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Abstract. Sustainable energy systems must be capable of ensuring sustainable development
by providing affordable and reliable energy to consumers. Hence, knowledge and understanding
of energy consumption in the residential sector are indispensable for energy preservation and
energy efficiency which can only be possible with the help of consumer participation. New energy
efficiency methods are developed due to the global adoption of smart meters that monitor and
communicate residential energy consumption. Moreover, energy monitoring of each appliance
is not feasible, as it is a costly solution. Therefore, energy consumption disaggregation is
an answer for cost-cutting and energy saving. Contrary to the non-intrusive load monitoring
(NILM) approaches, which are based on high-frequency power signals, we propose a data-
driven algorithm that requires only a time-series energy meter dataset, a few appliances’ data,
and energy consumption data from a consumer-based online questionnaire. Afterward, the
proposed algorithm disaggregates whole house energy consumption into nine different energy
consumption sectors such as lighting, kitchen, cooling, heating, etc. The energy consumption
disaggregation algorithm is applied to datasets of 10 homes under experimentation. One of the
homes provides us with the knowledge of 96.8% energy consumption, where only 28% knowledge
is reported by monitoring plugs and 68% knowledge obtained by unmonitored means. Finally,
the energy consumption obtained by the algorithm is compared with actual energy consumption,
which shows the excellent functioning of the developed method.

1. Introduction
Major economic expansions, industrialization, and population growth have resulted in escalated
energy consumption and environmental deterioration, posing a threat to long-term development
[1]. The total energy consumption in the residential sector is approximated to consume 30-
40% of the global production [2]. Still, this figure is anticipated to rise further as the use of
appliances and electronic devices increases. In addition, it is necessary to have improved real-
time monitoring of specific energy sector usage data at home, which may lead to considerable
energy savings. One of the essential things in reducing power consumption is recording electrical
appliances’ consumption at short intervals. If consumers can monitor the power usage of electric
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devices, this information can be used to optimize the usage pattern to save 5-15 percent of the
electricity consumption [3].

Appliances load monitoring (ALM) can help identify malfunctioning and faulty appliances.
Such comprehensive information can assist utility and power companies in improving their
home’s energy demand forecasting, facilitating demand side management, and even allowing
them to segment users more precisely. Furthermore, customers frequently underestimate the
contribution of each device to their household’s total energy usage, thereby misunderstanding
the standard efficient energy-saving methods.

Most of the existing literature regarding ALM mainly focuses on the online available datasets-
based classification of appliances, called disaggregation. Contrary to other studies, our research
provides smart home monitoring systems that provide comprehensive energy consumption
feedback services. Moreover, we propose an energy consumption disaggregation based on nine
different energy consumption sectors of smart homes under experiments. In particular, an energy
consumption disaggregation algorithm is developed that uses two datasets: one is the data based
on the questionnaire from consumers of the smart homes, and the other is a physically monitored
dataset using a set of sensors. The salient feature of the proposed algorithm are:

i. Energy consumption Knowledge of overall homes based upon monitored appliances.
ii. Energy consumption disaggregated Knowledge of each unmonitored sector defined.
iii. The algorithm is deployed on the platform. That allows consumers to visualize their

feedback on energy consumption.
The paper is structured as follows. Section 2 describes the literature review. Section 3

presents the methodology. Section 4 describes the experimental results. Finally, section 5
concludes the paper.

2. Literature Review
Energy monitoring is a fundamental aspect of the energy management system. It is, therefore,
necessary to monitor the energy consumption of a building before taking practical initiatives to
minimize energy consumption. Numerous studies have been conducted to understand consumers’
energy consumption patterns comprehensively. Disaggregation of energy consumption is an
optimal technique to gain deep insights into load monitoring. There are mainly two approaches to
disaggregate energy consumption: distributed path monitoring and single point monitoring. In
the literature, the first load monitoring method is called Intrusive Load Monitoring (ILM), while
the other is called Non-intrusive Load Monitoring (NILM). The ILM approach is optimal due
to its distributive nature but at a higher cost as the number of measurement devices increases.
On the other hand, NILM is sub-optimal, but the infrastructure cost is low.

A framework and collection of algorithms for implementing novel energy efficiency services
using smart meters and smartphones are proposed in [4]. The training procedure for appliance
signature detection is greatly simplified using smartphones and a state-of-the-art filtering
method. The proposed solution achieved a detection rate of 87 percent in a test with eight
simultaneous appliances. In another study [5], authors discussed ILM and NILM approaches to
energy disaggregation and the need to address security issues for rapid growth and adoption of
such systems. In addition, it is claimed that the improvement of such systems may lead to the
strong participation of energy consumers in energy-saving campaigns. Moreover, A pilot project
for a Smart Homes Energy Management Monitoring System (SHEMS) based on Tridium’s
Niagara Framework using Fog (Edge) Cloud Computing with Non-Intrusive Appliance Load
Monitoring (NIALM) as an IoT application in energy management was developed in [6]. The
SHEMS prototype proposed uses an artificial neural network-based NIALM technique to non-
invasively monitor relevant electrical appliances without the need for plug-in electricity meters
(smart plugs), completing a two-tier NIALM approach. The SHEMS prototype is based on a
compact, cognitive, embedded IoT controller that integrates IoT end devices such as sensors
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and meters and serves as a gateway for demand side management (DSM) in smart homes.
Research in [7] presented that most datasets in the research are appropriate for pattern-based

energy disaggregation (ED) techniques that require a lot of data. Subsequently, optimization-
based ED methods have been devised that require information about the operating states of the
devices. The development of repeatable state-of-the-art optimization-based ED algorithms is
limited by the availability of standard datasets and acceptable assessment measures. Therefore,
a dataset with several examples that reflect the various issues given by ED is provided. A NILM
approach based on ’0-1 sparse coding’ was used [8] to disaggregate into one specific appliance
from total electricity consumption. Data was collected from two households using smart meters,
and the data granularity was 5 minutes. The results show that the ”0-1 sparse coding”
method achieves 44.8% improved disaggregation accuracy compared to the standard sparse
coding method. Authors in [9] discovered that there are concerns with load monitoring and
management that need to be addressed, such as more accurate recognition and the requirement
for a monitoring system that can monitor as many different types of devices as feasible. More
work is needed to include NILM in the energy management of appliances. Finally, electricity
customers must promote an energy management culture in homes, workplaces, or enterprises.
In another study [10], the NILM approach is used for disaggregation based on load signature
composed of macroscopic and microscopic features. Then equipment classification was performed
using publicly available datasets. Additionally, applications of energy disaggregation such as
disaggregated energy calculations, accurate demand forecasting, and appliance anomalies are
also presented.

In [11], the semi-supervised learning (SSL) approach is developed using a variety of signals
from the unlabelled dataset to simultaneously learn the classification loss for the labeled dataset
and the consistency training loss for the unlabelled dataset. The transformation that generates
the samples for consistency learning is based on weighted versions of the DTW Barycentre
Averaging method. Using data collected from an Internet-of-Things-based energy monitoring
system in the context of a smart home, the process is evaluated and shows excellent results.
The work in [12] is based on the values of active power as it examines the effectiveness of the
load sharing method using the Random forest Automation Energy Dataset (RAE) and Reference
Energy Disaggregation Dataset (REDD) databases, which were collected using the Non-Intrusive
Load Monitoring (NILM) measurement method. It explained how to assign labels based on the
device combinations used, the device status (ON / OFF), and the appropriate temporal data
frame selection. It also evaluated the effectiveness of known machine learning algorithms such as
random forest, decision tree, and k-nearest neighbor (kNN). For the RAE and REDD databases,
the results show that it is a very effective technique with low computational complexity, with
an F1 score of over 95%.

It is found in [13] that providing disaggregated feedback leads to a 5% higher conservation
effect than the usual (aggregated) input. Energy consumption can decrease the results of the
RAE, and REDD databases are mainly responsible for these conservation effects. Consumers
with appliance-level data can more accurately estimate how much different energy appliances
consume. In addition, it was pointed out that the impact of smart meter roll-out on energy
savings is significantly more significant when appliance-level data is available. Based on a
suitable statistical method, it is expected that device-level feedback could increase consumer
surplus for German households by about 570 to 600 million euros per year. The authors in [16]
believed that engaging consumers in demand-side management activities could lead to achieving
energy management goals. An algorithm was applied to 14 households with different use cases
for load-shifting activities. An algorithm is applied to 14 homes with varying use cases for load-
shifting activities. The results of these simulations showed an average decrease in theoretical
flexibility of 53% instead of 66%, measured as the proportion of appliance cycles that are shifted
compared to complete processes; in a single household, a maximum deviation of 29% is found.
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Finally, the monthly average turned energy per dwelling drops by 32.5 percent, from 27 to 18
kWh.

Authors in [17] wanted to find what involvement the Italian residential sector may play in
establishing load flexibility for Demand Response activities. A method of estimating the load
profile of a housing cluster of 751 units based on experimental and statistical data was proposed.
Fourteen housing archetypes were identified, and an algorithm was developed to categorize the
sample units. After analyzing possible flexible loads for each archetype, a control technique
was developed for implementing load time shifting. This technique considers both the power
demand profile and the hourly electricity price. Calculations reveal that a dwelling cluster in
the Italian residential sector has an index of the flexibility of 10.3%, as well as efficiency of
34%. Over the heating season (winter)for the weekends,the highest values have been recorded
for flexibility purposes. The authors [18] suggested a technique for analyzing and designing
production, self-consumption, and storage system that serves a home user aggregate to optimize
electric power demand. They achieved Peak Shaving of the electrical demand power curve by
limiting the maximum power absorption from the grid and delivering the balance of the user’s
power demands via an electrical energy storage system charged from the solar plant during the
daily overproduction period. The success of the Peak Shaving approach was assessed using a
percentage parameter that depicts the number of grid power absorption peaks averted because
of the storage system.

3. Methodology
3.1. Smart Homes Platform
The smart homes platform called DHOMUS, an acronym for Data HOMes and USers, was
developed by the National Agency for New Technologies, Energy, and Sustainable Economic
Development (ENEA). The platform is aimed at residential customers and aims to make them
aware of their ”energy data” so that they understand how much energy they use and for what
purposes. It also aims to help them marginalize electricity consumption and costs, thus reducing
the environmental impact and making the residential customer an active subject contributing
to the stability of the national electricity grid. The platform can offer services to residential
customers that enable better integration between the individual home and the neighborhood in
which it is located. The user, whether equipped with smart devices for the energy management
of their ”smart homes” or a simple consumer, is the lynchpin of this platform. For both, albeit
at different levels of detail, the platform can provide feedback and personalized advice for a more
conscientious use of energy to curb consumption, costs, and the resulting environmental impact.

3.2. Smart Homes
ENEA has researched the impact of the electricity system on the environment as part of the
Electricity System Research project (funded by the Ministry of Economic Development and
comprising a range of research and development activities aimed at reducing electricity costs for
end users, improving system reliability and quality of service reduce the impact of the electricity
system on the environment and health, enable the rational use of energy resources to ensure the
country has the conditions for sustainable development) designed a technical model of the smart
homes, shown in Figure 1, are equipped with a range of smart devices such as smart plugs,
sensors to measure consumption and comfort, and presence in the homes. All these devices
are managed wirelessly, so no connection needs to be installed. The data from the sensors is
collected, combined, and transmitted to the DHOMUS platform via the Energy Box, an electrical
device connected to the internet.
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Figure 1: Smart Home
Source [14]

3.3. Data Acquisition Hardware
Table 1 shows the equipment used in the experimental demonstration in Rome. These are
commercial sensors provided free of charge to participants in the study. The sensors can
communicate via the wireless Z-Wave protocol with the Energy Box (EB), which consists of
an Asus Mini PC - PN40 that acts as a gateway for smart homes. This box is made of a PC
and is equipped with a USB dongle that acts as an antenna to receive signals from the sensors
in the field, with which it communicates via the Z-Wave protocol.

3.4. Data collection
The collected data is stored in the DHOMUS database and then used for data analysis. The
dataset contains the energy consumption of smart homes with a data granularity of a quarter of
an hour. The data we use contains information from 10 houses representing a particular home as
an Energy Box (EB). Also, for the current scenario, we have six months of energy consumption
data for (EB1, EB2, EB3, EB4, EB5, EB6, EB9, EB10, EB11, and EB12) for each smart home
connected to the DHOMUS platform. However, each EB contains a different number of energy
meters, smart plugs, and smart switches. The most important parameters of the data sets can
be found in Table2.

Table 3 illustrates the smart homes for experimentation and sensors used for efficiently
monitoring the maximum energy consumption.

Table 4 presented the percentage energy meter data collection for six months (June to
November 2021) for all smart households. The data presented has a granularity of a quarter of
an hour, so for 24 hours, we have 96 observations when the sensors were working and sending
100% of the data correctly. We also counted the number of observations for all months to get
some numbers for Table 4. The data collection based on the numbers shows that the collection
and recording systems for EB1 worked well in the first four months of the trial compared to the
last two months. For EB2, data collection and recording are very poor as the system is switched
off for the first three months and hardly works for the next two months, i.e. September and
October, but 76% of the data is recorded in November. Subsequently, both the collection and
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Table 1: Sensor kits for the experimental demonstration

Sensor Make/Model Measured
magnitude

Data acquisition interval

Home Energy Me-
ter

Aeotec/
ZW095-C

.
Instant
Power (W)

The data acquisition reporting time
according to the technical specifica-
tion sheet ranges from 30 sec to 300
sec. However, using available pa-
rameters, we set the reporting inter-
val to 60 sec for our experimentation

Accumulated
energy
(kWh)

The sensor sends a report when it
detects a change in Watts of 10%

Smart plug Aeotec/switch
7

.

Instant
Power (W)

By default, there are no W thresh-
olds for the sensor to send a report.
A report is always sent every 600
seconds. However, in our case, we
have set the reporting time to 60
seconds using configuration param-
eters available in technical specifica-
tion sheet.

Accumulated
energy
(kWh)

By default, there are no accumu-
lated energy thresholds for the sen-
sor to send a report. A report is al-
ways sent every 600 seconds. How-
ever, in our case, we have set the
reporting time to 60 seconds using
configuration parameters available
in the technical specification sheet.

Table 2: Important Parameters of the Datasets

Parameter Definition Units
home id Energy Box associated with the single house None
Sensor Sensor associated with the appliance None
Timestamp date in datetime format year-month-day hour:minutes:seconds
sum of energy of
power

power measured by the integrated sensor on the quarter of
an hour is therefore energy expressed in Wh

Wh

delta energy energy detected by the sensor meter remains zero until a
consumption threshold dependent on the sensor is exceeded,
which can represented as Wh or kWh

Wh or kWh
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Table 3: Appliances Information for Smart Homes Under Study

Smart
Home

Energy
Meter

Dryer Computer
TV

Air
condi-
tioner

House
lighting

Dishwasher Washing
ma-
chine

Water
heater
and
heat
pump

Fridge Coffee
ma-
chine

EB1 1 1 4 3 1 1 1 1 x x
EB2 1 1 x 2 x 1 1 1 x x
EB3 1 x 1 x x 1 1 x x x
EB4 1 x x 1 x 1 1 x 1 x
EB5 1 x 1 x x x 1 x 1 1
EB6 1 1 x 1 x 1 1 x 1 x
EB9 1 1 x 2 x 1 1 1 x x
EB10 1 x x x x 1 1 x 1 x
EB11 1 x x 2 x 1 1 x 1 x
EB12 1 x x x x 1 1 x 1 x

collection modules worked better for EB3, even in the month of July when 100% of the energy
consumption data was collected. Also, for EB4, 100% data was collected in July and 98% in
September, and satisfactory percentages for the other months. Also, for EB5, 100% and 96%
of data were recorded in July and August respectively, compared to 67% in June. For EB6, the
energy consumption is 0% in July, but 97% in August and September. For EB9, EB11, and
EB12, the data for the month of September is 98% and for EB9, the data for the month of
August is 97%. Moreover, for EB10, as for EB2, the data collection is very poor and the reason
for this type of reading is internet connection problems, so it is better not to consider the data
of these houses for the algorithm. Finally, we only consider houses with a good amount of data
collected from the smart meter.

Additionally, the involvement of the consumer is made possible by filling Smart Sim
questionnaire (SSQ) [15] for their energy uses besides installed sensors. Moreover, SSQ is
helpful for knowledge of unmonitored energy consumption when it is not possible to install
sensors everywhere in the home.
Overall, 38 different energy consumption devices are identified in the Smart Sim Questionnaire
and further subdivided into 9 sectors for better energy consumption disaggregation for
unmonitored sectors.

Table 4: Data Collected from Energy Meter

Month EB1 EB2 EB3 EB4 EB5 EB6 EB9 EB10 EB11 EB12
June 94% 0% 90% 73% 67% 0% 24% 9% 71% 70%
July 98% 0% 100% 100% 100% 56% 100% 26% 73% 56%
August 96% 0% 96% 96% 96% 97% 97% 25% 35% 97%
September 91% 29% 98% 91% 73% 97% 98% 98% 98% 98%
October 84% 37% 84% 84% 84% 84% 22% 84% 35% 83%
November 89% 76% 89% 81% 85% 88% 0% 14% 21% 14%

3.5. Data processing
Our algorithm requires monthly data, while the starting database had quarter-hour data for
about three months. For this reason it was necessary to pre-process the data to obtain a
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separate CSV file for each month and for each house.
The data collected from the Smart Sim questionnaire (SSQ) were arranged in nine sectors
according to the type of appliance. Table 5 presented the detail of each sector.For each month
we summed up all the appliances’ energy data and put in their specific sector.

Table 5: SS formation from SSQ

Energy Sector Appliances
Lighting Interior lighting , Outdoor lighting
EL kitchen Microwave oven, Oven, Grill, Stove
Refrigeration Fridge-freezer, Cockpit freezer, other fridge
Cooling Mechanical ventilation, Fan, Portable dehumidifier,

Cooling generator
EL heating Generator for heating
ACS ELElectric Domestic Hot Water
[Washing, cleaning, ironing, personal care] Washing machine, Dryer, Dishwasher, Washer dryer,

Vacuum cleaner, Electric broom, Iron without boiler,
Iron with boiler, Hairdryer, Hair straightener

Computer/Tv Desktop computer, Laptop, Modem, Inkjet printer,
Laser printer

Other Uses Heating auxiliaries, Cooling auxiliaries, ACS Produc-
tion Auxiliaries

3.6. Energy Consumption Disaggregation Algorithm
The main objective of this algorithm is to provide feedback to the consumer about the total
energy consumption of the house by monitoring only a few appliances. The proposed smart
homes energy consumption breakdown algorithm has been developed to analyse the energy
consumption in detail.The flow chart of the proposed algorithm is shown in Figure 2, while the
algorithm is shown in Algorithm 1.

Data : SH: is a csv file containing the monthly energy consumption data from the energy metres
and smart plugs installed for a specific energy sector. The appliance status is also included in
this file if the plug for the specified appliance is present AS =1 otherwise AS =0. For each
month we have different SH files. The structure of the file is shown in Table 7. SS: is a csv
file containing the data from the Smart Sim questionnaire for all energy sectors of the sampled
households. The structure of the file is shown in Table 7.

Equations and Parameters : The energy consumption of nine unmonitored sectors are
represented by S1, S2, ...S9 and disaggregation can be calculated using all the set of equations
employing in algorithm given below:

S1 = SS.Lighting −
∑

SH.Lighting (1)

S2 = SS.kitchen−
∑

SH.kitchen (2)

S3 = SS.Refrigeration− SH.Refrigeration (3)
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S4 = SS.Cooling −
∑

SH.Cooling (4)

S′
4 = SS.Cooling (5)

S5 = SS.ELheating −
∑

SH.heating (6)

S′
5 = SS.ELheating −

∑
SH.heating −

∑
SH.Cooling (7)

S6 = SS.ACSEL− SH.waterheather − SH.heatpump (8)

S7 = SS.[Washing, cleaning, ironing, personalcare]−
∑

SH.[Washing, cleaning, ironing, personalcare]

(9)

S8 = SS.Tv/Computer − SH.Tv/Computer (10)

S9 = SS.OtherUses = SH.OtherUses (11)

Table 6 presents the parameters used in the algorithm for energy disaggregation.

Table 6: Algorithm Parameters

Parameters Explanation
UN Unknown Energy
SHME Monitored Energy
SSUME Unmonitored Energy information
R Residue of SS - SH
Pk Monitoring Plugs

Working of Algorithm : In the first step, the algorithm takes two input files SS and SH, and
ensures that the files are from the same month. Then, in the second step, the differences are
calculated using a series of equations from 1 to 11 for each of the sectors available in the house.
This checks for seasonality, as the months of the year, affect the heating and cooling appliances
and their energy consumption. The next, third step is the most important for this algorithm,
which initially depends on two factors: the backlog of each unmonitored sector and the status
of the appliance. If the backlog for a specific sector is negative, the device status does not
contribute much and we set this specific unmonitored sector equal to zero because we have
more monitored energy consumption for this specific sector, or we can say that everything is
monitored and we could communicate this information to the user as SHME subdivision. Also,
in the case where the residue of energy consumption from step two is positive for a specific
unmonitored sector, the device status plays an important role in assigning the residue to the
disaggregation subdivision UN and SSUME. If all devices are monitored by sensors, e.g. for S1,
and the energy consumption reported by SS is higher, which is not possible, we can assign this
extra amount of energy to the UN subdivision. If not all devices of sector S1 are monitored,
but only a few sensors are available, we can add the extra amount of energy consumption to
the subdivision SSUME, i.e. there is a possibility that the extra energy is consumed by other
devices of this sector. Finally, step 4 shows the total disaggregation of the house, i.e. the
combination of the subdivisions SHME, SSUME, and UN. It can be concluded that with very
little information about the monitored energy consumption and with the help of SS it is possible
to get a complete knowledge of the energy consumption profile and provide feedback to the
consumer. The algorithm is written in Python 3.8 and uses various libraries.
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Algorithm 1: Energy Consumption Disaggregation

Step 1:INPUT datasetS[SS,SH]
Step 2:Evaluate Differences SS from SH using equations (1) -(11)
Seasonality Checks [for S4andS

′
4, S5andS

′
5]

Ifmonth >= 4 & month <= 9
UseS4, S5

else
S′
4, S

′
5

endif
Step3 : DisaggregationAllocation to Sectors
[SHME, (SSUME,UN ]
Checks based upon difference from Step2 and AS
C1 = R > 0 & AS ==∀Pk : UN ← R
C2 = R > 0 & AS ==¬∀Pk : SSUME ← R
C3 = R < 0 & AS ==∀Pk : SHME
C4 = R < 0 & AS ==¬∀Pk : SHME
Step4 : Output
Disaggregation = [SHME + SSUME + UN ]

Figure 2: Energy Consumption Desegregation Flow chart



ATI Annual Congress (ATI 2022)
Journal of Physics: Conference Series 2385 (2022) 012006

IOP Publishing
doi:10.1088/1742-6596/2385/1/012006

11

Example Scenario : To evaluate the functioning of the algorithm, an example is presented
to explain the disaggregation of energy consumption. The smart house under consideration is
equipped with a smart meter that is responsible for measuring the total energy consumption of
the house. In addition, three [TV, dishwasher, washing machine] smart sockets are installed in
the same house for specific measurements, which are aggregated for a specific energy consumption
sector, as mentioned earlier. Furthermore, an important parameter of the disaggregation
algorithm is the data provided by the consumer on SS for the same house and for a whole
year.

Table 7: EB-3 Summarized Monitored and Unmonitored from dataset

SH kWh SS
Meter 164.34 AS Enerfy Sector September
Meter FV 0 0 Lighting 5
Conditioner 0 0 EL kitchen 11
Switch Con-
ditioner

0 0 Refrigeration 12

Dishwasher 9.16 1 Cooling 0
Fridge 0 0 EL heating 0
Fan heater 0 0 ACS EL 0
Coffee ma-
chine

0 0 Washing, cleaning, iron-
ing, personal care

73

Vacuum 0 0 Computer / TV 31
Iron 0 0 Other Uses 6
TV 27.48 1
Thermomix 0 0
Microwave 0 0
Washing ma-
chine

9.50 1

Lamp 0 0
Kitchen 0 0
Dryer 0 0
Water heater
and heat
pump

0 0

Oven 0 0

Table 7 illustrates the components from the datasets SH and SS for the month of September,
that is stored in CSV files used as algorithm input. In this example, SH displays the energy
consumption monitored by three separate plug-in devices. In addition, the device status is an
essential algorithm parameter. If a certain device is present during the monitoring period, a 1
is assigned; otherwise, a 0 is assigned. The other data set file comprises the questionnaire data
that reveals the energy usage of a certain sector.

The results of our method are shown in Table 8, which contains all of their specifics. In
general, three primary components must be accounted for in the output: the first is SHME,
which displays the total amount of energy consumed by three distinct appliances across two
energy sectors. Both the washing machine and the dishwasher come from the S7 sector, which is
responsible for washing, cleaning, ironing, and personal care. In addition, the amount of energy
used by a washing machine is 9.50 kWh, while the energy used by a dishwasher is 9.16 kWh.
The remaining information for this sector comes from SSUME, which indicated a total of 69.92
kWh.

Secondly, if there is more than one TV or computer in a given Home, the data must be
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Table 8: Energy consumption Disaggregation Monitored and Unmonitored

Final Disaggregation
SSUME SHME

kWh kWh
Lighting 6.43 Conditioner 0
EL kitchen 14.15 Switch

Conditioner
0

Refrigeration 15.44 Dishwasher 9.16
Cooling 0 Fridge 0
EL heating 0 Fan heater 0
ACS EL 0 Coffee ma-

chine
0

Washing, clean-
ing, ironing, per-
sonal care

69.92 Vacuum 0

Computer / TV 0 Iron 0
Other Uses 6.0 TV 27.48
UN 6.0 Thermomix 0

Microwave 0
Washing
machine

9.50

Lamp 0
Kitchen 0
Dryer 0
Water
heater and
heat pump

0

Oven 0
Total 164.34

combined to show only the total energy consumption of that computer/TV sector. However, in
this Home, we only have one TV and it consumes 27.48 kWh of energy. In the SH files, the
parameter ”AS =1” confirms that this sector is shown with all plugs. So the algorithm showed
0 kWh in SSUME, which means that everything has been monitored.

Additionally, Because there are no plugs available for the other areas of energy consumption,
all of the energy that is used must originate from an unmonitored portion of the output. The
Refrigeration sector use15.44 kWh of energy, the Lighting sector used 6.43 kWh, and the Kitchen
sector used 14.15 kWh of energy. In addition, the cooling and heating sector did not consume
any energy as ACS did, and the value of 6 kWh is unknown, which is the same as the value for the
other uses sector. Lastly, It can be observed that our algorithm provides us the information about
96.8 % of consumed whereas SSUME provides information on 68% of the energy consumed in
the Home. 28% energy presented by SHME subdivision by means of sensors and 4% information
comes from UN subdivision

Figure 3 shows a graphical representation of the energy use of EB-3 which further
demonstrated SSUME 68% disaggregation sectors in more detail where 4% energy consumed
is by the lighting sector. The kitchen sector and refrigeration sector consumed 9% of energy
followed by 47% for washing, cleaning, ironing, personal care sector and remaining 3% goes to
another use sector.
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Figure 3: Energy Consumption Desegregation

4. Results
The Algorithm is employed on different Homes for its performance and monthly feedback to the
consumer for their energy consumption patterns. However, here in this section, only a few are
presented.

Table 9: Energy Consumption Disaggregation EB-3

Energy Sectors Algorithm Re-
sults

Questionnaire Results

Lighting 3.9% 3.6%
EL kitchen 8.6% 8.0%
Refrigeration 9.4% 8.7%
Cooling 0.0% 0.0%
EL heating 0.0% 0.0%
ACS EL 0.0% 0.0%
Washing, cleaning,
ironing, personal
care

53.9% 52.9%

Computer / TV 16.7% 22.5%
Other Uses 3.7% 4.3%

monitored 28%
unmonitored 68.1%
unknown 3.8%

Table 9 presented the energy consumption disaggregation algorithm output compared with
the data acquired by the questionnaire. As discussed in the previous section, this EB-3 is
equipped with three plugs beside an energy meter. The Lighting sector of this home consumed
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3.9% of overall energy consumption, which have a marginal difference compared to figures
provided by the user during the filling of the questionnaire, which is 3.6%. Subsequently,
the kitchen appliance reported 8.6% of consumption compared to 8.0% of data from the
questionnaire. Furthermore, in the case of the Refrigeration sector, the difference of comparison
is 1.1 %, where the algorithm reported consumption of 9.4% of overall consumption. However,
cooling, heating, and ACS have 0% consumption for September. The washing, cleaning, ironing,
and personal care sector reported 53.9% from the algorithm, whereas 52.9% is extracted from
user information. The Computer/Tv sector energy consumption by the algorithm is 16.7% and
22.5% from the questionnaire, but an important factor needs to be discussed. The questionnaire
also approximated values, and the gap between these values could be reduced by employing
different machine learning models.

The results of the algorithm from Table 9 provide us with phenomenal energy knowledge that
we can improve energy knowledge from 28% to approximately 97%.

The output of the Energy consumption disaggregation algorithm compared to the data
collected through the questionnaire in Table 10 is presented for EB-12. This EB-12 has three
plugs in addition to an energy meter. This home’s lighting sector utilized 4.6 percent of total
energy usage, a slight variance from the 4.3 percent stated by the user while filling out the
questionnaire. Following that, the kitchen appliance indicated 16.1% usage vs 15.2%percent
from the questionnaire. Furthermore, 27.44% percent of energy is consumed reported by the
refrigeration sector of the algorithm, where the questionnaire results indicated the use of 16.3%
of total consumption. Afterward, algorithm results for cooling are 2.3% compared to 2.2%.
However, cooling, heating, and ACS all had zero percent usage for this home. There is a big
difference between Washing, cleaning, ironing, and the personal care sector. finally, It can be
discovered that our algorithm provides us the information about 85 % of consumed whereas
unmonitored sectors SS provide information on 44% of the energy consumed in the Home. 41%
energy is monitored by means of sensors but we have no information about 15%.

Table 10: Energy Consumption Desegregation EB-12

Energy Sectors Algorithm Re-
sults

Questionnaire Results

Lighting 4.6% 4.3%
EL kitchen 16.1% 15.2%
Refrigeration 27.4% 16.3%
Cooling 2.3% 2.2%
EL heating 0.0% 0.0%
ACS EL 0.0% 0.0%
Washing, cleaning,
ironing, personal
care

13.4% 40.2%

Computer / TV 19.5% 18.5%
Other Uses 1.6% 3.3%

monitored 41%
unmonitored 44%
unknown 15%

Table 11 presented the Energy consumption disaggregation comparison of home (EB-6) under
experimentation with data collected from the consumer of the home. In the energy sector
Lighting reported 6.9% consumption by means of the algorithm compared to 7.1% of information



ATI Annual Congress (ATI 2022)
Journal of Physics: Conference Series 2385 (2022) 012006

IOP Publishing
doi:10.1088/1742-6596/2385/1/012006

15

provided by the user. Likewise, the kitchen sector consumed 14.1% of the total energy according
to our developed algorithm. Moreover, the results of all other sectors can be seen in the table.
Lastly, 65% of energy consumption information is provided by the algorithm whereas only 12%
of the information comes from sensors which showed the productivity of the algorithm.

Table 11: Energy Consumption Desegregation EB-6

Energy Sectors Algorithm Re-
sults

Questionnaire Results

Lighting 6.9% 7.1%
EL kitchen 14.1% 14.6%
Refrigeration 7.1% 5.0%
Cooling 8.5% 8.8%
EL heating 0.3% 0.0%
ACS EL 0.0% 0.0%
Washing, cleaning,
ironing, personal
care

4.8% 38.5%

Computer / TV 23.8% 24.7%
Other Uses 1.5% 1.3%

monitored 12%
unmonitored 55%
unknown 33%

Figure 4: Energy Disaggregation Comparison

The energy disaggregation comparison of five homes is demonstrated in figure 4. Here, it can
be seen that EB-6 has the lowest SHME compared to other EB under experimentation, whereas
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EB-3 has the highest SSUME and, in the case of EB-11, zero UN. Moreover, the pattern of all
the homes is the same less SHME energy consumption and more SSUME, which seconds our
motivation that from less SHME to more knowledge of overall energy consumption with the
addition of SSUME and the subdivision SSUME is also further disaggregated as already shown
as an example in figure 3.

5. Conclusion
This paper proposed an energy consumption disaggregation algorithm based on the ILM
approach, which provides an essential service: energy monitoring, energy disaggregation, and
feedback for a household. The standout feature of the proposed algorithm is that it allows for
energy consumption for various energy utilities of homes with fewer sensors. The dataset used for
testing the algorithm is attained from our ongoing project. The comparison with state-of-the-art
is impossible due to the non-availability of studies employing such an algorithm, according to
our knowledge. The results of three different homes have been presented and compared with
consumers’ information, showing excellent algorithm performance with slight divergence. The
results of the algorithm for EB-3 provide us with phenomenal energy knowledge that we can
improve energy knowledge from 28% to approximately 97% compared to four other homes under
experimentation. Further work can be done to reduce the unknown sector values. By doing this,
energy information will be enhanced, narrowing the energy consumption gap between actual and
obtained consumption.
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