.8
𝐸𝐾 (𝑚𝑉 ) -88.98 -88.98

2.2.3.2 Axon Bundle

For our simulations considering bundles of unmyelinated axons, we arranged nine
axons in a 3 × 3 grid. A cross-section showing this spatial arrangement is depicted
in Fig. 2.4. Each axon in the bundle was matched to use the same parameters and
geometries as the single axon simulations described previously. The same arrange-
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ment and parameter matching to single axon simulations was also applied to a 3 × 3
bundle of myelinated axons.

For both the unmyelinated and myelinated axon bundles, the eight axons on the
periphery were stimulated using synapses of length 𝑙𝑛𝑜𝑑𝑒 (as in the single axon
simulations), while the central axon in the bundle was not stimulated externally.
Membrane voltage changes in this central axon were examined to look for evidence
of ephatic coupling.

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑒 Γ

Fig. 2.4: Arrangement of nine axons forming a bundle. Ω𝑖 denotes the intracellular
space of each axon,Ω𝑒 denotes the extracellular space, and Γ denotes the membranes.

2.3 Results

2.3.1 Convergence

Fig. 2.5: Convergence with respect to mesh size with fixed time-step. Left: 𝑒𝑢 Right:
𝑒𝑣 .
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Fig. 2.6: Convergence with respect to temporal resolution for small time-steps and
fixed mesh size. Left: 𝑒𝑢 Right: 𝑒𝑣 .

Firstly, we consider the convergence results for the square-in-square, passive conduc-
tance, manufactured solution discussed previously. We integrate the system using
FEniCS and the RK schemes listed in Table 2.1. In Fig. 2.5, we display the error for
a sequence of increasing spatial (mesh) resolutions for both the intra-extracellular
potential and the membrane potential. As shown, all the methods converge com-
parably with respect to mesh resolution, as they only modulate the time-stepping
error. Next, we consider a series of decreasing time steps. As can be seen in Fig. 2.6,
higher-order methods are limited by spatial discretisation, but all methods appear
to converge to the exact solution. It is clear that the higher-order methods, EMP,
RK4 and TPR have lower errors than the first-order methods EE and IE. For these
higher-order methods, in order to assess their convergence and their stability, we
find the time steps at which they obtain similar error values. By increasing the time
steps so dramatically, we can limit the effect of the spatial discretisation error and
compare the methods more effectively. As shown in Table 2.3, the least stable of

Table 2.3: Errors for large time-steps for higher order RK schemes.

Δ𝑡 RK4 Δ𝑡 EMP Δ𝑡 TPR
𝑒𝑢 𝑒𝑣 𝑒𝑢 𝑒𝑣 𝑒𝑢 𝑒𝑣

2.5 1.03×10−5 5.62×10−6 1.6 1.03×10−5 2.15×10−4 3.0 1.60×10−5 2.50×10−4

2.6 2.99×10−5 4.70×10−4 1.8 1.64×10−5 2.15×10−4 3.2 1.30×10−4 2.17×10−3

2.7 1.74×10−3 2.90×10−2 2.0 1.65×10−1 2.78 3.4 1.12×10−3 1.87×10−2

the higher order methods is EMP, followed by RK4 and finally TPR, the implicit
scheme. Importantly, the higher order explicit schemes had much lower error yet are
less stable. This means that, depending on the constraints of the particular problem,
one should opt for an implicit scheme for greater stability or an explicit scheme for
greater accuracy.
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2.3.2 Speed of Action Potential Propagation in Single Axons

We conducted a simulation to compare the propagation speed of an action potential
in a myelinated axon with that of an unmyelinated one. Fig. 2.7 shows the membrane
potential in both cases recorded at a single point on the membrane and at the end of
the axon. The action potential profile is similar in both cases. The key difference is
that the potential propagates faster in the myelinated axon; therefore, it arrives at the
end of the axon earlier, as shown in Fig. 2.7.

Fig. 2.7: Potential of myelinated and unmyelinated axons over time measured at the
node located at the end of the axon membrane.

Our simulation supports the biological theory that argues that myelination causes
faster propagation of action potential [23]. This further validates this approach to
modeling myelination by modulating the conductance values in the nodes of Ranvier.

2.3.3 Ephaptic Coupling in Unmyelinated and Myelinated Axon
Bundles

Next, we simulate the 9-cylinder axonal bundle with myelinated and unmyelinated
axons, while stimulating only the 8 peripheral axons. We then measured the induced
activity in the unstimulated central axon.
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(a) Comparison between the action potential
of the central and peripheral axon in the un-
myelinated case.

(b) Comparison between the action poten-
tial of the central and peripheral axon in the
myelinated case.

(c) Comparison between the action poten-
tial of central axons in the unmyelinated and
myelinated cases.

Fig. 2.8: Plots showing the action potentials induced in the central axon alongside (a
chosen) peripheral axon in both the myelinated and unmyelinated cases.

In Fig. 2.8 (subfigure 2.8a), we show that in the unmyelinated case, ephaptic coupling
did occur as an action potential was induced in the central axon. There is a noticeable
time-lag between the spike in the peripheral and central axons. In the myelinated
case, shown in Fig. 2.8 (subfigure 2.8b), ephaptic coupling also occurred with an
induced potential in the central axon. There is no such time-lag in the case of the
myelinated axons. The different profiles of the induced action potentials in each
case are highlighted in Fig. 2.8 (subfigure 2.8c), which shows the unmyelinated and
myelinated central axons side by side.
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(a) T=4.76ms (b) T=5.34ms

(c) T=5.82ms (d) T=6.53ms

Fig. 2.9: Action potentials induced in the central axon of the unmyelinated bundle
for different time-stamps. Arrows depict the splitting of the induced potential into
forward and backward propagating impulses.

Interestingly, in our simulations we have observed a backpropagation phenomenon
in the central unmyelinated axon as one can see from Fig. 2.9.

Our simulations show that ephaptic coupling is possible in the EMI model, for both
myelinated and unmyelinated axons. Furthermore, we have shown that myelination
severely increases the speed of the propagation of action potentials under direct
stimulation and indirect induction.

2.4 Discussion

In this report, we presented a computational approach to modeling myelination and
ephaptic coupling of axons using the EMI framework [6]. As part of this analy-
sis, we studied a range of time-stepping algorithms for both the passive and the
Hodgkin-Huxley conductance models, obtaining an analytical expression for the
weak formulation for generalized RK schemes. As a result, we can integrate the EMI
model with any RK scheme. We concluded that higher-order schemes are advan-
tageous in terms of both stability and accuracy, with explicit methods being more
accurate and implicit methods being more stable. Our computational simulations
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also validated the hypothesis that myelination speeds up the propagation of action
potentials. Finally, we showed that ephaptic coupling was possible in the EMI model
for both myelinated and unmyelinated axons, where myelination accelerated the
propagation of the induced action potential.

Our work further supports the notion that biophysical models of excitable cells
should take into account spatial geometry and dynamics to model more specialized
biological phenomena. Both myelination and ephaptic coupling are important fea-
tures of neuronal function and show pathology in disease, such as myelin loss in
multiple sclerosis [24] or reduced ephaptic entrainment in neurodegenerative condi-
tions [16]. For this reason, our report represents an important step towards complete
models of excitable cells and the phenomena that can arise.

Although the EMI framework is a detailed and biophysically realistic model,
further work using the more detailed KNP-EMI model [11], would allow for a more
complete analysis of the parameters that modulate the emergence of induced action
potentials, such as the distance between the axons in the bundle. Parameter values
as measured in demyelinated axons could also be considered for modeling ephaptic
coupling under pathological conditions [25].

Furthermore, this report is a proof-of-concept showing that modeling ephaptic
coupling and myelination is possible within this model, yet does not claim to replicate
the exact dynamics seen in biological experiments. Further studies could confirm
that the model outputs are consistent with theoretical predictions, that is, from the
cable equation [26], or from experimental results.

References

1. Alan Lloyd Hodgkin and Andrew Fielding Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4),
1952.

2. Richard FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. The
Bulletin of Mathematical Biophysics, 17:257–278, 1955.

3. J. L. Hindmarsh and R.M. Rose. A model of neuronal bursting using three coupled first
order differential equations. Proceedings of the Royal Society of London. Series B. Biological
Sciences, 221(1222):87–102, 1984.

4. Daniel K Hartline. What is myelin? Neuron Glia Biology, 4(2):153–63, 2008.
5. Costas A Anastassiou, Rodrigo Perin, Henry Markram, and Christof Koch. Ephaptic coupling

of cortical neurons. Nature Neuroscience, 14(2):217–23, 2011.
6. Aslak Tvieto, Kent-Andre Mardal, and Marie E Rognes. Modeling Excitable Tissue: The EMI

Framework. Springer, 2021.
7. Pierre Morell and Richard H Quarles. Basic Neurochemistry: Molecular, Cellular and Medical

Aspects. Lippincott-Raven, 6th edition, 1999.
8. A. Arvanitaki. Effects evoked in an axon by the activity of a contiguous one. Journal of

Neurophysiology, 5(2):89–108, March 1942. Publisher: American Physiological Society.
9. J. G. Jefferys. Nonsynaptic modulation of neuronal activity in the brain: electric currents and

extracellular ions. Physiological Reviews, 75(4):689–723, October 1995. Publisher: American
Physiological Society.

10. Costas A. Anastassiou and Christof Koch. Ephaptic coupling to endogenous electric field
activity: why bother? Current opinion in neurobiology, 31:95–103, 2015.



2 Modeling Ephaptic Coupling with EMI 37
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Chapter 3
Augmentation of Cardiac Ischemic Geometry for
Improving Machine Learning Performance in
Arrhythmic Risk Stratification

Ambre Bertrand, Carolyna Yamamoto, Giulia Monopoli, Thomas Schrotter, Lena
Myklebust, Julie J Uv, Hermenegild J Arevalo, and Mary M Maleckar

Abstract Ventricular arrhythmias frequently occur as a complication of myocardial
infarction (MI), due to significant changes in the heart’s structure and electrophysi-
ology. If left untreated, these alterations may lead to sudden cardiac death (SCD). It
is therefore critical to evaluate risk prediction accurately in post-infarction patients
to enable early intervention and improve patient outcomes. This work introduces a
novel approach to improve arrhythmia risk assessment in post-infarction patients.
We propose a new pipeline to build physiologically realistic image-based models
of patient hearts, producing more realistic meshes compared to publicly available
pipelines. We generate a library of 90 cardiac geometries of MI patients and use
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these cardiac models to estimate likelihood of reentry using electrophysiological
(EP) simulations. However, due to the computationally expensive nature of this ap-
proach, we also introduce a data augmentation pipeline to train a machine learning
(ML) model for risk stratification, enabling accurate and real-time prediction of the
simulation outcomes. Our trained ML model achieved an accuracy of 88.0% and F1
score of 48%, with a prediction time of 0.01 seconds per case (compare with approx-
imately 5 hours per case for EP simulations). In conclusion, the work presented here
improved the accuracy of personalised biventricular geometries, introduced a novel
data augmentation approach for scar distribution, and decreased prediction time of
risk of arrhythmias post-MI by more than five orders of magnitude.

3.1 Introduction

Ventricular arrhythmias are a common consequence of MI and are associated with a
significant increase in SCD in post-MI patients [1, 2]. Infarction occurs when blood
flowing to a portion of the myocardium decreases or stops flowing altogether, typi-
cally due to a narrowed or completely occluded coronary artery. A rapid reparative
process is initiated to rebuild the infarcted myocardium and preserve the structural
integrity of the ventricles, resulting in the formation of a scar [3]. Ventricular scar
tissue is characterised by dense fibrosis, comprising of collagen and fibrocytes, as
well as regions containing surviving myocyte bundles. The heterogeneous presence
of dense fibrosis can lead to conduction block, delineating the borders of potential
reentry circuits. Fibrosis also contributes to the development of slow tissue conduc-
tion, a pivotal factor in the formation of reentry mechanisms [4]. The combination of
these factors creates a vulnerable environment, acting as a substrate for ventricular
arrhythmias. The role of fibrotic tissue in initiating and maintaining ventricular ar-
rhythmias is indeed complex and remains an active area of research [5, 6, 7]. Timely
and accurate prediction of these arrhythmias is crucial to enable early intervention
and improve post-MI patient outcomes, and as such represents an important clinical
challenge to address.

The occurrence of arrhythmic events in patients at risk may be prevented by
an implantable cardioverter-defibrillator (ICD), making these devices the primary
treatment of choice for high-risk post-MI patients [8]. However, ICD implantation is
costly and associated with adverse effects [9]. Therefore, there is value in developing
non-invasive methods for prospective identification of post-MI patient subgroups
with the highest risk of arrhythmia.

Image-derived mechanistic computational models of cardiac electrical function
have proven successful in predicting arrhythmic risk [10, 11]. Despite their effec-
tiveness, these methods rely on complex, computationally expensive models. As a
result, there is a growing need for more efficient approaches. By replacing mech-
anistic simulations with a statistical model, it is possible to learn the relationship
between the inputs and outputs of a physical process, based solely on data and with
no phenomenological information. Deep learning (DL) models have emerged as a
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promising solution, due to their ability to analyse large amounts of data and identify
complex patterns [12, 13, 14, 15]. While these statistical methods reduce computa-
tional cost compared to mechanistic simulations, achieving accurate results requires
a substantial amount of training data [16].

Data augmentation can help address this issue by increasing the size and com-
plexity of the training dataset, thanks to manipulations performed on the existing
data. Augmenting the dataset enhances the model’s ability to generalise to unseen
cases, by exposing it to more heterogeneous cases and mitigating overfitting [17].
To this end, biophysical simulations of cardiac electrical function can be used to
generate large amounts of data within physiological expectations. Thus, DL models
are able to better capture process intricacies at a local scale and better represent
population heterogeneities at a global scale, improving their accuracy in performing
personalized predictions of arrhythmic risk.

This study aims to enhance risk stratification of post-MI patients using augmented,
biophysically-accurate image-based models of the heart. Building on the work by
[14],we propose a novelmeshing pipeline to obtain realistic anatomicalmodels based
on patient magnetic-resonance (MR) images, including ventricular scar location and
fiber orientation. To increase the variability of our population, we augment the
original anatomical models obtained from clinical MR images by changing scar
characteristics including size, thickness and location. We then perform personalised
electrophysiological simulations on over 100 different modelled cases to obtain
activation sequences in the ventricles using varying conduction velocities to reflect
tissue properties in healthy tissue and scar. Subsequently, we determine the risk of
arrhythmia of each case based on the absence or presence of reentry observed in the
simulation results.

Understanding the pathophysiological link between anatomical properties of the
healthy myocardium and scar and ventricular arrhythmias can inform approaches
to identify patients at risk. Using the augmented dataset and simulation outputs,
we train a graph convolutional neural network (GCN) to predict the occurrence of
reentry based on regional properties of themyocardium.Ourmodel is able to emulate
the simulation results within 88.0% accuracy and improve prediction time by five
orders of magnitude, thus enabling rapid, personalised risk stratification.

3.2 Methods

3.2.1 Dataset

The available data consists of standard short axis late gadolinium enhanced magnetic
resonance images (LGEMRI) provided byRigshospitalet in Copenhagen, DK,which
counts 30 confirmed cases suffering from first-time MI. The reader can refer to [14]
for further details.
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3.2.2 Data Augmentation

3.2.2.1 Ventricular Mesh Generation

For each scan, the LGE MRI stack was imported into ADAS 3D (version 2.12.0)
and the slices were automatically aligned using their pre-trained model. The left
ventricular (LV) epicardium and endocardium contourswere automatically generated
using the ADAS 3D auto-segmentation model with only minor manual adjustments
needed. For the right ventricle (RV), the epicardium and endocardiumweremanually
segmented and the contours were then generated.

Fig. 3.1: Left: Short axis LGE MRI. Right: Contours of the epicardium and endo-
cardium of the left ventricle (LV) and the right ventricle (RV).

The extracted contours (Figure 3.2A) were refined using an automated pre-
processing script based on Blender (version 3.01). The refinement ensures that the
ventricular base is consistently flat (Figure 3.2B). The resulting surfaces (ventricular
base, LV epi- and endocardium, RV epi- and endocardium and septum) represent a
single closed surface of a biventricular mesh (Figure 3.2C).
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Fig. 3.2: (A) Surface mesh generated from epicardial and endocardial contours of
the left and right ventricles (green) and surface mesh of the scar generated from 50%
FWHM (red). (B) Ventricular mesh with flat base. (C) Closed-surface biventricular
mesh and smoothed scar mesh.

The surfaces are combined, scaled and rendered as a single 3D tetraheadral mesh
using gmsh (version 4.8.4) [18]. Based on considerations of [14] we chose a spatial
resolution of 400 µm for each generated mesh. At this point, the generated 3D mesh
does not include any cardiac muscle fiber information. To generate fiber information
for a given mesh an implementation based on the works of [19] was used. Finally,
in order to be able to perform openCARP simulations [20], the resulting mesh is
converted to the respective CARP format using meshtool [21].

3.2.2.2 Scar Mesh Generation

After generating the LV epicardial and endocardial contours in ADAS 3D, the LV
scar tissue was characterized using full width at half maximum (FWHM) threshold
method. For every LGEMRI scan, at least 3 distinct scar geometries were generated
using different FWHM percentages: 30%, 50% (Figure 3.2A), and an arbitrary
percentage value between 20% and 70%, other than 30% or 50%. Subsequently,
each scar surface mesh underwent refinement in Blender to ensure that the scar
tissue is contained within the left ventricle and that small scar chunks with a surface
smaller than 10mm2 are discarded. Furthermore, the refinement process improves the
quality of the scar surface by eliminating any artifacts and smoothing the scar surfaces
(Figure 3.2C). Finally, the scar surfaces are incorporated into the 3D tetrahedral mesh
generation process.

In order to extend the scar population per mesh, an artificial scar generation algo-
rithm was developed which injects scar tissue into given biventricular geometries.
The algorithm solves an Eikonal wave equation for a given set of either manually
or randomly selected source points within the mesh [22]. The volumes contained
within the propagated wavefronts, after an adjustable period of time, are labeled as
new scar tissue (Figure 3.3). Furthermore, inner regions of generated scar tissue are
labeled as infarct tissue, while the outer regions are labeled as border zone. The
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velocity of the wave propagation can be controlled in order to generate complex scar
shapes.

Fig. 3.3: Artificial scar generation illustration with example. Based on source points
(yellow) a propagating wave is computed. The enclosed volume represents new scar
tissue with border zone (light red) and ischemic tissue (dark red).

3.2.2.3 Mesh Feature Extraction

After generating the LV epicardial and endocardial contours in ADAS 3D, the 17
American Heart Association (AHA) segments were computed for the LV. The AHA
segments are a widely accepted clinical convention that define different anatomical
regions of the LV [23]. For each segment, we calculated the segment mass, LV
wall thickness, scar mass within the segment, and scar percentage. In addition to
the segments, the region between the LV endocardium and epicardium was divided
into 10 layers (with Layer 1 corresponding to the endocardial surface and Layer 10
corresponding to the epicardial surface). For each segment, we also calculated the
layer surface area, scar area, and scar percentage for each of the 10 layers within the
segment.

Fig. 3.4: Left ventricle anatomy subdivided into 17 AHA segments and 10 layers
from endocardium to epicardium. Scar threshold at 50% FWHM.
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3.2.3 Electrophysiological Simulations

Building upon the work of [14], we incorporated the Ten Tusscher model [24] to
simulate electrical wave propagation in healthy cardiac tissue. Bymanipulating ionic
conductances and tissue conductivity reduction along transverse and longitudinal
axes, our model captured the intricate progression of damage occurring post-MI. We
employed the same parameters for healthy tissue and ischemic regions as those used
in [14]’s work.

3.2.3.1 Stimulus Point Selection

For the selection of the stimulation points, we follow a different strategy than [14].
Instead of selecting a stimulation point per AHA segment, we decided to select
stimulation points which are positioned near the scar. [25] showed that premature
beats in acute ischemia first occur in healthy myocardium adjacent to ischemic
regions; stimulation points near the scar tissue are therefore more likely to induce
reentry. Furthermore, the selection of stimulation points follows a similar strategy as
the artificial scar generation approach presented in Section 3.2.2.2. Specifically, the
border zone of each scar is used as a starting point for the Eikonal wave propagation
algorithm. The volume enclosed within the propagated wavefront after a short period
of time represents tissue which is close to the scar (Figure 3.5). Within this volume,
we select a number of points and ensure that they are spaced apart by a minimum
distance.

Fig. 3.5: Stimulation point selection illustration with example. Starting from the
border zone regions (light red) a propagating wave is computed. The enclosed
volume (light yellow) represents a region near the scar tissue. Within this region up
to 17 stimulation points are selected.

3.2.3.2 Vulnerability Simulation Protocol

We conducted the simulation protocol at the different locations (see Section 3.2.3.1)
pointed out in [14]. In summary, each simulation involved the delivery of pacing
stimuli, known as S1. Initially, these S1 stimuli were administered with a fixed cycle
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length of 350 milliseconds, followed by an S2 stimulus 200 milliseconds later. If
no irregular heart rhythms were observed during this phase, we gradually reduced
the time interval between S1 and S2 in 10-millisecond increments. We continued
this process until we either detected abnormal reentrant circuits within the heart, or
until the S2 stimulus failed to propagate. In cases where the S2 stimulus failed to
propagate, we introduced an S3 stimulus 250 milliseconds after the last successful
S2 delivery, and followed the same procedure as before. If reentry was not detected
even after the S3 stimulus, we introduced an additional S4 stimulus 250 milliseconds
later, following the same protocol as with the S2 and S3 stimuli. Finally, the resultant
outcomes were categorized as follows: absence of reentry, temporary reentry, or
persistent reentry.

3.2.4 Arrhythmic Risk Prediction Model

The electrophysiological simulations described above provide an accurate estimation
of ventricular activation times and, if present, re-entrant circuits in each subject. Sim-
ulation outputs are obtained using a fully phenomenological, multi-scale modelling
pipeline that requires high performance computing (HPC) resources. As such, this
approach is computationally expensive. From a clinical perspective, this limitation
creates a need for faster methods that can reliably estimate of the outcome of interest
whilst avoiding the requirement of HPC resources, which are typically scarce in
clinical settings. Here, we present a machine learning emulator of the simulation
model based on a large population of virtual cases, to accelerate re-entry risk pre-
dictions and circumvent the need for HPC in the clinic. The overall model pipeline
is presented in Figure 3.6.

Fig. 3.6: Proposed pipeline for the arrhythmic risk prediction model using a graph-
based representation of the heart, including global and local properties. The model is
based on a graph convolutional network, GCN, and is trained on ground truth labels
(reentry or no reentry) obtained from numerical simulations.
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3.2.4.1 Training Data Generation

Our predictive model is developed using data obtained from the original dataset de-
scribed in [14]. This dataset comprises 129 cases; 30 original image-based patient-
specific cardiac models, plus an additional 99 augmented models with varying scar
size and transmurality, amounting to a total of 1 to 5 cases per patient. Cases origi-
nating from the same patient are used for either training or testing, not both, to avoid
training data information leaking into the test set. Given its small size, the dataset is
split into training and testing sets with a 80%-20% ratio, yielding 104 training cases
(25 patients) and 25 test cases (5 patients).
The ground truth label for each case is derived from the results of the numerical
simulations determining ventricular activation times, reentry circuits, and subse-
quent risk of arrhythmia in [14]. The binary label extracted from these simulations
represents the presence (1) or absence (0) of a reentry observed in each simulated
case.

3.2.4.2 Data Representation

Given the complexity of the anatomical models, dimensionality reduction and feature
extraction are a necessary pre-processing step to capture the data efficiently before
it can be used as input to the machine learning model. We encapsulate structural
properties of the cardiac models at a global scale by building a graph-based repre-
sentation of each model based on the 17 AHA left ventricular segments [23]. Each
graph consists of 17 nodes and 72 edges; this structure is identical for all cases. Each
node corresponds to oneAHA segment, while edges represent an existing connection
between neighbouring segments. This representation allows us to implicitly encode
the structure of the heart in an anatomically accurate manner, instead of having to
represent this information in tabular format. In addition, we include two regional
tissue properties computed for each segment: segment volume (ml) and scar volume
(ml). For segments where no scar is present, the latter value is set to zero. These
local properties, which vary from case to case, are encoded within a feature vector
at each node corresponding to the relevant segment.

3.2.4.3 Model Architecture

Graph convolutional networks extend on traditional convolutional neural network ar-
chitectures, originally developed for grid-like Euclidian spaces, by applying the same
filtering principles to graph-like data [26]. We develop a model using GCN layers
to process the data encapsulated by our graphical inputs, followed by a classifica-
tion module to perform binary classification. We propose a GCN-based graph-level
prediction architecture with the following structure:

1. One input GCN layer size (2,h) followed by rectified linear unit (ReLU) activation.
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2. Two hidden GCN layers size (h,h) to convolve the node-wise features, followed
by ReLU activation.

3. One output GCN layer size (h,1) to obtain a single node-wise feature.
4. One fully connected linear layer size (17,1) to obtain a single output feature from

the 17 node-wise outputs.
5. A final sigmoid activation layer to obtain the final prediction as a probability

between 0 and 1.

Typically, the size ⌘ of the hidden layers is chosen as an intermediate between the
input and output sizes. Given that each node has two input features and one output, we
select ⌘=2 as an adequate hidden layer size. Only two hidden layers are implemented
to avoid overfitting, given the small dataset size. The model has a total number of 39
parameters, less than half the size of the dataset, which also helps to minimise the
chance of overfitting.

3.2.4.4 Training and Evaluation

Binary cross-entropy is chosen as a suitable loss function to train the model, as
it measures the difference between predicted probabilities and ground truth binary
labels. Given the small size of the dataset, we train our model for 200 epochs with a
batch size of 1, a learning rate of 0.001, and the Adam optimiser [27].

The model is evaluated using different metrics to reflect its performance in pre-
dicting presence or absence of re-entry. Accuracy measures the correctly classified
observations across both outcomes, while F1 score combines precision and recall to
measure the performance of the model in classifying a single type of outcome. F1
score is the typical metric used to evaluate the performance of a binary classifier.

3.2.4.5 Implementation and Software

We used Python v3.10, with Pytorch v1.4 and Pytorch Geometric v2.3.1. The model
was trained using Google Colab with an NVIDIA T4 GPU, 12.7GB of system RAM,
and 78.2GB of disk memory.

3.3 Results

3.3.1 Mesh Pipeline

Figure 3.7 shows a subset of generated meshes of the pipeline. Using the entire
height of a surface mesh (e.g., Figure 3.2) produces CARP files which are roughly
twice as large in size compared to those of [14].
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Fig. 3.7: 25 out of 30 generated meshes from our meshing pipeline using 50 %
FWHM. Each mesh contains heart tissue (green) and scar tissue (red).

In order to reduce the mesh size to similar levels as [14] we decided to restrict
the mesh generation to the lower 25% part of the biventricular mesh geometry.
Furthermore, this step also greatly reduces computation times for EP simulations. In
cases where no scar tissue is present within the 25% lower part of the mesh geometry
we replace scars using the scar injection algorithm from Section 3.2.2.2.

3.3.2 EP Simulations

Despite the reduction of mesh sizes, we were unfortunately not able to complete
all EP simulations for the entire biventricular population in the allotted time frame.
Because of this circumstance, we decided to use the data from [14] for the arrhythmic
risk prediction model.

3.3.3 Performance of Arrhythmic Risk Prediction Model

The simulation results taken from [14] are summarised in Figure 3.8. Of the 129
simulations, re-entry was induced in 53 cases, while the remaining 76 cases resulted
in a healthy ventricular activation pattern with no re-entries observed. Here, we
consider cases with induced re-entry as the positive class. After splitting the dataset
into training and testing sets, we obtain 40 positive cases in the training set (64
negative cases) and 10 positive cases in the testing set (15 negative cases). We
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observe a trend between increasing scar size and occurrence of re-entry, and largest
percentage of re-entries in areas of the left ventricle near the left descending artery
(LAD), as seen in Figure 3.8.

Fig. 3.8: (left) Distribution of re-entry occurrences in 129 simulated ventricular
activation sequences. Presence and absence of re-entry are indicated by 1 and 0,
respectively. The scar location is defined using the AHA segment corresponding
to the highest scar volume present. (right) Summary of re-entry occurrences and
frequency in related arteries.

Our model was trained to perform binary classification on the labelled cases
provided. The training time for 104 cases was 1 minute and 37s. When evaluated on
the 25 test cases, the trained model had an accuracy of 88.0% and the F1 score was
48.0%. The trained model predicted the outcome of a single case in 0.01 seconds.

3.4 Discussion

In this project, we have presented a novel approach for biventricular mesh gener-
ation and rapid arrhythmic risk assessment in post-infarction patients. Our work
contributes as an improvement of the [14] work in a variety of ways.

A comprehensive workflow was employed for the processing and preparation of
cardiac imaging data, with the ultimate goal of creating patient-specific 3D models
of the ventricles. Several key steps and methodologies were applied to achieve this.
Automated contour generation for the LV with the software ADAS demonstrated
high accuracy with minimal manual adjustments, while manual segmentation was
applied to the RV. Refinement of extracted contours, unified surfacemesh generation,
and the incorporation of realistic cardiac muscle fiber information contribute to the
creation of a detailed 3D model.

Various augmentation techniques were introduced to enhance the characteriza-
tion of scar tissue within the LV. These techniques not only improve the precision of
scar modeling but also enable the exploration of diverse scar geometries for in depth
analysis. Firstly, the scar tissue within the LV was characterized using the FWHM
threshold method. To diversify the scar geometries, three distinct scar configura-
tions were generated for each LGE MRI scan. Secondly, to further enrich the scar
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population within each mesh, an innovative artificial scar generation algorithm was
developed.

As a result, our innovative mesh generation pipeline successfully produced a
diverse array of patient-specific biventricular meshes featuring realistic scar geome-
tries, thereby providing valuable assets for assessing risk of arrhythmia through
mechanistic EP simulations. Due to time constraints, we weren’t able to complete
the simulations for all biventricular populations. Instead, we used the already present
data of [14] for the arrhythmic risk prediction model.

Our predictive model was able to classify reentry events with a high accuracy, but
a low F1 score, which may be due to the small size of the dataset. The architecture
of the model was designed to account for this by including relatively few trainable
parameters. However, the model may still struggle to learn these parameters correctly
given the limited number of training samples. The small number of input features
extracted from the dataset may be another potential limitation. We believe that
the model performance would improve when applied to a larger, richer dataset.
Additionally, the structure of the proposed model makes it readily extendable to
predict the location of reentries by performing classification at node-level instead of
at graph-level.

Despite its limitations, our model was able to predict the outcome-of-interest
significantly faster than the original numerical simulations. Typically, one EP simu-
lation can take upwards of 5 hours to complete for a single patient, using approaches
and computational resources similar to the ones used in [14]. In contrast, our GCN
model was able to predict presence of arrhythmia in just 0.01 seconds. This im-
provement in prediction time represents a speed-up of over five orders of magnitude.
This is particularly significant in clinical settings, where decision-making may be
time sensitive and powerful HPC resources may not be available. Furthermore, rapid
prediction times may also be advantageous in further computational studies, by
generating large populations of virtual cases with the aim to investigate parameter
inference and explore trends in cohorts of healthy and diseased patients [28, 29].

In conclusion, we presented a novel cardiac meshing pipeline and ML-based
predictive model to determine risk of arrhythmia in post-MI patients. Our pipeline
allowed for reconstruction of personalised and physiologically accurate 3D meshes
of the human ventricles based on 2D LGE MRI scans. Using the patient-specific
biventricular meshes, we simulated electrical propagation on the ventricles, and
determined risk of arrhythmia due to reentry. Our predictive model was able to learn
from the mechanistic simulations and significantly accelerate prediction times. This
work paves the way towards more accurate and faster computational methods for
arrhythmic risk stratification, helping to improve therapeutic strategies and long-
term outcomes of post-MI patients.
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Chapter 4
Non-Invasive Detection of Fetal Ischemia
Through Electrocardiography

Álvaro José Bocanegra Pérez, Matthew J Magoon, Manisha Sahota, Leonie
Schicketanz, Julie J Uv, Patrick M Boyle, and Hermenegild J Arevalo

Abstract During pregnancy, fetal distress requiring clinical intervention can be
difficult to accurately monitor and diagnose, necessitating technological improve-
ments to bring clear information to patients and their care teams. Non-invasive fetal
Electrocardiography (NI-fECG) monitoring may allow for earlier and more reliable
detection of global cardiac ischemia due to hypoxia. However, the low signal-to-noise
ratio of the fetal heartbeat relative to the maternal heartbeat remains a challenge.
To enable reliable recognition of ischemia in NI-fECG, we propose an approach
that combines simulating a pregnant torso and an unsupervised machine-learning
method. Three stages of fetal cardiac ischemia: none (healthy), moderate, and se-
vere, were introduced to the model. For each case, Electrocardiograms (ECGs) were
simulated with the standard 12 leads, plus 3 additional abdominal leads. Unsuper-
vised Multiple-Kernel Learning (MKL) with k-means clustering identified changes
consistent with fetal cardiac ischemia despite noise from the parental heart. Thus, in
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this early proof-of-concept investigation, our results suggest that NI-fECG may offer
a means for detecting global cardiac ischemia.

4.1 Introduction

The most common techniques for monitoring fetal distress in clinical practice are
single hand-held Doppler ultrasound or Cardiotocography (CTG) which provide
information about the Fetal Heart Rate (FHR). However, Doppler ultrasound tech-
niques cannot provide estimates of Fetal Heart Rate Variability (FHRV) and the
accuracy of FHR estimates is technically limited by factors such as low sampling
frequency and imprecise alignment with the fetal heart. Due to the lack of robustness
of FHR monitoring, Caesarean deliveries are often performed with limited evidence
of reducing adverse long-term neonatal outcomes [1].

Recent studies have highlighted the potential of fetal Electrocardiography (fECG)
in providing a more reliable assessment of fetal distress. Currently, fECG is obtained
via a scalp electrode which is directly attached to the fetal scalp [2]. As this procedure
is invasive and requires the amniotic membrane to be ruptured, it is not routinely
performed. Non-Invasive fetal ECG (NI-fECG) provides an alternative approach for
continuous in-utero fetal monitoring with negligible risk to the parent and fetus, as
it only requires skin-contact electrodes on the parent’s skin to obtain information
about fetal cardiac activity [3]. Analysis of ECG waveforms is routinely performed
in clinical practice to provide information about cardiac function in adults. However,
interpretation of NI-fECG is more challenging due a lack of standardisation of NI-
fECG acquisition protocols and low signal-to-noise ratios in abdominal ECGs due
to signal interference from the parental heart, small fetal myocardial volumes and
parental and fetal motion artefacts [4].

Consequently, sophisticated post-processing techniques are required to extract
the NI-fECG from the abdominal signal mixture. Common NI-fECG extraction
techniques include adaptive filtering [5, 6, 7, 8, 9], Kalman filtering [10, 11, 12]
and wavelet transform [13, 14]. Furthermore, blind source separation is a technique
that leverages principle component analysis (PCA) and independent component
analysis (ICA) to separate the mixture of independent signals in the abdominal ECG
[15, 16, 17]. Further NI-fECG extraction techniques include template subtraction
which involves subtracting a synthetic parental ECG which is generated by using
parental QRS complex estimates from the abdominal signal to create a template
parental ECG [18, 19, 20, 21, 22, 23]. While effective for single-channel ECG
denoising, NI-fECG extraction techniques are significantly limited by the need for
precise parental QRS complex detection, which is challenging in the case where the
parental and fetal R wave temporally overlap [24].

Deep neural networks have recently emerged as an alternative NI-fECG extraction
approach [25] with several studies proposing deep convolution encoder-decoder
network implementations to extract the NI-fECG from the abdominal signal mixture
[26, 27, 28, 29]. However, there are many challenges of such deep learning based
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methods. Such challenges include training the model to directly extract the NI-
fECG due to it being significantly weaker than the parental ECG as well as the
contamination of the extracted NI-fECG with the residual parental ECG which
makes identification of the P and T waves challenging. Moreover, the lack of gold-
standard training data and NI-fECG databases that can be used to evaluate NI-fECG
extraction algorithms may hinder the robustness and generalisation performance of
the model[30].

An additional approach to analysing ECG signals through the use of artificial in-
telligence is unsupervised machine learning, which enables the analysis of the natural
distribution of the data. Due to the complexity of data sets, unsupervised machine
learning is often used in conjunction with dimensionality reduction techniques to
allow the number of dimensions of a set of inputs to be reduced while preserving the
information provided. Principal component analysis (PCA) is the most commonly
used dimensionality reduction technique [31]. However, when working with clini-
cal data it can fall short, as it is monovariate and linear. Other techniques, such as
Multiple Kernel Learning (MKL) have been used to analyse biological signals as a
multivariate and non-linear alternative [32, 33, 34].

In clinical practice, monitoring of the ST segment in adult 12 lead ECGs is com-
monly performed to diagnose myocardial ischemia [35]. ST segment analysis has
additionally been identified as a marker of fetal distress due to hypoxia [36, 37].
However, use of fetal ST analysis remains limited as it is currently carried out us-
ing invasive fetal scalp electrodes. Notably, Clifford et al. compared the FHR and
ST deviation derived from fetal scalp electrode data and non-invasive abdominal
electrodes, highlighting their clinical similarity [38]. This provides an opportunity
to leverage computational cardiac electrophysiology to acquire synthetic NI-fECGs
and develop machine learning techniques to enhance detection of ST segment de-
viation indicative of fetal ischemia, which could improve clinical decision-making
regarding when a Caesarean section should be performed to optimise parental and
fetal outcomes. Herein, we performed fetal and parental cardiac electrophysiology
simulations using an image-based finite element model of a pregnant torso to acquire
realistic simulated NI-fECGs in healthy and diseased conditions to determine the
extent to which we can detect fetal ischemia.

4.2 Methods

To generate a data set, 10 simulations were conducted with openCARP [39] followed
by a machine-learning based approach to characterise ischemia in the NI-fECG.
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4.2.1 Geometrical Mesh Construction

In this study, the geometrical mesh of a pregnant torso developed by Uv et al. [4] was
used. Briefly, a CT-based cardiac biventricular geometry [40] was combined with an
MRI-based whole body pregnant model [41] to represent the parental and fetal hearts
embedded in an anatomical pregnant torso. The parental heart was scaled, translated
and rotated to obtain the fetal heart. The epicardial, myocardial and endocardial layers
were defined as 30%, 25% and 45% of the cardiac wall thickness respectively [42].
Myocardial fibre orientations were assigned to the model using a previously validated
rule-based method [43].

4.2.2 Electrophysiological Modelling

4.2.2.1 Ionic Models

The ten Tusscher model of the human ventricular myocyte was used to determine the
ionic current properties of the parental heart [44]. For the fetal heart, the ionic model
was modified to reflect increasing ischemic levels in three stages: healthy, moderate
and severe ischemia. Table 4.1 presents how the default properties were changed
following the work presented in [45]. For the fetal epicardial, mid-myocardial and
endocardial layers, the membrane transient outward conductance 𝑔𝑡𝑜 was set to 0.073
𝑆𝑚−1 [3].

In the myocardium, the intracellular and extracellular conductivities were set to
𝑔𝑖 = (0.27, 0.081, 0.045) 𝑆𝑚−1 and 𝑔𝑒 = (0.9828, 0.3654, 0.3654) 𝑆𝑚−1 in the
longitudinal, transverse and normal directions respectively and the torso was given
an isotropic conductivity of 0.216 𝑆𝑚−1 [3]. Tissue propagation was modelled with
the monodomain approach.

Table 4.1: Summary of the parameters of the ten Tusscher ionic model of the human
ventricular myocyte [44] modified to simulate healthy, moderate and severe ischemia
in the fetal endocardial layer.

Cell Model Parameters Healthy Moderate Ischemia Severe Ischemia

[𝐾+ ]𝑜 (𝑚𝑚𝑜𝑙/𝑙) 5.4 12.5 15.0
𝑔𝑁𝑎 , 𝑔𝐶𝑎,𝐿 (%) 100 75 50
𝑃𝑁𝑎𝐾 (%) 100 100 30
𝑘𝑁𝑎𝐶𝑎 (%) 100 100 20
𝑉𝑚𝑎𝑥𝑢𝑝 (%) 100 100 90
𝑉𝑟𝑒𝑙 (%) 100 100 5
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4.2.2.2 Stimulation Protocol

Both the fetal and parental heart were stimulated following the protocol proposed by
Durrer et al. [46]. For all simulations, the parental heartbeat was set to a cycle length
of 667𝑚𝑠, which corresponds to a healthy adult heartbeat during the second trimester
of 90 𝑏𝑝𝑚 [47]. For the fetal heart, simulations for the following different heart cycle
lengths (heart rates) were conducted: 462𝑚𝑠 (130 𝑏𝑝𝑚), 400𝑚𝑠 (150 𝑏𝑝𝑚), 353𝑚𝑠
(170 𝑏𝑝𝑚). For a gestational age over 32 weeks, these heart rates correspond to the
range of normal fetal heart rates between 110–160 𝑏𝑝𝑚 [48].

4.2.3 Extracellular Potential Measurements

The extracellular potentials were recovered in a post-processing step with openCARP
at the electrode locations defined in Figure 4.1. The four limb and six precordial
electrodes match the standard electrode positions to calculate the 12 lead ECG.
Figure 4.1 also illustrates the calculation of three abdominal leads derived from
electrode positions from previous work [4].

Since the extraction of the NI-fECG without distorting its waveform morphology
is an unsolved problem, an ECG showing only fetal activity was required. Hence, we
assumed that the simulation results with mixed activity from the parental and fetal
heart could be obtained approximately by superimposing simulations results where
only one heart was active at a time. To obtain a pure fetal signal, simulations where
only the parental heart was active were performed and subtracted from simulation
results with parental and fetal cardiac activity.

To investigate how sensitive our proposed analysis protocol was to inadequately
extract NI-fECGs, we developed a method to linearly suppress the parental activities
in the abdominal recordings. Accordingly, chest and abdominal leads were scaled
and subtracted from each other, using only leads that captured the parental activity
in the same direction, e.g. leads A52 and aVF from the 12 lead ECG.

4.2.3.1 Simulation Setup

By changing the fetal heart rate and inducing three stages of increasing ischemia
in the fetal heart, nine simulation sets of 5 s recordings were generated. To reduce
overall computation time, a simulation where only the parental heart was active was
conducted to retrieve the pure fetal signal for all nine cases.
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Fig. 4.1: Visualisation of the pregnant torso model illustrating the electrode positions
and the calculated abdominal leads.

4.2.4 ECG Signal Analysis

Since NI-fECGs are complex signals with multiple sources (leads) aligned in time, we
applied unsupervised machine learning analysis to a dimensionality reduced space
to determine whether we could differentiate between healthy and ischemic cases in
the NI-fECGs. Using an analysis pipeline adapted from the work by Jimenez-Perez
et al. [49], we firstly used a delineation deep learning network [50] to identify the
QRS-complexes, T-waves, and ST-segments in all the leads of the different simulated
NI-fECGs. Secondly, we applied MKL on the data set to generate the dimensionality
reduced space. Finally, we perform a clustering analysis, characterising every cluster
to determine the discriminative power of the method.

4.2.4.1 Signal Delineation

The used ECG delineation network enabled the segmentation of biomarkers that
we considered relevant for this problem. Separating the NI-fECG from the parental
ECG was outside of the scope of this project. However, since our goal was to analyse
the NI-fECG morphology, we applied the delineation network on the pure NI-fECG
which only shows fetal cardiac activity. Following this, the mask was applied to the
original signal in which both fetal and maternal hearts were active. Therefore, the
ideal segmentation enabled the focus of the analysis to remain on the discrimination
capacity of our solution.
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4.2.4.2 Dimensionality Reduction

To increase the number of cases in the dataset, we treated each cardiac cycle as a
separate record. Since the simulations used biventricular geometries, no P wave was
generated. Hence, the start of the cardiac cycle was taken as the beginning of the
QRS complex and the end of the cardiac cycle was marked at the end of the T wave.
All segments were then resampled to be of the same length and aligned to allow the
MKL algorithm to generate the reduced dimensionality space.

4.2.4.3 Cluster Analysis

K-means clustering was used to partition the data into clusters to determine if under-
lying differences between the healthy, moderately ischemic and severely ischemic
NI-fECG could be detected. The number of clusters was determined using the sil-
houette method [51], which allowed us to choose the number of clusters that best
separates the data.

4.3 Results

4.3.1 Simulation Results

From each simulation a 15 lead ECG was constructed containing data from the
standard 12 lead ECG with 3 additional abdominal leads: A41, A52, and A63
(Figure 4.2). Ideal NI-fECGs were constructed by subtracting the known parental
contribution from each lead. However, the actual raw signals from our model include
substantially more contribution from the parental heart than the fetal heart, obscuring
even dramatic changes to the ST segment and T wave. Application of a simple linear
method to suppress the signal from the parental heart enabled the visualisation of
ischemic changes in the NI-fECG signal, although this still failed to reproduce the
ideal signals (Figure 4.3).

4.3.2 Signal Analysis

The delineation network was applied on the pure NI-fECG signal and the mask of the
onsets was applied on the original signal, which is contaminated with the parental
ECG. Results for a single lead are shown in Figure 4.4. The biomarkers chosen for
the analysis were the QRS complexes (in red), T waves (in blue) and the ST segments
(the interval between the end of each QRS complex and the beginning of the T wave).

Each cardiac cycle was considered as a single input for the MKL method. After
aligning the cycles, each segment was interpolated to a fixed value of samples,
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Fig. 4.2: Simulated 15 lead ECG of a healthy fetus with a heart rate of 130 𝑏𝑝𝑚.
Note, the fetal contribution is by the parental heartbeat, even in the abdominal leads
A41, A52, and A63. Arrows indicate the beginning of each fetal heartbeat.

Fig. 4.3: Example of a healthy, moderately ischemic, and severely ischemic fetal
heartbeat at 130 𝑏𝑝𝑚. The parental heartbeat was removed ideally (left) and by a
simple linear suppression technique (right). Arrows indicate the beginning of each
fetal heartbeat.

allowing the database to be stored in an array. Finally, the MKL algorithm is applied
on the data set to generate the output space. This process was applied to the data
set of ideal abdominal ECGs where only the fetal heart was active as well as to
the original abdominal ECG where the parental cardiac activity was suppressed.
Figure 4.5 shows the output space for each case following dimensionality reduction.

The output of the MKL algorithm has 𝑁 − 1 dimensions, where 𝑁 represents
the number of inputs or records. However, the highest variability is concentrated in
the first dimension. For the clustering analysis, we considered the dimensions that
accumulated 95% of the variability of the output space.

To cluster these results, the output space served as an input for the k-means
algorithm. The number of clusters was decided by using the silhouette method
leading to an optimum number of clusters between 3 and 16. From the simulations,
it was known whether a data point corresponded to healthy, moderately ischemic, or
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Fig. 4.4: Segmented ECGs for the ideally isolated NI-fECG (left) and the original
NI-fECG (right) which includes the parental and fetal cardiac activity. The segments
for the QRS complex (red) and the ST segment (blue) are detected in the isolated
NI-fECG (left) and are applied to the original NI-fECG (right), both from the aVF
lead in this case.

Healthy  Moderate Ischemia  Severe Ischemia       Cluster 0  Cluster 2
Cluster 1  Cluster 3

Fig. 4.5: Output spaces for the different ischemic levels from the abdominal ECG
leads showing only fetal cardiac activity (left) and showing the original ECG after
applying the parental suppression method (right). The markers indicate the cluster
to which each point belongs, revealing four different clusters detected for the data
set displayed on the left and three clusters detected for the data set on the right.

severely ischemic data. Using this information, Figure 4.5 illustrates the distribution
of the different cases in the output space, highlighting the ability of the proposed
method in distinguishing the three levels of ischemia. For each level of ischemia, the
total number of records within each cluster was also computed, as summarised in
Figure 4.6. From this, it is evident that healthy data points are mostly assigned to the
same cluster. Data based on the original abdominal ECG with parental suppression
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Fig. 4.6: Summary of the distribution of the data points across all clusters based
on the abdominal lead recordings with only fetal cardiac activity (Left) and on the
original abdominal ECG after applying the parental suppression method (Right).
Each coloured bar indicates the percentage of data points assigned to a specific
cluster for each ischemic level.

is more likely to be assigned to the cluster that is mostly associated with healthy data
points than data based on the pure NI-fECG. Differentiating between moderately
and severely ischemic NI-fECGs based on the cluster allocation is ambiguous for
both data sets.

4.4 Discussion

The proposed model framework successfully generated synthetic abdominal ECGs
containing signal contributions from both the parent and fetus. Moreover, a simple
linear NI-fECG extraction method was implemented to suppress the parental signal,
allowing dramatic ST segment changes to be identified in the ischemic fetus. In
addition, the feasibility of using common machine learning techniques such as MKL
for dimensionality reduction and k-means clustering to analyse the ECG signals was
demonstrated, providing qualitative and quantitative evidence of distinct clusters
describing the degree of fetal ischemia.

Due to the high computational cost of performing whole torso electrophysiol-
ogy simulations, only monodomain simulations were performed in this preliminary
investigation. Furthermore, the torso was modelled as a uniform medium hence vary-
ing tissue conductivities that affect the wavefront propagation were not considered.
Performing bidomain simulations and accounting for additional tissue types such as
bone, lungs and the fetal vernix caseosa would provide more realistic conduction
throughout the torso and thus, more realistic ECGs. Notably, the Paniflov ten Tuss-
cher ionic model used in this study was adapted to model fetal ischemia using data
based on an adult human heart. Modifying the ionic model to reflect the ischemic
fetal heart would be important to obtain more clinically realistic NI-fECG signals.
Moreover, as this was a preliminary investigation, we focused on modelling severe is-
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chemia only in the endocardial layer of the fetal heart to ensure the ischemic changes
were sufficiently large to detect a change in the NI-fECG. Future studies simulating
lower levels of ischemia in the whole fetal heart would present a more clinically rele-
vant scenario in which the fetus would have a greater chance of resuscitation. While
the pipeline developed in this study presents a promising proof-of-concept, using a
simple linear method to suppress the parental heart signal is not realistic for clinical
settings. NI-fECG extraction remains a challenging problem, therefore as NI-fECG
extraction algorithms continue to evolve and improve in the future, techniques should
be validated using real clinical data and incorporated into the workflow developed
in this study to enhance the robustness of this proposed method.

4.5 Conclusions

We developed, to our knowledge, a novel workflow to detect fetal ischemia by
simulating parental and fetal cardiac electrophysiology in a pregnant torso model
and using MKL with k-means clustering to identify ischemic changes in signals with
amplified fetal contribution. With continued development and further optimisation,
our methodology may enable improved detection of fetal cardiac ischemia to better
inform clinical decision-making. In future work, the pipeline will be applied to
additional pregnant torso models with lower levels of ischemia applied globally
to the fetal heart to better characterise fetal distress non-invasively. Additionally,
the impact of incorporating time-dependent factors such as fetal movement and
physiological artefacts due to parental respiration and muscle contraction should be
explored.
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Chapter 5
Reconstruction of a Pancreatic Beta Cell
Network From Heterogeneous Functional
Measurements

Roshni Shetty, Radhika Singh-Agarwal, Stefan Meier, Christian Goetz, Andrew G
Edwards

Abstract Intercellular heterogeneity is fundamental to most biological tissues. For
some cell types, heterogeneity is thought to be responsible for distinct cellular pheno-
types and functional roles. In the pancreatic islet, subsets of phenotypically distinct
beta cells (hub and leader cells) are thought to coordinate electrical activity of the
beta cell network. This hypothesis has been addressed by experimental and compu-
tational approaches, but none have attempted to reconstruct functional specialization
directly from measured heterogeneity. To evaluate if electrophysiologic heterogene-
ity alone can explain these specialized functional roles, we created a population
of human beta cell models (via genetic algorithm optimization) recapitulating the
heterogeneity in an extensive patch clamp dataset (1021 pancreatic cells). Then we
applied the simplified Kirchhoff network (SKNM) formalism to simulate activity
of that population in a connected beta cell network. We could not immediately ob-
serve cells with obvious hub or leader phenotypes within the heterogeneous network.
However, with this study we built the basis for further ”ground-up” investigation of
relationships between beta cell heterogeneity and human islet function. Moreover,
our workflow may be translated to other tissues where large electrophysiologic data
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sets become available, and heterogeneity is thought to influence tissue function e.g.
human atria.

5.1 Introduction

Intercellular heterogeneity is the cornerstone of functional complexity and enables
coordinated responses and specialized functions of cells within a tissue [1]. Hence,
it has become increasingly important to study intercellular heterogeneity to unravel
the mechanisms underlying the basic function of many organs, as well as disease and
development. However, the ability to make detailed assessment of cellular properties
in a sufficient number of cells to properly characterize heterogeneity is often limited
by experimental throughput. Historically this has certainly been true, and remains
true, for electrophysiological characterization of many tissues (the brain being an
important exception). It is only rarely that characteristics other than the Gaussian
mean and some measure of distribution spread are reported for most electrophysi-
ologic variables. Expression measurements at the RNA and protein levels are often
provided in more detail, such as for markers measurable by flow cytometry. However,
this is also rare for ion transporters, the building blocks of cellular electrical activ-
ity. To date, these challenges in experimental data collection have largely prevented
modeling approaches that have tried to systematically link heterogeneity in cellular
properties to macroscopic electrophysiologic function.

The pancreas is an organ with both endocrine and exocrine functions. The en-
docrine cells (alpha, beta, gamma, delta, and epsilon) are arranged in small clusters
(several hundred to one thousand cells) called islets, which serve as mini-organs.
Cells of an islet work together to maintain blood glucose homeostasis [2]. Beta cells
that synthesize and secrete insulin, account for approximately 70% of human islet
cells [3]. Experimental studies of isolated beta cells show that they exhibit high
intercellular variability in terms of the insulin the secrete in response to both basal
glucose concentration (2-3 mM), and upon increasing glucose to simulate prandial
conditions. This functional heterogeneity is of great importance to normal islet be-
havior and regulation of insulin release [4]. A prominent hypothesis in the field of
beta cell biology is that subsets of beta cells served different roles in determining
both electrical activity and insulin release (e.g. leader, hub, and first response cells)
[5, 6]. However, the metabolic and electrical profile of these different integrated phe-
notypes is yet to be definitively characterized. Here, we attempt to answer whether
experimental data describing heterogeneity in a range of cellular electrophysiologic
properties can explain the specialized functional roles of heterogeneous beta cells
within an islet.

In this study, we combine in vitro data obtained from a recent and comprehen-
sive patch clamp data set of isolated human beta cells [7] with a computationally
designed framework for reconstructing that heterogeneity in a population of in silico
beta cell models (PoM) approach [8, 9]. In this approach, key model parameters (e.g.,
channel conductances, transporters maximal transport velocity) are varied to reca-
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pitulate measured reference data. To align the simulated population distribution with
the experimental distribution, we employ genetic algorithms as an able optimization
method to find appropriate parameter adjustments. These are ”good enough” solu-
tions to the optimization problem, but are generally not unique. Subsequently, the
diverse simulated population is coupled in a tissue-level architecture, with heuristics
to specify intercellular coupling in a manner that is consistent with measurements,
but random with respect to the cellular electrical phenotype. This in silico islet can
then be perturbed to gain insights into the functional significance of heterogeneity
at a tissue level.

5.2 Methods

5.2.1 Data and Model

The experimental data utilized in this study was obtained from Camunas-Soler et al.
[7] (https://github.com/jcamunas/patchseq) which comprises an extensive
collection of patch clamp data encompassing 1021 pancreatic cells. Within this
data set, information concerning six key electrophysiological outcome metrics were
extracted from a series of 4 distinct voltage clamp protocols. The metrics were: (1)
early (EE) and (2) total exocytosis (TE) (in fF/pF); (3) early and (4)late Ca2+ current
(in pA/pF); (5) peak Na+ current (in pA/pF); and, (6) Na+ channel half-inactivation
(Vℎ𝑎𝑙 𝑓 ,in mV). These data were measured in 180 healthy beta cells. Figure 5.3 shows
the experimental distributions of the outcome metrics. To implement the voltage
clamp protocols and derive the six outcome metrics for each member of the in silico
population of models, we used MATLAB (release 2022B). These simulations were
executed on the human pancreatic beta cell model developed by Riz et al. [10].

5.2.2 Workflow

Figure 5.1 shows the workflow that was followed to match the simulated model data
distributions to the experimental electrophysiological data distributions [7] which
is computationally expensive. Subsequently, the optimized parameters were used to
create a 3D heterogeneous model of a human pancreatic islet network. First, we em-
ployed a sensitivity analysis to identify the most important parameters related to Na+

-and Ca2+ outcomes (i.e., EE and TE (in fF/pF), early and late Ca2+ current peaks
(in pA/pF), peak Na+ current (in pA/pF), and Vhalf (in mV) to reduce the parameter
space and increase computational efficiency. From the initial 86 parameters, only
eight were selected for optimization. Subsequently, an iterative process of model
generation and parameter optimization through a genetic algorithm was employed to
map the model distributions to the experimental distributions. Once the fits matched
sufficiently, several populations were generated. Finally, these populations were em-

https://github.com/jcamunas/patchseq
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bedded in a network of connected beta cells forming a heterogeneous 3D model of
a pancreatic islet.

Fig. 5.1: Workflow for parameter selection, optimization, model generation and 3D
simulations.

5.2.3 Sensitivity Analysis

A sensitivity analysis was performed to better understand the impact of individual
parameters on the Na+ -and Ca2+-related outcome parameters, and thereby constrain
the search space for the optimization algorithm. A simple linear scaling —by factors
of 4, 2, 1, 0.5, and 0.25 — was applied to each model parameter individually, while
the remaining parameters were held at their baseline value. First, the voltage-clamp
protocols were pre-paced for at least 10 s after which the protocols were evaluated.
The changes in outcome parameters for each scaling factor were compared to their
baseline value.

5.2.4 Genetic Algorithm Optimization and Population Generation

From the sensitivity analysis, the parameters with most influence on the electrophys-
iological metrics were identified and collectively defined as 𝑠𝑒𝑡{P}. An initial value
of standard deviation for every parameter belonging to the 𝑠𝑒𝑡{P} was obtained from
independent small-sample data sources [11], and used as the initial guess of variation
for these parameters within the beta cell population. For each iteration of the GA,
a new population of beta cells was generated by applying the standard deviation in
𝑠𝑒𝑡{P} to sample a from a log-normal distribution using the baseline value of the
Riz et al. model as the centre. 750 models were generated in each population.

To address the bimodal distribution observed in the Na+ current half-inactivation,
we introduced a second Na+ current component to the Riz et al. model. This sec-
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ondary current had a lower average half-inactivation voltage, resulting in a population
where each cell expressed either the default high Na+ current (as in the original Riz
et. al model) or the newly introduced low Na+ current. The parameter 𝐹𝑟𝑎𝑐ℎ𝑖𝑔ℎ gov-
erned the ratio of models expressing the high and low Na+ current components (each
model cell was assumed to only exhibit one dominant form of the current). An initial
value of 0.15 was set, resulting in 113 models representing the high Na+ current
and 637 models expressing the low inactivation Na+ current. Next, the six outcome
metrics were assessed for each model in the population. The primary objective of
the optimization was to closely align the simulated population distributions of these
metrics with the corresponding experimental distributions.

Given the non-normal nature of the distributions, parameters were calculated to
capture skewness (S), kurtosis (K), and the mean-to-standard deviation ratio (𝝁/𝝈)
for both experimental and simulated distributions of skewed Gaussian metrics (such
as early and total exocytosis, early and late Ca2+ current peaks, and peak Na+ current).
These calculations were facilitated using built-in MATLAB functions, and the GA’s
cost function aimed at reducing the error in (S), (K), and (𝝁/𝝈) between the two
distributions (Equation 5.1 and 5.2),

𝐶𝑜𝑠𝑡 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = arg min 𝐸1 (𝑘) (5.1)

𝐸1 (𝑘) =
∑︁
𝑘

|𝑆𝑒 − 𝑆𝑠 | + |𝐾𝑒 − 𝐾𝑠 | + |𝜇𝑒/𝜎𝑒 − 𝜇𝑠/𝜎𝑠 | (5.2)

where 𝑘 is the type of metric distribution and subscript 𝑒 and 𝑠 denote the value
derived from the experimental and simulated distribution respectively.

For the bimodal distribution of the Na+ current half-inactivation, a double gaussian
curve was fitted using the MATLAB curve-fitting toolbox. Parameters 𝜇1, 𝜇2, 𝜎1, 𝜎2,
and the ratio of the two gaussian peaks 𝑎1/𝑎2 were selected for optimization. Simi-
larly, the differences between these parameters were minimized in the cost function
for both experimental and simulated distributions (Equation 5.3 and 5.4).

𝐶𝑜𝑠𝑡 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = arg min 𝐸2 (𝑘) (5.3)

𝐸2 (𝑘) =
∑︁
𝑘

|𝜇1𝑒 − 𝜇1𝑠 | + |𝜇2𝑒 − 𝜇2𝑠 | + |𝜎1𝑒 − 𝜎1𝑠 | + |𝜎2𝑒 − 𝜎2𝑠 |

+|𝑎1𝑒/𝑎2𝑒 − 𝑎1𝑠/𝑎2𝑠 | (5.4)

GA optimization was performed with the Global Optimization Toolbox in MAT-
LAB [12, 13]. Figure 5.1 outlines the main steps in this process. The standard
deviations of parameters in 𝑠𝑒𝑡{P} and the 𝐹𝑟𝑎𝑐ℎ𝑖𝑔ℎ were iteratively adjusted in
each generation to minimize the error between the simulated and experimental dis-
tributions. The optimized standard deviations for 𝑠𝑒𝑡{P} and 𝐹𝑟𝑎𝑐ℎ𝑖𝑔ℎ values were
selected to construct the final population, which was again constructed by log-normal
sampling of parameters in 𝑠𝑒𝑡{P} as well as 𝐹𝑟𝑎𝑐ℎ𝑖𝑔ℎ. For other non-optimized
parameters (not-identified by the sensitivity analysis), independent measures of in-
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tercellular variability (standard deviation) were taken from the source data used to
construct the baseline Riz model, or similar human beta cell datasets ([11]). As
earlier, the mean of this log-normal variation was always centered at the baseline
value of the Riz et al. model parameter. Table 5.1 presents a list of all parameters
varied, along with the corresponding means and standard deviations (normalized to
the baseline Riz et al. model value).

5.2.5 3D Beta Cell Network Simulations

Multiple cell-based models have been developed in recent years [14, 15, 16, 17, 18,
19], to capture tissue electrodiffussion in varying degrees of detail. A recently pub-
lished model aiming at balancing the need for cell-level accuracy and computational
efficiency is the KNM [20]. This model incorporates individual cells with explicit
representation of the local extracellular space. The fundamentals of this model are
related to Kirchhoff’s current law which states that the sum of all currents flowing
into one node (cell) is equal to the sum of all currents flowing out of that node (cell).
While incorporating individual cells, the computational efficiency of the KNM is
still comparable to to models in which extracellular and intracellular space are not
geometrically distinct e.g. the bidomain (BD) model [20]. The KNM can be reduced
to the simplified KNM (SKNM) by assuming equal anisotropy of intra- and extracel-
lular conductances, which further improves efficiency with little penalty on realism
[21]. In this study, we apply the SKNM to study the effect of cellular heterogeneity
on the integrated function of a connected network of islet beta cells. We assumed
the extracellular potential to be negligible (equal to 0) which leads to the following
equations [21] (or 𝐺 𝑗 ,𝑘

𝑒 >> 𝐺𝑖 𝑗 , 𝑘):

𝐶𝑚
𝑑𝑣𝑘

𝑑𝑡
=

1
𝐴𝑘𝑚

∑︁
𝑗∈𝑁𝑘

𝐺
𝑗 ,𝑘

𝑖
(𝑣 𝑗 − 𝑣𝑘) − 𝐼𝑘𝑖𝑜𝑛 (𝑣𝑘 , 𝑠𝑘), (5.5)

𝑑𝑠𝑘

𝑑𝑡
= 𝐹𝑘 (𝑠𝑘 , 𝑣𝑘) (5.6)

𝐶𝑚 describes the specific membrane capacitance (in µF/cm2), 𝐴𝑘𝑚 is the mem-
brane area of cell 𝑘 (in cm2), 𝑁𝑘 is the number of connected cells to cell 𝑘 , 𝐺 𝑗 ,𝑘

𝑖
is

the intracellular conductance between cells 𝑗 and 𝑘 (in mS), 𝑣𝑘 is the membrane po-
tential of cell 𝑘 (in mV) (analogue for 𝑣 𝑗 ) and 𝐼𝑘

𝑖𝑜𝑛
is the ion current density through

ion channels, pumps and exchangers on the membrane of cell 𝑘 (in µA/cm2). Lastly,
𝐹𝑘 is a function describing the dynamics of a number of state variables 𝑠𝑘 that model
the membrane dynamics of cell 𝑘 [21].

For the computational domain we used a human islet with 257 individual beta
cells reconstructed from confocal microscopy data containing information about the
positions, radii and contacts between all beta cells, based on ([22, 23]). To define
which cells are electrotonically coupled via gap junctions, and to set the conduc-
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tance for those connected beta cells, we computed the overlap (or separating distance)
between adjacent cells in the confocal dataset. We assumed the gap junction conduc-
tance to be proportional to that distance, with an average gap junction conductance of
𝐺𝑚𝑒𝑎𝑛 = 2 × 10−7 mS [24]. The individual gap junction conductance 𝐺 𝑗 ,𝑘

𝑖
between

cell 𝑗 and 𝑘 is then calculated based on the distance 𝑙 𝑗 ,𝑘 between cells 𝑗 and 𝑘

normalized to the mean distance 𝑙𝑚𝑒𝑎𝑛 between all cells:

𝐺
𝑗 ,𝑘

𝑖
=

𝑙 𝑗 ,𝑘

𝑙𝑚𝑒𝑎𝑛
· 𝐺𝑚𝑒𝑎𝑛 (5.7)

As a baseline, we performed simulations of a homogeneous network i.e., each beta
cell in the geometry represents an instance of the default Riz et al. model with original
parameters. To study the impact of electro-metabolic heterogeneity we replace each
of those default model instances with instances taken from the final population of
the Riz et al. models. Thus, each cell in the heterogeneous beta cell network has an
instance of the Riz et al. model with some variation (from default) in the underlying
parameters (table 5.1), although the distribution across all cells remains fitted to the
experimental distributions. Finally, the equation system is solved for each time step
in two individual steps. First, the ordinary differential equations (ODE) of the cell
model are solved by using the forward Euler method. The time step for solving the
ODEs is typically ten times higher than for the partial differential equations (PDE) to
ensure achieving a steady-state in the membrane model. Second, the PDEs are solved
and the membrane potentials are updated. Parameters for the temporal discretization
and numerical solver are shown in the supplementary material

5.3 Results

5.3.0.1 Sensitivity Analysis

As anticipated, the parameters related to Ca2+ channel and Na+ conductance and
gating primarily affected the outcome metrics of interest (i.e., EE, TE, Vhalf, peak
INa, peak ICa, and late ICa), while the parameters related to K+ channels did not. The
following parameters were selected based on the 2- and 0.5-fold scaling results for
the optimization process by the GA: gNa, gCaPQ, gCaL, gNaLow, VmNa, VhNa, VmNaLow,
and VhNaLow (Figure 5.2).

5.3.1 Genetic Algorithm Optimization and Population Generation

Two sets of GA optimizations were executed as outlined in Subsection 5.2.4. The
initial set concentrated on optimizing the standard deviations of gCaPQ and gCaL, while
minimizing 𝐸𝑅1, pertaining to four distributions namely, EE and TE, and early and
late Ca2+ current peaks. The second optimization was for the standard deviations
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Fig. 5.2: Sensitivity analysis. The top panel shows the results of 2-fold parameter
scaling and the bottom panel shows the results of 0.5-fold parameter scaling.

of gNa, gNalow, VmNA, VhNa, VmNaLow, VhNaLow and the parameter 𝐹𝑟𝑎𝑐ℎ𝑖𝑔ℎ. In this
case, 𝐸𝑅1 was minimized for the peak Na+ current, while 𝐸𝑅2 was minimized for
the Na+ current half-inactivation (mV).

A detailed compilation of all parameters that were varied in the populations is
presented in Table 5.1, encompassing the 9 parameters that were optimized us-
ing GA, as well as the additional 13 parameters whose standard deviations were
obtained from independent data sources. The ultimate population was generated
through log-normal variation, using the optimized standard deviations of parameters
and 𝐹𝑟𝑎𝑐ℎ𝑖𝑔ℎ (determined by the GA), as outlined in Subsection 5.2.4. Figure 5.3
provides comparison between the experimental and simulated metric distributions
for all outcome metrics.
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Table 5.1: Parameters varied in the model to create the final population, and their
corresponding mean (𝜇) and standard deviation (𝜎); (Parameters optimized by the
GA are in bold font)

Parameter 𝜇 𝜎 Reference

𝑉𝐺𝐾𝑚𝑎𝑥 1.31 1.15 [25]
𝐾𝐺𝐾 1.48 1.44 [26]
𝑉𝑃𝐹𝐾𝑚𝑎𝑥 1.00 0.03 [27]
𝐾𝑃𝐹𝐾 1.00 0.09 [27]
ℎ𝑃𝐹𝐾 1.02 0.14 [27]
𝑉𝐺𝐴𝑃𝐷𝐻𝑚𝑎𝑥 1.02 0.29 [28]
𝑔𝐾𝑣 1.08 0.40 [29]
𝑔𝐵𝐾 1.26 1.14 [29]
gCaL 1.01 0.15 GA
gCaPQ 1.20 0.68 GA
𝑔𝐶𝑎𝑇 1.07 0.44 [29]
𝑔𝐾𝐴𝑇𝑃 1.47 1.53 [30]
𝑔𝐻𝐸𝑅𝐺 1.05 0.34 [31]
VhNa 1.01 0.18 GA
𝑛ℎ𝑁𝑎 1.00 0.12 [29]
gNa 1.54 1.72 GA
VmNa 1.00 0.25 GA
VhNalow 1.02 0.24 GA
𝑛ℎ𝑁𝑎𝑙𝑜𝑤 0.98 0.16 [7]
gNalow 1.33 1.01 GA
VmNalow 0.97 0.35 GA
Frachigh 0.21 - GA

5.3.2 3D Beta Cell Network Simulations

To assess the impact of heterogeneity on the behavior of an intact beta cell network,
we compared a network of homogeneous beta cells with a heterogeneous network
in which cells were sampled from the population optimized to fit the experimental
distributions. For both simulations, the islet structure we used consisting of 257 beta
cells with identical connectivity. Figure 5.4 shows membrane potential frames from
these simulations. In the left column, we see that all beta cells of the homogeneous
network depolarize simultaneously from a resting membrane potential (RMP) of
−68 mV to a peak membrane potential of −11 mV. This is to be expected, given
that all cells in the geometry have identical cellular properties. In contrast, in the
heterogeneous network no coordinated depolarization can be observed. While some
beta cells depolarize to a peak membrane potential of 16 mV, most beta cells remain
at a membrane potentials between −73 mV and −30 mV.

To explore the role of specific subpopulations in the heterogeneous network,
we analyzed the time courses of the membrane potentials of individual beta cells.
Figure 5.5a illustrates the membrane potential of a typical beta cell in the homo-
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Fig. 5.3: Probability density histograms for the outcome metrics of the experimental
and simulated population distributions [Blue: experimental distribution (𝑛 = 180);
Red: optimized simulated distribution (𝑛 = 750); Purple: overlap]

geneous network within two periods of bursting behavior (40 s - 74 s and 185 s -
219 s) and a peak membrane potential of −11 mV. In the heterogeneous network
we identified all beta cells with bursting behavior and evaluated if neighboring cells
exhibited coordinated activity. Figure 5.5b shows a subset of six neighboring cells in
the heterogeneous network in which interdependencies could be observed. The most
significant bursting behavior can be observed for beta cell 141 with peak membrane
potentials of −27 mV. However, the RMP of all beta cells of the heterogeneous
network is significantly higher than in the homogeneous network with membrane
potentials of −50 ± 5 mV. To evaluate if beta cell 141 exhibits hub-like behavior,
we present the behavior of cells that are in its subnetwork. Figure 5.5c shows the
connections of beta cell 141 with neighboring beta cells. It can be observed that
the amplitudes of the beta cells diminish with increasing distance from cell 141 -
see membrane potentials of beta cells 141, 156, 157 and 154 Figure 5.5b. However,
beta cells 158 and 153 show significantly smaller amplitudes than beta cell 157
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(a) Membrane potentials in homogeneous
islet after 50.00 s
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(b) Membrane potentials in heterogeneous
islet after 50.00 s
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(c) Membrane potentials in homogeneous
islet after 50.16 s
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(d) Membrane potentials in heterogeneous
islet after 50.16 s
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(e) Membrane potentials in homogeneous
islet after 50.18 s
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(f) Membrane potentials in heterogeneous
islet after 50.18 s

Fig. 5.4: Membrane potentials at different time steps of a human islet with homoge-
neous (left column) and heterogeneous cellular properties (right column).
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(a) Time course of the membrane potential
of a beta cell from the homogeneous islet
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(b) Time course of the membrane potential
of six neighboring beta cells from the het-
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Fig. 5.5: Time courses of the membrane potential of individual beta cells in the
homogeneous (a) and heterogeneous islet network (b) and schematic subset of the
cell-cell contacts of the islet network (c).

although they are all connected to beta cell 156. To summarize, only one subset of
six neighboring beta cells of the heterogeneous network could be observed that show
coordinated depolarizations. Moreover, the amplitudes of depolarizations decrease
with increasing distance to the beta cell with the highest amplitudes. Together these
analyses demonstrate that the higher activity of cell 141 is not sufficient to overcome
the electrotonic load of its coupled adjacent beta cells.

5.4 Discussion

In this study, we have provided a workflow to create a heterogeneous model pop-
ulation that reflects experimental data to subsequently study the effects of this het-
erogeneity on a coupled pancreatic beta cell network. The sensitivity analysis was
the first step to reduce the parameter space and to speed up the model fitting and
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optimization procedure, while getting an idea about how the model responds to
changes in parameters. In this study, we used a linear scaling technique similar to
Meier et al. [32] to scale individual parameters which is rudimentary in comparison
to Monte Carlo and Bayesian methods [33]. The parameter selection was based on
the 2-fold and 0.5-fold scaling, because these scalars resulted in a robust change
without producing unphysiological behavior. Figure 5.2 also shows that the param-
eters behave in a non-linear fashion. For example, a 0.5-fold decrease in VhNaLow
caused a more than 2-fold increase in peak ICa and late ICa, while increasing the
parameter by 2-fold did not meaningfully change peak ICa and late ICa. Nonetheless,
the identified parameters obtained by our linear sensitivity analysis provided a good
starting point for the GA and substantially increased computational efficiency by
reducing the parameter space to only 9 parameters.

A major initial assumption was that through implementing a log-normal varia-
tion within the parameter space would yield skewed distributions for early and late
exocytosis, early and late Ca2+ current peaks, and the peak Na+ current, along with
a double Gaussian distribution for the Na+ current half-inactivation. Our findings
validate this assumption by demonstrating that the optimized final simulated pop-
ulation closely aligns with the experimental distributions (depicted in Figure 5.3).
This outcome corroborates the insights from several previous studies [34, 35]. With
the coherence observed in the simulated distributions, it is credible to claim that the
simulated population mirrors the inherent heterogeneity observed in experimental
electrophysiological metrics.

Through our SKNM network simulations, we showed that randomly applying
experimentally constrained electrophysiologic heterogeneity tends to stabilize the
overall behavior of a coupled network of human beta cells. Moreover, we could not
observe locally specialized functional roles within the network based on intercellular
heterogeneity. Although there were clear examples of locally important electrotonic
synchronisation, the electrotonic load was too great to permit broader influence and
regenerative local or global activation. The properties of neighbouring cells were
important in determining this local electrotonic load. This can be seen in Figure 5.5b
and Figure 5.5c, where the electrotonic distance (number of cells from source cell
141) was less important than the coupled cell’s properties in determining their re-
sponse.Thus, it is likely that either non-random distribution of cellular properties,
or perhaps reduction or regionalisation of intercellular coupling may be required to
observe typical hub or leader cell roles. These relationships require further assess-
ment, and can now be studied in the future by extracting subpopulations from the
experimental data set and by applying these parameter sets in specific regions of the
islet.

5.5 Conclusion

This study showed a general approach to introduce physiologically realistic hetero-
geneity in a beta-cell network model by combining a population-of-models approach,
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with a cell-based tissue electroconduction model - the SKNM. Since randomly ap-
plying heterogeneity (obtained from the fitted population) to the network model did
not immediately yield prototypical glucose responses or experimentally observed
functional specialization within the network, further investigation is required to de-
termine the potential for regional similarities in cellular phenotype or intercellular
coupling to permit those behaviors.

This work defines an initial framework for generating heterogeneous models of the
human islet that are driven by recent high-volume experimental datasets. Models of
this type are likely to be useful in understanding the role of intercellular heterogeneity
in driving specific aspects of network behavior.
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horst, BE Corkey, P-O Berggren, and O Larsson. Long-chain coa esters activate human pan-
creatic beta-cell k atp channels: potential role in type 2 diabetes. Diabetologia, 47:277–283,
2004.

31. Barbara Rosati, Piero Marchetti, Olivia Crociani, Marzia Lecchi, Roberto Lupi, Annarosa Ar-
cangeli, Massimo Olivotto, and Enzo Wanke. Glucose-and arginine-induced insulin secretion
by human pancreatic 𝛽-cells: the role of HERG K+ channels in firing and release. The FASEB
Journal, 14(15):2601–2610, 2000.

32. Stefan Meier, Adaı̈a Grundland, Dobromir Dobrev, Paul G. A. Volders, and Jordi Heijman. In
silico analysis of the dynamic regulation of cardiac electrophysiology by kv11.1 ion-channel
trafficking. The Journal of Physiology, 601(13):2711–2731, February 2023.



86 Pancreatic Beta Cell Network

33. Brodie A. J. Lawson, Christopher C. Drovandi, Nicole Cusimano, Pamela Burrage, Blanca
Rodriguez, and Kevin Burrage. Unlocking data sets by calibrating populations of models to
data density: A study in atrial electrophysiology. Science Advances, 4(1), January 2018.

34. Trine Krogh-Madsen, Eric A. Sobie, and David J. Christini. Improving cardiomyocyte model
fidelity and utility via dynamic electrophysiology protocols and optimization algorithms. The
Journal of Physiology, 594(9):2525–2536, 2016.

35. Trine Krogh-Madsen, Anna F. Jacobson, Francis A. Ortega, and David J. Christini. Global
Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions
of Drug-Induced Torsades de Pointes. Frontiers in Physiology, 8, 2017.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, 

distribution and reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and indicate if 

changes were made. 

Commons license, unless indicated otherwise in a credit line to the material. If material is not included 

in the chapter’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 

holder. 

The images or other third party material in this chapter are included in the chapter’s Creative 

http://creativecommons.org/licenses/by/4.0/


Chapter 6
The Impact of Mechano-Electric Feedback on
Drug- and Stretch- Induced Arrhythmia Using a
Computational Model of Cardiac
Electromechanics

Anthony Asencio, Melania Buonocunto, Matthew W Ellis, Karl Munthe, Kyle T
Stark, Joakim Sundnes, Henrik Finsberg, and Hermenegild J Arevalo

Abstract Mechano-electric feedback (MEF) is thought to be an important factor
in the increased arrhythmic risk observed clinically in heart failure and chronic
infarct patients. Here, we utilize pathologic stretch as a parameter for investigating
the sensitivity of cardiac electrophysiology and mechanics to MEF. To simulate
the effects of stretch, we incorporated stretch-activated ion channels (SACs) into
a coupled electro-mechanics model based on the well-established O’Hara-Rudy
(ORd) (electrophysiology) Land (mechanics) models. We investigated the effect
different degrees of stretch had upon electrophysiological parameters such as the
action potential duration and calcium transient, as well as functional parameters
like force production. We further determined the sensitivity of cardiac cells under
stretch to various pro- and anti-arrhythmic drugs to better inform on drug risk
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classifications and indications. Our results indicate that pathologic stretch may exert
a severe pro-arrhythmic effect on cardiac cells, which markedly exacerbates the risk
profile of pro-arrhythmic drugs, but one which was mitigated through the action of
anti-arrhythmic compounds.

6.1 Introduction

Patients with heart failure have increased risk of arrhythmia, which may be ex-
acerbated by some medications used in treatment. The Comprehensive in vitro
Pro-Arrhythmia Assay (CiPA) involves computational and experimental modeling
alongside clinical observations to form a risk stratification profile for clinically
prescribed medications for heart failure patients. In the present study we sought
to further inform these risk profiles by incorporating mechano-electric feedback
(MEF) into the in silico modeling of drug effects, using a coupled model based on
the O’Hara-Rudy model (ORd) for human ventricular electrophysiology [1] and the
model by Land et al. for myocyte mechanics [2]. The coupling of the two models
occurs primarily through intracellular calcium, which regulates tension development
by binding to Troponin C, see, for instance, [2] for details. This binding is tension
dependent, and thereby creates an MEF effect where the mechanical state of the
myocyte affects the concentration of free calcium and thereby the electrical activity
of the cell.

MEF is thought to be a significant contributor to spontaneous arrhythmia de-
velopment in heart failure patients [3], but has yet to be deeply investigated in
computational studies coupling cardiac electrophysiology and mechanics. In addi-
tion to the tension-dependent calcium buffering, known mechanisms of MEF include
stretch-activated ion channels (SACs) [4]. These are channels in the cell membrane
that open in response to mechanical stimuli (i.e., cell stretch), and thereby allow
ions to flow in and out of the cell. Three SACs are typically recognized in car-
diac tissue; non-selective cation channels (SACns) primarily conducting sodium and
potassium (and, to a lesser degree, calcium), potassium-selective channels (SACK),
and calcium-selective channels (SACCa). We incorporated established and physi-
ologically representative mathematical formulations for these three SACs into the
coupled electro-mechanics model.

Furthermore, we chose various CiPA compounds across the risk profile, includ-
ing Dofetilide and Bepridil (high risk), Domperidone and Cisapride (intermediate
risk), and Ranolazine and Diltiazem (low risk). These drugs were chosen due to their
role in blocking either rectifying potassium currents, which contributes to elongated
action potentials (AP) and possible early after depolarization events, calcium cur-
rents, a critical linkage mechanism in MEF, or both. We sought to assess the effect
of pathological stretch via SAC activation on electrophysiology and mechanics at
baseline, and in combination with drug activity to investigate any altered sensitivity
to drug action.
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6.2 Models and Methods

In this section we first describe the single cell electro-mechanics model, including
MEF and the modifications to incorporate drugs, as well as the experimental protocol.
The coupled electro-mechanics model was based on the published version of the ORd
and Land et al models [1, 2], and we here focus on the coupling of the models in terms
of calcium binding, force development, and SACs. For a complete specification of
the models we refer to the original publications.

6.2.1 Stretch-Activated Channels

We incorporated three SACs currents in the coupled ORd-Land model: 𝐼𝑆𝐴𝐶𝑛𝑠 ,
𝐼𝑆𝐴𝐶𝐾𝑜 and 𝐼𝑆𝐴𝐶𝐶𝑎𝑃 . The implementation of the first two currents was based on
the formulation by Niederer and Smith (2007) [5], while their calibration and the
stretch dependence of the 𝐼𝑆𝐴𝐶𝑛𝑠 expression were based on Buonocunto et al. (2023)
[6]. Finally, we formulated the last current deriving it from the expression of the
background calcium current of the ORd model. The mechanical input to the SACs is
the extension ratio 𝜆, which is the ratio of the current sarcomere length (SL) to the
slack length. The SACs are formulated so that they are closed and non-conducting
for 𝜆 ≤ 1 (contraction), and open for 𝜆 > 1 (stretch).

The stretch-activated 𝐼𝑆𝐴𝐶𝑛𝑠 current was defined as the sum of a sodium and a
potassium component:

𝐼𝑆𝐴𝐶𝑛𝑠 = 𝐼𝑆𝐴𝐶𝑛𝑠𝑁𝑎 + 𝐼𝑆𝐴𝐶𝑛𝑠𝐾 , (6.1)

with:
𝐼𝑆𝐴𝐶𝑛𝑠𝑁𝑎 = 𝑟 · 𝑔𝑛𝑠 · 𝛾𝑆𝐿,𝑛𝑠 · (𝑉𝑚 − 𝐸𝑁𝑎), (6.2)

𝐼𝑆𝐴𝐶𝑛𝑠𝐾 = 𝑔𝑛𝑠 · 𝛾𝑆𝐿,𝐾 · (𝑉𝑚 − 𝐸𝐾 ). (6.3)

Here, 𝑔𝑛𝑠 is the maximal conductance of the 𝑆𝐴𝐶𝑛𝑠 , 𝐸𝑁𝑎 and 𝐸𝐾 are the reversal
potentials of sodium and potassium, and 𝛾𝑆𝐿,𝑛𝑠 the sigmoidal stretch dependence of
the conductance, defined as

𝛾SL,ns = 0.5
𝛽ns (𝜆 − 1)3

0.153 + (𝜆 − 1)3 .

Furthermore, the stretch-activated 𝐼𝐾𝑜 current was formulated as

𝐼𝑆𝐴𝐶𝐾𝑜 = 𝑔𝐾𝑜 ·
𝛾𝑆𝐿,𝐾𝑜 · (𝑉 − 𝐸𝐾 )

1 + 𝑒 10+𝑉
45

, (6.4)

with 𝑔𝐾𝑜 being the maximal conductance of the 𝑆𝐴𝐶𝐾𝑜, and 𝛾𝑆𝐿,𝐾𝑜 the stretch
dependence of the conductance defined by 𝛾SL,Ko = 𝛽Ko (𝜆 − 1) + 0.7. Finally, we
formulated the the calcium mechanosensitive current as
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𝐼𝑆𝐴𝐶𝐶𝑎𝑃 = 4·𝐺𝐶𝑎𝑃 ·𝑥 ·(−0.341· [𝐶𝑎2+]𝑜+[𝐶𝑎2+]𝑖 ·𝑒
2𝑉𝐹
𝑅𝑇 )· 𝑉𝐹2

𝑅𝑇 (𝑒 · 2𝑉𝐹
𝑅𝑇 − 1.0)

, (6.5)

with 𝐺𝐶𝑎𝑃 being the channel conductance, F, R, and T conventional thermody-
namic constants,[𝐶𝑎2+]𝑖 and [𝐶𝑎2+]𝑜 the intracellular and extracellular calcium
concentrations. In addition, both 𝐼𝑆𝐴𝐶𝑛𝑠 and 𝐼𝑆𝐴𝐶𝐾𝑜 were divided by the membrane
capacitance 𝐶𝑚 which was expressed as a Hill-curve that increases with increasing
stretch:

𝐶m = 1.534 × 10−4
(

(𝜆 − 1)4

0.0354 + (𝜆 − 1)4 + 1
)
, (6.6)

as experimentally observed by [7] and parameterised by [6].

6.2.2 Mechanical Modeling

The mechanical aspect of our model was addressed by the incorporation of the
Land model of cardiac contraction [2]. Here, the total force is expressed as a sum
of different passive and active contributions [8]. The active force results from the
crossbridge cycle, in which ATP-driven myosin translates along filamentous actin.
The resulting force is expressed as the product of the mean cross-bridge distortion
and cross-bridge stiffness, assuming that these behave as elastic springs. Passive
forces include an elastic component coming mainly from titin and collagen, and a
viscous component. Force balance requires that the net force on a myocyte is zero:

𝐹𝑎 + 𝐹𝑝 + 𝐹𝑠𝑒 + 𝐹𝑣 + 𝐹𝑝𝑟𝑒 = 0, (6.7)

where 𝐹𝑎 is the active force, 𝐹𝑝 is the passive elastic force, 𝐹𝑠𝑒 = 𝐾𝑠𝑒 (𝜆 − 𝜆𝑠𝑒𝑡 ) is
a series elastic force, for which the spring stiffness 𝐾𝑠𝑒 and set stretch 𝜆𝑠𝑒𝑡 can be
varied to mimic different experimental settings. Furthermore, 𝐹𝑣 is the viscous force
and 𝐹𝑝𝑟𝑒 is a constant preload applied to the myocyte.

The formulation of the active force is taken from [2], and given by

𝐹𝑎 = ℎ(𝜆)
𝑇𝑟𝑒 𝑓

𝑟𝑠
((1 + 𝜁𝑠)𝑆 + 𝜁𝑤𝑊). (6.8)

Here, 𝑇𝑟𝑒 𝑓 is the tetanic (maximum) force at the resting length, 𝜆 = 1 [8, 2], 𝑟𝑠 is
the steady state duty ratio, while ℎ(𝜆) is a phenomenological function that accounts
for the force-length relationship. Finally, the expression ((1+ 𝜁𝑠)𝑆 + 𝜁𝑤𝑊) describes
how the dynamic force varies with the crossbridge cycling, with 𝜁𝑠 and 𝜁𝑤 being
the distortion of the crossbridges in the strongly (𝑆) and weakly (𝑊) bound states,
respectively.

The sensitivity of active force to stretch is increased by the cooperativity of
tropomyosin along actin. The binding of calcium to a single troponin site increases
the probability of calcium binding to the neighboring sites, thereby increasing the
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myosin binding probability and, as a result, the active force. For a more detailed
description and complete formulation of the equations, we refer to Land, et al. [2].

6.2.3 Modeling the Effect of Drugs

To model the activity of various drugs on ion channel conductance, we used the
following equation:

𝑆𝐹 =
𝑔𝑑𝑟𝑢𝑔

𝑔
=

[
1 +

(
𝐸𝐹𝑇𝑃𝐶

𝐼𝐶50

)ℎ]−1

. (6.9)

Here 𝑔 is a measure of ion channel conductance, EFTPC is the effective free
therapeutic plasma concentration of each drug, IC50 is the inhibitory concentration
of the drug necessary to bring each respective channel activity down to 50%, and ℎ is
the Hill coefficient characterizing cooperativity of the drug and channel interaction.
EFTPC, IC50, and ℎ for each drug and channel used in this study were based on
previously published experimental and clinical results [9, 10, 11]. SF indicates the
scaling factor for each respective channel, which could be used as a parameter in the
coupled model to simulate drug action.

As an example, Table 6.1 summarizes the scaling factors for the various ion
channels for the compound Ranolazine.

Table 6.1: Ion channel scaling factors (SF) for various plasma concentrations of
Ranolazine

Channel SF 1x EFTPC 2x EFTPC 4x EFTPC

I𝐾𝑟 0.810 0.681 0.516
I𝑁𝑎 0.663 0.512 0.360
I𝑁𝑎𝐿 0.800 0.668 0.503
I𝐶𝑎𝐿 0.975 0.954 0.918
I𝐾𝑠 0.994 0.989 0.978
I𝐾1 1.000 1.000 1.000
I𝑡𝑜 1.000 1.000 1.000

6.2.4 Experimental Protocol

After pre-pacing our simulations for 50 beats to reach steady state for all the
electrophysiological signals, we ran isometric test simulations using the govern-
ing equations presented above and 𝐾𝑠𝑒 = 106. The stretch was kept constant (at
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𝜆 = 0.9, 0.95, 1, 1.05, 1.1, 1.2) for the duration of the cycle length (1000 ms) while
the electromechanics signals were evaluated. Furthermore, to observe the effect of
quick stretch release on the electromechanics signals, we performed a stretch/release
test. It consisted of holding stretch constant at a set value (𝜆 = 1.00, 1.05, 1.1) for 600
ms, and then suddenly releasing 2% of the applied stretch and keeping it constant
for the remaining cycle length (400 ms).

6.3 Results

6.3.1 Isometric Behavior

Application of isometric stretch and contraction in presence of SACs did not provoke
any changes when 𝜆 ≤ 1, while it caused prolongation of the AP with 𝜆 > 1
(figure 6.1A). Additionally, 𝜆 = 1.20 caused a complete loss of AP morphology and
prevented repolarization. Similarly, the intracellular 𝐶𝑎2+ peak value increased with
all 𝜆 values, although it provoked larger increase with 𝜆 > 1 (figure 6.1B). However,
𝜆 = 1.2 completely flattened the signal. Similar behaviour was observed for the𝐶𝑎2+

bound to Troponin (data not shown). Furthermore, the active force signal was found
to increase positively with both expansion (stretch > 1) and compression (stretch ≤
1) in figure 6.2A in absence of SACs. The addition of current from SACs (figure
6.2B) prolonged the duration of the active force signal and accentuated the dome
shape for values of stretch > 1. Stretch values less than or equal to one were not
effected by the presence of SACs. However stretch > 1 increased active force relative
to the no-SACs case.

Fig. 6.1: Membrane Potential A) and Intracellular [𝐶𝑎2+] B) over a range of isometric
stretches in presence of SACs.
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Fig. 6.2: Active forces over a range of isometric stretches A) without SACs and B)
with SACs.

6.3.2 Stretch/Release Test

We performed the stretch/release test and evaluated the changes to the electrome-
chanics signals at the moment of release and in presence of SACs. The membrane
voltage underwent a small (< 5%) sudden decrease in amplitude (figure 6.3A), while
the active force showed a more pronounced drop (maximum 25%) and a subsequent
recovery of the signal with decreased amplitude (figure 6.3B) with 𝜆 > 1.

Fig. 6.3: Effects of stretch/release test on A) Membrane potential and B) Active force
in presence of SACs.
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6.3.3 Drug Effects in Isometric Conditions

Using (6.9) with reference values for drug concentration and activity [9, 10, 11],
we assessed the effect of each drug on the AP and force output. The results are
summarized in Table 6.2, and a representative plot is shown in figure 6.4.

Fig. 6.4: Effect of various CiPA drug compounds on the cardiac action potential.

Table 6.2: Effect of CiPA drugs on the action potential duration at 90% repolarization
𝐴𝑃𝐷90 and maximum force

Drug APD90 (ms) Maximum Force
(kPa)

Control 263.7 20.6
Dofetilide 317.9 22.8
Bepridil 339.2 21.5
Domperidone 296.2 22.5
Cisapride 312.8 22.6
Ranolazine 286.1 28.0
Diltiazem 236.9 10.3
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Of the drugs assessed, Bepridil displayed the most pronounced effects on the AP
relative to the control state, causing the largest increase of APD90 at the EFTPC. To
further classify the pro-arrhythmic effect of Bepridil, we ran additional simulations
at twice and four times the EFTPC of the drug, and observed worsening on the
above outcomes, including longer APD90 and lower maximum force values with
higher doses, as well as the appearance of early after depolarizations indicative of
arrhythmia risk.

6.3.4 Combining Drugs with Stretch

In order to evaluate the effect of MEF more comprehensively, we next combined our
modeling of pathologic stretch together with drug implementations. Based on known
drug activity and our results at the EFTPC of each simulated drug, we focused our
efforts on Bepridil (a high-risk CiPA pro-arrhythmic compound which elongated
APD90 versus control) and Diltiazem (a low-risk CiPA anti-arrhythmic compound
which shortened the APD90 and greatly reduced maximum force versus control) to
characterize the extent to which stretch sensitizes cardiomyocytes to drug action. As
shown in Figure 6.5, we found that the introduction of 5% pathologic stretch served
to elongate the APD90 at 1x EFTPC Bepridil by over 200 ms versus the unstretched
condition, a duration twice that of the control condition, while exacerbating the
appearance of early after depolarization events. On the other hand, the presence of
Diltiazem greatly mitigated the deleterious effects of pathologic stretch, with the 1x
EFTPC and 5% pathologic stretch maintaining an action potential of similar duration
and appearance to the control condition.

Fig. 6.5: Effect of 2X plasma concentration of the pro-arrhythmic Bepridil and anti-
arrhythmic Diltiazem on the cardiac action potential when combined with pathologic
stretch.
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6.4 Conclusion

We have developed a coupled model of mechano-electric feedback in human car-
diomyocytes, by incorporating mechano-electric feedback in the form of SACs in the
ORd-Landcoupled electromechanics model. The SACs were formulated so that they
would have no effect on sarcomeric force production or AP morphology when stretch
was less than or equal to one, which is consistent with previous studies. However,
under conditions of pathological stretch, the SACs were shown to amplify the force-
stretch relation and the increased 𝐶𝑎2+ binding with stretch, which is expected since
the SACs give rise to an increase in 𝐶𝑎2+ influx. Following this finding, we incor-
porated non-physiologic stretch into our drug implementation scheme. Focusing on
the most pro-arrhythmic compound assessed, Bepridil, and the most anti-arrhythmic
drug assessed, Diltiazem, we were able to characterize the interaction between drug
activity and pathologic stretch. Notably, we found that even 5% non-physiologic
stretch was able to markedly exacerbate the pro-arrhythmic status of Bepridil, elon-
gating the APD90 significantly, producing AP signatures more similar to many times
the effective free therapeutic plasma concentration of the drug. This was in contrast to
the anti-arrhythmic calcium channel blocker Diltiazem, which served to mitigate the
pathological activity of non-physiological stretching, maintaining an AP signature
highly similar to the unstretched control condition. The ORd-Land model with SACs
was also straight forwardly implemented in a 3D finite element method (FEM) solver
based on FEniCS1 and used to compute the contraction and relaxation of a small
rectangular slab of heart muscle tissue. Preliminary results indicate that the tissue
reacts qualitatively similar to the cell model, but further investigation is needed to
quantify how the 3D FEM model changes when SACs are included and compare the
simulation results to experimental results. As mechano-electric feedback remains
an understudied consideration in arrhythmia risk stratification models, we believe
our findings here provide a more comprehensive model for cardiac disease modeling
and better inform drug risk classifications and indications, thereby improving clinical
care for patients with heart disease.
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Chapter 7
Impact of Modeling Assumptions on
Hemodynamic Stresses in Predicting Cerebral
Aneurysm Rupture Status

Guillermo L Nozaleda, Sofia Poloni, Luca Soliveri, Kristian Valen-Sendstad

Abstract Approximately 3% of the population is estimated to have cerebral
aneurysms, which are the leading cause of subarachnoid haemorrhage. Convinc-
ing evidences suggest that wall shear stresses (WSS) play a role in vessel remodeling
and in the development of vascular diseases. Since WSS cannot be directly measured,
researchers have resorted to using medical images available in routine clinical prac-
tice to simulate computational fluid dynamics (CFD) and investigate patient-specific
vascular conditions. They retrospectively analyse the correlation between WSS and
disease outcomes to find potential clinical tools for future use. However, most of
these models are based on assumptions that introduce variability and error. In this
work we investigated the effects of a non-Newtonian viscosity model and inflow
uncertainty on the prediction of commonly computed hemodynamic metrics. Our
results show a substantial influence of the non-Newtonian model and blood flow rate
on CFD outcomes, highlighting the need of incorporating non-Newtonian rheology
and patient-specific blood flow measurements in CFD simulations.
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7.1 Introduction

Roughly 3% of human population is estimated to be affected by cerebral aneurysms,
which stand as the primary trigger for subarachnoid hemorrhages [1]. Aneurysm
formation involves a complex interplay between biological processes within the blood
vessel wall and hemodynamic factors [2]. The underlying hypothesis suggests that
abnormal WSS triggers an inflammatory reaction, impacting arterial wall remodeling
and significantly contributing to aneurysm initiation and progression [3]. If the
arterial wall fails to withstand these forces, the aneurysm may rupture, resulting in
high risk of mortality [4].

In the management of an aneurysm, evaluating risk of rupture is thus of utmost
importance for clinicians [5]. Hemodynamic factors, especially WSS measurements,
serve as common rupture indicators. However, direct WSS measurement from clini-
cal observations is not feasible [6]. As an alternative, researchers employ real geome-
tries from routine clinical practice to perform computational fluid dynamics (CFD)
simulations and study patient-specific vascular conditions [7, 8, 9, 10, 11, 12]. Nev-
ertheless, the reliability of CFD in the context of aneurysm management remains
a subject of ongoing debate. In this context, a recent review by Steinman [6] ex-
plores each stage of the patient-specific CFD pipeline, emphasizing the influence of
sources of variability and error. These sources include imaging techniques, blood
rheology and artery wall characterization, prescribed boundary conditions, segmen-
tation methods, and variations in solver numerics. While some of this variability can
be mitigated through appropriate modeling, some assumptions are more critical to
overcome, primarily due to the lack of patient-specific data.

Blood behaves as a non-Newtonian fluid and artery walls undergo cyclic deforma-
tions. Nevertheless, Steinman [6] argues that the potential benefits of including these
characteristics in CFD simulations might be outweighed by the computational ef-
fort required. Consequently, many studies prefer simplified assumptions of constant
viscosity and rigid walls, reducing computational cost and modeling complexity.
Despite some efforts to investigate the effects of these simplifications [13, 14, 15],
the debate surrounding proper modeling techniques remains open. When it comes to
boundary conditions, it is important to establish reasonable outflow rates by employ-
ing proper scaling laws [16]. As for inflow rates, the generalized absence of patient-
specific data makes it necessary to rely on estimations. This becomes a primary
limitation, particularly since WSS magnitude and distribution are highly responsive
to variations in these prescribed values [13, 17]. Additionally, careful consideration
should be given to the locations of model truncation and diameter measurements to
ensure accurate results [6]. Regarding solver numerics, Valen-Sendstad [18] demon-
strated how commonly used schemes, meshes, and time steps in aneurysm CFD may
dampen flow instabilities and alter stress distribution compared to higher-order ap-
proaches adopting fine spatial and temporal discretisations. Khan et al. [19], on the
other hand, warned against relying on default schemes from commercial software.
Furthermore, many studies assumed laminar flow and employed dissipative schemes
for stability, which can potentially affect accuracy. Therefore, achieving a reliable
numerical solution entails advanced schemes, avoiding laminar assumptions, ensur-
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ing minimal dissipation, and fine discretisations. Our work considers these aspects
for improved precision and robustness.

In the literature, most studies tend to focus on assessing the impact of a single
factor on WSS. This often involves comparing works carried out with different
CFD settings and methodologies, which may lead to ambiguous and misleading
conclusions due to their reliance on particular numerical aspects. To address this
limitation, our present study takes a more comprehensive approach by conducting
an analysis that considers various modeling assumptions. The primary objective is
to evaluate how these different conditions can influence the CFD outcomes, thereby
providing further insights into the sources of variability and error. Specifically, the
current work compares the impact of the controversial non-Newtonian model with
that of inflow rates, which is universally considered to be one of the most influential
between the modeling assumptions.

7.2 Methods

7.2.1 Study Population and Design

Five aneurysms geometries were selected form the open source AneuriskWeb repos-
itory [20]. These cases all involve internal carotid artery (ICA) aneurysms to ensure
analysis consistency. For each geometry, we conducted four simulations: i) standard
simulation (V0) with an standard inflow and constant viscosity, ii) non-Newtonian
viscosity model, iii) 25% reduction in blood flow, and iv) 25% increase in blood
flow. The conducted simulations, based on the standard deviations reported by Hoi
et al. [21], were solved using the high performance Saga HPC cluster, a compute
node with 20 Intel Xeon-Gold 6138 2.0 GHz cores. The typical computation time
per simulation averaged 12 hours.

7.2.2 Computational Fluid Dynamics

Consider an incompressible fluid of kinematic viscosity 𝜈 and density 𝜌, in the
absence of body forces the problem reduces to the integration of

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇) 𝒖 = 𝜈∇2𝒖 − ∇𝑝, (7.1)

∇ · 𝒖 = 0, (7.2)

where 𝒖 = (𝑢1, 𝑢2, 𝑢3) and 𝑝 are the velocity and reduced pressure of the fluid.
The Navier-Stokes equations (7.1)-(7.2) were numerically solved using Oasis,

an open-source and validated CFD solver [22]. Oasis is based on the Finite Ele-
ment Method implemented on the FEniCS computing platform [23]. It utilizes a
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segregated, space/time centered, incremental pressure correction scheme to achieve
accurate solutions while minimizing numerical dispersion and diffusion [24]. Below,
we provide a description of the spatial and temporal discretisations used in Oasis.
For more detailed information about the solver and its numerical implementation,
readers are referred to the original manuscript by Mortensen et al. [22].

7.2.2.1 Fractional Step Algorithm

In Oasis, a space/time catered fractional step method is used to advance in time. Let
[0, 𝑇] represent a cardiac cycle, which is divided into uniform intervals of length
Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1, with 𝑛 ∈ Z. Specifically, we set 𝑇 = 0.951 s and Δ𝑡 = 0.0951
ms, resulting in 10,000 timesteps per cycle. Simulations spanned 3 cardiac cycles.
Denoting 𝑢𝑛

𝑘
as the 𝑘 velocity component at time 𝑡𝑛, the algorithm looks as follows

Step 1:
{

𝑢𝐼
𝑘
− 𝑢𝑛−1

𝑘

Δ𝑡
+ 𝐵𝑛−1/2

𝑘
= 𝜈∇2�̃�𝑘 − ∇𝑘 𝑝∗ for 𝑘 = {1, 2, 3} , (7.3)

Step 2:
{

∇2𝜑 = − 1
Δ𝑡

∇ · 𝒖𝐼 , (7.4)

Step 3:
{

𝑢𝑛
𝑘
− 𝑢𝐼

𝑘

Δ𝑡
= −∇𝑘𝜑 for 𝑘 = {1, 2, 3} , (7.5)

where 𝜑 = 𝑝𝑛−1/2 − 𝑝∗ denotes a pressure correction and 𝑝∗ is a tentative pressure.
In the first step (7.3), the viscous terms are handled using a Crank-Nicolson scheme,
such that �̃�𝑘 = 0.5

(
𝑢𝐼
𝑘
+ 𝑢𝑛−1

𝑘

)
, and the convective terms are incorporated in 𝐵𝑛−1/2

𝑘
.

For the latter computation, Oasis provides two options,

𝐵
𝑛−1/2
𝑘

=
3
2
𝒖𝑛−1 · ∇𝑢𝑛−1

𝑘 − 1
2
𝒖𝑛−2 · ∇𝑢𝑛−2

𝑘 and 𝐵
𝑛−1/2
𝑘

= �̄� · ∇�̃�𝑘 . (7.6)

The first approach in (7.6) consists of a fully explicit Adams-Bashforth discretization.
In contrast, the second scheme is implicit, with �̄� = 1.5𝒖𝑛−1 − 0.5𝒖𝑛−2 and �̃�𝑘 =

0.5
(
𝑢𝐼
𝑘
+ 𝑢𝑛−1

𝑘

)
, as given above.

Our objective is to calculate the updated values of 𝒖𝑛 and 𝑝𝑛−1/2 for each time
step. To accomplish this, we start by solving (7.3) to determine the tentative velocity
𝒖𝐼 , which is non-solenoidal (i.e., ∇ · 𝒖𝐼 ≠ 0). The velocity 𝒖𝐼 is then used to
determine 𝑝𝑛−1/2 upon resolution of Poisson’s equation (7.4). Finally, we calculate
from (7.5) the updated divergence-free velocity field 𝒖𝑛.

7.2.2.2 Variational Formulation

For the spatial discretization, the finite element method is used to discretise (7.3)–
(7.5) on the bounded domain Ω ⊂ R3, with boundary 𝜕Ω. All simulations em-
ployed second-degree Lagrange polynomials for velocity and first-degree for pres-
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sure. This scheme guarantees second-order accuracy in the L2 norm, leading to an
error reduction rate of at least 𝑂 (ℎ2) as the mesh size ℎ is refined. Meshes with
210, 000 − 240, 000 elements were obtained using VaMPy, which is equivalent to
1.68 − 1.92 million linear elements [25]. We define the trial and test spaces

𝑉 =
{
𝑣 ∈ 𝐻1 (Ω) : 𝑣 = 𝑢0 on 𝜕Ω

}
, �̂� =

{
𝑣 ∈ 𝐻1 (Ω) : 𝑣 = 0 on 𝜕Ω

}
, (7.7)

where 𝐻1 (Ω) is the Sobolev space, which contains functions 𝑣 satisfying that 𝑣2

and |∇𝑣 |2 have finite integrals over Ω. Consider 𝑣 and 𝑞 to be the test functions for
the velocity and pressure, respectively. The variational formulation of (7.3)–(7.5)
can be obtained multiplying each equation by the corresponding test function and
integrating along the domain, thereby yielding∫

Ω

𝑢𝐼
𝑘
− 𝑢𝑛−1

𝑘

Δ𝑡
𝑣 + 𝐵𝑛−1/2

𝑘
𝑣 + 𝜈∇�̃�𝑘 · ∇𝑣 d𝑥 =

∫
𝜕Ω

𝜈∇𝑛�̃�𝑘𝑣d𝑠 −
∫
Ω

∇𝑘 𝑝∗𝑣d𝑥, (7.8)∫
Ω

∇𝜑 · ∇𝑞 d𝑥 −
∫
𝜕Ω

∇𝑛𝜑𝑞 d𝑠 =
∫
Ω

∇ · 𝒖𝐼
Δ𝑡

𝑞 d𝑥, (7.9)∫
Ω

𝑢𝑛
𝑘
− 𝑢𝐼

𝑘

Δ𝑡
𝑣 d𝑥 = −

∫
Ω

∇𝑘𝜑𝑣 d𝑥, (7.10)

after use is made of integration by parts. Above, ∇𝑛 represents the gradient in the
outward normal direction to the boundary 𝜕Ω.

7.2.2.3 Boundary Conditions and Viscosity Models

In the absence of patient-specific measurements, an average blood flow of 4.05 cm3/s
was applied at the inlet, referencing [21]. The inlet boundary conditions were estab-
lished using the generalized blood flow curve from Oasis. Outlet pressure conditions
were adjusted to achieve a blood flow split based on outlet cross-sectional areas.

Blood’s viscosity changes in response to shear stress, a phenomenon known
as non-Newtonian behavior. Despite this knowledge, many studies on intracranial
aneurysms simplify blood as Newtonian fluid [10, 11, 12], assuming constant viscos-
ity. This work aims to contrast the Newtonian approximation with a more accurate
representation of the fluid rheology. In particular, the modified Cross model [26, 27]

𝜇 ( ¤𝛾) − 𝜇∞
𝜇0 − 𝜇∞

=
1

[1 + (𝜆 ¤𝛾)𝑚]𝑎
(7.11)

is adopted here to characterize blood’s non-Newtonian behavior. In the above expres-
sion ¤𝛾 is the shear rate, 𝜇∞ = 3.372 mPa · s and 𝜇0 = 3.372 mPa · s are the infinite-
shear and zero-shear viscosities, respectively, whereas 𝜆 = 3.736 s, 𝑚 = 2.406, and
𝑎 = 0.34 represent fitting parameters. The kinematic viscosity, used in the above
formulation, can be obtained from (7.11) as 𝜈 = 𝜇/𝜌.
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7.2.3 Post-Processing

The post-processing of the results was performed exploiting VaMPy [25] func-
tionalities and Paraview software. The post-processing was performed on the third
cycle, to avoid artifacts due to initialization, and focusing on the aneurysm sac only.
Commonly used rupture risk metrics, specifically time-averaged wall shear stresses
(TAWSS) and oscillatory shear index (OSI), were calculated as follows

TAWSS =
1
𝑇

∫ 𝑇

0
𝜏𝑊d𝑡 and OSI =

1
2
− ©«1 −

|
∫ 𝑇
0 𝜏𝑊d𝑡 |∫ 𝑇

0 |𝜏𝑊 |d𝑡
ª®¬ . (7.12)

Furthermore, VaMPy was adjusted to handle non-Newtonian effects during post-
processing, including the storage of viscosity values from simulations for stress
calculations.

7.3 Results

Figure 7.1 illustrates the qualitative velocity magnitude isosurfaces at the systolic
peak for the four cases under analysis: the standard simulation (V0), the non-
Newtonian model, and inflow rates altered by ±25%. In the standard simulation,
distinct low-velocity recirculation zones and a complex flow phenotype are evident
within the aneurysm sac. When incorporating non-Newtonian effects, the velocity
gradient in the same region decreases due to higher viscosity values associated with
low shear rates. In scenarios where the inflow rate is decreased or increased by 25%,
there is a corresponding reduction or augmentation of velocity within the aneurysmal
area.

Examining the distribution of TAWSS in Figure 7.2A, it is evident that TAWSS
registers higher values at the neck of the aneurysm and exhibits lower values within
the sac, where velocity recirculation is prominent. This pattern remains consistent
for all models considered here. Furthermore, Figure 7.2B quantifies the effect of
modeling assumption on the TAWSS within the aneurysm sac with respect to the V0
simulation. In the case of the non-Newtonian assumption, stresses decrease due to
heightened viscosity. This effect mirrors the consequences of reduced inflow, where
it is intuitive that lower flow results in decreased TAWSS. Likewise, an increase in
inflow leads to a rise in TAWSS within the aneurysm sac, as expected. To conclude
this part of the analysis, Table 7.1 outlines the influence of different modeling
assumptions on TAWSS, expressed as a percentage alteration with respect to the V0
simulation. The numbers here reported solidify the observation that all cases exert
a substantial impact on TAWSS. Notably, TAWSS displays heightened sensitivity to
variations in flow beyond what would be expected from a linear relationship. The
influence of the non-Newtonian assumption on stress levels is particularly significant,
resulting comparable to a 25% decrease in inflow.
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Fig. 7.1: Velocity magnitude isosurface. Q: blood flow. THR: velocity threshold.
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Table 7.1: Impact of modeling assumptions: percentage variation of TAWSS with
respect to V0 simulation. Q: blood flow. TAWSS: time average wall shear stress.

TAWSS
Non-Newtonian Q - 25% Q +25%

C0001 -37,62 -38,13 44,01
C0002 -41,76 -38,69 43,17
C0005 -32,50 -33,10 32,98
C0006 -37,29 -37,40 40,01
C0067 -39,58 -35,20 39,15

Attention is given in Figure 7.3A to the OSI distribution for all geometries and
models, highlighting regions within the aneurysmal sac with elevated OSI values,
indicative of disturbed flow. From the quantitative results (Figure 7.3B and Table
7.2), it follows that OSI variations are more complex and do not correlate with the
variations of inflow. Instead, the pronounced variability suggests that OSI is more
sensitive to model geometries. Concerning the impact of non-Newtonian effects, the
results underscore a substantial influence on OSI magnitude.
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Fig. 7.3: a) Maps of OSI distribution. b) Effect of modeling assumptions on OSI
with respect to the V0 simulation. Q: blood flow. OSI: oscillatory shear index.
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Table 7.2: Impact of modeling assumptions: percentage variation of OSI with respect
to V0 simulation. Q: blood flow. OSI: oscillatory shear index.

OSI
Non-Newtonian Q - 25% Q +25%

C0001 -41,29 -8,53 4,64
C0002 -25,40 -6,15 0,11
C0005 -64,08 -32,46 23,23
C0006 -23,09 1,23 -0,08
C0067 -56,03 -20,85 22,42

7.4 Conclusion

7.4.1 Impact

Medical images available from clinical practice are extensively utilized for simu-
lating CFD and exploring patient-specific vascular conditions, with the final aim
of predicting rupture in cerebral aneurysms. However, most computational models
are patient-specific in terms of their lumen geometry only and rely on numerous
assumptions, which introduce a wide range of uncertainty and error.

In the current study we have performed CFD simulations under different mod-
eling assumptions on 5 ICA aneurysms geometries. Specifically, our work aims at
comparing the impact of the controversial non-Newtonian model (widespread model
limitation) with that of inflow rates (major cause of uncertainty).

Our results demonstrate that TAWSS reacts more sensitively to flow changes
compared to the linear relationship, with WSS varying by 33-44% for a 25% blood
flow change. Conversely, changes in OSI with respect to inlet flow variations are more
complex, exhibiting high variability. The non-Newtonian viscosity model notably
affects CFD outcomes. TAWSS reduction due to the Modified Cross model matches a
25% blood flow reduction (-33/-42%). A high sensibility to the rheological properties
of the fluid is also found in OSI values (-23/-56%). These findings underscore the
need for patient-specific flow data and non-Newtonian rheology in CFD analysis to
enhance reliability and reduce variability.

7.4.2 Relation to Others

Regarding the influence of inlet blood flow assumptions on WSS metrics, Evju [13]
also noted a TAWSS decrease of -47% for a 25% reduction in blood flow. Similarly,
OSI results align with existing literature, exhibiting complex behavior that does not
correlate with inflow variations [28].

Addressing the variability linked to inlet flow rates could be alleviated by incorpo-
rating patient-specific flows measured via Doppler Ultrasound during clinical prac-
tice. The complexity deepens concerning the impact of the non-Newtonian model.
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Steinman’s review [6] delves into the non-Newtonian controversy, revealing that
many CFD analyses overlook non-Newtonian viscosity due to computational costs
outweighing perceived benefits. However, our work unveils a substantial influence of
non-Newtonian viscosity on near-wall hemodynamic parameters. Our findings echo
Mahrous’ recent review on non-Newtonian CFD models of intracranial aneurysms,
demonstrating that the commonly used Newtonian assumption leads to an overesti-
mation of aneurysm WSS by 17-50% [29]. This effect extends to OSI, as highlighted
by Oliveira [30], who observed an underestimation of surface-averaged OSI by over
30%. Thus, we sustain that incorporating a non-Newtonian viscosity model is pivotal
and should be a consideration in future CFD studies on cerebral aneurysms.

7.4.3 Limitations

There are certain aspects of the patient-specific pipeline [6] that have not been
explored in our discussion, representing limitations of our work and potential avenues
for future research. For example, we have not taken into account the variability of
rheological properties among individuals. As per [31], viscosity can vary by up to
±20% across different subjects. With regard to boundary conditions, our study did
not explore the effects of different outflow conditions. We applied an inlet blood flow
and waveform from literature to all models, regardless of parent artery diameters.
The latter might lead to elevated WSS values in vessels with smaller calibers.

Further limitations include the lack of an assessment of imaging and lumen
segmentation, known sources of error [32, 33]. Moreover, our post-processing ex-
clusively targets the aneurysm sac region, with the selection of the cut zone at the
aneurysm neck being arbitrary and operator-dependent, thereby introducing vari-
ability. Numerical considerations pose another limitation, as we did not extensively
examine convergence in both space and time. However, the adopted spatial and
temporal discretization guarantees the accuracy of the results. Lastly, our quantita-
tive analysis focuses on the calculation of TAWSS and OSI, while numerous other
hemodynamic indicators in the literature could be explored.

References

1. Monique HM Vlak. Prevalence of unruptured intracranial aneurysms, with emphasis on sex,
age, comorbidity, country, and time period: a systematic review and meta-analysis. The Lancet
Neurology, 10:626 – 636, 2011.

2. Juan C Lasheras. The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech., 39:293–
319, 2007.
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in 12 aneurysms with respect to different viscosity models and flow conditions. Journal of
biomechanics, 46(16):2802–2808, 2013.

14. Ryo Torii, Marie Oshima, Toshio Kobayashi, Kiyoshi Takagi, and Tayfun E Tezduyar. Fluid–
structure interaction modeling of blood flow and cerebral aneurysm: significance of artery
and aneurysm shapes. Computer Methods in Applied Mechanics and Engineering, 198(45-
46):3613–3621, 2009.

15. Yuri Bazilevs, M-C Hsu, Y Zhang, W Wang, X Liang, T Kvamsdal, R Brekken, and JG Isaksen.
A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Computational
mechanics, 46:3–16, 2010.

16. C Chnafa, O Brina, VM Pereira, and DA Steinman. Better than nothing: a rational approach for
minimizing the impact of outflow strategy on cerebrovascular simulations. American journal
of neuroradiology, 39(2):337–343, 2018.

17. Alberto Marzo, Pankaj Singh, Ignacio Larrabide, Alessandro Radaelli, Stuart Coley, Matt
Gwilliam, Iain D Wilkinson, Patricia Lawford, Philippe Reymond, Umang Patel, et al. Com-
putational hemodynamics in cerebral aneurysms: the effects of modeled versus measured
boundary conditions. Annals of biomedical engineering, 39:884–896, 2011.

18. Steinman DA Valen-Sendstad K. Mind the gap: impact of computational fluid dynamics
solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status
indicators. American journal of neuroradiology, 35(3):536–43, 2014.

19. Steinman DA Khan MO, Valen-Sendstad K. Narrowing the expertise gap for predicting
intracranial aneurysm hemodynamics: Impact of solver numerics versus mesh and time-step
resolution. American journal of neuroradiology, 37(7):1310–1316, 2015.

20. Aneurisk-Team. AneuriskWeb project website, http://ecm2.mathcs.emory.edu/aneuriskweb.
Web Site, 2012.

21. Yiemeng Hoi, Bruce A Wasserman, Yuanyuan J Xie, Samer S Najjar, Luigi Ferruci, Edward G
Lakatta, Gary Gerstenblith, and David A Steinman. Characterization of volumetric flow rate
waveforms at the carotid bifurcations of older adults. Physiological measurement, 31(3):291,
2010.

http://ecm2.mathcs.emory.edu/aneuriskweb


110 Hemodynamic Stresses in Cerebral Aneurysm

22. Mikael Mortensen and Kristian Valen-Sendstad. Oasis: a high-level/high-performance open
source navier–stokes solver. Computer physics communications, 188:177–188, 2015.

23. Fenics project. https://fenicsproject.org/, 2019-04-01. 0.4.
24. George Em Karniadakis, George Karniadakis, and Spencer Sherwin. Spectral/hp element

methods for computational fluid dynamics. Oxford University Press, 2005.
25. Henrik A. Kjeldsberg, Aslak W. Bergersen, and Kristian Valen-Sendstad. Vampy: An au-

tomated and objective pipeline for modeling vascular geometries. Journal of Open Source
Software, 8(85):5278, 2023.

26. MO Khan, K Valen-Sendstad, and DA Steinman. Direct numerical simulation of laminar-
turbulent transition in a non-axisymmetric stenosis model for newtonian vs. shear-thinning
non-newtonian rheologies. Flow, Turbulence and Combustion, 102:43–72, 2019.

27. AL Haley, K Valen-Sendstad, and DA Steinman. On delayed transition to turbulence in
an eccentric stenosis model for clean vs. noisy high-fidelity cfd. Journal of Biomechanics,
125:110588, 2021.

28. Hamidreza Rajabzadeh-Oghaz, Pim van Ooij, Sricharan S Veeturi, Vincent M Tutino, Jaco JM
Zwanenburg, and Hui Meng. Inter-patient variations in flow boundary conditions at middle
cerebral artery from 7t pc-mri and influence on computational fluid dynamics of intracranial
aneurysms. Computers in biology and medicine, 120:103759, 2020.

29. Samar A Mahrous, Nor Azwadi Che Sidik, and Khalid M Saqr. Newtonian and non-newtonian
cfd models of intracranial aneurysm: a review. CFD Letters, 12(1):62–86, 2020.
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