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Abstract

Airline efficiency growth is considered one of the key factors for aviation sustainability in
Africa and, in turn, for creating a successful relationship between aviation activities and
economic development in the continent. This paper proposes estimating the efficiency of
African airlines in the period 2010-2019 using a state-of-the-art stochastic frontier model
disentangling persistent, transient efficiency, and unobserved heterogeneity. We also examine
the impact of (i) ownership structure, (ii) political stability, and (iii) geographical location
exerts on both persistent and transient efficiency, and confirm the importance of the optimal
use of durable capital inputs for African airlines. We also find evidence of decreasing returns
to scale and of average levels of persistent and transient efficiency relatively low. On the
basis of these results, some policy implications are derived and discussed in the direction of
increased (i) liberalization and (ii) the presence of private capital in African airlines.

Keywords: Persistent and transient efficiency, African airlines, Stochastic frontier analysis

1 Introduction

It is generally agreed in the literature that the supply-side transportation infrastructure fos-

ters economic development and that this effect is greater the more solid and efficient is the

airline industry connected to it. Many studies provide evidence of the relationship between

air transport services and regional development. For example, air transport services proved to

positively influence (i) the growth of population and employment levels (Blonigen and Cristea,

2012; Green, 2007), (ii) tourist activities (Graham and Dobruszkes, 2019), (iii) agglomeration

economies (Rosenthal and Strange, 2001; Glaeser et al., 1992), (iii) foreign direct investment

flows (Fageda, 2017), and (iv) international trade (Button et al., 2015).
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This connection is crucial for Africa, which is the largest continent on earth, with many

landlocked countries, and poor road and railways infrastructures. Unfortunately, African airlines,

especially in Sub-Saharan Africa, notoriously suffer from a lack of efficiency due to several reasons.

They are relatively small, enjoy little economies of density and scope, face market instability and

lack of liberalization, are often subject to considerable political interference, and are characterized

by a lack of cooperation (Button et al., 2017, 2022). This explains why airline efficiency growth

is considered one of the main paths ahead for aviation sustainability in Africa and, in turn, for

creating a successful relationship between aviation activities and economic development in the

continent (ADBG, 2019).

A key factor toward economic development, especially in such a context of underdeveloped

aviation industry, is represented by policy interventions aimed at removing the conditions that

make airlines operate inefficiently. In this regard, Africa is lagging behind other regions in the

world like the US and Europe since the deregulation process is still far from being completed, as

discussed in detail in Section 3.

This paper proposes estimating the efficiency of African airlines in the period 2010-2019 using

a recently developed parametric method (Colombi et al., 2014, 2017) and examining the impact

of a set of possible determinants on the estimated scores. More knowledge about the efficiency

of the continent’s carriers and its determinants is expected to provide African governments

and policymakers useful information in improving the industry and consequently enjoying the

associated wider economic benefits, especially in the light of the current COVID-19 pandemic,

whose impact on African airlines has been really severe (UNECA, 2020).

The paper is organized as follows: Section 2 revises previous contributions on airlines effi-

ciency, Section 3 presents the main features of the African airline industry. Section 4 presents

the empirical model, while Section 5 describes the data and provides some descriptive statistics.

Section 6 shows our results, and Section 7 performs the diagnostic checks on the microeconomic

foundations of the estimated production function. Section 8 concludes the paper with some

policy implications.

2 Literature review

Since the 1980s the transportation economics literature studies airline performances with a focus

mainly on technical efficiency and total factor productivity (Scotti and Volta, 2017). Heshmati

and Kim (2016) and Yu (2016) provide a detailed review of the methodologies and the variables

used in this kind of studies. Traditionally, researchers are mainly focused on the factors affecting

efficiency and on how technical efficiency and productivity evolve over time (Good et al., 1993,
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1995; Oum and Yu, 1995; Alam and Sickles, 1998; Sickles et al., 2002). Some other benchmarking

studies investigate airline cost efficiency (Oum and Zhang, 1991; Oum and Yu, 1998; Heshmati

et al., 2018), productivity and cost competitiveness (Oum and Yu, 2012; Windle, 1991), or airline

profitability (Scotti and Volta, 2017).

Looking specifically at studies focused on technical efficiency (i.e., the subject of our paper),

they apply both Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA).

The properties of the two approaches are well known by researchers as well as their advantages

and disadvantages. Coelli et al. (2005) explains in detail that DEA, as a non-parametric and de-

terministic approach, does not require any assumption on the functional form of the production

function, but measurement errors and other sources of statistical noise are basically ignored. On

the contrary, SFA estimates the frontier parametrically thanks to the introduction of a random

component error term that captures statistical noise. This of course requires assumptions (i) on

the functional form of the production function under study, and (ii) on the statistical distribution

of the error term. From the methodological point of view, our paper belongs to the group of

parametric studies and applies a quite recent SF model that, as explained in detail in the method-

ology section, has two main advantages: (i) it avoids confounding time-invariant inefficiency with

unobserved heterogeneity, and (ii) it allows to disentangle persistent (long-run/time-invariant)

from temporary inefficiency (short-run/time-varying). To the best of our knowledge, the only

contribution distinguishing between persistent and transient efficiency applied to the airline in-

dustry is (Heshmati et al., 2018). However, this paper is focused on international airlines and cost

efficiency, and it applies an estimated method based on Filippini and Greene (2016) approach,

which is a simulated maximum likelihood estimation method. No African airlines are included in

the data set.1 The latter is less general than the approach adopted in this paper (Filippini and

Greene (2016) exploits the possibility to characterize the four random component model as a pair

of two-part disturbances in which each element of the pair has its own skew normal distribution)

that is based on Colombi et al. (2014, 2017); in a trade-off between statistical efficiency and

estimation time Filippini and Greene (2016) might be useful when the ML estimation method

becomes computationally demanding, i.e., for a long time horizon.2

Concerning the variables used, there are many. Looking at inputs, it is quite common to

observe studies focusing on labor and capital, sometimes combined with material or energy. It

is not uncommon also to find, among the inputs selected, monetary variables such as operating

costs or fuel expenses. In terms of output, the most used variables are passengers, freight, revenue

passenger kilometers, but also monetary variables such as revenues. Among the factors affecting
1They find that Asian airlines are more efficient that European and North American ones.
2Even if not focused on aviation, another interesting contribution estimating persistent and transient efficiency

in Africa is Adom et al. (2018), which studies energy efficiency for African countries.
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efficiency, the most considered variables are (i) ownership structure, (ii) fleet characteristics, (iii)

network characteristics, and (iv) business-model-related variables such as alliance membership

and being a low-cost carrier.

If we look more specifically at the papers on African airlines, apart from some contributions

that apply benchmarking analysis to samples including some major airlines in the world, thus

also some African carriers (e.g., Merkert and Hensher (2011); Aydın et al. (2020)), our work is

more connected to papers studying a sample made entirely of African carriers. To the best of

our knowledge, there are only two contributions in the literature of this kind. The first study is

Barros and Wanke (2015). The paper uses the Technique for Order Preference by Similarity to the

Ideal Solution (TOPSIS), namely a multiple-criteria decision-making method, to rank 29 African

carriers for the period 2010-2013. The inputs considered are the number of employees, the number

of aircraft (as a proxy for capital), and the operating costs. The two output variables used are

revenue passenger kilometers and revenue tonne-kilometers. The authors also perform a second-

stage analysis based on neural network techniques, where they consider as contextual variables

some business characteristics (e.g., age of the company and public ownership), network size

(number of domestic, intra-African, and international destinations), and the fleet mix in terms

of aircraft models. The authors’ results show an average low-efficiency score. They also find a

positive impact of public ownership on efficiency scores suggesting a linkage between performance

and protectionist practices adopted by African governments. Other variables impacting efficiency

are network size (the larger the higher the efficiency) and fleet mix. In a second contribution,

Barros and Wanke (2016), the same two authors use a two-stage network DEA approach to

analyze the same sample. The novelty there is that the production process of African carriers is

decomposed into a first stage, where employees and planes are the input variables used to produce

destinations (the efficiency of this sub-process is called “network efficiency”), and a second one,

where destinations are used to produce financial revenues (the efficiency of this second sub-

process is called “operational efficiency”). The resultant efficiency scores exhibit a little variation

over time at the airline level, and the average efficiency scores are confirmed low, with revenue

efficiency lower than network efficiency. Concerning the environmental factors, neural network

results show that public ownership plays a negative role in network efficiency, but a positive

role in revenue generation. Years in business are found to affect positively efficiency, while the

relevance of airline fleet mix varies depending on the specific aircraft model considered.

Finally, some papers focus on South Africa only, namely Mhlanga et al. (2018); Mhlanga

(2019, 2020). Despite the reduced sample, in terms of both geographical focus and size (few

airlines and a limited number of years), these papers highlight once again the relevance of the

ownership structure as a driver of efficiency. More specifically, Mhlanga et al. (2018) and Mhlanga
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(2019) benchmark ten airlines in Southern Africa (period 2012–2016). They combine DEA to a

second stage analysis based on a two-way random effects GLS and also Tobit regression. Some of

the main results are as follows. State ownership negatively affects technical efficiency as a result

of governments’ veto power over their airline’s commercial choices. Also, LCCs are found more

efficient as well as airlines with bigger aircraft and higher load factors. Mhlanga (2020) analyze a

sample of nine South African airlines in the period 2015-2018 with a bootstrapped meta-frontier

approach. The paper confirms that airline ownership (together with aircraft size and airline cost

structure) significantly affects technical efficiency. More specifically, public ownership is found

to be negative for efficiency in line with the previous contribution.

Beyond the fact that the African airline industry is understudied compared to more advanced

industries like the US and the European ones, and this is especially true for efficiency studies, the

main contribution of our paper is as follows: (i) we to study African airline efficiency and some

of its determinants through a quite advanced methodological parametric approach, never applied

before to the African airline industry, and (ii) our period of the analysis is much longer compared

to the existing literature on African airlines. This is why we believe that our findings may

have interesting managerial and policy implications contributing to the sustainability of African

aviation and reinforcing the relationship between airline services and economic development in

African countries.

3 The African airline industry

It is generally recognized that Africa has a great potential for the development of air services. The

continent represents a significant portion (about 15%) of the world’s population, spread in more

than 50 countries, and its geography is characterized by huge distances and increasingly by large

urban concentrations (Lubbe and Shornikova, 2017; Button et al., 2015). Despite that, African

continental airline markets are quite small (only about 2% of global traffic) and concentrated in

a few countries, with most of the airlines that are locally oriented and inefficient (Button et al.,

2022). More specifically, African airlines are small, especially in Sub-Saharan Africa, benefit little

from economies of scope and density, and, on top of that, are often subjected to considerable

political interference. As a result, market instability due to the unprofitability and inefficiency

of African carriers is really an issue in an industry that regularly observes airlines entering and

leaving the market.

The current COVID-19 pandemic has made things even worse, with Africa constantly lagging

behind other regions in terms of vaccine rates. As highlighted by IATA (2021), the pandemic

(i) affected tourism and business travel volumes bringing an increase in airlines’ losses from -2.7
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$/passenger in 2019 to -44.6 $/passenger in 2020, and slowing down the recovery (current IATA

predictions for 2022 indicate a -21.8 $/passenger).

Apart from the COVID-19 pandemic, there are many reasons on the basis of the bad economic

performances of African airlines. First, is the lack of liberalization. Globally, the liberalization

of air passenger services began in the US (Airline Deregulation Act., 1978) followed by Europe

(about a decade later). With a little delay, also in Africa, some efforts were made over the last 25

years toward the creation of a multilateral air transportation common market: the Yamoussoukro

Decision (YD) in 1999 was the most significant agreement in this direction (Scotti et al., 2017).

YD aimed at liberalizing international air travel within Africa, but it did not prove very successful

(Lubbe and Shornikova, 2017; Njoya, 2016). As a result, new efforts were required and, in 2018,

they materialized in the foundation of a Single African Air Transport Market (SAATM) aimed

at accelerating the full implementation of YD (Button et al., 2022). SAATM is currently under

implementation, even if still hindered by factors such as the culture of non-prioritization of

aviation, and protectionist policies (InterVISTAS, 2021). Other traditional reasons behind the

poor performances of African airlines are high (compared to the rest of the world) costs in

terms of both fuel and airport charges, old aircraft fleets, the lack of a skilled labor force, the

competition from extra-African carriers (European and Gulf airlines), and political instability.

The extreme relevance of these difficulties is not limited to the aviation industry, but to

economic development in general. The existing literature indeed agrees on the positive impact

exerted on economic growth by aviation development, with benefits observable in terms of trade

volumes, income, employment, firm localization, and industrial relations (Manello et al., 2022).

The issue of airline efficiency is therefore extremely important in the African context, and

this is even truer in the current context of crisis. African governments appear more and more

aware of the wider economic benefits associated with an improved aviation industry and have now

more than ever an important opportunity to rethink the future of their inefficient/unprofitable

carriers. Indeed, only the most efficient and profitable airlines have a chance to withstand the

current tide of passenger restrictions (Thomas, 2020). Hence, identifying efficient airlines and

also understanding the drivers of efficiency, we believe, are timely and useful exercises on which

the African airline industry can build its own future foundation.

4 Empirical model for African airline efficiency

Our aim is to estimate a production function for African airlines using an SFA with transient

efficiency, persistent efficiencies, and unobserved heterogeneity, as in Colombi et al. (2014), and

in Colombi et al. (2017). We consider the following airline production frontier model:
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yit = β0 + x′
itβ + bi − uit − ui + eit, (1)

where the index i, i = 1, 2, . . . , N , denotes the N African airlines in the sample, and t, t =

1, 2, . . . , T, the T periods at which each airline is observed. The dependent variable yit is the

logarithm of airline i’s annual number of passengers in period t, x′
it is a row vector of p inputs

involved in airline i’s production process and β is a column vector of p unknown parameters.

The random-airline effect bi is capturing unobserved heterogeneity, uit is a non-negative random

variable for transient efficiency of airline i at period t, ui is a non-negative random variable for

persistent inefficiency, and eit is a normal random variable representing the exogenous shock

affecting airline i’s number of passengers in period t. We assume that:

(A1) for i = 1, 2, . . . , n, the random variables ui, bi and uit, eit, t = 1, 2, . . . , T, are independent

in probability. This means that, for each airline, the random components in the model (1)

are independent;

(A2) the random vectors (bi, ui, ui1, ui2, ..., uiT , ei1, ei2, ..., eiT ), i = 1, 2, ..., n, are independent in

probability, i.e., the errors are independent among airlines;

(A3) for i = 1, 2, . . . , n, ui is a normal random variable, with null expected value and variance

σ2u, left-truncated at zero, and bi is a normal random variable with null expected value and

variance σ2b ;

(A4) for i = 1, 2, . . . , n, and t = 1, 2, ..., T , uit is a normal random variable, with null expected

value and variance σ2ut, left-truncated at zero and eit is a normal random variable that has

null expected value and variance σ2e ;

(A5) for i = 1, 2, . . . , n, and t = 1, 2, ..., T , x′
it are row vectors of exogenous variables.

We assume that:

vit ∼ N(0;σ2v);ui ∼ N+(µ;σ2ui), uit ∼ N+(ϱ, σ2uit), bi ∼ N(ν;σ2b )

i.e., the random shock component has a normal distribution with mean 0 and variance σ2v , the

persistent inefficiency random component has half-normal distribution with variance σ2ui, the

transient inefficiency random component has half-normal distribution with variance σ2uit, while

the unobserved heterogeneity random component has mean-variance σ2b . The deterministic com-

ponent given by the terms β0 +x′
itβ is the production function mapping the inputs transformed

in each airline to move passengers. The components uit have expected values µit =
√

2
πσ

2
uit that
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depend on a set of variables (exogenous determinants of the transient inefficiency) through the

linear model:

ln(σ2uit) = γ0 + z′
itγ, (2)

where ln(σ2uit) is the logarithm of the transient inefficiency variance, z′
it is a row vector of q

exogenous determinants of transient inefficiency and γ is a column vector of q unknown param-

eters. Moreover, the persistent inefficiency components ui have expected value µi =
√

2
πσ

2
ui that

depends on exogenous determinants through the following linear model:

ln(σ2ui) = δ0 +w′
iδ, (3)

where ln(σ2ui) is the logarithm of the persistent inefficiency variance, w′
i is a row vector of q′

exogenous determinants of transient inefficiency and δ a column vector of q′ parameters.3

We fit model (1) with the additional equations (2)–(3) for the determinants of efficiencies

under two functional specifications: (1) Cobb-Douglas; (2) translog.4 The equation representing

the translog airline production function is:

ln(yit) = β0 +

p∑
k=1

βk ln(xit) +
1

2

p∑
k=1

p∑
j=1

βkj ln(xkit) ln(xjit) + bi − uit − ui + eit (4)

where βkj = βjk. The translog production function collapses to the Cobb-Douglas production

function if βkj = 0, j = 1, 2, ..., p, k = 1, 2, 3, ...p. One of the main assumptions of model 1 is that

unobserved heterogeneity is uncorrelated with the frontier regressors. In order to have control

over this assumption, we implement the Mundlak (1978) approach. We add to Eq. (4) the means

over time of the time-varying input variables: xi = 1
T

∑T
t=1 lnxit, so that we can rewrite Eq. (4)

as follows:

ln(yit) = β0 +

p∑
k=1

βk ln(xit) +
1

2

p∑
k=1

p∑
j=1

βkj ln(xkit) ln(xjit)

3As shown by Colombi et al. (2014), Proposition 1, under assumptions (A1)–(A5), the vectors of outputs yi =
(yi1, yi2..., yiT )

′, i = 1, 2, ..., n, are independent and have a Closed Skew Normal (CSN) density. The maximization
of the log-likelihood of model (1) and ML estimators are discussed in Colombi et al. (2014), Proposition 2, who
also showed (Proposition 3) how to compute the efficiency scores E[exp(−ui)|yi)] and E[exp(−uit)|yi)] for each
airline i and period t.

4The Cobb-Douglas production function is popular and easier to estimate (fewer parameters involved). How-
ever, it has low flexibility since the input elasticity of substitution (i.e., the ratio between two input and their
marginal products) is fixed.
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+

p∑
k=1

δkxki + bi − uit − ui + eit (5)

We test the joint significance of the Mundlak terms on the basis of a likelihood ratio test.

The Cobb-Douglas production function has output-input elasticities given by the first-order

coefficients, i.e., ϵy,k = βk. In the translog production function these elasticities depend instead

on the level of the inputs, i.e., ϵy,k = βk +
∑p

j=1 βkj ln(xjit).

Other popular SF models for panel data are nested in model 1. For instance, the time-

invariant Pitt and Lee (1981) model is obtained by dropping the random components uit, and

bi from (1). Since Colombi et al. (2014) persistent and transient inefficiency SF model is based

on random components, we will compare its estimates with those obtained with a true random

effect (TRE) SF model (Greene, 2005b,a), which is obtained by dropping the random term ui

from model (1).

In the available data, each airline has two inputs, labor, and capital; labor is given by the

annual number of employees (pilots, flight attendances, ground); capital is related to maximum

passenger transport capacity, i.e., the seats available in the airline’s fleet. This measure of capital

incorporates the size of the aircraft in the airline fleet, information that is instead ignored by

contributions using simply the number of planes. Regarding the possible determinants of the

two inefficiency terms in (2)–(3), we investigate the impact on airlines efficiency of three factors:

airline ownership, the political stability of the country where the airline headquarters is located,

and whether the headquarter is in a sub-Saharan country. Ownership is a dummy variable equal

to 1 if the local government has more than 50% of the airline shares: in this case, we classify

the airline as one with public ownership. The country’s level of political stability is a continuous

variable given by a World Bank index. Africa is a continent where coups d’état frequently occur,

and where political systems are often very fragile, not guaranteeing stability for government

formations. These factors may not favor airline efficiency strategies, in favor of protectionism.

Last, sub-Sahara is a dummy variable equal to one if the reference country for the airline is

located South of the Sahara desert. Sub-Saharan countries differ from Egypt, Libya, Algeria,

Tunisia, and Morocco, which are on the Mediterranean sea, and benefit from greater possibilities

of exchange with the European countries, especially those of Southern Europe. This could have

an effect on airlines in this African region seeking efficiency.

Therefore we implement the following econometric model (1) to estimate the production

frontier and the efficiency of African airlines:

log(PAX)it = β0 + β1 × log(K)it + β2 × log(L)it + δ ×BETWEENit + bi − uit − ui + eit (6)
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log(ui) = δ0 + δ1 × PUBit + δ2 × POLSTABit + δ3 × SUBSAHARAi (7)

log(uii) = γ0 + γ1 × PUBit + γ2 × POLSTABit + γ3 × SUBSAHARAi (8)

where (6) is the Cobb-Douglas production frontier, which can be augmented by including the

Mundlax correction terms log(K)it, log(L)it, and by adding the quadratic and interaction terms

for the translog specification (i.e., (log(K)it)
2), (log(L)it)

2), log(K)it× log(L)it). The production

frontier has a potential shifter, BETWEENit, which is a variable indicating the centralization

of airline i’s route network in Africa in period t. Between centralization might capture how close

is an airline network to a H&S structure; hence it may have an impact on traffic. Indeed, a

H&S system serves more destinations than any alternative network system, being equal to the

number of routes operated, and has implications in terms of market size (Button, 2002; Cook

and Goodwin, 2008). For these reasons, we believe it has to be incorporated into the analysis as

a potential shifter of the output level.

5 The data

Data on the African aviation market are less comprehensive than for US and European, or

even Asian, markets. To estimate the model presented in Eqn. (6)–(8) we build a new data set

regarding carriers members of the African Airlines Association (AFRAA)5 for the period 2010-19,

i.e., 10 years. The data set relates to the major African airlines and is constructed from different

sources. Much of the data used here are from the AFRAA annual reports supplemented from

other official and website sources.6 The betweenness centralization variable is an index computed

starting from the Official Airline Guide (OAG), while other variables are obtained from different

sources (e.g., political stability is taken from the World Bank. The data mining process results

in a balanced panel data set including airline-year data of 17 major African carriers in 10 years

(i.e., 170 observations). We download all the annual reports released by AFRAA from 2011 to

20207 in order to get the number of passengers, employees, ownership, and fleet details. Then

we matched the fleet with the capacity of each aircraft from OAG to express the size of the fleet

(Kit) in terms of available seats. This measure provides a better estimate than simply counting

the number of aircraft because it takes into account also their size.
5The Association members represent over 85% of total international traffic carried by African airlines (AFRAA,

2020).
6We imputed missing data by interpolating the values of previous and following years and integrating data

from the Official Airline Guide (OAG).
7each report refers to the previous year data.
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Table 1 presents the descriptive statistics of our sample. According to AFRAA, on average

African carriers moved 2.8 million passengers per year (PAXit), ranging from 46,851 carried by

Asky Airlines in 2011 to almost 13 million by Ethiopian Airlines in 2019. The standard deviation

higher than the mean indicates that there is a relevant variation in size among African carriers.

The representative airline fleet consists of 4,592 seats (Kit), with a minimum of 185 seats and

a maximum of 23,855. Average employment is 7,217 people (Lit); again standard deviation is

rather high, the minimum is only 203 employees, the maximum 56,400. In the estimates, PAXit,

Kit, and Lit are mean scaled using the geometric mean to standardize the variables and reduce

the impact of possible outliers.

Betweenness centralization is the variable that captures the airline network structure. Net-

work measures are important indicators to describe the characteristics of air networks and are

currently used in different contributions (e.g., Ciliberto et al. (2019), Roucolle et al. (2020)). In

particular, centralization is a measure at the network level that is built by aggregating in a unique

index the centrality measures of all the nodes (airports) in an airline network. More specifically,

in the case of betweenness, an airport centrality is higher the higher the proportion of shortest

routes between pairs of airports on which the airport of interest acts as an intermediate stop.

For an airport i, betweenness centrality at time t, Cit, is computed as shown in eq. (9) for the

node i

Cit =
∑

j ̸=i ̸=k

ψi
jk

ψjk
(9)

where ψi is the number of shortest paths between j and k on which i acts as an intermediate

stop; ψjk is the total number of shortest paths between j and k. Betweenness centralization

is a measure of how much a network is centralized in its most central node. It is computed as

shown in eq. (10), where the numerator is the sum of the differences between the betweenness

centrality of the most central airport in the network and the betweenness centrality of all the

other airports in the network, while the denominator is the maximum theoretical value of such

difference in a network with N nodes, namely the one of a pure hub and spoke (star) network.

BETWEENit =

∑N
i=1C

∗
B − Ci

B

N − 1
(10)

BETWEENit is computed using the information on each carrier’s airport pairs extracted

from the OAG schedule analyzer.8 Betwenness centralization has an average equal to 0.83

(BETWEENit), it ranges from 0.34 of LAM Mozambique to 1 of Air Seychelles.9

8We consider routes having, on average, at least one flight per week in a year.
9Almost all flights of Air Seychelles originate or land in Seychelles International Airport.
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Variable Mean S.d. Min Max Unit Description
PAXit 2,772 2,907 47 12,631 ,000 # of annual passengers
Kit 4,592 4,951 185 23,855 number # of annual seats
Lit 7,217 12,066 203 56,400 number flight and ground personnel
BETWEENit .83 .18 .34 1 Index Centralization of airline network
PUBit .82 0 1 dummy Public control
POLSTABit 3.00 .79 1.62 4.41 Index Country political stability
SUBSAHARAi .76 0 1 dummy Sub-Saharan country

Table 1: Descriptive statistics

POLSTABit is the World Bank indicator that indicates Political Stability and Absence of

Violence/Terrorism and measures perceptions of the likelihood of political instability and/or

politically motivated violence, including terrorism. The variable is re-scaled to be positive and

greater than one, since it is subject to a logarithmic transformation, and its mean is equal to 3,

with a minimum equal to 1.62 (Ethiopia) and a maximum equal to 4.41 (Botswana).

PUBit is a dummy variable that takes value one if the majority of the ownership is public,

and 0 otherwise: in our sample, 82% of observations are related to a public ownership airline.

SUBSAHARAi is a dummy variable equal to 1 if the carrier is located in a Sub-Saharan coun-

try, and 0 otherwise. About 76% of African airlines in our sample are located in sub-Saharan

Africa. (Button et al. (2022) confirm that there is an important geographical separation in air

transportation between Mediterranean countries and those South of the Sahara desert, many of

which are landlocked.

6 Empirical results

The estimates of African airlines’ production frontier and determinants of inefficiency are re-

ported in Table 2, which is split into two parts. The top rows display the estimated coefficients

of the inputs K and L and of the production shifter (BETWEEN). The heading, in this case,

is given by the dependent variable, i.e., log(PAX). The bottom rows show instead the estimated

coefficients of the factors affecting inefficiency. Columns (1)-(4) present the results of Greene

(2005a,b) TRE model. In this case, only time-varying inefficiency is included, and the estimated

coefficients of PUB,POLSTAB, SUBSAHARA are reported at the bottom rows of Table 2.

Columns (5)-(8) show the estimates of Colombi et al. (2014) four random components SF model,

that considers both time-varying and time-invariant inefficiencies. The impacts of the factors af-

fecting time-invariant inefficiency are displayed above those related to time-varying inefficiencies.

Table 2 presents estimates both for the Cobb-Douglas production function (columns (1)-(2), and

(5)-(6)) and for the translog one (columns (3)-(4), and (7)-(8)). The difference in each pair of
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columns is given by the inclusion in the estimated model of the Mundlak correction variables

(log(K), log(L)). The likelihood-ratio test shows that the Mundlak correction variables are an

important improvement in the model fit under the translog functional form (the statistics are

19.1, and the p-value is 0.0001), but not with the Cobb-Douglas specification.
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Dependent variable: log(PAX)

Independent variables (1) (2) (3) (4) (5) (6) (7) (8)
log(K) 0.6184*** 0.5906*** 0.5542*** 0.4960*** 0.6332*** 0.5275*** 0.6241*** 0.5056***

(0.0501) (0.0733) (0.0593) (0.0536) (0.0147) (0.0531) (0.0188) (0.0522)
log(L) 0.1795*** 0.1423* 0.2458*** 0.0971’ 0.1723*** 0.1408*** 0.1325*** 0.0676***

(0.0404) (0.0602) (0.0418) (0.0521) (0.0249) (0.0425) (0.0701) (0.0185)
BETWEEN 0.1929 0.1670 0.1611 0.1911’ 0.1831*** 0.1688 0.2012 0.2082***

(0.1544) (0.1503) (0.1383) (0.1109) (0.0311) (0.1075) (0.2567) (0.0560)
log(K) 0.0099 0.0974 0.1513*** 0.0806***

(0.0996) (0.0753) (0.0698) (0.0210)
log(L) 0.0840 0.2517*** 0.0609 0.2203***

(0.0798) (0.0720) (0.0457) (0.0277)
(log(K))2 0.0521 0.1251 0.0712 0.0264

(0.1162) (0.0914) (0.0570) (0.0256)
(log(L))2 -0.0860 -0.2178*** -0.0490’ -0.2045***

(0.1024) (0.0747) (0.0256) (0.0295)
log(K)× log(L) 0.0746 0.0119 -0.0714) 0.0871***

(0.1906) (0.1624) (0.0547) (0.0210)
Constant 0.0625 0.0842 0.0629 0.2716** 0.1343*** 0.1846*** 0.6470 0.6029***

(0.1433) (0.1267) (0.1383) (0.1049) (0.0233) (0.0348) (0.1571) (0.0474)
Factors affecting inefficiency
Time invariant inefficiency

Determinants of inefficiency
PUB -5.7111*** -2.0045*** -2.0844*** -1.5571***

(0.0210) (0.0581) (0.0663) (0.0224)
POLSTAB 4.9012*** 1.5376*** 1.9592*** 1.4785***

(0.0285) (0.1427) (0.1524) (0.0342)
SUBSAHARA -5.5309*** -3.3612*** 2.3659*** 1.4037***

(0.0247) (0.1089) (0.0585) (0.0463)
Constant -14.8287*** -14.1103*** -3.5270*** -2.8551***

(0.0404) (0.0605) (0.1569) (0.0456)
Time-varying inefficiency

PUB -1.3531*** -1.3199*** -1.2298*** -0.8132* -1.3291*** -1.1088*** -0.9654*** -0.8918***
(0.3903) (0.3780) (0.3949) (0.3223) (0.0388) (0.1292) (0.1115) (0.0360)

POLSTAB 0.5786 0.2889 0.6885 -0.3701 0.4828*** -0.5984*** -0.7775*** -1.6218***
(0.8457) (0.8588) (1.1045) (0.5784) (0.0192) (0.0873) (0.2202) (0.0415)

SUBSAHARA 32.1002 35.9882 1.6258’ 1.9565*** 4.1870*** 1.7461*** 1.8896*** 2.3723***
(-676.9505) (1178.701) (0.9111) (0.3850) (0.0141) ((0.0725) (0.0214) (0.0168)

Constant -33.7183 -37.2849 -3.4391* -2.5153*** -2.0726*** 0.3770*** 4.1430*** -5.8795***
(-676.9487) (1178.702) (1.6796) (0.6110) (0.0292) (0.0370) (0.1761) (0.0333)

log-likelihood 1.0426 1.7039 -0.7545 8.7949 -0.2585 2.2373 4.7007 6.8082
Notes: variables with overbar are Mundlak corrections.
Legend: *** 0.1% significance level, ** 1% significance level, * 5% significance level, ’ 10% significance level

Table 2: African airlines production frontier and determinants of transient and permanent inefficiency
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The results on the deterministic part of the estimated translog SF models (column (8))

confirm that the four-random components approach provides better results. The estimated

coefficients are almost all statistically significant. First-order input coefficients logK, logL are

both positive and statistically significant, as well as those related to the Mundlak correction

variables logK, logL. The second-order estimated coefficient for labor input is negative (-0.2045)

and significant, while that of the input interaction variable logK × logL is positive (0.0871)

and significant. First-order input coefficients are positive and significant also with the TRE

Cobb-Douglas model (columns (1)-(2)), with the TRE translog model (columns (3)-(4), weakly

significant logL in column (4)), with the Cobb-Douglas four random components model (columns

(5)-(6)), and with the four random components model without Mundlak corrections.

Interestingly, the estimated coefficient of the production function shifter BETWEEN is

positive and significant with model (1) (column (8)), and equal to +0.2082. This confirms that

airlines with a H&S route network have higher passenger traffic. A positive estimated coefficient

for the network centralization is obtained with the four-random component Cobb-Douglas model

without Mundlak corrections.

By splitting airlines’ inefficiency into persistent (ui) and transient (uit), and by separating

unobserved heterogeneity from them, as in (Colombi et al., 2014), we obtain better results also

regarding the factors affecting the different inefficiency types, as shown in columns (5)-(8) of

Table 2, bottom rows. The TRE model identifies only that if the airline has public ownership the

transient inefficiency is lower, and sparse evidence (i.e., only with translog production function–

columns (3)-(4), and with weak statistical significance if there are no Mundlax corrections in the

production function) that if it is located in sub-Sahara the time-varying inefficiency is higher.

The four random component model identifies instead the following results. Public owner-

ship (PUB) always decreases inefficiency, both persistent and transient. This finding confirms

previous evidence on African airlines and is countertrend compared with what observed in more

developed air transport markets. Our evidence is even stronger than that provided in the existing

literature because the results show that both persistent and transient efficiencies are positively

affected by public ownership. This result must be interpreted carefully, especially in a policy

perspective. In line with Barros and Wanke (2015), we believe that this condition is linked to

protectionism and lack of liberalization, namely factors creating an unfavorable environment for

genuine competition. In other words, our results suggest that there are not the right conditions,

at the moment, for successful private investments in airlines and low cost carriers’ development,

i.e., for elements that proved to be extremely beneficial in more developed air transport markets.

Higher political stability (POLSTAB) improves time-varying inefficiency, while it increases

persistent inefficiency. This result may appear surprising in a way. As pointed out by Colombi
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et al. (2017), persistent inefficiency is mainly due to long-run moral hazard, e.g., obsolete equip-

ment that is not substituted. In air transportation may be due to an aircraft fleet not being

adequate to the demand, for which often the available seats are in excess, leading to low load

factors; or too much personnel. Since political stability is an indicator linked to government vi-

olent overturns, and since it is not rare in Africa the presence of political power concentrated in

the hands of a single person, and for a long time, this may lead to political interference in airline

employment levels and lower incentives in the efficient use of capital. On the contrary political

stability improves short-run inefficiency, providing incentives to limit short-run moral hazard be-

havior, e.g., inefficient supplier selection and sub-optimal resource allocation, or trial-and-error

processes in unknown situations.

Last, still with reference to our main results (column (8) of Table 2), airlines located in sub-

Sahara countries have both higher persistent and transient inefficiencies. As expected, airlines

closer to Europe benefit from higher influences and transactions with European countries, they

are also operating under an open sky agreement (e.g., Morocco and Tunisia signed agreements

under the European Neighborhood Policy, that aims to increase economic integration between

European Union members and surrounding countries (Bernardo and Fageda, 2017)), and this

higher level of competition provides incentives toward lower inefficiency levels.

From the estimated frontier we can compute the efficiency scores of each African airline. Our

main results are those shown in column (8) of Table 2; hence, we compute the efficiency scores

according to Colombi et al. (2014). Figure 1 shows the details and the dynamics of each airline’s

efficiency scores during the period 2010-2019, separated by persistent (red) and transient (blu)

efficiency.

Some interesting insights are derived from the analysis of efficiency scores. At least four

African airlines (i.e., Egyptair (MS), Precision Air (PW), Air Algérie (AH), and Royal Air Maroc

(AT)), while six airlines have persistent efficiency always lower than transient efficiency (i.e., Air

Namibia (SW), Air Seychelles (HM), Air Magadascar (MD), Air Mauritius (MK), Taag Angola

(DT), and Ethiopian Airlines (ET)): The other 7 airlines have years where persistent efficiency

is higher than transient one, and vice-versa. Regarding transient efficiency, some airlines are

improving it during the observed period, as shown by an upward trend in Figure 1: RwandAir

(WB), Air Seychelles (HM), Asky Airline (KP), Kenya Airways (KQ), Air Mauritius (MK),

Air Algérie (AH), Royal Air Maroc (AT), and Ethiopian Airlines (ET). Air Namibia (SW), and

Air Magadascar (MD) have instead decreased their transient efficiency levels over the observed

period, while all other African airlines have at the end of the period about the same transient

efficiency they had at the beginning.

Table 3 provides the details of the distribution of the efficiency scores by efficiency types and
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by different levels of the factors affecting airlines’ technical performances. The first two rows

of Table 3 show the descriptive statistics of persistent and transient efficiency scores: the latter

(80%) is on average higher than the former (72%). Transient efficiency, on average, is about 73%

at the beginning of the observed decade (2010), goes up to 85% in 2017, and stays more or less

at that level until the end of the period (0.86% in 2019). These are of course relative level of

efficiency, but indicate that diffused technical inefficiency is an issue that should be addressed

by proper policy interventions in the industry.

Based on the 1st and 3rd quartiles of the distribution we identify three categories of airlines’

technical performances: inefficient if the score is lower than the median, moderate if the efficiency

score is between the median and the 3rd quartile, and efficient if the score is higher than the 3rd

quartile. Regarding persistent efficiency, out of 170 observations, 46% are in the inefficient group

and are related to public airlines, while 18% are in the efficient group and are also with public

ownership. Private airlines have more observations in the efficient group. Countries with low

political stability (the raw index is below 0) have 21% of observations in the inefficient group,

21% in moderate efficiency, and 28% in the efficient category. Countries with high political

stability have airlines with 26.5% of observations in the inefficient group, and only 2% and 1% in

the moderate and efficient categories. Countries in the sub-Saharan part of Africa have 46% of

observations in the inefficient group, 18% in the moderate category, and only 12% in the efficient

one. Countries on the Mediterranean sea have airlines with more observations in the efficient

group (18%), and only 6% in the moderate category.

Regarding transient efficiency, 22% of public airlines’ scores are in the efficient group, as well

as in the moderate category; private airlines have more observations in the inefficient category

(12%, against 5% in each of the other two categories). If there is low political stability in the

countries airlines have 35% of observation in the inefficient group, 18% in the moderate category,

and 17% in the efficient one. Countries with high political stability have airlines with 15% of

observations falling in the inefficient group, 7% in the moderate category, and 8% in the efficient

one. Last, countries in sub-Sahara have airlines with 44% of observations in the inefficient group,

14% in moderate, and 18% in efficient categories.

7 Micro-foundations of estimated production function

In this Section, we check to what extent the estimated production function of African airlines

fulfills the well-known properties of Microeconomics production theory, and we draw some con-

sequences in terms of output elasticities, inputs substitutability, and if there are possible benefits

arising from production scale.
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Efficiency Min 1st quartile Median Mean 3rd quartile Max
Persistent 0.43 0.52 0.78 0.72 0.86 0.97
Transient 0.12 0.77 0.84 0.80 0.89 0.96

Dynamics of transient average efficiency
2010 2011 2012 2015 2017 2018 2019
0.73 0.72 0.82 0.78 0.85 0.86 0.86

Number of persistent efficiency scores in different categories
Public Private

Inefficient 80 (46%) 0 (0%)
Moderate 30 (18%) 10 (6%)
Efficient 30 (18%) 20 (12%)

Low POLSTAB High POLSTAB
Inefficient 36 (21%) 44 (26.5%)
Moderate 36 (21%) 4 (2.5%)
Efficient 48 (28%) 2 (1%)

SUBSAHARA = 0 SUBSAHARA = 1
Inefficient 0 (0%) 80 (46%)
Moderate 10 (6%) 30 (18%)
Efficient 30 (18%) 20 (12%)

Number of transient efficiency scores in different categories
Public Private

Inefficient 65 (38%) 20 (12%)
Moderate 37 (22%) 5 (3%)
Efficient 38 (22%) 5 (3%)

Low POLSTAB High POLSTAB
Inefficient 60 (35%) 25 (15%)
Moderate 31 (18%) 11 (7%)
Efficient 29 (17%) 14 (8%)

SUBSAHARA = 0 SUBSAHARA = 1
Inefficient 11 (7%) 74 (44%)
Moderate 16 (9%) 26 (14%)
Efficient 13 (8%) 30 (18%)

Table 3: African airlines’ efficiency scores by efficiency types and exogenous factors
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Figure 1: Persistent and transient efficiency in African airlines
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Figure 2 presents the distribution of estimated output elasticities of K and L in African

airlines, using the results from column (8) of Table 2, i.e., the SF model with two inefficiency

types and latent heterogeneity. Regarding the output elasticity of capital, all observations fulfill

the monotonicity condition between inputs and passengers. As shown in the right panel of

Figure 2, 103 observations out of 170 (61%), have positive output elasticity of labor, while

37% of observations have negative estimates. Regarding input quasi-concavity of the estimated

production function, it is necessary to compute the Hessian matrix of second derivatives with

respect to K and L, and check, for each observation, that such matrix is negative semi-definite. A

sufficient condition, in this case, is that the principal minor of the Hessian matrix is non-positive

and all the following minors alternate in sign. This condition is fulfilled in 154 observations out

of 170 (about 91% of the full sample). Hence we may argue that for a rather high proportion

of observations the estimated African airlines’ production frontier shows robust microeconomic

foundations.

Figure 2: Production function monotonicity condition in African airlines

Being the output and inputs of the estimated production function mean scaled, the first-order

estimated coefficients log(K), log(L) represent the overall output elasticity of capital and labor

respectively. This implies that a +1% in the capital (i.e., fleet capacity) gives rise to +0.51%

of passengers, while the same percentage increase in labor force generates an upward shift in

annual passengers equal to +0.07%. Figure 3 displays the distribution of the marginal product

of K and L in African airlines computed for each observation in our sample. While the marginal

product of capital is always positive, for some observations we have a negative marginal product

of labor (a similar pattern to that observed for output elasticity of labor). This evidence may be
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explained by the inefficient use of personnel, maybe due to political reasons.

Figure 3: Marginal products of K and L in African airlines

Figure 4 left panel presents the distribution of the estimated scale efficiency. On average it is

equal to 0.57, and the maximum estimated value of scale elasticity is equal to 0.78. This implies

that African airlines are operating under decreasing returns to scale, i.e., there is an amount of

extra capacity and additional use of labor in this continent’s air transportation sector.

Figure 4: Scale efficiency and MRTSit in African airlines

From the estimated production function we can get the marginal rate of technical substitution

(MRTSKL) between labor and capital in the African airlines. The right panel of Figure 4 displays

the distribution of the marginal rate of technical substitution between capital and labor in our

sample. The average MRTSKL is equal to -0.39, while the relative MRTSKL is equal to -0.20.

These averages imply that if an airline wants to increase the use of labor by one unit, it has to

21



reduce the use of capital by 0.39 units. The relative marginal rate of technical substitution is the

negative ratio between the two output elasticities, in this case with the labor elasticity at the

numerator. It means that if an airline aims at increasing labor by 1% it should reduce capital by

0.2%. The estimated MRTSKL is positive for 103 out of 170 observations (61%). The remaining

observations are not efficiently using the inputs, given that they exhibit inputs’ complementary

rather than substitutability. Last, we can analyze the estimated elasticity of substitution, by

computing the direct elasticity of substitution.10

Last, from the estimated production frontier we compute the direct elasticity of substitu-

tion.11 The average value in the observed sample is equal to 1.15; hence we observe, in the

representative African airline, that capital and labor are substitutes.

8 Conclusions

In this paper, we estimate the technical efficiency of 17 African airlines during the period 2010-

2019, i.e., before the crisis due to the COVID-19 outbreak. The production frontier is identified

by implementing a state-of-the-art stochastic frontier model (Colombi et al., 2014, 2017) that

has the error term decomposed into four random effect components: time-invariant persistent

inefficiency, time-varying transient inefficiency, time-invariant airline’s unobserved heterogeneity,

and random shocks. This model is compared with a nested model, defined by Greene (2005a,b)

as a true random effect model, in order to appreciate the additional insights regarding the eval-

uation of technical efficiency obtained when unobserved heterogeneity is not confounded with

time-invariant persistent inefficiency. To the best of our knowledge, this is the first paper that

investigates African airline technical efficiency using the four random component stochastic fron-

tier model. From the estimated production frontier each airline’s efficiency scores are computed,

separated between persistent and transient efficiency, and analyzed according to some possible

determinants of efficiency levels.

Based on this advanced model we obtain some interesting results. First, as in Barros and

Wanke (2015), we find that public ownership is a factor improving both persistent and transient

efficiency. This relation is different in studies regarding non-African airlines (e.g., Yu et al.

(2019)), it may be due to protectionism (see Barros and Wanke (2015)), and it opens a relevant

ground for policy intervention, leading to increasing the presence of private capitals in African

airlines. Second, we find that country’s political stability leads to higher transient efficiency but

to lower persistent efficiency. This result is interesting because persistent efficiency is usually

linked to the optimal use of durable inputs, difficult to adjust in the short run. On the contrary,
10In the case of 2 inputs the direct and Allen elasticity of substitution are equal.
11In the two inputs case the direct elasticity of substitution coincides with the Allen elasticity of substitution.
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better countries’ institutions seem to put pressure on airlines towards improvements in technical

performances over time. Third, Mediterranean countries have more efficient airlines and this

finding is reasonably due to both open sky agreements with Europe (e.g., Morocco), and more

intense competition coming from major European airlines. Fourth, we find that the output

elasticity of capital (i.e., total seats available in the airline fleet) is higher than that of labor

(+0.51% versus 0.07%). This, combined with evidence that the marginal product of capital is

always positive for all observations in our data set, confirms the importance of the optimal use of

durable capital inputs for African airlines. Last, we find evidence of decreasing returns to scale

and an average persistent efficiency equal to 78% and a mean of transient efficiency of 80%. This

combined evidence implies that efficiency in African airlines is low and that it is important to

implement policies to increase it.

Our results provide an empirical base, obtained with advanced econometric methods, for

improving the liberalization of air transportation in Africa. The process to liberalize the market

in the continent has been slow so far, and this has led to inefficiency, protectionism, and a gap in

the development of low-cost carriers, a business model that in North America, Asia, and Europe

has improved competition, reduced prices, increased connectivity and pushed the sector towards

a more efficient use of inputs. The full implementation of SAATM (and YD) has to be achieved

as soon as possible and more open sky agreements have to be signed, especially with Europe.

There are some possible extensions to the analysis performed in this paper: increase the

number of African airlines, increase both the output and the input variables, explore other

possible determinants of efficiency, and compare African and non-African airlines. They are left

for future research.
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