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A B S T R A C T

This paper proposes an iterative matheuristic for solving the biomedical sample transportation problem (BSTP),
which is a routing problem with multiple and interdependent visits in the context of healthcare services.
In this problem, the biomedical samples are collected from individuals at a set of healthcare or specimen
collection centers and must be transported to designated laboratories to be analyzed. The perishable nature
of the specimens forces to visit the collection centers more than once a day to ensure that the time from the
moment they are drawn to the arrival at the laboratory do not exceed the samples lifespan. Also, a visit to one
center imposes (1) a limit on the duration of the route that transports its samples to the laboratory, and (2) a
limit on the latest time at which the same center must be visited again, creating an interdependency between
visits, routes and the decision concerning the centers’ opening times. This paper first proposes a mathematical
formulation to model the BSTP. Since this formulation is not able to solve medium or large sized instances
efficiently, it also proposes an iterative matheuristic, which includes two main steps. The first step produces an
approximated solution to the BSTP by a decomposition approach that splits the problem into a series of smaller
subproblems that are solved by the proposed mathematical formulation. In the second step, two fix-&-optimize
strategies are used with the mathematical formulation to perform a local search around the solutions produced
by the decomposition method. The matheuristic has demonstrated its efficiency solving a rich set of real-life
instances corresponding to the needs of several regions in the province of Quebec, Canada, in a fraction of
the time required to solve the exact mathematical formulation.
1. Introduction

Healthcare providers must usually deploy large facility networks
to ensure proximity to patients. However, the increasing number of
facilities leads to several challenges from a managerial perspective,
especially when involving high-tech and expensive equipment, be-
cause demand consolidation and return to scale opportunities are re-
duced. Therefore, healthcare managers must carefully design services
to balance the requirements of proximity and the system costs.

The management of biomedical samples face these challenges. They
intend to multiply the collection points over the territory to facilitate
service access for individuals. Moreover, they intend to minimize the
cost of laboratory equipment and maximize its usage. Both goals are
achievable by planning adequate networks that collect and transport
samples from the various service points to a reduced number of labo-
ratories in which they are analyzed. However, having a decentralized
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E-mail address: anaya-arenas.ana_maria@uqam.ca (A.M. Anaya-Arenas).

collection and centralized analysis requires complex logistics that must
maintain costs as low as possible and respect a set of practical restric-
tions, the short lifetime of biomedical samples being one, if not the
most difficult restriction, among them.

The Biomedical Sample Transportation Problem (BSTP) arising in
the Province of Quebec, Canada inspired this contribution, although
similar problems have been studied in other healthcare systems like in
Italy, France, Colombia, Austria, the United States or Morocco (e.g.,
Ait Haddadene et al., 2016; Bonadies et al., 2020; Doerner et al., 2008;
Haitam et al., 2021; Pirabán-Ramírez et al., 2022; Zabinsky et al.,
2020). The BSTP was first introduced in Anaya-Arenas et al. (2016) and
it studies the planning of sample transportation for Quebec’s healthcare
network, where the Ministry of Healthcare and Social Services (i.e. the
Ministry) intended to rationalize the analysis of biomedical samples.
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Important investment from the Ministry was granted to fit up a small
number of laboratories (ideally a lab per administrative region) with
state-of-the-art equipment. These ‘‘central’’ laboratories should receive
and analyze all samples from the different healthcare facilities in the
region (i.e., local clinics, elderly centers, etc.), named henceforward
specimen collection centers (SCCs), where samples are drawn from
patients.

In this context, the BSTP can be seen as a tactical transportation
problem, where a daily transportation plan needs to be proposed for
each each region and each working day. These plans are used as
detailed estimates of global transportation efforts. A plan includes the
set of daily routes serving each region, and for each route, the set
of SCCs they visit and the estimated schedule (i.e., arrival/departure
time at each SCC) in order to warrant that none of the samples perish.
Moreover, it considers that each SCC offers a certain flexibility in
setting its opening time, while still having a fixed total collection
time known a priori. The collection time in a SCC can be as short
as a few hours, or as long as a full 24-h day. During the collection
period, samples are drawn from patients on a continuous basis, then
accumulated at the SCC until a transport collects them and takes them
to the lab. Notice that (1) since the Lab’s capacity is sufficient, the
BSTP is not concerned with the operations inside the Lab, and (2)
according to the Ministry, sample transportation is not part of their core
business, it should therefore be outsourced to private carriers. Solutions
to the BSTP should help the Ministry assessing the feasibility and the
cost/effectiveness of their centralization strategy. For this reason, the
Ministry is interested in the total traveled distance or route duration,
the key aspect in the negotiation of contracts with carriers, rather than
fleet size or number of routes. This tactical transportation plan is then
executed daily and reoptimized at the operational level only in case
new information becomes available.

Because several SCCs are intended to be visited sequentially in a
route, the short lifespan of samples (usually 3 to 4 h) implies that (1)
a single SCC requires more than one visit on a day, and (2) there is a
link and a limit between the time that samples can be accumulated at
the SCC, waiting to be transported, and the time required by a vehicle
to transport them to a Lab.

Previous research related to sample transportation, or more gen-
erally, to the logistics of fast perishing products, handles the limited
lifespan of samples by either defining time windows to control the
lifespan of the perishable items at their origin (e.g., setting frequency
of visits, time of visits, etc.), or assuming that the deterioration process
starts only during transportation, and then restricting route length.
This, however, forces mangers to set proper transportation and accu-
mulation time limits. In this paper, we propose a different and more
realistic approach. We assume that a sample starts to deteriorate as
soon as it is drawn from the patient. We explicitly define lifespan
constraints on samples from the time of their draw to their arrival at
the Lab. This approach will result in a global and more flexible, but also
more difficult, optimization problem. Finally, the flexibility granted
to opening hours improves coordination between SCCs, resulting in a
more efficient overall transportation plan.

This paper makes two contributions. First, it contributes to the inter-
twined routing and scheduling decisions of the BSTP, incorporating a
novel and more realistic accountability to samples’ lifespan. Second, it
proposes a new and efficient iterative two-step matheuristic for solving
real instances of the problem, seeking to tackle the interdependency in
a smart way. The first step produces, at each iteration, a solution to
the BSTP by applying a decomposition heuristic inspired by the rolling
horizon strategy to divide the pickup decisions in smaller groups. In the
second step, a mathematical formulation for the BSTP in combination
with two effective fix-&-optimize (F&O) strategies are used to perform

local search around each solution provided by the first step. This
ethod provides a practical decision support tool for determining

outes in a tactical setting when facing strong time interdependencies.
2

The remainder of this paper is organized as follows. Section 2
ummarizes relevant studies and discusses the main contributions of
his research. Section 3 identifies the problem description and modeling
pproach for the biomedical context studied here. Then, Section 4
dapts the mathematical formulation of BTSP to address such aspects.
ection 5 describes the matheuristic, and Section 6 reports the numeri-
al results. Finally, Section 7 summarizes the main contributions of this
tudy and suggests future research directions.

. Literature review

The transportation of blood, and other specimens, is a logistics
roblem related to the delivery of health services at the local, regional,
nd national levels (Brailsford & Vissers, 2011). Strong time restrictions
nd/or precedence constraints characterize these problems, which are
t least partially also present in other healthcare logistics problems. As
ntroduced in Section 1, the lifespan of samples imposes that some SCCs
ay need to be visited more than once a day. Furthermore, it creates

trong links between transportation decisions. The time at which a
CC is visited by a route determines two things: (1) the route length,
.e., the time left to visit other SCCs while respecting the maximum
ime to arrive at the Lab, and (2) the latest time at which the same
CC must be (eventually) visited again by a further route. Having these
spects simultaneously involved in the planning of daily operations
s what separates the BSTP from other transportation problems. The
ext paragraphs review contributions in healthcare logistics that ad-
ress synchronization and/or time interdependencies on visits (the first
hallenge of the BSTP). The second part of this section reviews the
ontributions to specimen and blood transportation with short lifespan.
inally, we review a few papers that are closer to our contribution by
ncluding the precedence and perishability constraint simultaneously.

Interdependency in the visit schedule is appropriate for many ser-
ice applications in which some type of synchronization (or temporal
recedence) constraint must be imposed. In logistics, several problems
nalyze the schedule of visits when a given interdependency is imposed,
y a frequency of visits required, by service consistency or by inventory
anagement, in a planning horizon of several days or weeks (Vidal

t al., 2020). For instance, the tramp ship routing and scheduling
roblem sets a link between the departure of one or several vessels,
orcing a minimum and a maximum number of days between depar-
ures (e.g., Vilhelmsen et al., 2017). Other works, like the inventory
outing problem (IRP, see Coelho et al., 2014; Coelho & Laporte, 2013;
or & Speranza, 2022, for a review), plan visits to a set of customers

mposing a link between different periods of the planning horizon
e.g., the client has to be visited every two or three days). Contrary
o the BSTP, problems like the IRP require a synchronization for each
ustomer between periods in the planning horizon (and not inside a
ingle period). Hence, routes can be planned independently for each
ay and there is no interdependency inside routing decisions of a day
chedule.

Synchronization of visits within a single-day planning horizon has
een studied before, motivated by several real-world applications in
ransportation. Consequently, there has been a significant growth in
he literature on routing problems that incorporate synchronization. A
ecent review by Soares et al. (2023) presents a framework, defining
wo types of synchronization (operations or movement). A problem
ith operations synchronization arises when a series of tasks present in-

erdependencies, linking several routes together in a temporal manner.
ovement synchronization requires inter-route dependencies between

wo vehicles (Soares et al., 2023). Over 40% of the papers reviewed
y Soares et al. (2023) define a schedule synchronization, as it is the
ase of the BSTP, in contexts such as forestry, the technician routing
roblem, and home healthcare, among others (e.g., Ali et al., 2021;
redström & Rönnqvist, 2008; Euchi et al., 2021; Rousseau et al.,
013). Previous studies explicitly define a set of time windows for
ach requested visit and set synchronization constraints between the
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visits. This problem has commonly been studied under the name vehicle
outing problem with time windows and synchronization (VRPTW-Syn)
see Bredström & Rönnqvist, 2008; Dohn et al., 2011; Drexl, 2012,
or more details). Here, synchronization restrictions are used to either
imit or exceed the time between two visits to the same node (e.g., a
atient must be visited by the cleaning service, and this, one hour
efore the medical service). The BSTP shares with the VRPTW-Syn
he interdependency between visits. However, our contribution does
ot set any time windows, making the problem more flexible but also
ore difficult. Furthermore, the VRPTW-Syn does not include any route

ength restriction, which is a key element in the BSTP. Nonetheless, due
o its relevance and similarity with our problem, we provide a short
eview of papers in healthcare that covers this topic.

An important healthcare application for the operations synchro-
ization problems can be found in the routing of resources for home
ealthcare (HHC). For example, Ait Haddadene et al. (2016) proposed
GRASPxILS metaheuristic that includes budgetary restrictions. Ker-

osien et al. (2014) analyzed the routing of nurses considering drop-off
f samples with a specific time limit. Liu et al. (2013) proposed the
ickup and delivery of goods, but the lifespan was longer than a day
single visit per customer without a time limit). Decerle et al. (2018)
roposed a memetic algorithm for solving an HHC problem in France,
nd Frifita and Masmoudi (2020) proposed metaheuristics to solve
he problem, including several specialties in the scheduling. Melachri-
oudis et al. (2007), in particular, set a dial-a-ride problem for a
ealthcare organization in Boston (USA), and proposed a tabu search
lgorithm to solve real-life instances of up to five (independent) trans-
ortation requests. Owing to the complexity of the problem, past
ontributions of the VRPTW-Syn have primarily proposed heuristic
lgorithms whose performance have often been tested over the test set
f Bredström and Rönnqvist (2008). This test set contains up to 80
isits instances with fixed and independent time windows, and 10%
f synchronization (i.e., if there are 20 visits to schedule, exactly two
f those visits need to be synchronized in time). Even if the BSTP
hares the synchronization challenge of said problems, our case is more
ifficult. Indeed, in the case of BSTP, a visit to one SCC impacts its
ext visit, as well as the whole collection route, i.e., it will impose the
atest arrival time to the lab. Moreover, our problem does not consider
ny time windows for the visits, which increases the complexity and
nterdependency in the decision-making. Finally, the real instances of
he Ministry have a similar size in number of visits than the test set
hat has been usually solved in the past, but the Ministry case requires

percentage of synchronization of at least 25%, and up to 100% in
any cases, making it much harder to solve (see details in Section 6.1).

We now review papers that cover a series of logistics problems in the
lood supply chain (BSC). The main challenge in this field is the strict
emporal restrictions imposed by the perishability of products (see Baş
t al., 2016; Osorio et al., 2015; Pirabán et al., 2019 for comprehensive
eviews). Since the first studies in the 1960’s, over 200 papers have
een published in the field (Pirabán et al., 2019). Recent studies have
nalyzed the design of the entire BSC network, considering the multi-
chelon aspect of the problem, as it includes the collection, production,
nventory, and distribution of blood products with a lifespan of a few
ays (e.g., Araújo et al., 2020; Baş et al., 2018; Ghandforoush & Sen,
010; Yousefi Nejad Attari et al., 2019). However, such contributions
arely include transportation planning, or (if planned) it uses shuttles
hat execute several trips to a single collection point without routing.

recent contribution by Wolfinger et al. (2023) proposed a Location
outing Problem (LRP) to design a contagious disease testing network.

nspired by the challenges of COVID-19 pandemics, authors decide on
he location of temporal test-centers and the routing of mobile test-
eams, while allocating suspected cases to either test-centers or mobile
eams. Here, no routing is done between the temporal test-centers and
he labs. Moreover, the authors use different time slots for generation
3

f cases (samples) and analysis of the laboratory. This allows a break
of the interdependency, by coordinating the routing decisions with the
time slots for the labs using time windows.

Considering the collection stage of the BSC, some studies aim to
plan collection routes to maximize the number of processed samples
and minimize transportation costs (e.g., Gunpinar & Centeno, 2016;
Pirabán-Ramírez et al., 2022; Yücel et al., 2013), whereas others co-
ordinate the appointment schedule with the transportation planning to
maximize production (Mobasher et al., 2015). Şahinyazan et al. (2015)
determine the schedules of mobile clinics over a week and Zahiri et al.
(2018) maximize freshness of the collected samples. The main aspect
that separates these contributions from the BSTP is that all these studies
assume the lifespan of products is one day or longer, removing the need
for more than one visit per day and, therefore, the dependency between
daily routes.

The following contributions study the routing of samples removing
the interdependency between visits. Anaya-Arenas et al. (2016) intro-
duced the BSTP inspired by the needs of the Ministry of Health and
Social Services of Quebec to transport samples from the SCCs to the
labs. The short lifespan of the samples was addressed using independent
hard time windows and a limited route duration. Naji-Azimi et al.
(2016) planned the de-synchronization of trucks arrivals to the lab in
the same context, and Zabinsky et al. (2020) presented a multi-trip
VRP to minimize completion time for each ‘‘product’’ applied to a case
study from Washington Medical Center. Similarly, recent contributions
like Benini et al. (2019, 2022) and Detti et al. (2021) proposed a
VRP with multiple independent time windows for a super laboratory
in Italy. Authors proposed to consider batches of samples that need
to be transported (named transportation requests) and they fixed a
time window for collection and a maximum time to arrive to the Lab.
Moreover, the possibility of delivery to an intermediate facility allows
the samples to extend their lifespan of 90 min. Different scenarios with
up to 100 batches (transportation request) are solved using a Hybrid
Adaptive Large Neighborhood Search (H-ALNS). In these six studies,
temporal constraints were present in the routes, due to short lifespan
of samples, but the interdependency in the visits is removed using time
windows for each visit. Therefore, no precedence or synchronization is
necessary between visits and there is no link between the visits and the
routes limits.

There are only a few contributions that tackle both aspects of our
problem simultaneously. Doerner et al. (2008) were one of the first
to explicitly present the interdependency created by the deterioration
of the samples, including the time restrictions and the precedence
constraints between the multiple and interdependent pickup time win-
dows and verifying that no sample perishes during transportation. In
their study, a savings and greedy construction heuristic was proposed
to solve instances involving up to 15 customers with multiple pick-
ups. Elalouf et al. (2018) studied a similar problem and solved cases
of up to 11 customers. Finally, Anaya-Arenas et al. (2021) proposed an
iterative local search algorithm (ILS) to solve the BSTP with interdepen-
dency, solving instances of up to 17 SCCs and 50 visits. In their study,
the lifespan of the samples was divided by the maximum waiting time
at each SCC (𝛥𝑚𝑎𝑥) and maximum routing time (𝑇𝑚𝑎𝑥). Moreover, the
ILS algorithm of Anaya-Arenas et al. (2021) uses the 𝛥𝑚𝑎𝑥 parameter
to calculate fictive time windows to solve the problem efficiently.
However, Anaya-Arenas et al. (2021)’s ILS algorithm is inapplicable to
the generalization of the problem presented here. The difference in the
lifespan calculation makes it impossible to use fictive time windows
as they will overlap. Moreover, in our study, the route length is not
a predetermined restriction (i.e., a known parameter) to each route,
but it will depend on the other visits and routes. Hence, the lifespan
calculation in Anaya-Arenas et al. (2021) and ours are different, are
formulated differently, and require different solution methods. More-
over, to the best of our understanding, in all the reviewed papers, when
interdependency is considered, the current state-of-the-art heuristics
focus on solving instances of less than 20 customers with more than

a single visit. The size of our real-life instances (up to 74 visits) and
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their synchronization requirements (over 50% of synchronization) are
harder than what has been solved in the literature. For these reasons,
we also propose an iterative matheuristic that address the challenges
of timing and routing interdependency in a new way.

3. Problem description

This section describes the characteristics of the BTSP and formal-
izes the problem, emphasizing how the short lifespans of samples
require the planning of several visits to the same SCC and the resulting
intertwined links between them and the entire transportation plan.

The addressed BSTP is defined over a region that contains a set 𝐶 =
{𝑐1, 𝑐2,… , 𝑐𝑛} with 𝑛 SCCs in which samples are drawn from individuals
and accumulated. SCCs need to be visited by vehicles that collect the
samples and transport them to the corresponding Lab to be analyzed.
Different parameters characterize every SCC 𝑐𝑔 (𝑔 ∈ [1,… , 𝑛]). Each
SCC 𝑐𝑔 is open for a collection period of fixed length 𝑂𝑔 , from 𝑎𝑔 until
losing time 𝑏𝑔 = 𝑎𝑔+𝑂𝑔 . The opening time can be chosen within a time
indow [𝑒𝑔 , 𝑙𝑔] to grant more flexibility. Concerning logistics activities,
𝑔 denotes the service time required by the truck driver to pick up the
amples at 𝑐𝑔 . Unloading time for all the samples at the Lab is noted by
𝜏0.

We now examine the samples. As it is sought by the Ministry, the
amples have a maximum time allowed from the moment a sample is
rawn until its arrival at the Lab. This maximum time is specific to
ach sample (its lifespan). However, since each center 𝑐𝑔 accumulates

the samples it draws to form a batch that is sent to the Lab, the
batch must respect the lifespan of its most urgent sample. We hence
define, according to the types of samples that can be drawn at SCC 𝑐𝑔 ,
parameter 𝑇 𝑔

𝑚𝑎𝑥 as the shortest useful lifetime of the samples that are
collected at SCC 𝑐𝑔 .

The limitation imposed by 𝑇 𝑔
𝑚𝑎𝑥 may require visiting some SCCs

several times during their opening hours. The minimum number of
visits required by 𝑐𝑔 can be estimated as |𝑃𝑔| =

⌈𝑂𝑔
𝑇𝑔

⌉

, where 𝑃𝑔 denotes
the set of visits to perform, and 𝑇𝑔 is the longest time allowed between
two consecutive visits at 𝑐𝑔 , assuming the samples are brought directly
to the Lab. Given 𝑡𝑔0, the traveling time from 𝑐𝑔 to the Lab, 𝑇𝑔 can
be computed as 𝑇𝑔 = 𝑇 𝑔

𝑚𝑎𝑥 − 𝑡𝑔0 − 𝜏𝑔 . As no sample can stay at the SCC
overnight, the last visit must be planned to every SCC after closing time.
The staff of each center define 𝜑𝑔 , which is the time they can wait for
the last visit after closing.

Despite previous calculations on the minimum number of visits
required by an SCC, in reality, the number of times that 𝑐𝑔 must
be visited depends on 𝑎𝑔 and 𝑏𝑔 , but also on the decisions made,
particularly on the time at which 𝑐𝑔 receives the first visit. Indeed, as
soon as the first sample is drawn, it sets (1) the latest time at which 𝑐𝑔
must be visited next, and (2) the latest samples’ arrival time at the Lab.
Similarly, when a second visit is planned (no later than the latest time
set by the previous visit), a bound is set on the next visit, and so on,
until the last visit is planned after the closing time of 𝑐𝑔 . Note that the
bound on the latest time for the next visit is set based on the assumption
that the vehicle will travel directly and immediately to the Lab right
after leaving 𝑐𝑔 . Therefore, this bound on the latest time imposes a
restriction on the end of the route for the vehicle that performs the next
visit. Consequently, a single visit at 𝑐𝑔 affects both the rest of the first
vehicle’s route and the end of the route of the vehicle performing the
next visit to 𝑐𝑔 . The BSTP requires that these scheduling decisions be
carefully planned to ensure that a feasible solution is found to perform
the |𝑃𝑔| visits to each SCC.

As explained in Section 1, the Ministry does not have a fleet of
vehicles and relies on third-party services to execute the transportation
plan for this problem. In addition, there are no physical capacity
limits to consider in the transportation plan. Therefore, we do not
characterize any vehicle in particular but approach the problem in
terms of routes that need to be created. A route is a sequence of visits
to one or many SCCs, starting and ending at the Lab. The return to the
4

𝑣

Lab of a given route must be done exactly in time to ensure that none
of the samples picked up along the route perish. We then assume that
the logistics partner can assign one or several routes of the BSTP plan
to the same vehicle, according to the availability of its fleet, but this is
external to our decision-making problem. The BSTP will provide as a
solution a set of routes that will perform all the visits to all the SCCs,
collect all the samples and bring them to the laboratory within their
lifetime.

To better illustrate the intertwined relationships between routes vis-
iting the same SCC, and between SCCs, consider Fig. 1 which sketches
a part of a feasible solution for a given SCC.

In this example, 𝑐1 has a collection period 𝑂1 = 8 h, a time window
to open between 6:00 and 6:30, a maximum time 𝑇 1

𝑚𝑎𝑥 = 4 h, and a
maximum time to pick up after closing 𝜑1 = 1 h. In this solution, SCC
𝑐1 is opened at 6:10 and the collection period starts. Then, a first visit
𝑣1 is scheduled for 8:45 (with route 𝐾1) to pick up all accumulated
samples until then. Hence, route 𝐾1 has to bring the samples to the
Lab by 10:10 so they will not perish.

The timing decision of 𝑣1 sets that the second visit at SCC 𝑐1 must
be scheduled in time to bring the new accumulated samples to the Lab
before 12:45 (i.e., 8:45 +𝑇 1

𝑚𝑎𝑥). Then, 𝑣2 is scheduled for 11:30 with
route 𝐾2, which has one hour and 15 min to arrive at the Lab, and a last
visit 𝑣3 is done at 14:40 after closing. Samples picked up at 14:40 have
to be back to the Lab by 15:30, so the vehicle performing route 𝐾3 has
only 50 min to visit other SCCs and return to the Lab. This example also
demonstrates the link between the opening decision and the first visit.
Setting the opening time 10 min earlier (the earliest possible) means
that the latest arrival of 𝐾1 to the lab would be at 10:00. This will
force a shorter route time while keeping the first visit 𝑣1 at 8:45, or it
will force that 𝑣1 is done earlier to keep a route of 1:25 h (or a mix of
oth).

This planning process is challenging. Planning visits too close to
heir latest time reduces the flexibility to construct routes. However,
lanning visits too early pulls the timing of future visits, which must
e performed earlier, and eventually more visits than necessary might
e performed at the same SCC, leading to an unfeasible solution. This
hows the importance of optimizing jointly visit times and opening
ecisions. Moreover, Fig. 1 illustrates a forward calculation, from open-
ng to first visit and so on. An equivalent calculation could be done
ackwards, from setting the closing time, to the pickup time of last visit
nd so on, visiting the SCCs as early or as late as possible. However,
n the global problem there is no way to predict whether it is better
o use the earliest or latest strategy, nor estimating the solution in a
orward or backward manner. It is critical to optimize these decisions
n a single mathematical model.

The next section proposes a formulation adapted from Anaya-Arenas
t al. (2021) to address this new and explicit way of considering the
erishability of samples. The following formulation is the base of the
lgorithm proposed in Section 5.

. Mixed integer linear programming formulation for the BSTP

The BSTP is modeled on an extended graph 𝐺 = (𝑉 ,𝐴) in which
ach SCC 𝑐𝑔 is associated with a set of nodes 𝑃𝑔 representing the visits
𝑔 requires during the day. Let 𝑃 be the set of all visits to perform
ver all SCCs, and 𝑉 the set of nodes, 𝑉 = {𝑣0,… , 𝑣

|𝑃 |}, composed
y the node 𝑣0 (Lab) and nodes {𝑣1,… , 𝑣

|𝑃 |} (the visits). Without loss
f generality, and to reduce symmetries, visits are labeled in such a
anner that the first |𝑃1| nodes in 𝑉 , after the Lab, correspond to

he visits to 𝑐1, {𝑣1,… , 𝑣
|𝑃1|}; then, {𝑣

|𝑃1|+1,… , 𝑣
|𝑃1|+|𝑃2|} are the ones

isiting 𝑐2, and so on. Specifically, defining the set of indexes is possible
or visits at 𝑐1 as 𝐼1 = {1, 2,… , |𝑃1|} and are analogous for a general SCC
𝑔 𝐼𝑔 =

{

1 +
∑𝑔−1

ℎ=0 |𝑃ℎ|, 2 +
∑𝑔−1

ℎ=0 |𝑃ℎ|,… , |𝑃𝑔| +
∑𝑔−1

ℎ=0 |𝑃ℎ|
}

, where |𝑃0|

s set to 0.
Additionally, the set of arcs can be specified as 𝐴 =

{

(𝑣𝑖, 𝑣𝑗 ) ∶
}

𝑖, 𝑣𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {0,… , |𝑃 |} where each arc (𝑣𝑖, 𝑣𝑗 ) is
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Fig. 1. Feasible BSTP solution for SCCs 𝑐1. Opening time and visits are decided by the model depending on SCC’s collection period and samples lifespan (𝑇 1
𝑚𝑎𝑥).
Fig. 2. Graph for the BSTP with six visits and five SCCs (A) and a feasible solution for this instance (B).
characterized by transportation time 𝑡𝑖𝑗 . As the graph models real
routes, we assume that 𝑡𝑖𝑗 ≠ 𝑡𝑗𝑖,∀𝑖, 𝑗 ∈ 𝑃 , 𝑖 ≠ 𝑗.

Fig. 2(A) shows the graph for a small instance of the BSTP with
five SCCs (𝐶 = {𝑐1,… , 𝑐5}). Assuming that SCC 𝑐5 requires two visits
during the planning horizon, then six visits need to be performed:
{𝑣ℎ, 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘}, which correspond respectively to SCCs 𝑐1 to 𝑐4, and
the two visits {𝑣𝑙 , 𝑣𝑚} to 𝑐5. Fig. 2(B) shows a potential solution that
performs the six visits using two routes: route 𝑅1 visiting 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘, 𝑣𝑚,
and goes to the lab, and 𝑅2 that visits 𝑣ℎ, 𝑣𝑙, and then goes the lab.

We propose a new formulation based on the one proposed by Anaya-
Arenas et al. (2021). Taking advantage of the fact that there is no
capacity constraints or other vehicle-specific features to account for,
we formulate the problem as an arc-based vehicle routing problem
with a two-index formulation. This significantly reduces the size of
the problem (number of binary variables) and eliminates the symmetry
that can be generated by the vehicle/route index in the arc variables.
The formulation uses the following variables. Binary variables 𝑥𝑖𝑗 take
value 1 if the arc (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐴 is included in the solution. Continuous
variables 𝑢𝑖 set the time to visit node 𝑣𝑖. Continuous variables 𝑎𝑔 and
𝑏𝑔 set opening and closing times of SCC 𝑐𝑔 , respectively. Continuous
variables 𝑓𝑖, which calculates the remaining time at node 𝑣𝑖 to complete
the route (arrive at the Lab), are timing variables used to deal with
the interdependency as it will be explained in constraints (11)–(13).
Finally, note that even if no time windows are fixed for each visit, the
visits cannot be performed too early to avoid that more pickups than
necessary will be done. Hence, waiting time before or after a collection
at a node is possible, and needs to be minimized. To this end, we
introduce variable 𝑑𝑖 that counts the total duration of a route, if and
only if the route starts at node 𝑣𝑖. Total duration will be minimized in
the objective function.

In addition to the parameters introduced in Section 3, like 𝑇 𝑔
𝑚𝑎𝑥, 𝑂𝑔

and [𝑒𝑔 , 𝑙𝑔], we also set a bound on the longest lifespan of the samples,
named 𝑇𝑚𝑎𝑥 = max𝑔∈[1,…,𝑛] 𝑇

𝑔
𝑚𝑎𝑥. 𝑇𝑚𝑎𝑥 is then defined as the time limit

of the less restricted SCC. Given this, we can consider for each SCC the
difference 𝛿𝑔 = 𝑇𝑚𝑎𝑥 − 𝑇 𝑔

𝑚𝑎𝑥, which ranges between [0, 𝑇𝑚𝑎𝑥]. Parameter
𝛿 is introduced to control the specific lifespan and time limit set
5

𝑔

by each SCC. It also ensures that the calculation of the lifespan is
defined over both the accumulation and the routing time. Parameters
𝛿𝑔 and 𝑇𝑚𝑎𝑥, together with variables 𝑓𝑖 and 𝑢𝑖, allow the model to track
the specific lifespan of samples transported and the interdependency
among them, without including a vehicle index for individual tracking.
The proposed formulation to control the samples’ lifespan is performed
by constraints (12) and (13).

The sets, parameters, and decision variables to formulate the model,
along with their domains and meanings, are grouped in Table 1. The
notation (𝐴)𝑛 is used to indicate the 𝑛th element of the ordered set A.

The formulation can be stated as follows:

min
|𝑃 |
∑

𝑖=1
𝑑𝑖 (1)

s.t.
|𝑃 |
∑

𝑖=0
𝑥𝑖𝑗 −

|𝑃 |
∑

𝑖=0
𝑥𝑗𝑖 = 0 𝑗 = 0,… , |𝑃 | (2)

|𝑃 |
∑

𝑖=0
𝑥𝑖𝑗 = 1 𝑗 = 1,… , |𝑃 | (3)

𝑒𝑔 ≤ 𝑎𝑔 ≤ 𝑙𝑔 𝑔 = 1,… , 𝑛 (4)

𝑎𝑔 + 𝑂𝑔 = 𝑏𝑔 𝑔 = 1,… , 𝑛 (5)
𝑢𝑗 ≥ 𝑢𝑖 + 𝜏𝑖 + 𝑡𝑖𝑗 −𝑀(1 − 𝑥𝑖𝑗 ) 𝑖 = 0,… , |𝑃 |,

𝑗 = 1,… , |𝑃 |, (𝑖 ≠ 𝑗)
(6)

𝑢𝑘 ≥ 𝑎𝑔 𝑔 = 1,… , 𝑛, 𝑘 = (𝐼𝑔)1 (7)
𝑢𝑘 ≥ 𝑢𝑘−1 𝑔 = 1,… , 𝑛 s.t. |𝑃𝑔| > 2,

𝑘 ∈ 𝐼𝑔 s.t. (𝐼𝑔)1 < 𝑘
(8)

𝑏𝑔 ≤ 𝑢𝑘 ≤ 𝑏𝑔 + 𝜑𝑔 𝑔 = 1,… , 𝑛, 𝑘 = (𝐼𝑔)|𝑃𝑔 | (9)

𝑇𝑚𝑎𝑥 − 𝑓𝑖 +𝑀(1 − 𝑥𝑖0) ≥ 𝑡𝑖0 + 𝜏𝑖 𝑖 = 1,… , |𝑃 | (10)

𝑓𝑗 − 𝑓𝑖 +𝑀(1 − 𝑥𝑖𝑗 ) ≥ 𝑢𝑗 − 𝑢𝑖 𝑖, 𝑗 = 1,… , |𝑃 |, (𝑖 ≠ 𝑗) (11)

𝑓 − (𝑢 − 𝑎 ) ≥ 𝛿 𝑔 = 1,… , 𝑛, 𝑖 = (𝐼 ) (12)
𝑖 𝑖 𝑔 𝑔 𝑔 1
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Table 1
Notation.

Sets

𝐶 Specimen Collection Centers (SCC)
𝑃 Visits to schedule for all SCCs
𝑃𝑔 Visits required by the single SCC 𝑐𝑔
𝐼𝑔 Indices for visits required by SCC 𝑐𝑔
𝑉 Set of nodes in the network (|𝑃 | visits and the Lab)
𝐴 Set of arcs in the network

Parameters

𝑛 Total number of SCCs in the network
𝑂𝑔 Length of the collection period at SCC 𝑐𝑔
𝑒𝑔 Earliest opening of SCC 𝑐𝑔
𝑙𝑔 Latest opening of SCC 𝑐𝑔
𝜑𝑔 Time limit after closing, set by the staff, to perform the last

pickup at SCC 𝑐𝑔
𝑇 𝑔
𝑚𝑎𝑥 Maximum time allowed to bring samples of SCC 𝑐𝑔 to the

Lab
𝑇𝑚𝑎𝑥 Maximum 𝑇 𝑔

𝑚𝑎𝑥 over all SCC
𝛿𝑔 Difference among 𝑇𝑚𝑎𝑥 and 𝑇 𝑔

𝑚𝑎𝑥
𝜏𝑔 Loading time at SCC 𝑐𝑔
𝜏0 Unloading time at the Lab
𝑡𝑖𝑗 Traveling time between centers 𝑣𝑖 and 𝑣𝑗
𝑇̂𝑔 Maximum time between two consecutive pickups at SCC 𝑐𝑔
Decision variables

𝑥𝑖𝑗 {0, 1} Takes value 1 if node 𝑣𝑖 is visited immediately before
node 𝑣𝑗 , and 0 otherwise;

𝑢0 R+ Start time of the earliest route at the Lab 𝑣0;
𝑢𝑖 R+ Time at which node 𝑣𝑖 is visited for 𝑣𝑖 ∈ 𝑃 ;
𝑑𝑖 R+ Duration of the route starting with visit 𝑣𝑖, for 𝑣𝑖 ∈ 𝑃 ;
𝑓𝑖 R+ Remaining time at node 𝑣𝑖 to complete the route (arrive

to Lab) for 𝑣𝑖 ∈ 𝑃
𝑎𝑔 R+ Opening time of SCC 𝑐𝑔
𝑏𝑔 R+ Closing time of SCC 𝑐𝑔

𝑓𝑖 − (𝑢𝑖 − 𝑢𝑖−1) ≥ 𝛿𝑔 𝑔 = 1,… , 𝑛, s.t. |𝑃𝑔| ≥ 2,
𝑖 ∈ 𝐼𝑔 s.t. 𝑖 > (𝐼𝑔)1

(13)

𝑑𝑖 ≥ 𝑇𝑚𝑎𝑥 − 𝑓𝑖 + 𝑡0𝑖 + 𝜏0 −𝑀(1 − 𝑥0𝑖) 𝑖 = 1,… , |𝑃 | (14)
𝑢0,𝑢𝑖, 𝑓𝑖, 𝑎𝑔 , 𝑏𝑔 , 𝑑𝑖 ∈ R+ 𝑖 = 1,… , |𝑃 |, 𝑔 = 1,… , 𝑛

(15)

𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 = 1,… , |𝑃 |, (𝑖 ≠ 𝑗) (16)

The objective function (1) aims to minimize the total duration of
all routes in the solution. This objective function assumes that trans-
portation is routed by private carriers such that there is no fixed cost
of vehicles. Constraints (2) ensure flow conservation in every node of
the graph, whereas constraints (3) ensure that all required visits are
performed while forcing the route sequence (i.e., the visit to node 𝑣𝑗
nly has one predecessor). Constraints (4) and (5) control the flexible
pening window of the SCCs; in particular, constraints (4) ensure that
ach SCC 𝑐𝑔 opening time is within its time opening window [𝑒𝑔 , 𝑙𝑔],
nd constraints (5) define the closing hours of the SCCs.

Constraints (6)–(9) define the time at which each visit is performed
nd ensure coherency between the variables and parameters related to
ime. Constraints (6) set 𝑢𝑗 , which is the time of each visit 𝑣𝑗 , to 𝑢𝑖 (the
ime of the visit to its predecessor in the route 𝑣𝑖 such that 𝑥𝑖𝑗 = 1) plus
he loading time at 𝑣𝑖 (𝜏𝑖) and the traveling time from 𝑣𝑖 to 𝑣𝑗 (𝑡𝑖𝑗).
onstraints (6) also force sub-tour elimination. Note that constraints
6) set arrival times for all the nodes that are visited in the network
𝑗 = 1,… , |𝑃 |) and consider all origins including the Lab (𝑖 = 0,… |𝑃 |).
s all the routes start from the Lab, constraints (6) set 𝑢0 to show the
eparture of the first route of the transportation plan (earliest start).
onstraints (7) state that no visit can be performed at any SCC 𝑐𝑔

before its opening time. Constraints (8) require visits to be performed in
chronological order and avoid visit symmetries: this constraint is only
enforced if the SCC requires more than two visits, otherwise symmetry
6

is broken by constraints (7) and (9). Finally, constraints (9) state that
the last visit at each SCC 𝑐𝑔 is performed within 𝜑𝑔 units of time after
its closing time 𝑏𝑔 , with 𝑘 =

∑𝑔
ℎ=1 |𝑃ℎ|, or, equivalently, 𝑘 = (𝐼𝑔)|𝑃𝑔 |.

Constraints (10)–(14) also relate to time, but model time as a
resource consumed along the route. In particular, variables 𝑓𝑖 are the
‘‘remaining time’’ resource, which allows to compute the time con-
sumed from the Lab to each node, in the opposite direction of the
vehicle. Constraints (10) state that for every visit 𝑣𝑖, which is performed
immediately before the vehicle returns to the Lab (that is, 𝑥𝑖0 = 1),
its resource variable (𝑓𝑖) is 𝑇𝑚𝑎𝑥 reduced by the service time at visit
𝑣𝑖 and transportation times between 𝑣𝑖 and 𝑣0. Constraints (11) link
the resource and visit time variables for any pair of consecutive nodes
(𝑣𝑖, 𝑣𝑗 ). Indeed, if arc (𝑣𝑖, 𝑣𝑗 ) is included in the route (that is, 𝑥𝑖𝑗 = 1),
then the difference in time consumption must match the difference in
the time variables of the visits. Hence, the remaining time variables at
𝑓𝑖 calculates the time consumed in a route from the node 𝑣𝑖 to the Lab
as 𝑇𝑚𝑎𝑥 − 𝑓𝑖. Moreover, 𝑓𝑖 let us warrant that samples will not perish
at the SCC nor in the route. We introduce constraints (12) and (13)
to link the available time to accumulate samples in a SCC, the time
that will take to deliver them in its route (according to 𝑓𝑖) and warrant
that it will respect the time of parameter 𝛿𝑖. Constraints (12) and (13)
are the precedence constraints between visits. They ensure that the
samples do not perish by requiring that the resource of remaining
time 𝑓𝑖, is sufficient to cover the time the samples waited at the SCC
between the opening and the first visit

(

sonstraints (12)
)

or between
two consecutive visits

(

constraints (13)
)

, respecting their lifespan. In
other words, the sum of the time the samples stay at the SCC, plus the
time required to bring them to the Lab, cannot exceed the lifespan of
the samples. Constraints (10)–(13) are the set of constraints that allow
us to model and control the interdependency of the problem, linking
both the precedence constraints of the visits and the routing decisions.
For a detailed numerical example of how to calculate constraints (10)–
(13), please refer to Appendix A. Constraints (14) define the duration of
a route starting at node 𝑖. Indeed, if arc (0, 𝑖) is in the solution, a route
starting from node 𝑖 exists, and its duration equals the travel time 𝑡0𝑖
plus the unloading time at the laboratory 𝜏0 and the time consumed
from 𝑣𝑖 back to the Lab, that is (𝑇𝑚𝑎𝑥 - 𝑓𝑖). If no route starts from 𝑖,
i.e., 𝑥0𝑖 = 0, 𝑑𝑖 is set to zero owing to the objective function structure.
Finally, constraints (15) and (16) state the domains of the decision
variables, as they are reported in Table 1.

5. The iterative matheuristic

To address the interdependency challenges raised by the BSTP and
the fact that no time windows can be used to simplify the problem, we
conceived an iterative matheuristic that encompasses two steps. The
first step uses a decomposition method, referred to as DM. Our DM is
inspired by the rolling horizon procedure. It separates the BSTP into a
sequence of linked subproblems. Then, each subproblem is solved using
the formulation proposed in Section 4. Once the final subproblem is
solved, we obtain a complete feasible solution to the BSTP. Since this
solving procedure is an approximated one, the second step performs a
local search. To this end, we use again the formulation proposed in the
previous section, but this time combined with two fix-&-optimize (F-&-
O) techniques that we propose. Two exploring strategies are alternated
in this local search to form an efficient scheme: the keep groups strategy
aims to form groups of visits that should be performed together (i.e. in
the same route), while the change arcs strategy requires that, in the new
solution, at least a certain number of arcs are taken from a subset of
‘‘promising arcs’’ which are kept in a dynamic memory as the search
advances. After a certain number of iterations without improvements
on the best solution found so far, the matheuristic executes a diversi-
fication and the two steps are repeated until a stop criterion is met or
until a time limit is reached. Sections 5.1 and 5.2 present respectively
DM, the method to efficiently generate solutions to the BSTP, and
the proposed local search strategies. Section 5.3 presents the overall
matheuristic and describes its diversification and parameter updating

mechanisms.
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5.1. A decomposition method to generate solutions to the BSTP

Rolling horizon techniques are commonly used to approach complex
problems that can be decomposed over time. However, in our case,
there is no clear indication on the adequate strategy to ‘‘split’’ the
original problem, the number of subproblems to create, nor their length
or size. Therefore, we propose a decomposition procedure DM that, in-
tead of separating the planning horizon into subperiods, separates the
isits to perform to create a sequence of linked subproblems that will
e solved in an ordered manner. In our implementation, when solving
subproblem 𝑄𝑖, a set of 𝑅 visits is planned, while also considering the

ubproblems already solved. However, a given number of visits of the
revious subproblems are ‘‘frozen’’ and become parameters (i.e., we set
he variables associated to them to the values already found). Freezing
s dosed by parameter 𝛼 ∈ [0, 1], so the number of frozen visits is ⌈𝛼×𝑅⌉.

Similarly, when solving a subproblem 𝑄𝑖, it is also possible to consider
a number of visits belonging to the next subproblem 𝑄𝑖+1. This ‘‘looking
ahead’’ strategy potentially improves the solutions produced by the
solver, but increases the computational effort. Parameter 𝛽 controls
the extend of the look ahead, and the number of forthcoming visits
to be considered is set by ⌈𝛽 × 𝑅⌉. The three parameters 𝑅, 𝛼, and 𝛽
grant a great flexibility to the decomposition method DM as it allows
to simultaneously plan the 𝑅 visits, reevaluate the decisions made in
previous subproblems, and anticipate the needs related to forthcoming
visits.

To illustrate the procedure DM, let assume a BSTP problem with
14 visits to perform, as shown in Fig. 3, and let also assume that
parameters 𝑅, 𝛼, and 𝛽 are set to values 4, 0.75, and 0.25, respectively.
This means that in each subproblem four visits are added. Three visits
(⌈𝛼 × 𝑅⌉) from the previous subproblem are frozen and one (⌈𝛽 × 𝑅⌉)
will be included as the look ahead. To apply the procedure, we need to
establish a list of the SCCs to visit, ordered by the time at which their
visits are done. Since the moments at which SCCs are visited depend
on the actual routes, we solve the BSTP formulation until a first integer
solution is generated by the solver. However, as it will be seen later, any
feasible solution can be used by the procedure 𝐷𝑀 . The time at which
visits are performed constitutes the ordered list of visits, as illustrated
in the upper part of Fig. 3, where the 14 visits are organized in six
routes and where circles and squares represent visits to SCCs and to
the Lab, respectively.

To form the first subproblem, denoted Q1, we consider the first 𝑅
visits (visits 𝑎 to 𝑑) and we add to them the next 𝑅 × 𝛽 = 1 visit (visit
𝑒, colored in black). Then, subproblem Q1 is solved, producing Sol. Q1.
Notice that the values produced for the variables associated to the fifth
visit (that does not belong to the first subproblem) will be reevaluated
when solving the second subproblem.

To form the second subproblem Q2, we consider the first subprob-
lem (visits 𝑎 to 𝑑), we add the next 𝑅 visits (visits 𝑒 to ℎ), and one more
visit corresponding to the look ahead (visit 𝑖, in black). However, the
first 𝑅 × 𝛼 = 3 visits (visits 𝑎, 𝑏 and 𝑐, in white) are frozen or, in other
words, the variables associated to them are set to the values already
produced when solving Q1. Subproblem Q2 is then solved to produce
Sol Q1+Q2. The third subproblem Q3 includes the visits in Q1 and Q2,
the next four visits (visits 𝑖, 𝑗, 𝑘, and 𝑙), and an additional visit (visit 𝑚).
When solving Q3, variables associated to visits 𝑎 to 𝑑, 𝑔 and 𝑓 are frozen
(set to the values produced when solving the previous subproblems).
In this manner, the algorithm progress until a subproblem containing
all the visits, subproblem 𝑄4 in Fig. 3, is solved. The procedure stops
and the solution becomes the initial solution for the next step of the
matheuristic.

Freezing is easily handled in the mathematical formulation. Al-
though we mentioned that we fixed the information concerning the
visits to freeze, we relax part of this information (i.e., the time at which
visits are performed represented by variables 𝑢𝑖) to focus exclusively on
frozing the arcs forming the routes (variables 𝑥𝑖𝑗). For instance, let us
7

consider the example illustrated in Fig. 3. When solving subproblem
Q2, information on visits 𝑎 to 𝑑 is available in the solution produced
to subproblem Q1. To freeze visits 𝑎, 𝑏, and 𝑐 when solving Q2, we use
the following set of equations:

𝑥𝑄2
𝑖𝑗 ≥ 𝑥𝑄1

𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 0, 𝑎, 𝑏, 𝑐 (17)

Eq. (17) shows, for our given example, that the arcs between visits
𝑎, 𝑏, 𝑐, and the depot in the second subproblem 𝑄2 need to be the same
as the ones from 𝑄1, hence the route structure for these visits is frozen
in 𝑄2. Relaxing the visit time decisions 𝑢𝑖 grants even more flexibility
to the approach because it allows to reconsider the time at which visits
were performed, without increasing much the difficulty of the problems
to solve. The structure of the already formed routes is kept.

Coming back to the parameters of DM, the impact of 𝑅 is easy to
understand. As 𝑅 increases towards |𝑃 |, the decomposition tends to
the initial problem so one might expect the solver to produce better
solutions. However, the computational effort to solve each subproblem
𝑄 increases quickly with 𝑅. Parameter 𝛼 affects the size of the solution
space explored at each iteration. Setting 𝛼 to a small value fixes only the
departure of the earliest routes and allows the new subproblem to re-
consider the majority of the decisions, having then a larger subproblem
each time. As 𝛼 increases, more and more information is kept from the
previous subproblems and, if 𝛼 is set to 1, previous decisions will not
be reevaluated. Parameter 𝛽 doses, as mentioned before, the ‘‘looking
ahead’’ strategy . The values of the parameters are adjusted from one
iteration to the next to produce different sets of subproblems, as will
be explained in Section 5.3. It is important to note that the value of
parameters 𝛼 and 𝛽 are independent in the interval [0,1]. Furthermore,
the method does not require solving each subproblem to optimality.
Instead, the best solution found inside a 90-s time limit is reported for
each subproblem, until a full feasible solution to the BSTP is obtained.

Finally, it is worth mentioning that the formulation proposed in
Section 4 must be adapted to the case where it is applied to a sub-
problem in order to ensure the feasibility and continuity of the routes
over the entire horizon. See Appendix B for a detailed description of
the modified formulation.

5.2. A local search procedure based on fix-&-optimize strategies

Since the DM procedure provides an approximated solution to the
BSTP, the second step of the matheuristic performs a local search on
the solution produced by the first step. In this paper, we introduce
a set of cuts based on a F-&-O technique to explore efficiently the
neighborhood of the obtained solution. This approach takes advantage
of what the MILP formulation can efficiently do: set the schedule of
the visits. More precisely, we solve the BSTP using the formulation
proposed in Section 4 but fixing a part of the formulation variables
to the values they have in the solution produced by the DM. By doing
so, a large number of variables become parameters and a part of the
solution is ‘‘fixed’’ while the rest remain free and can be explored by
the solver. This idea was implemented in two different manners or
strategies referred to as Keep groups and Change arcs.

Given a current solution 𝑠, the Keep groups strategy imposes that
at least a given number of the visits must be performed by the same
route as in 𝑠, although the sequence of visits in the route and the times
at which the visits are performed may change. Mathematically, this
strategy can be expressed by constraints such as :
∑

𝑣𝑖∈𝑟

∑

𝑣𝑗∈𝑟 𝑣𝑗≠𝑣𝑖

𝑥𝑖𝑗 ≥ |𝑟| − 1 ∀ 𝑟𝑜𝑢𝑡𝑒 𝑟 (18)

where 𝑟 represents the route, 𝑣𝑖 and 𝑣𝑗 ∈ 𝑟 the nodes to be visited by
route 𝑟, and |𝑟| the cardinality of the route (i.e., the number of visits in
route 𝑟).

The Change arcs strategy is inspired by probabilistic approaches such
as granular tabu search. It requires that, a certain number of arcs 𝛥 taken
from a subset of ‘‘promising arcs’’ 𝐴̄ will be used in the new solution.

̄
Subset 𝐴 is built and managed as the research advances, keeping in
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Fig. 3. Example of problem decomposition: an initial solution is used to generate a list of visits which are then progressively grouped to form a sequence of four subproblems
using 𝑅 = 4, 𝛼 = 0.75, and 𝛽 = 0.25.
emory the number of times that each arc has been used to form past
olutions. Parameter 𝛥 is used in this strategy to control the solver’s
reedom choosing the arcs in the solution. We express such restrictions
y constraints such as:
∑

(𝑖,𝑗)∈𝐴̄

(1 − 𝑥𝑖𝑗 ) +
∑

(𝑖,𝑗)∉𝐴̄

𝑥𝑖𝑗 ≥ 𝛥 (19)

here 𝐴̄ =
{

(𝑖, 𝑗) ∶ 𝑥̄𝑖𝑗 = 1
}

is the set of promising arcs.
The strategies described show two different levels of intensification,

hich are complementary. Indeed, while the Keep groups strategy seeks
o group visits without regarding the structure of the routes, the Change
rcs strategy intends to encourage the presence of parts of routes that
ere deemed appealing. We therefore decided to use them alternately,

tarting by Keep groups and using it until no improvement on the
ncumbent solution is reached. Then, Change arcs is used. Anytime
n improvement is reached, the local search comes back to the Keep
roups strategy. Algorithm 1 formalizes the use of the F-&-O strategies.
n Algorithm 1, 𝑠0 and 𝑠∗ refer to the initial solution produced by
he decomposition method DM, and the best solution found so far,
espectively, while 𝑠′ is used to record temporarily a solution. The
odulus of a solution, for instance |𝑠∗|, indicates the value of the

bjective function for 𝑠∗. We defined 𝑖𝑡 as the counter of iterations
erformed without improvement, while 𝑖𝑡𝑚𝑎𝑥 is the parameter limiting
he allowed number of iterations without improvement.

It is worth noting the relevance of parameter 𝑖𝑡𝑚𝑎𝑥, which allows us
o dose the manner in which the search effort is invested if we assume
8

Algorithm 1 Receives 𝑠0, performs a Local search around it, and returns
𝑠∗

𝑠∗ ← 𝑠0
𝑖𝑡 ← 0
while 𝑖𝑡 < 𝑖𝑡𝑚𝑎𝑥 do

𝑠′ ← 𝐾𝑒𝑒𝑝𝐺𝑟𝑜𝑢𝑝𝑠(𝑠0)
if |𝑠′| < |𝑠∗| then

𝑠∗ ← 𝑠′

𝑖𝑡 ← 0
else

𝑖𝑡 = 𝑖𝑡 + 1
𝑠′ ← 𝐶ℎ𝑎𝑛𝑔𝑒𝐴𝑟𝑐𝑠(𝑠0)
if |𝑠′| < |𝑠∗| then

𝑠∗ ← 𝑠′

𝑖𝑡 ← 0
end if

end if
end while
return 𝑠∗

a restriction on the computational time allowed to the matheuristic. A
large value of 𝑖𝑡𝑚𝑎𝑥 allows for a longer local search (more iterations
without improvement), and therefore a more thorough exploration
of the neighborhood around each of the solutions produced by the
DM method. Consequently, less initial solutions will be generated and
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explored within the same total time. On the other hand, if 𝑖𝑡𝑚𝑎𝑥 is set
to a small value, the local search will consume shorter time, allowing
for more (different) initial solutions to be generated and explored.
Section 5.3 discusses how this balance is set.

5.3. The complete matheuristic and the diversification mechanisms

Algorithm 2 formalizes the structure of the matheuristic. Using an
initial solution 𝑠, it uses the decomposition method DM, described in
5.1 with initial parameters (𝑅0, 𝛼0, 𝛽0) to produce a solution 𝑠0 on which
the local search procedure is applied.

The two steps (i.e., generate an initial solution by DM and then
applying the local search) are repeated for a number of iterations,
which is controlled by counter 𝐼𝑡 and limited to the value of parameter
𝐼𝑡𝑚𝑎𝑥. At each repetition, the current values of parameters {𝑅, 𝛼, 𝛽}
of DM are adjusted according to the following idea: if solving all the
subproblems reaches a total time limit of 350 s, then 𝑅 is reduced to
𝑅−2 visits while 𝛼 and 𝛽 remained unchanged. Otherwise, 𝛼 is reduced
to 𝛼 = 𝛼0 − 0.1 and 𝛽 is increased to 𝛽 = 𝛽0 + 0.1, aiming to provide
more freedom to variables in the problem and to look ahead farther,
respectively.

Although the progressive update of parameters 𝑅, 𝛼, and 𝛽 helps
producing different initial solutions from one iteration to the next,
the matheuristic needs to implement a set of mechanisms to force
the algorithm to explore different regions of the solution space. Said
mechanisms seek to improve the robustness of the matheuristic. In our
case, we implemented two simple yet effective methods DM1 and DM2
to move the search to other regions of the solution space. The first
method DM1 is based on the analysis of a dynamic memory that tracks
the previously explored solutions and identifies the times at which their
routes end (arrival time at the lab). The most frequent end times are
selected and used as cutting points to split the best solution found so
far into subproblems instead of using parameter 𝑅. The initial values
of parameters 𝛼0 and 𝛽0 are used to produce a new initial solution. The
second mechanism, DM2, simply splits the best solution found so far
into 𝑅0 subproblems. Subproblems are formed in such a manner that
all but the last subproblem have the same number of visits and 𝛼0 and
𝛽0 are used to produce a new initial solution. The described procedure
is repeated until counter 𝐼𝑑 reaches the value of parameter 𝐼𝑑𝑚𝑎𝑥, the
matheuristic stopping criterion.

6. Numerical results

The aim of this section is twofold. First, it assesses the performance
of the proposed matheuristic in terms of the quality of the solutions
it produces and the required computational time. Second, it analyzes
the results produced by the matheuristic to highlight the specific con-
tribution and added value of the different mechanisms and algorithmic
strategies.

6.1. Description of the test instances and algorithm’s parameters

We first describe the characteristics of the 32 instances used in
our numerical experiments. These instances correspond indeed to the
real sample collection needs of different regions in the Province of
Quebec, Canada, and offer a very rich and diverse testbed for our
experiments, as explained in the following paragraphs. Instances were
categorized into 17 medium and 15 large size instances, according to
the cardinality of the set of collection centers to serve |𝐶| and the
number of visits to perform |𝑃 |. Instances are also characterized by
the synchronization percentage of their visits (%𝑃𝑠𝑦𝑛𝑐) and the inter-
dependency percentage (%𝑆𝐶𝐶𝑠𝑦𝑛𝑐). Bredström and Rönnqvist (2008)
defined %𝑃𝑠𝑦𝑛𝑐 as the percentage of visits that required some sort of
synchronization. In their testbed, %𝑃𝑠𝑦𝑛𝑐 was always 10%, so in an
instance with 80 visits to schedule, eight of them required some sort of
9

a

Algorithm 2 Matheuristic
Generate feasible solution 𝑠
𝐼𝑑 ← 0
𝑅 ← 𝑅0, 𝛼 ← 𝛼0, 𝛽 ← 𝛽0
while 𝐼𝑑 < 𝐼𝑑𝑚𝑎𝑥 do

𝐼𝑡 ← 0
while 𝐼𝑡 < 𝐼𝑡𝑚𝑎𝑥 do

𝑠0 ← 𝐷𝑀(𝑠, 𝑅, 𝛼, 𝛽) ⊳ First step: generate solution 𝑠0
𝑠1 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠0) ⊳ Second step: local search on 𝑠0, Algo. 1
if |𝑠1| < |𝑠| then

𝑠 ← 𝑠1
end if
𝑈𝑝𝑑𝑎𝑡𝑒(𝑅, 𝛼, 𝛽) ⊳ Update according to Section 5.3
𝐼𝑡 ← 𝐼𝑡 + 1

end while
𝑠0 ← 𝐷𝑀1(𝑠, 𝛼0, 𝛽0) ⊳ Perform diversification DM1
𝑠1 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠0)
if |𝑠1| < |𝑠| then

𝑠 ← 𝑠1
else

𝑠0 ← 𝐷𝑀2(𝑠, 𝛼0, 𝛽0) ⊳ Perform diversification DM2
𝑠1 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠0)
if |𝑠1| < |𝑠| then

𝑠 ← 𝑠1
end if

end if
𝐼𝑑 ← 𝐼𝑑 + 1

end while

synchronization. We computed for all our instances %𝑃𝑠𝑦𝑛𝑐 = 𝑃𝑠𝑦𝑛𝑐∕|𝑃 |.
In the BSTP case, this synchronization is required between visits of
the same SCC, causing interdependency in the routes and the SCCs’
visits. Therefore, in addition to the synchronization percentage, we
defined for each instance their interdependency percentage or %𝑆𝐶𝐶𝑠𝑦𝑛𝑐
as the percentage of SCCs that required two or more visits in a single
day (%𝑆𝐶𝐶𝑠𝑦𝑛𝑐 = 𝑆𝐶𝐶𝑠𝑦𝑛𝑐∕|𝑆𝐶𝐶|). As an example, consider Instance
24, which has 17 SCCs (|𝑆𝐶𝐶| = 17) and 29 visits (|𝑃 | = 29). Of
these 29 visits, 21 require some sort of synchronization (i.e. 𝑃𝑠𝑦𝑛𝑐 =
21). Therefore, %𝑃𝑠𝑦𝑛𝑐 = 21∕29 = 72, 4%. Moreover, from the 17 SCCs,
nine SCCs require two or more visits, which means that %𝑆𝐶𝐶𝑠𝑦𝑛𝑐 =
9∕17 = 52.9%. Instance 4 has a %𝑆𝐶𝐶𝑠𝑦𝑛𝑐 = %𝑃𝑠𝑦𝑛𝑐 = 100%, because all
f its eight SCCs require two or more visits in the planning horizon,
hen the 24 visits required synchronization.

In the group of medium instances, |𝑆𝐶𝐶| ranges from four to 24,
nd the number of visits |𝑃 | varies from 11 to 28. Medium instances
resent a synchronization percentage %𝑃𝑠𝑦𝑛𝑐 between 27% and 100%,
n interdependency percentage %𝑆𝐶𝐶𝑠𝑦𝑛𝑐 between 16% and 100%, and
en instances have interdependency above 50%. In the group of large
nstances, |𝑆𝐶𝐶| ranged from 11 to 50, and the number of visits |𝑃 |
aried between 29 and 74, while %𝑃𝑠𝑦𝑛𝑐 ranges from 25% to 94%,
𝑆𝐶𝐶𝑠𝑦𝑛𝑐 between 14% and 88%, and there are nine instances with

nterdependency above 50%.
Moreover, the demographic and topological aspects are as relevant

s the size of the instance to understand the richness and diversity
f the testbed. Indeed, some instances consider vast territories with
low population density and a rather light road network. We refer

o the 17 instances matching this description as ‘‘rural’’ (11 medium
nd six large instances). The 15 remaining instances are much denser;
hus, the distances between SCCs are shorter, and the number of arcs
onnecting them is much higher. We refer to these as ‘‘urban’’ instances
six medium and nine large instances).

The matheuristic has parameters that must be set adequately. To
his end, preliminary tests were conducted to help us select appropriate
alues. The tests consisted in running the algorithm using several com-
inations of parameters, seeking to balance the computational effort

nd the quality of solutions. According to these preliminary tests, we
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fixed 𝑖𝑡𝑚𝑎𝑥 = 2, 𝐼𝑡𝑚𝑎𝑥 = 5, and 𝐼𝑑𝑚𝑎𝑥 = 7, to ensure that various
decompositions were considered for each instance, while also being
able to provide good quality solutions in less than an hour. We also
limited the computational time required to solve each subproblem in
the first step of the matheuristic to 90 s. With this time limit, almost
all subproblems were solved to optimality, although the method does
not require it. The preliminary experiments also allowed us to set the
initial values for the parameters of matheuristic first step to (𝑅0, 𝛼0, 𝛽0)
= (7, 0.5, 0.5) and the time limit to adapt the decomposition parameters
to 350 s total. Finally, we set parameter 𝛥, which defines the number
of arcs to be selected from the promising arc set 𝐴̄ to 𝛥 = ⌈0.8 × |𝐴̄|⌉.
Moreover, the value of 𝑀 in the model has been bounded to the length
of a day in minutes (1440 min).

All tests were executed on a multi-user server with 64 GB of RAM
and am Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz, with 8 GB of
RAM. The MILP formulation was solved using CPLEX 12.8.

6.2. Numerical results

To assess the performance of the proposed matheuristic, we com-
pare the results it produced to the ones reached by mathematical
formulation presented in Section 4 with a computational time limit of
36,000 s (10 h).

The results are reported in Table 2. The leftmost part lists the
instances and describes their main characteristics, starting with the
number of collection centers |𝑆𝐶𝐶|, the number of visits to perform
|𝑃 |, the synchronization percentage %𝑃𝑠𝑦𝑛𝑐 , and the interdependency
percentage %𝑆𝐶𝐶𝑠𝑦𝑛𝑐 . Finally, under header 𝑅∕𝑈 , we show the type
of instance with respect to its topology (rural = 𝑅 or urban = 𝑈).
The results produced by the solver to the mathematical formulation of
Section 4 are reported in the columns under header 𝑀𝐼𝐿𝑃 , including
the value of the objective function (column 𝑂𝐹 ) of the best solution
found by the solver in the time/memory limit, the computational
time in seconds (column 𝑆𝑒𝑐.), and optimality gap reported by the
solver (%𝐺𝐴𝑃 ). Note that in several cases, the optimality gap was not
closed before exhausting the allotted computational time (36,000 s). In
other cases, however, the computer memory limit (8 GB) was reached,
stopping the search. An asterisk (∗) in the computational time column
identifies such cases for which the search was aborted. The last three
columns in Table 2 reports the objective value of the best solution pro-
duced by the matheuristic (𝑂𝐹𝑀𝑎𝑡ℎ); then, %𝐵𝐾𝑆 reports the difference
in percentage between the solution produced by the proposed method
(𝑂𝐹𝑀𝑎𝑡ℎ) and the best-known solution produced by the solver (𝑂𝐹 ),
so that %𝐵𝐾𝑆 = (𝑂𝐹𝑀𝑎𝑡ℎ − 𝑂𝐹 )∕𝑂𝐹 . Notice that negative values of
%𝐵𝐾𝑆 indicate that the matheuristic produced a better solution than
MILP inside the time limit of our experiment. Finally, we report the
CPU time (in seconds) it took to produce a solution (𝑆𝑒𝑐.).

Let us first look at the results produced by the MILP for the medium
size instances (instances 1 to 17). Table 2 confirms the difficulty of
solving this problem. Indeed, CPLEX was able prove optimality only
for instances 2, 3, and 13, and, in the case of instance 13, doing such
required more than 26, 000 s. For the five cases in which the allotted
computational time was exhausted, the optimality gaps were greater
than 40%. Finally, in nine cases, the search was aborted after the
computer’s memory limit was reached.

The matheuristic was able to produce solutions with the same
objective value as the MILP in ten of 17 instances, including the
three instances having proven optimal solutions. Moreover, it improved
the MILP’s best solution in five of 17 instances, although the MILP
performed better in two cases. Regarding the computational time,
most instances required between 1500 and 3300 s, with an average
computational time of 2167 s, confirming that the matheuristic was
able to reach solutions as good as CPLEX in less than 40 min, a fraction
of the time required by the solver.

If we examine the results produced for large size instances (instances
10

18 to 32), CPLEX produced solutions that, in the best case, showed
an optimality gap of 71%. In 11 cases, the search tree exhausted the
memory of the available computer, aborting the search. This compu-
tational limit confirms the need for efficient solution methods to get
good quality solutions. Even if the BSTP does not need to be solved
daily, managers still need to perform new experiments regularly to
cope with events or new situations. Filling this gap, the matheuristic
improved the results of the MILP in eight of 15 cases and produced the
same objective value in two more cases, whereas the MILP was better
in five cases. The matheuristic produced an average improvement
of 0.43% over the large size instances, which is encouraging when
considering the computational time required to reach these solutions.
Indeed, the computational times required by the matheuristic to solve
large instances remained within the same order of magnitude as those
for medium instances, ranging from 2768 to 4750 s (46 to 80 min). This
confirms the good scalability of the matheuristic and its potential for
efficiently handling even larger instances. To summarize, the proposed
matheuristic is able to produce good quality solutions in much shorter
time than the solver, providing an efficient tool for managers to test
different scenarios when creating their tactical transportation plans.

To analyze further the performance of our matheuristic, in the
rural instances, with large distances between nodes and less poten-
tial of routing, the matheuristic tends to perform well, providing as
good solutions as the solver in less time in 13 of 17 rural instances,
and in average to less than 2% of the four instances that are not
improved. For urban cases, where longer routes are possible with a
strong combinatorial challenge, the matheuristic is also a great tool,
as it achieves or improved the solution found by the solver in 12 out of
15 urban instances, with an improvement of over 2%, showing how the
decomposition and F-&-O techniques successfully create good quality
routes.

6.3. Assessing the contribution of the matheuristic components to its perfor-
mance

The previous experiments demonstrated the effectiveness and the
efficiency of the proposed matheuristic. This section analyzes how the
different mechanisms and search strategies that form the matheuristic
contribute to its performance. To this end, we solved the BSTP instances
using the two main components of the matheuristic (i.e., the DM, and
the local search) independently. In this section, we will first compare
and discuss these results. Then, we will look in detail at the contribution
of the two F-&-O strategies. Finally, we will assess the ability of the
diversification mechanisms to explore more effectively the solution
space.

To assess the contribution of the matheuristic components to its
performance, we proceed in the following manner. First, we executed
the matheuristic without step 2 (the local search), limiting the total
running time to 10 h. Then, we run only the local search using the
first integer solution produced by the solver to the mathematical for-
mulation presented in Section 4 as the initial solution. A time limit
of 10 h was also set for each experiment. Table 3 reports the results
produced by these experiments. Header Features presents again the
main characteristics of each instance and Header Matheuristic recalls
the results of the algorithm in %𝐵𝐾𝑆 and 𝑆𝑒𝑐., as in the previous table.
Finally, headers DM and LS present the %𝐵𝐾𝑆𝑥𝑥 and 𝑆𝑒𝑐. obtained
when using only the decomposition method, or only the local search,
respectively. In all results, %𝐵𝐾𝑆 is computed with respect to the best
solution found by CPLEX after 10 h.

Table 3 shows that, for medium instances of type rural, both com-
ponents achieve, in general, results as good as the whole matheuristic.
Only in two cases (instances four and seven) the components were able
to improve slightly the best solution found by the complete matheuris-
tic. When we consider the urban instances, DM reached again a very
good performance producing solutions as good as the matheuristic. For
the worst case (instance 15) the difference between the %𝐵𝐾𝑆 pro-

duced by the matheuristic and DM with respect to the one produced by
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Table 2
Numerical results produced by the mathematical formulation and the matheuristic for the medium and large instances.

Inst. Features MILP Matheuristic

|𝐶| |𝑃 | %𝑆𝐶𝐶𝑠𝑦𝑛𝑐 %𝑃𝑠𝑦𝑛𝑐 𝑅∕𝑈 𝑂𝐹 𝑆𝑒𝑐. %𝐺𝐴𝑃 𝑂𝐹𝑀𝑎𝑡ℎ %𝐵𝐾𝑆 𝑆𝑒𝑐.

1 4 17 100% 100% R 1870 * 100% 1869 −0.05% 1535
2 6 11 67% 82% R 502 5 0% 502 0.00% 59
3 7 14 57% 79% R 1137 467 0% 1137 0.00% 279
4 8 24 100% 100% R 2606 * 100% 2619 0.49% 2632
5 9 16 44% 69% R 1252 36 000 40% 1252 0.00% 981
6 9 26 67% 88% R 1847 36 000 100% 1847 0.00% 2901
7 12 18 25% 50% R 1407 * 77% 1407 0.00% 1973
8 17 24 24% 46% R 2009 * 100% 2006 −0.15% 2906
9 19 22 16% 27% R 1581 * 90% 1581 0.00% 2961
10 23 27 17% 30% R 2020 * 89% 2020 0.00% 2838
11 24 28 17% 29% R 2019 * 91% 2019 0.00% 2044

12 8 15 63% 80% U 516 36 000 49% 516 0.00% 1602
13 9 14 33% 57% U 439 26 112 0% 439 0.00% 1570
14 10 24 90% 96% U 817 36 000 100% 799 −2.20% 3195
15 11 25 82% 92% U 811 * 100% 828 2.10% 2875
16 12 26 75% 88% U 913 * 100% 907 −0.66% 3297
17 13 28 77% 89% U 952 36 000 100% 926 −2.71% 3188

1335 73% 1334 −0.19% 2167

18 11 29 64% 86% R 2490 * 100% 2487 −0.12% 2768
19 14 36 86% 94% R 2453 * 100% 2389 −2.60% 3751
20 26 31 19% 32% R 2193 * 93% 2193 0.00% 3292
21 40 63 53% 70% R 3987 36 000 100% 4179 4.82% 4126
22 46 70 48% 66% R 5017 36 000 100% 5057 0.79% 4750
23 50 74 44% 62% R 5289 * 100% 5378 1.68% 4002

24 17 29 53% 72% U 1905 * 89% 1781 −6.51% 2900
25 17 33 88% 94% U 924 * 100% 913 −1.19% 3301
26 18 35 61% 80% U 1860 * 100% 1863 0.16% 3708
27 19 33 58% 76% U 1898 * 100% 1895 −0.16% 3646
28 19 33 58% 76% U 1898 * 90% 1882 −0.84% 3500
29 19 35 63% 80% U 2208 36 000 94% 2166 −1.90% 3422
30 27 32 19% 31% U 3095 * 71% 3069 −0.85% 3095
31 28 33 18% 30% U 3131 * 76% 3131 0.00% 3332
32 35 40 14% 25% U 3746 36 000 87% 3756 0.27% 3960

2806 93% 2809 −0.43% 3570
the solver after 10 h were of 2.10% and 2.47%, respectively. However,
the local search alone produced solutions up to 10.72% and 14.54%
worse than the matheuristic (instances 15 and 17), demonstrating that
the initial solution produced by the MILP was not a good one thus the
need for a mechanism to generate several initial solutions. The results
produced for the large instances point on the same direction. Although
in three cases over 15 large instances the DM produced slightly better
results that the matheuristic, on average, DM produced solutions that
were 1.03% worse than CPLEX and 1.46% worse than the matheuristic.
As per the local search, its dependence with respect to the quality of
the initial solution becomes even clearer. Indeed, the results produced
by the local search procedure were on average 12.64% worse than
the matheuristic. We understand that the LS performs poorly, as the
interdependency of the visits are difficult to solve with classic VRP
neighborhoods. We conclude then that the proposed hybrid matheuris-
tic balances adequately the intensification/diversification paradigm at
the base of approximated methods. On the one hand, the solutions pro-
duced by the rolling horizon inspired DM show that the decomposition
is effective and contributes to the robustness, and, on the other hand,
local search allows the method to improve the average quality of the
initial solutions in most of the cases.

Although the previous analysis demonstrated the efficiency of the
DM, it is noteworthy understanding the extent to which its performance
lays on the progressive adaptation of the method’s parameters (𝑅, 𝛼,
and 𝛽) or the use of the diversification mechanisms DM1 and DM2.
To this end, we identified, for each of the 32 instances, the phase
of the search during which the best solution was reached and, par-
ticularly if it happened exploring an initial solution produced by the
first configuration (𝑅0, 𝛼0, and 𝛽0), the adjusted values of DM or the
diversification mechanisms DM1 and DM2. The results are summarized
11
Fig. 4. Number of times each decomposition method led to the best solution for rural
and urban instances.

in Fig. 4 reports the number of times each decomposition method led,
after applying the local search step, to the best solution for rural and
urban instances.

The initial solution produced with parameters (𝑅 = 7, 𝛼 = 0.5, 𝛽 =
0.5) was at the base of 13 best solutions, confirming that the empirically
chosen values were quite effective. Note that, once the values of the
parameters have been adjusted, DM produced solutions that led to 13
more best solutions. Finally, the last two splitting approaches, DM1
and DM2, contributed to six best solutions, although DM2 did not
produce any best solution for urban instances. We conclude that all the
strategies used contributed to the effectiveness of the matheuristic, and
that their different principles enhance its robustness.
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Table 3
Numerical results produced by the components of the matheuristic (DM = decomposition approach, LS = Local search) for the medium and
large sized instances.

Features Matheuristic 𝐷𝑀 𝐿𝑆

Ins |𝑆𝐶𝐶| |𝑃 | 𝑅∕𝑈 %𝐵𝐾𝑆 𝑆𝑒𝑐. %𝐵𝐾𝑆𝐷𝑀 𝑆𝑒𝑐. %𝐵𝐾𝑆𝐿𝑆 𝑆𝑒𝑐.

1 4 17 R −0.05% 1535 −0.05% 824 −0.05% 18 105
2 6 11 R 0.00% 59 0.00% 28 0.00% 6
3 7 14 R 0.00% 279 0.00% 132 0.00% 2 059
4 8 24 R 0.49% 2632 −0.26% 1456 −0.26% 2 665
5 9 16 R 0.00% 981 0.00% 530 0.00% 10 811
6 9 26 R 0.00% 2901 0.00% 1377 0.05% 22 132
7 12 18 R 0.00% 1973 0.00% 983 0.00% 10 812
8 17 24 R −0.15% 2906 −0.15% 1459 −0.20% 4 858
9 19 22 R 0.00% 2961 0.00% 1501 0.00% 3 500
10 23 27 R 0.00% 2838 0.00% 1422 0.00% 1 939
11 24 28 R 0.00% 2044 0.00% 1289 0.00% 1 669

12 8 15 U 0.00% 1602 0.00% 1042 0.19% 10 808
13 9 14 U 0.00% 1570 0.00% 864 0.00% 10 809
14 10 24 U −2.20% 3195 −1.48% 1544 −0.49% 13 160
15 11 25 U 2.10% 2875 2.47% 1557 12.82% *
16 12 26 U −0.66% 3297 −0.33% 1466 −0.22% 2 836
17 13 28 U −2.71% 3188 2.20% 1731 16.52% *

−0.19% 2167 0.14% 1130 1.67% 7 745

18 11 29 R −0.12% 2768 −0.12% 1420 0.72% 8 501
19 14 36 R −2.60% 3751 −3.13% 2207 20.24% *
20 26 31 R 0.00% 3292 0.00% 1727 0.00% 5 164
21 40 63 R 4.82% 4126 11.11% 2780 62.26% *
22 46 70 R 0.79% 4750 9.10% 2573 37.44% *
23 50 74 R 1.68% 4002 7.32% 2245 48.87% *

24 17 29 U −6.51% 2900 −5.83% 1817 −2.78% 470
25 17 33 U −1.19% 3301 0.65% 1455 17.42% *
26 18 35 U 0.16% 3708 0.22% 2134 0.75% 16 464
27 19 33 U −0.16% 3646 −0.63% 1918 0.26% 11 998
28 19 33 U −0.84% 3500 −0.32% 2209 −0.21% 6 338
29 19 35 U −1.90% 3422 −2.49% 2210 −1.81% 11 786
30 27 32 U −0.85% 3095 −0.85% 1993 −0.85% 1 401
31 28 33 U 0.00% 3332 0.13% 1891 0.00% 1 755
32 35 40 U 0.27% 3960 0.27% 2011 0.80% 10 825

−0.43% 3570 1.03% 2039 12.21% 7 470
Fig. 5. Percentage of the time the local search uses each F-&-O strategy, and percentage
of times each F-&-O strategy led to the best solution (separated by rural and urban
instances).

Let us now look at the efficiency of the two F-&-O strategies that
form the local search stage: the Keep Groups and the Change arcs. To
assess the extent to which these strategies work in an intertwined
manner, the left part of Fig. 5 shows the usage of the two strategies, in
percentage of time with respect to the local search total time, whereas
the right part shows the number of times over 32 instances that the
best solution was produced using each strategy. Because the considered
instances show distinct topological natures (i.e., rural vs. urban), our
analysis explicitly considered this.
12
The left part of Fig. 5 (over title %usage) shows that although
the Change arcs strategy is used more frequently than the Keep groups
strategy, the latter is still used more than 1/3 of the times. Evidently,
the use of these strategies depends on the type of instance. Denser
urban instances perform fewer Change arcs iterations (approximately
66% of the total) than rural instances (74% of the total iterations).
This suggests that the dynamic mechanism allowing to switch between
them works adequately. Moreover, the right part of Fig. 5 (over title
%best) reports the portion of times that the matheuristic produced its
best solution during an iteration using the Keep groups or the Change
arcs strategy. In the case of urban instances, the best solution was
produced in 80% of the cases using the Keep groups strategy, and this
percentage reduces to only 47% when solving rural instances. This
makes sense; as the routes produced for urban instances have more
visits, Keep groups forces the solver to focus on the route configuration
to determine the best timing for the visits. The complementarity of the
proposed strategies and their contribution to the effectiveness of the
matheuristic are confirmed.

Finally, we inquired about the time at which the best solutions were
found. In an attempt to demonstrate the value of the time invested and
the strategies used during the search, we normalized the computational
time across the instances to present in Fig. 6 the number of times that
the best solution was reached during the first 20% of the total compu-
tational time, between the 20% and the 40% of the total computational
time, and so on.

The largest number of best solutions (20) was produced during the
first part of the search within 40% of the time, which is consistent
with the success of the initial splitting strategy, as previously discussed.
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Fig. 6. Number of best solutions produced with respect to the normalized
omputational time.

evertheless, up to 10 best solutions were reached between the 40%
o 80% of the total computation time. Unsurprisingly, only two best
olutions were obtained during the final part of the experiments.

To summarize, the matheuristic proposes an adequate combination
f strategies and mechanisms that allow it to effectively tackle the
ifficulties and challenges raised by the BSTP, as the decomposition
s not straightforward. In particular, the iterative approach that builds
ifferent initial solutions produced encouraging results and reveals as a
romising approach for addressing routing problems with dependency
r synchronization constraints between routes. Nonetheless, the local
earch mechanism brings added value to the method and complements
he strengths of the rolling horizon inspired heuristic. Our detailed anal-
sis demonstrates the contribution of each aspect of the matheuristic
nd its capacity to solve interdependent routing problems efficiently.

. Conclusions

This paper presents an efficient iterative matheuristic for solving a
omplex routing problem arising during the transport of products with
hort lifespans, which results in visits to customers that are interdepen-
ent. The problem is inspired by the biomedical sample transportation
roblem (BSTP) faced by managers of the healthcare system in the
rovince of Quebec, Canada. The problem studied relates to VRPTW-
yn and blood transportation problems defined in the literature, as it
hows a strong interdependence in the decisions concerning visits to
ustomers and route schedules. This paper builds on previous formula-
ions for the BSTP, but proposing a new and more realistic approach
o sample lifespan. This allows to integrate and optimize decisions
n samples accumulation in SCCs and routing. Until now, these two
ecisions were set as parameters according to managers’ expertise,
hich produced a suboptimal approach. We now offer managers an

ntegrated decision tool for deciding opening times, pickup times, and
outing times. This tool allows managers to better exploit the reality of
ach region when planning sample collection processes.

In addition to the extension in the modeling approach, this paper
roposes an efficient and novel matheuristic to tackle the complex
ILP formulation and shortcomings of commercial solvers. The ef-

icient matheuristic combines a decomposition approach and a local
earch stage that uses two F-&-O techniques. The iterative matheuristic
educes interdependency by applying different strategies to divide the
roblem into smaller subproblems with different visit structures. More-
ver, the local search is performed on each solution produced by the
ecomposition method by means of two F-&-O techniques, increasing
he efficiency of the algorithm. We tested the matheuristic on a set of
ich and diverse real-life instances with up to 50 customers, 74 visits,
nd a visit synchronization average of 68%, which is much larger than
he synchronization percentage requested in previous studies. For these
nstances, the matheuristic provided good quality solutions, as good or
etter than CPLEX, but in only a fraction of the time, making it suitable
13
for implementation in a decision support tool for planners in healthcare
logistics.

Besides its contribution to a real and practical problem, this paper
makes a significant contribution to the understanding and resolution
capacity of routing problems with high interdependency. We proposed
and tested several mechanisms to decompose the problem, as well as
cuts to explore the solution space in an efficient and fast way, proving
the interest of having decomposition approaches interacting with MILPs
solvers.

From a practical perspective, the reduction in the computational
times achieved by the proposed algorithm with respect to the mathe-
matical formulation allows managers to run a variety of what-if studies
that open new perspectives. First of all, the heterogeneity among the
regions made that the one-size-fits-all approach had to be discarded.
New simulations with structures having two or even three labs have
been tested and their performance compared. The ability to solve even
the largest instances in a reasonable time has allowed to produce
more robust solutions. Each instance we considered corresponds to an
‘‘average’’ day for each region, but some collection centers are closed
some days, and in other cases, their service times are different. We
can now compute solutions for variants of the ‘‘average instances’’.
Furthermore, although the current computational times (under one
hour) do not allow to elaborate the routes in ‘‘real time’’, managers
can compare solution scenarios in the case of special events such as,
for instance, a snowstorm that forces some centers to remain close and
reduces drastically the speed on the routes.

Despite the contributions achieved, our research still has limita-
tions. From a scientific perspective, we are now considering the use
of heuristic approaches for solving the subproblems generated by the
decomposition, seeking to improve the effectiveness of the method.
Moreover, we explore how to incorporate more randomness to the al-
gorithm to better escape local optima and enhance robustness. Finally,
from a practical standpoint, we believe that further research should
be devoted to including laboratory operations in the design of the
collection routes. We assume that the laboratory is able to handle any
number of samples arriving at any rate. However, in practice, the first
steps (opening the boxes, identifying the samples and preparing the
samples for analysis) can be very time consuming and might provoke
queues, exceeding in some cases the lifetime of samples that must
wait too long for treatment at the lab. A promising avenue should be
to consider the average rate of samples production at each collection
sample to limit somehow the number of samples arriving with each
vehicle to the lab.
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Fig. A.7. Routing time calculation (left) and remaining time consumption (right) for routes 𝑅1 and 𝑅2.
ppendix A. Time resource constraints

Section 4 presents the formulation for the BSTP explored in this
aper. This appendix goes into more detail on how the lifespan of
he sample is controlled in our formulation. As 𝑇𝑚𝑎𝑥 is the maximum
alue over all SCCs, it points to the less restrictive SCC, which samples
ave the longest lifespan. Then, a given SCC 𝑐𝑔 with a 𝑇 𝑔

𝑚𝑎𝑥 lower 𝑇𝑚𝑎𝑥
a more restrictive SCC) will have a larger 𝛿𝑔 , as 𝛿𝑔 = 𝑇𝑚𝑎𝑥 − 𝑇 𝑔

𝑚𝑎𝑥.
hen, samples’ lifespan is warranted by the introduced constraints
12)–(13) using 𝑇 𝑔

𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥, 𝛿𝑔 and variables 𝑓𝑖. As the samples’ lifespan
s computed from the moment samples are drawn from the patients
ntil it arrives to the lab, the restriction must cover accumulation and
ransportation time. In other words, the sum of the time between two
isits (the accumulation time) at SCC 𝑐𝑔 plus the time needed to pick
p the samples (i.e., to make a visit) and take said samples to the lab
in a constructed route) has to be less than the lifespan of the sample.
his means that using a constraint to limit total route duration to the

ifespan of the samples, as is usually done in time restricted-VRPs, will
e incorrect.

This is the motivation behind variables 𝑓𝑖 and 𝑑𝑖, and parameters 𝛿𝑔
nd 𝑇𝑚𝑎𝑥. As no explicit time windows are set, and no vehicle or route
ndex is included in the model, the use of variables f, d and u allows
s to calculate the time of the route, and the resource constraint for all
he routes created.

We will now illustrate the use of variables 𝑓𝑖 and parameters 𝑇𝑚𝑎𝑥
nd 𝛿𝑖 using a numerical example. Fig. A.7, shows a solution for a small
nstance to perform six visits (𝑃 = {𝑣ℎ, 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘, 𝑣𝑙 , 𝑣𝑚}) and to take

samples to the Lab (noted as 𝑣0). Hence, 𝑉 = {𝑣0, 𝑣ℎ, 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘, 𝑣𝑙 , 𝑣𝑚}.
To simplify the example, we consider only five SCCs (𝐶 = {𝑐1,… , 𝑐5}),
where only 𝑐5 requires more than one visit during the planning horizon
(only two visits require synchronization). We consider that {𝑣ℎ,… , 𝑣𝑘}
are visits requested by SCCs {𝑐1,… , 𝑐4} and visits {𝑣𝑙 , 𝑣𝑚} are requested
by SCC 𝑐5.

The left side of Fig. A.7 shows how the time calculation is done with
the use of variables u, and this for two routes 𝑅1 and 𝑅2. Assuming
the route 𝑅1 starts at the Lab at time 𝑢0 = 0, then the visit 𝑣𝑖 is
done at time 80 (𝑢𝑖 = 80). If no service or waiting time is necessary,
then 𝑢𝑗 = 125, 𝑢𝑘 = 165 and finally 𝑢𝑚 = 180. This means that the
vehicle will return to the Lab by time 230 (𝑢𝑚 + 𝑡𝑚0 = 180 + 50 = 230).
Likewise, 𝑅2 reaches its first node 𝑣ℎ at time 240 (𝑢ℎ = 240), then visit
𝑣𝑙 is done at time 335 (𝑢𝑙 = 335) and the vehicle gets to the Lab by
time 385. To arrive to node 𝑣ℎ at 240, with 𝑡0ℎ = 160, the 𝑅2 must
start at minute 80 and it last 305 min in total (305 = 160 + 95 + 50).
Here, Constraints (6) in the model is still respected, as 𝑢0 = 0, then
𝑢ℎ ≥ 𝑢0 + 𝜏0 + 𝑡0ℎ −𝑀(1 − 𝑥0ℎ). On the other hand, the variables f will
calculate the consumption of remaining time, as it is shown in the right
14
side of Fig. A.7. As explained before and in Section 4, the remaining
time resource is consumed in the opposite direction to the route. The
maximum remaining time is at the Lab, starting with 𝑇𝑚𝑎𝑥 = 300 min,
𝑓𝑚 = 300 − 50 = 250, 𝑓𝑘 = 235 𝑓𝑗 = 195 and 𝑓𝑖 = 150. The duration of
the route is 𝑅1 still 230 min. This can be calculated by the routing
time (left side of Fig. A.7) or by Constraints (10), (11) and (14) as
𝑑𝑖 ≥ 𝑇𝑚𝑎𝑥 − 𝑓𝑖 + 𝑡0𝑖 + 𝜏𝑖 = 300 − 150 + 80 + 0 = 230. Likewise, in route
𝑅2 with 𝑇𝑚𝑎𝑥 = 300 min, then 𝑓𝑙 = 250 and 𝑓ℎ = 155. Then, as 𝑣ℎ is the
first node in 𝑅2, then 𝑑ℎ ≥ 𝑇𝑚𝑎𝑥−𝑓ℎ+ 𝑡0ℎ+𝜏ℎ = 300−155+160+0 = 305.

Moreover, these constraints, interacting with constraints (12) and
(13), force the samples’ lifespan to be respected. In the same example,
consider that 𝑣𝑚 is the first visit of SCC 𝑐5. Then, if 𝑇𝑚𝑎𝑥 = 300 min,
and SCC 𝑐5 has lifespan limit of only 220 min (𝑇 𝑔

𝑚𝑎𝑥 = 220), then
𝛿5 = 300 − 220 = 80. This solution is only feasible if the time elapsed
between the opening of 𝑐5 and its first visit 𝑢𝑚 is less than 170 min
(i.e., 𝑢𝑚 − 𝑎5 ≤ 170), as the accumulation time at 𝑐5 plus transportation
time to the Lab has to respect samples lifespan of 220 min. Applying
constraint (12) to 𝑣𝑚, and assuming opening at time 10 (𝑎1 = 10), one
can find 𝑓𝑚 − (𝑢𝑚 − 𝑎5) ≥ 𝛿5 as 250 − (180 − 10) ≥ 80. Finally, consider
that 𝑣𝑙 is the second visit of 𝑐5. Then again, constraints (12)–(13) are
respected, as 𝑓𝑙−(𝑢𝑙−𝑢𝑚) ≥ 𝛿5 is 250−(335−180) ≥ 80. This is equivalent
to calculate the accumulation time at 𝑐5 of 155 min (335 − 180 = 155)
and travel time from 𝑐5 to the lab of 50 min (or 300 − 250 = 50).
Hence, lifespan is always respected, even if the routes last more than
𝑇𝑚𝑎𝑥 = 300 min as it is the case of the route 𝑅2 that has a total driving
time of 305 min.

Appendix B. Linking the subproblems

The interdependency between routes makes it inappropriate to solve
a part of the problem without considering those previous and forth-
coming. Moreover, in a given decomposition, a route may span two or
more subproblems. Therefore, when solving a subproblem, extending
the original formulation proposed in Section 4 is necessary to ensure
the feasibility and continuity of the routes over the entire horizon.

Let us know look at how the formulation given in Section 4 needs to
be adapted to handle subproblems rather than the complete BSTP. Us-
ing the same notation as in Section 4, a formalization of a subproblem
is first given before the mathematical formulation.

Formalization of subproblems

As anticipated, when excluding a part of the instance, not all
requests of the original problem are contained. To address this, we can
redefine all sets described in Section 4, those marked with a tilde, to
state that they are related to this subproblem.
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In particular,

𝐶̃ = {𝑐1, 𝑐2,… , 𝑐𝑛̃} (B.1)

is the set of SCCs with at least one request included in the subproblem.
Moreover,

𝑃𝑔 ⊂ 𝑃𝑔 (B.2)

is the set of requests for SCC 𝑔 that are part of the subproblem.
Given this, it suffices to define

𝑃 =
⋃

𝑔
𝑃𝑔 (B.3)

to obtain the set of all requests related to the considered Lab.
Following the same reasoning, it is possible to define:

𝑉 = {𝑣0, 𝑣1,… , 𝑣
|𝑃 |} (B.4)

𝐴̃ =
{

(𝑣𝑖, 𝑣𝑗 ) ∶ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {0,… , |𝑃 |}
}

(B.5)

𝐼𝑔 =
{

1 +
𝑔−1
∑

ℎ=0
|𝑃ℎ|, 2 +

𝑔−1
∑

ℎ=0
|𝑃ℎ|,… , |𝑃𝑔| +

𝑔−1
∑

ℎ=0
|𝑃ℎ|

}

(B.6)

where |𝑃0| is set to 0. Their meaning is absolutely analogous to the that
for the entire problem, as presented in 4.

Mixed integer programming formulation of subproblems

Once the new sets and parameters are defined, the considered
subproblem can be formulated. The formulation uses the same variables
presented in Table 1 and inherits Constraints (2)–(8) and (10)–(16),
with the only difference being that for each set or parameter, its
analogy with the tilde must be used.

Also concerning the objective function, it is totally analogous to (1).

min
|𝑃 |
∑

𝑖=0
𝑑𝑖 (B.7)

In terms of constraints, in addition to the inherited constraints, these
two must be added:

𝑏𝑔 ≤ 𝑢𝑘 ≤ 𝑏𝑔 + 𝜑𝑔 ; 𝑔 = 1,… , 𝑛̃; 𝑘 = (𝐼𝑔)|𝑃𝑔 | only if |𝑃𝑔| = |𝑃𝑔| (B.8)

𝑢𝑘 ≥ 𝑏𝑔 − (|𝑃𝑔| − |𝑃𝑔|)𝑇̂𝑔 ; 𝑔 = 1,… , 𝑛̃; 𝑘 = (𝐼𝑔)|𝑃𝑔 | (B.9)

In particular, Constraint (B.8) substitutes (9) of the standard formula-
tion. It states that in every SCC 𝑔, the last pickup is performed after the
closing hour, 𝑏𝑔 , within 𝜑𝑔 units of time. Evidently, when dealing with
a subproblem, this must be stated only if in the considered subproblem
the ‘‘real’’ last pickup of the SCC is included.

Constraint (B.9) is not included in the original formulation. It is
added to ensure that all solutions of the subproblem present partial,
feasible solutions for the original subproblem. Therefore, this constraint
excludes the feasible region of the subproblem all solutions that are
impossible to complete to obtain a full feasible solution. In particular,
it is required that, for each center 𝑐𝑔 , the last pickup included in
the subproblem (𝑢

|𝑃𝑔 |) is performed not before the closing time 𝑏𝑔 is
reduced by the maximum time that can elapse between two consecutive
pickups at 𝑐𝑔 (𝑇̂𝑔) multiplied by the number of pickups excluded from
the subproblem (|𝑃𝑔| − |𝑃𝑔|). Hence, Constraint (B.9) provides a lower
limit for the pickup visit time 𝑘. If this limit is not satisfied, a way to
build the next routes is nonexistent without allowing some specimens
collected by SCC 𝑔 to perish.
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