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Machine learning, a subfield of artificial intelligence, offers various methods that can be applied in marine science. It supports data-driven
learning, which can result in automated decision making of de novo data. It has significant advantages compared with manual analyses that
are labour intensive and require considerable time. Machine learning approaches have great potential to improve the quality and extent of
marine research by identifying latent patterns and hidden trends, particularly in large datasets that are intractable using other approaches.
New sensor technology supports collection of large amounts of data from the marine environment. The rapidly developing machine learning
subfield known as deep learning—which applies algorithms (artificial neural networks) inspired by the structure and function of the brain—is
able to solve very complex problems by processing big datasets in a short time, sometimes achieving better performance than human experts.
Given the opportunities that machine learning can provide, its integration into marine science and marine resource management is inevitable.
The purpose of this themed set of articles is to provide as wide a selection as possible of case studies that demonstrate the applications, util-
ity, and promise of machine learning in marine science. We also provide a forward-look by envisioning a marine science of the future into
which machine learning has been fully incorporated.

Keywords: analysis of underwater acoustics data, artificial intelligence, computer vision, data processing, deep learning, machine learning, sur-
veillance and inspection of fish catch, underwater image analysis

Background and motivation for this themed article
set
Artificial intelligence (AI) is increasingly being applied to all

kinds of data. Some applications of AI are face recognition

systems, natural language processing (e.g. speech recognition,

language understanding, language generation, and language

translation), disease detection systems, video surveillance, qual-

ity inspection in manufacturing, product design and creation,

robotics, and self-driving cars (Dargan et al., 2019). It is accu-

rate to say that AI is now everywhere, from our smartphones, to

web-browser, to cars.

Machine learning (ML), which is a subfield of AI, implements

dynamic models resulting in data-driven decisions. ML techni-

ques can be applied to high-dimensional (Fan et al., 2009),

nonlinear, complex, and big data. Further, the ML approach is

effective even in cases where the data are noisy (e.g. Frenay and

Verleysen, 2014; Xiao et al., 2015) or some identification labels

are missing (McKnight et al., 2007; Aste et al., 2015). ML is also

able to address the small sample size problem: so-called zero or

few-shot learning (Huo et al., 2019). What makes ML most ap-

pealing is its capacity to handle problems that are impossible or

too challenging for traditional approaches, which require many
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people and considerable time and resources to produce the de-

sired accuracy. In other words, ML provides not only effective

solutions, robustness, and accuracy but also efficiency as it can

rapidly process huge amounts of data.

Deep learning (DL), inspired by the structure and function of

the human brain, is a subfield of ML that involves the use of arti-

ficial neural networks (ANNs). ANN can take several forms, in-

cluding recurrent neural networks (Hochreiter and Schmidhuber,

1997) and convolutional neural networks (CNNs) (Krizhevsky

et al., 2012). Although ANNs are not new, their wide use only be-

came practical after the development of massively parallel graphi-

cal processing units (GPUs). GPUs provide computation power

and fast processing so that DL architectures running on GPUs

can analyse huge amounts of data quickly and efficiently. In 2012,

Krizhevsky et al. (2012) proved that CNNs can achieve a high

level of accuracy in image classification. The success of CNNs has

been extended to other computer vision tasks, for example object

localization (Ren et al., 2015; Redmon et al., 2016), semantic seg-

mentation (Long et al., 2015; Badrinarayanan et al., 2017), natu-

ral language processing for speech recognition (Hinton et al.,

2012), machine translation (Sutskever et al., 2014), optical char-

acter recognition (Goodfellow et al., 2014), face recognition and

verification (Taigman et al., 2014), object recognition (Xiao et al.,

2015), and so forth. All of these will, in due course, be applied to

data analysis in many branches of research, including marine

science.

Studying and sustainably managing marine ecosystems

presents special challenges because they are three dimensional, ex-

pansive, very dynamic, and complex. These characteristics require

data collection over a wide range of spatiotemporal scales, which

has been a major challenge (Godø et al., 2014; Janzen et al.,

2019). Rapid progress in sensors, information, and communica-

tion technologies now allows marine scientists to collect large vol-

umes of data at ever lower cost.

“Cruises now regularly return to port with terabytes of data,

high temporal resolution coastal time series contain billions

of measurements, and water samples are parsed into millions

of DNA sequences.” (POGO Workshop, 2019)

Moored buoys support long-term monitoring and high resolu-

tion measurements of physical, chemical, and biological variables,

as well as acoustics, at fixed locations and transmit their data in

real-time via satellite uplink or cabled connection to shore (e.g.

Aguzzi et al., 2015; Van Engeland et al., 2019). However, they are

limited to monitoring depths from the seabed to the ocean sur-

face. Sophisticated and heavily instrumented towed observation

platforms, and autonomous drones, are collecting large volumes

of data of many types (e.g. De Robertis et al., 2019; Lombard

et al., 2019; Verfuss et al., 2019). However, the capacity of human

experts to filter, curate, and analyse all of these data is limited.

This is where ML and AI will be making greater-and-greater con-

tributions as methods improve and are implemented more

broadly.

ML can be applied to automate various routine tasks in marine

science. The prediction of ocean weather, for example detecting

sea surface temperature (Tanaka et al., 2004; Wu et al., 2006),

habitat modelling (Krasnopolsky, 2009; Thessen, 2016), model-

ling monsoons (Cavazos et al., 2002), forecasting sea level fluctua-

tions (Makarynskyy et al., 2004), wind and wave modelling

(Forget et al., 2015; James et al., 2018), and the detection of acute

situations, for example oil spill and other point sources of pollu-

tion (Kubat et al., 1998) are just some of the applications.

Continuous underwater video and acoustic surveillance systems

are rapidly developing tools to monitor marine life while com-

puter vision and ML techniques contribute by automatically ana-

lysing the massive data streams from these platforms (e.g. Fisher

et al., 2016). These data can already be used to extract higher-

level interpretations by automatically detecting and tracking fish

underwater (Spampinato et al., 2008), identifying fish species

(Joly et al., 2015; Siddiqui et al., 2018; Villon et al., 2018; Allken

et al., 2019), and estimating swimming trajectories and speeds

(Beyan et al., 2018). Eventually, it will be possible to use time se-

ries of these data streams to assess changes in species abundance

and distribution, environmental change, predator–prey relation-

ships, and more (Fisher et al., 2016). Baited cameras and camera

traps allow data to be collected without disturbing animals, which

produces high volumes of images that can be analysed by using

DL techniques (e.g. Tabak et al., 2019). There is also great poten-

tial to apply DL to automatic fish identification, counting, and

sizing on fishing vessels (e.g. Bartholomew et al., 2018).

In this context, the objective of this themed set of articles was

to bring together contributions on the broad theme of the appli-

cations of AI, ML, DL, and advanced data systems (e.g. block

chains) to research, monitoring and management of marine

organisms and ecosystems. We sought contributions on the fol-

lowing topics, among others,

Automatic marine ecosystem monitoring based on visual

and/or acoustic data;

Automatic fish detection;

Automatic coral reef state detection (e.g. health, dead/

alive);

Underwater measurement of fish length;

Automatic fish counting, for example to analyse the effect

of global warming;

Automatic fish tracking (e.g. swimming speeds and

trajectories);

Automatic fish species classification/recognition/

identification;

Characterizing interactions between fish (e.g. predator–

prey relationships);

Fine-grained automatic object recognition in underwater

visual data (e.g. substrate classification, plankton);

Applications of block chain technology/systems;

Automatic detection/classification of acoustics produced by

marine animals (e.g. whales, dolphins, and fish); and

Automatic systems for fisheries management.

We received 30 submissions in response to the call for papers.

The 15 that made it through the peer review process are described

below. The articles that appear in this themed set, and the many

relevant articles that they cite, demonstrate that AI is already a

very helpful tool in a wide variety of applications in marine

science.

The articles in this theme set
With the exception of Semmar and Vaz-dos-Santos (2019), Liu

et al. (2020), and Proud et al. (2020), all of the articles present

methods based on DL (mainly CNNs), or at least mention the

advances in DL and its great potential. The articles can be catego-

rized in terms of (i) the environment that has been examined,
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that is unconstrained underwater (Mahmood et al., 2019; Salman

et al., 2019), observing fish catch on fishing trawlers (French

et al., 2019; Garcia et al., 2019; Tseng and Kuo, 2020), fishing ves-

sels (e.g. Lu et al., 2019), and fish caught in a box (Álvarez-

Ellacurı́a et al., 2019); (ii) the type of marine organisms investi-

gated, that is fish (Álvarez-Ellacurı́a et al., 2019; French et al.,

2019; Lu et al., 2019; Malde et al., 2019; Probst, 2019; Salman

et al., 2019; Brautaset et al., 2020), lobster (Mahmood et al.,

2019), and plankton (Li et al., 2019; Campbell et al., 2020); (iii)

the type of data used, that is images (Álvarez-Ellacurı́a et al.,

2019; French et al., 2019; Garcia et al., 2019; Lu et al., 2019;

Mahmood et al., 2019; Malde et al., 2019; Salman et al., 2019;

Campbell et al. 2020; Lu et al., 2020; Tseng and Kuo, 2020) and

video or audio (Brautaset et al., 2020; Proud et al., 2020). These

articles are summarized below.

Malde et al. (2019) review recent developments in ML, mainly

DL, and stress the opportunities and challenges associated with

integration of DL into marine science. Probst (2019) focuses on

how blockchains, data mining and AI can improve trust between

producers, wholesalers, retailers, consumers, management au-

thorities, and scientists by increasing transparency and availability

of information throughout the supply chain. It is claimed that

these digital technologies can make the flow of money associated

with the global stream of seafood products more visible and

transparent.

Salman et al. (2019) propose a method that relies on region-

based deep CNNs to detect freely moving fish in unconstrained

underwater environments. Motion images obtained by applying

Gaussian Mixture Models (Stauffer and Grimson, 1999; Zivkovic

and Heijden, 2006) and the optical flow method (Beauchemin

and Barron, 1995) are combined with raw greyscale video images.

The resulting three-channel image is input to a CNN model,

which detects fish. The proposed method was tested on two data-

sets composed of 42 493 and 1328 labelled fish and produced a

state-of-the-art performance for underwater fish detection. The

experimental analysis was performed on videos that included sev-

eral real-world challenges such as blurred images, complex and

dynamic backgrounds, crowded scenes, and luminosity changes.

Mahmood et al. (2019) also focus on automatic underwater im-

age analysis, although the focal species was western rock lobster

(Panulirus cygnus). The method proposed by Mahmood et al.

(2019) is also based on DL. The authors note that detection of the

rock lobster faces the challenge of having little annotated data

available. To handle this, a synthetic dataset was generated that

was used to fine-tune the state-of-the-art object detector,

YOLOv3 (Redmon and Farhadi, 2018), for detection of rock lob-

ster. Unusually, the individual body parts rather than the whole

animal were synthesized. YOLOv3 was trained using the synthetic

data only and the resulting model was tested on real-world

images. This training scheme showed significantly improved

results compared with using real-world images in training and

testing. Mahmood et al. (2019) highlight the fact that, for many

marine animals, the amount of labelled data is still limited.

Despite that, they demonstrate that DL technology can be effec-

tive even when the amount of data available is limited.

Lu et al. (2019) propose a method that models the images of

fish on the decks of fishing vessels to identify them to species. The

species included in their study were albacore (Thunnus alalunga),

bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus alba-

cares), blue marlin (Makaira nigricans), Indo-pacific sailfish

(Istiophorus platypterus), and swordfish (Xiphias gladius). A pre-

trained VGG-16 model (Simonyan and Zisserman, 2015) was

fine-tuned for fish species identification and showed a high over-

all accuracy. Besides the quantitative results, the image regions

detected as informative for the classification task were also char-

acterized. Performing such qualitative analysis is important be-

cause it provides an explanation and interpretation of the

function of the trained CNN model. Another DL-based method

applied to fish catches, with the aim of measuring fish length au-

tomatically, is presented by Álvarez-Ellacurı́a et al. (2019).

Conventionally, fish lengths have been manually calculated for a

small number of randomly selected fish. The method proposed

by these authors first applies Mask R-CNN (He et al., 2017) to

the images of European hake (Merluccius merluccius) displayed in

boxes (containers used at points of sale holding many fish inside)

to segment the fish heads. Image segmentation is the process of

partitioning an image into multiple segments (e.g. image objects)

that are composed of sets of pixels. A statistical model is then

used to estimate the total fish length from the length of the seg-

mented fish heads.

French et al. (2019) developed a computer vision system

designed to monitor and quantify the fish that are discarded on

fishing trawlers. The system is accurate and robust even when the

orientation of the fish is variable, when there are occlusions

among fish and when there are occlusions in the working area

(e.g. from fishers processing the catch). The instance segmenta-

tion (the task of detecting and delineating each distinct object of

interest in an image) component is based on separate Mask R-

CNN models (He et al., 2017), a different one for each conveyor

belt. The segmented fish are passed to a CNN-based species classi-

fier. The system was evaluated in four different settings: (i) using

only the research samples composed of a large number of training

samples, uniform lighting, uniform appearance, and less occlu-

sions. This setting provides an upper bound for the performance

of the system; (ii) using only the commercial samples such that

training and testing samples are considerably fewer but the condi-

tions are more challenging than the previous scenario, that is

resulting in worse performance; (iii) applying leave-one-belt-out

cross validation such that training was applied on samples from

some commercial belts and the research samples, whereas testing

was performed using samples from a never seen commercial belt.

This is the case that is closest to the real-world scenario; and (iv)

training on research samples and testing on commercial samples.

This is the most challenging scenario for a classifier because of

the domain gap (the situation that arises when the data distribu-

tion across different domains are dissimilar). However, it is also

the most ideal scenario to prepare training data because little ef-

fort is required for annotation. Additionally, a comparison be-

tween the species identification component and human experts

was conducted. Human experts achieved a mean class accuracy of

74–86%, whereas the DL classifier achieved �58%, which is

slightly better than the poorest human expert.

Garcia et al. (2019) also present a method to perform auto-

matic fish segmentation and fish size measurement, although they

use stereo images acquired using an imaging system placed in the

trawl. Assuming that stereo imaging can increase the robustness

and accuracy of fish length measurements (French et al., 2019), a

Mask R-CNN model (He et al., 2017) is used to localize and seg-

ment individual fish in an image. Unlike French et al. (2019), the

proposed pipeline applies a preprocessing step, which tries to re-

duce domain gaps that might arise from, for example those

resulting from variability in the background illumination and

Machine Intelligence era in marine science 3

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsaa084/5859738 by Fiskeridirektoratet. Biblioteket. user on 19 June 2020



differences in appearance of the fish in different datasets.

Additionally, a post-processing step, which performs a gradient-

based boundary estimation given the Mask R-CNN’s results as

the inputs, is applied to provide more accurate boundaries. The

proposed fish localization pipeline performs well even in highly

cluttered images containing overlapping fish.

Tseng and Kuo (2020) propose an approach for pre-screening

harvested fish in videos from electronic monitoring systems

(EMS). Using a Mask R-CNN model (He et al., 2017), the har-

vested fish in the frames of the EMS videos are segmented from

the background. The fish are counted using time thresholding (to

remove false-positive detections) and distance thresholding (if

the distance is less than a threshold the candidate fish identified

are considered the same in order to avoid recounting the same

fish in sequential frames). Subsequently, the types and body

lengths of the fish are determined using the Mask R-CNN mod-

el’s confidence score. The videos were acquired under uncon-

trolled weather conditions (e.g. sunny days, rainy days, and dark

nights). A total of 500 videos were used for training and valida-

tion of the Mask R-CNN model (He et al., 2017) for fish detec-

tion and segmentation. The remaining 200 videos were used for

assessing the proposed fish counting method. The trained Mask

R-CNN model resulted in a recall of 97.58% and a mean average

precision of 93.51% for fish detection. For fish counting, a recall

of 93.84% and a precision of 77.31% were obtained. Additionally,

for fish type identification, an overall accuracy of 98.06% was

obtained.

Proud et al. (2020) apply an automated method to identify

echoes from Dagaa schools (Rastrineobola argentea) in echo

sounder data collected during fish stock-assessment surveys in

Lake Victoria. Only the acoustic data collected between sunrise

and sunset were analysed. A random forest (RF) classifier was

constructed using school and environment metrics [i.e. length of

school, depth of school, height of school, image compactness, the

average amount of echo energy produced by the school per m2 of

lake surface (nautical area scattering coefficient (NASC)), lakebed

depth, temperature, dissolved oxygen concentration, pH, turbid-

ity, Chla concentration, and longitude]. This classifier showed a

test classification accuracy of 85.4%. Evaluating the importance

of each school metric showed that school length is the most im-

portant metric, followed by school height, school NASC, school

depth, lakebed depth, and school image compactness.

Environmental variables other than lake depth contribute very lit-

tle to the overall classification performance and when all environ-

mental information is removed, the overall RF accuracy is

reduced by only �1%.

For segmenting and classifying echo sounder data collected

during acoustic trawl surveys, a DL-based method is presented by

Brautaset et al. (2020). A slightly modified version of the U-Net

architecture (Ronneberger et al., 2015) is used as the classifier,

which takes four frequency channels and a range-time subset of

the echogram in the image format, resulting in the following clas-

ses: background, sandeel school, or other schools. The proposed

method achieved significantly better results compared with non-

DL methods when applied to a multifrequency dataset collected

between 2007 and 2018 during the Norwegian sandeel survey.

Semmar and Vaz-dos-Santos (2019) present a simplex-based

simulation approach developed to investigate growth regulation

processes in fish populations, which was applied to Merluccius

hubbsi stocks in the Southwestern Atlantic sampled in 1968–1972

and 2004 from six geographical areas. Using this approach, the

authors were able to show that the growth regulation of different

body parts is related to the geographic origin of the fish. Liu et al.

(2020) compared the performance of ensemble learning mod-

els—bagging trees (Johnson, 2001), RFs (Breiman, 2001), and

boosting trees—using a dataset of 256 records of Chondrichthyes

and Osteichthyes to predict fish natural mortality rate. The maxi-

mum age, growth coefficient, and asymptotic length were used as

the features. The results show that tree-based ensemble learning

models significantly improve the accuracy of fish natural mortal-

ity rate estimates compared with statistical regression models as

well as the basic regression tree model (Breiman et al., 1984).

Among tested ensemble learning models, boosting trees and RFs

performed the best, whereas the classification performance of

boosting trees was slightly better.

Li et al. (2020) report on a publicly available dataset,

PMID2019, containing 10 819 microscopic images of phytoplank-

ton from 24 different categories. PMID2019 includes high resolu-

tion colour images with instance level annotations (manually

labelled bounding boxes and corresponding species in each im-

age) that can be used for phytoplankton detection. In order to

generalize the dataset, Cycle-GAN (Zhu et al., 2017) was applied

to differentiate between images of dead and living cells so that

images of dead and living cells can be inter-converted without

losing their original features. This resulted in a synthetic phyto-

plankton living cell image dataset created from the original dead

cell images that could be applied to detect phytoplankton in situ.

PMID2019 was benchmarked by applying several state-of-the-art

object detection algorithms: faster R-CNN (Ren et al., 2015), fea-

ture pyramid network (Lin et al., 2017a), single shot multiBox de-

tector (Liu et al., 2016), YOLOv3 (Redmon and Farhadi, 2018),

and RetinaNet (Lin et al., 2017b). Fast R-CNN produced the best

results: average precision between 70.27 and 96.30% for different

scenarios (e.g. various lighting conditions and complex

background).

Campbell et al. (2020) present a novel plankton camera and

propose a CNN-based classification system that was applied to

the images collected. The plankton camera includes a

0.137 mm� 143 mm telecentric lens mounted on a 12-MP colour

camera inside a large pressure housing with a sapphire glass opti-

cal port. The camera takes 12-bit colour images at a maximum

frame rate of seven frames per second. This imager also incorpo-

rates an on-board computer system to segment each image and

retain regions of interest that contain images of individual plank-

ton using various image processing algorithms. The CNN archi-

tecture fine-tuned to classify the collected images was “Inception

v3” (Szegedy et al., 2015). The training set was composed of

18 868 images of 43 separate classes. Classification performance

obtained on test data varied among the different classes.

ML and the future of marine science
The articles included in this themed set, and those that they cite

make clear that there is great potential for ML to contribute to

rapid advances in marine science. DL has already supported im-

pressive advances by changing the way that experts analyse and

interpret data, as well as in the amount of data that can be proc-

essed rapidly. However, the volume of data produced in marine

science continues to increase and this introduces new challenges.

Possible solutions follow.

� ML has to be more fully integrated, not only in processing ma-

rine data but also in the collection and management of data
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and, therefore, ML scientists should collaborate more closely

with marine scientists in data collection and infrastructure

design.

� Communication between ML experts and marine scientists

should be improved such that both sides become aware of the

range of potential applications. There should be constant en-

gagement between ML experts and marine biologists. ML

experts should meet with stakeholders to develop and ensure a

mutual understanding regarding the challenges of data analy-

sis. On the other hand, marine experts should try to gain ML

knowledge to better understand the potential and limitations

of ML methods. This would serve to better define the desired

accuracy of any ML pipeline.

� The transparency and intuitiveness of ML methods should be

improved so that ML is more than a black box for marine

scientists.

� Preserving and sharing ML knowledge and expertise within

the marine science community: the size of marine data is huge,

however, the size of data used to evaluate ML methods is gen-

erally very limited. This is because datasets contain an insuffi-

cient amount of labelled data. One solution could be

establishing a common online repository in which researchers

can share their data as well as their trained models and ML

codes that would be aligned with their data.

We encourage submissions to this Journal that follow-up on these

and related topics.
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