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Introduction to the Themed Section: ‘Applications of machine learning and artificial

intelligence in marine science’

Introduction
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Machine learning, a subfield of artificial intelligence, offers various methods that can be applied in marine science. It supports data-driven

learning, which can result in automated decision making of de novo data. It has significant advantages compared with manual analyses that

are labour intensive and require considerable time. Machine learning approaches have great potential to improve the quality and extent of

marine research by identifying latent patterns and hidden trends, particularly in large datasets that are intractable using other approaches.

New sensor technology supports collection of large amounts of data from the marine environment. The rapidly developing machine learning

subfield known as deep learning—which applies algorithms (artificial neural networks) inspired by the structure and function of the brain—is

able to solve very complex problems by processing big datasets in a short time, sometimes achieving better performance than human experts.

Given the opportunities that machine learning can provide, its integration into marine science and marine resource management is inevitable.

The purpose of this themed set of articles is to provide as wide a selection as possible of case studies that demonstrate the applications, util-

ity, and promise of machine learning in marine science. We also provide a forward-look by envisioning a marine science of the future into

which machine learning has been fully incorporated.

Keywords: analysis of underwater acoustics data, artificial intelligence, computer vision, data processing, deep learning, machine learning, sur-

veillance and inspection of fish catch, underwater image analysis

Background and motivation for this themed article

set
Artificial intelligence (AI) is increasingly being applied to all

kinds of data. Some applications of AI are face recognition

systems, natural language processing (e.g. speech recognition,

language understanding, language generation, and language

translation), disease detection systems, video surveillance, qual-

ity inspection in manufacturing, product design and creation,

robotics, and self-driving cars (Dargan et al., 2019). It is accu-

rate to say that AI is now everywhere, from our smartphones, to

web-browser, to cars.

Machine learning (ML), which is a subfield of AI, implements

dynamic models resulting in data-driven decisions. ML techni-

ques can be applied to high-dimensional (Fan et al., 2009),

nonlinear, complex, and big data. Further, the ML approach is

effective even in cases where the data are noisy (e.g. Frenay and

Verleysen, 2014; Xiao et al., 2015) or some identification labels

are missing (McKnight et al., 2007; Aste et al., 2015). ML is also

able to address the small sample size problem: so-called zero or

few-shot learning (Huo et al., 2019). What makes ML most ap-

pealing is its capacity to handle problems that are impossible or

too challenging for traditional approaches, which require many
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people and considerable time and resources to produce the de-

sired accuracy. In other words, ML provides not only effective

solutions, robustness, and accuracy but also efficiency as it can

rapidly process huge amounts of data.

Deep learning (DL), inspired by the structure and function of

the human brain, is a subfield of ML that involves the use of arti-

ficial neural networks (ANNs). ANN can take several forms, in-

cluding recurrent neural networks (Hochreiter and Schmidhuber,

1997) and convolutional neural networks (CNNs) (Krizhevsky

et al., 2012). Although ANNs are not new, their wide use only be-

came practical after the development of massively parallel graphi-

cal processing units (GPUs). GPUs provide computation power

and fast processing so that DL architectures running on GPUs

can analyse huge amounts of data quickly and efficiently. In 2012,

Krizhevsky et al. (2012) proved that CNNs can achieve a high

level of accuracy in image classification. The success of CNNs has

been extended to other computer vision tasks, for example object

localization (Ren et al., 2015; Redmon et al., 2016), semantic seg-

mentation (Long et al., 2015; Badrinarayanan et al., 2017), natu-

ral language processing for speech recognition (Hinton et al.,

2012), machine translation (Sutskever et al., 2014), optical char-

acter recognition (Goodfellow et al., 2014), face recognition and

verification (Taigman et al., 2014), object recognition (Xiao et al.,

2015), and so forth. All of these will, in due course, be applied to

data analysis in many branches of research, including marine

science.

Studying and sustainably managing marine ecosystems

presents special challenges because they are three dimensional, ex-

pansive, very dynamic, and complex. These characteristics require

data collection over a wide range of spatiotemporal scales, which

has been a major challenge (Godø et al., 2014; Janzen et al.,

2019). Rapid progress in sensors, information, and communica-

tion technologies now allows marine scientists to collect large vol-

umes of data at ever lower cost.

“Cruises now regularly return to port with terabytes of data,

high temporal resolution coastal time series contain billions

of measurements, and water samples are parsed into millions

of DNA sequences.” (POGOWorkshop, 2019)

Moored buoys support long-term monitoring and high resolu-

tion measurements of physical, chemical, and biological variables,

as well as acoustics, at fixed locations and transmit their data in

real-time via satellite uplink or cabled connection to shore (e.g.

Aguzzi et al., 2015; Van Engeland et al., 2019). However, they are

limited to monitoring depths from the seabed to the ocean sur-

face. Sophisticated and heavily instrumented towed observation

platforms, and autonomous drones, are collecting large volumes

of data of many types (e.g. De Robertis et al., 2019; Lombard

et al., 2019; Verfuss et al., 2019). However, the capacity of human

experts to filter, curate, and analyse all of these data is limited.

This is where ML and AI will be making greater-and-greater con-

tributions as methods improve and are implemented more

broadly.

ML can be applied to automate various routine tasks in marine

science. The prediction of ocean weather, for example detecting

sea surface temperature (Tanaka et al., 2004; Wu et al., 2006),

habitat modelling (Krasnopolsky, 2009; Thessen, 2016), model-

ling monsoons (Cavazos et al., 2002), forecasting sea level fluctua-

tions (Makarynskyy et al., 2004), wind and wave modelling

(Forget et al., 2015; James et al., 2018), and the detection of acute

situations, for example oil spill and other point sources of pollu-

tion (Kubat et al., 1998) are just some of the applications.

Continuous underwater video and acoustic surveillance systems

are rapidly developing tools to monitor marine life while com-

puter vision and ML techniques contribute by automatically ana-

lysing the massive data streams from these platforms (e.g. Fisher

et al., 2016). These data can already be used to extract higher-

level interpretations by automatically detecting and tracking fish

underwater (Spampinato et al., 2008), identifying fish species

(Joly et al., 2015; Siddiqui et al., 2018; Villon et al., 2018; Allken

et al., 2019), and estimating swimming trajectories and speeds

(Beyan et al., 2018). Eventually, it will be possible to use time se-

ries of these data streams to assess changes in species abundance

and distribution, environmental change, predator–prey relation-

ships, and more (Fisher et al., 2016). Baited cameras and camera

traps allow data to be collected without disturbing animals, which

produces high volumes of images that can be analysed by using

DL techniques (e.g. Tabak et al., 2019). There is also great poten-

tial to apply DL to automatic fish identification, counting, and

sizing on fishing vessels (e.g. Bartholomew et al., 2018).

In this context, the objective of this themed set of articles was

to bring together contributions on the broad theme of the appli-

cations of AI, ML, DL, and advanced data systems (e.g. block

chains) to research, monitoring and management of marine

organisms and ecosystems. We sought contributions on the fol-

lowing topics, among others,

Automatic marine ecosystem monitoring based on visual

and/or acoustic data;

Automatic fish detection;

Automatic coral reef state detection (e.g. health, dead/

alive);

Underwater measurement of fish length;

Automatic fish counting, for example to analyse the effect

of global warming;

Automatic fish tracking (e.g. swimming speeds and

trajectories);

Automatic fish species classification/recognition/

identification;

Characterizing interactions between fish (e.g. predator–

prey relationships);

Fine-grained automatic object recognition in underwater

visual data (e.g. substrate classification, plankton);

Applications of block chain technology/systems;

Automatic detection/classification of acoustics produced by

marine animals (e.g. whales, dolphins, and fish); and

Automatic systems for fisheries management.

We received 30 submissions in response to the call for papers.

The 15 that made it through the peer review process are described

below. The articles that appear in this themed set, and the many

relevant articles that they cite, demonstrate that AI is already a

very helpful tool in a wide variety of applications in marine

science.

The articles in this theme set
With the exception of Semmar and Vaz-dos-Santos (2019), Liu

et al. (2020), and Proud et al. (2020), all of the articles present

methods based on DL (mainly CNNs), or at least mention the

advances in DL and its great potential. The articles can be catego-

rized in terms of (i) the environment that has been examined,

1268 C. Beyan and H. I. Browman
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that is unconstrained underwater (Mahmood et al., 2019; Salman

et al., 2019), observing fish catch on fishing trawlers (French

et al., 2019; Garcia et al., 2019; Tseng and Kuo, 2020), fishing ves-

sels (e.g. Lu et al., 2019), and fish caught in a box (Álvarez-

Ellacurı́a et al., 2019); (ii) the type of marine organisms investi-

gated, that is fish (Álvarez-Ellacurı́a et al., 2019; French et al.,

2019; Lu et al., 2019; Malde et al., 2019; Probst, 2019; Salman

et al., 2019; Brautaset et al., 2020), lobster (Mahmood et al.,

2019), and plankton (Li et al., 2019; Campbell et al., 2020); (iii)

the type of data used, that is images (Álvarez-Ellacurı́a et al.,

2019; French et al., 2019; Garcia et al., 2019; Lu et al., 2019;

Mahmood et al., 2019; Malde et al., 2019; Salman et al., 2019;

Campbell et al. 2020; Lu et al., 2020; Tseng and Kuo, 2020) and

video or audio (Brautaset et al., 2020; Proud et al., 2020). These

articles are summarized below.

Malde et al. (2019) review recent developments in ML, mainly

DL, and stress the opportunities and challenges associated with

integration of DL into marine science. Probst (2019) focuses on

how blockchains, data mining and AI can improve trust between

producers, wholesalers, retailers, consumers, management au-

thorities, and scientists by increasing transparency and availability

of information throughout the supply chain. It is claimed that

these digital technologies can make the flow of money associated

with the global stream of seafood products more visible and

transparent.

Salman et al. (2019) propose a method that relies on region-

based deep CNNs to detect freely moving fish in unconstrained

underwater environments. Motion images obtained by applying

Gaussian Mixture Models (Stauffer and Grimson, 1999; Zivkovic

and Heijden, 2006) and the optical flow method (Beauchemin

and Barron, 1995) are combined with raw greyscale video images.

The resulting three-channel image is input to a CNN model,

which detects fish. The proposed method was tested on two data-

sets composed of 42 493 and 1328 labelled fish and produced a

state-of-the-art performance for underwater fish detection. The

experimental analysis was performed on videos that included sev-

eral real-world challenges such as blurred images, complex and

dynamic backgrounds, crowded scenes, and luminosity changes.

Mahmood et al. (2019) also focus on automatic underwater im-

age analysis, although the focal species was western rock lobster

(Panulirus cygnus). The method proposed by Mahmood et al.

(2019) is also based on DL. The authors note that detection of the

rock lobster faces the challenge of having little annotated data

available. To handle this, a synthetic dataset was generated that

was used to fine-tune the state-of-the-art object detector,

YOLOv3 (Redmon and Farhadi, 2018), for detection of rock lob-

ster. Unusually, the individual body parts rather than the whole

animal were synthesized. YOLOv3 was trained using the synthetic

data only and the resulting model was tested on real-world

images. This training scheme showed significantly improved

results compared with using real-world images in training and

testing. Mahmood et al. (2019) highlight the fact that, for many

marine animals, the amount of labelled data is still limited.

Despite that, they demonstrate that DL technology can be effec-

tive even when the amount of data available is limited.

Lu et al. (2019) propose a method that models the images of

fish on the decks of fishing vessels to identify them to species. The

species included in their study were albacore (Thunnus alalunga),

bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus alba-

cares), blue marlin (Makaira nigricans), Indo-pacific sailfish

(Istiophorus platypterus), and swordfish (Xiphias gladius). A pre-

trained VGG-16 model (Simonyan and Zisserman, 2015) was

fine-tuned for fish species identification and showed a high over-

all accuracy. Besides the quantitative results, the image regions

detected as informative for the classification task were also char-

acterized. Performing such qualitative analysis is important be-

cause it provides an explanation and interpretation of the

function of the trained CNN model. Another DL-based method

applied to fish catches, with the aim of measuring fish length au-

tomatically, is presented by Álvarez-Ellacurı́a et al. (2019).

Conventionally, fish lengths have been manually calculated for a

small number of randomly selected fish. The method proposed

by these authors first applies Mask R-CNN (He et al., 2017) to

the images of European hake (Merluccius merluccius) displayed in

boxes (containers used at points of sale holding many fish inside)

to segment the fish heads. Image segmentation is the process of

partitioning an image into multiple segments (e.g. image objects)

that are composed of sets of pixels. A statistical model is then

used to estimate the total fish length from the length of the seg-

mented fish heads.

French et al. (2019) developed a computer vision system

designed to monitor and quantify the fish that are discarded on

fishing trawlers. The system is accurate and robust even when the

orientation of the fish is variable, when there are occlusions

among fish and when there are occlusions in the working area

(e.g. from fishers processing the catch). The instance segmenta-

tion (the task of detecting and delineating each distinct object of

interest in an image) component is based on separate Mask R-

CNN models (He et al., 2017), a different one for each conveyor

belt. The segmented fish are passed to a CNN-based species classi-

fier. The system was evaluated in four different settings: (i) using

only the research samples composed of a large number of training

samples, uniform lighting, uniform appearance, and less occlu-

sions. This setting provides an upper bound for the performance

of the system; (ii) using only the commercial samples such that

training and testing samples are considerably fewer but the condi-

tions are more challenging than the previous scenario, that is

resulting in worse performance; (iii) applying leave-one-belt-out

cross validation such that training was applied on samples from

some commercial belts and the research samples, whereas testing

was performed using samples from a never seen commercial belt.

This is the case that is closest to the real-world scenario; and (iv)

training on research samples and testing on commercial samples.

This is the most challenging scenario for a classifier because of

the domain gap (the situation that arises when the data distribu-

tion across different domains are dissimilar). However, it is also

the most ideal scenario to prepare training data because little ef-

fort is required for annotation. Additionally, a comparison be-

tween the species identification component and human experts

was conducted. Human experts achieved a mean class accuracy of

74–86%, whereas the DL classifier achieved �58%, which is

slightly better than the poorest human expert.

Garcia et al. (2019) also present a method to perform auto-

matic fish segmentation and fish size measurement, although they

use stereo images acquired using an imaging system placed in the

trawl. Assuming that stereo imaging can increase the robustness

and accuracy of fish length measurements (French et al., 2019), a

Mask R-CNN model (He et al., 2017) is used to localize and seg-

ment individual fish in an image. Unlike French et al. (2019), the

proposed pipeline applies a preprocessing step, which tries to re-

duce domain gaps that might arise from, for example those

resulting from variability in the background illumination and

Machine Intelligence era in marine science 1269
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differences in appearance of the fish in different datasets.

Additionally, a post-processing step, which performs a gradient-

based boundary estimation given the Mask R-CNN’s results as

the inputs, is applied to provide more accurate boundaries. The

proposed fish localization pipeline performs well even in highly

cluttered images containing overlapping fish.

Tseng and Kuo (2020) propose an approach for pre-screening

harvested fish in videos from electronic monitoring systems

(EMS). Using a Mask R-CNN model (He et al., 2017), the har-

vested fish in the frames of the EMS videos are segmented from

the background. The fish are counted using time thresholding (to

remove false-positive detections) and distance thresholding (if

the distance is less than a threshold the candidate fish identified

are considered the same in order to avoid recounting the same

fish in sequential frames). Subsequently, the types and body

lengths of the fish are determined using the Mask R-CNN mod-

el’s confidence score. The videos were acquired under uncon-

trolled weather conditions (e.g. sunny days, rainy days, and dark

nights). A total of 500 videos were used for training and valida-

tion of the Mask R-CNN model (He et al., 2017) for fish detec-

tion and segmentation. The remaining 200 videos were used for

assessing the proposed fish counting method. The trained Mask

R-CNN model resulted in a recall of 97.58% and a mean average

precision of 93.51% for fish detection. For fish counting, a recall

of 93.84% and a precision of 77.31% were obtained. Additionally,

for fish type identification, an overall accuracy of 98.06% was

obtained.

Proud et al. (2020) apply an automated method to identify

echoes from Dagaa schools (Rastrineobola argentea) in echo

sounder data collected during fish stock-assessment surveys in

Lake Victoria. Only the acoustic data collected between sunrise

and sunset were analysed. A random forest (RF) classifier was

constructed using school and environment metrics [i.e. length of

school, depth of school, height of school, image compactness, the

average amount of echo energy produced by the school per m2 of

lake surface (nautical area scattering coefficient (NASC)), lakebed

depth, temperature, dissolved oxygen concentration, pH, turbid-

ity, Chla concentration, and longitude]. This classifier showed a

test classification accuracy of 85.4%. Evaluating the importance

of each school metric showed that school length is the most im-

portant metric, followed by school height, school NASC, school

depth, lakebed depth, and school image compactness.

Environmental variables other than lake depth contribute very lit-

tle to the overall classification performance and when all environ-

mental information is removed, the overall RF accuracy is

reduced by only �1%.

For segmenting and classifying echo sounder data collected

during acoustic trawl surveys, a DL-based method is presented by

Brautaset et al. (2020). A slightly modified version of the U-Net

architecture (Ronneberger et al., 2015) is used as the classifier,

which takes four frequency channels and a range-time subset of

the echogram in the image format, resulting in the following clas-

ses: background, sandeel school, or other schools. The proposed

method achieved significantly better results compared with non-

DL methods when applied to a multifrequency dataset collected

between 2007 and 2018 during the Norwegian sandeel survey.

Semmar and Vaz-dos-Santos (2019) present a simplex-based

simulation approach developed to investigate growth regulation

processes in fish populations, which was applied to Merluccius

hubbsi stocks in the Southwestern Atlantic sampled in 1968–1972

and 2004 from six geographical areas. Using this approach, the

authors were able to show that the growth regulation of different

body parts is related to the geographic origin of the fish. Liu et al.

(2020) compared the performance of ensemble learning mod-

els—bagging trees (Johnson, 2001), RFs (Breiman, 2001), and

boosting trees—using a dataset of 256 records of Chondrichthyes

and Osteichthyes to predict fish natural mortality rate. The maxi-

mum age, growth coefficient, and asymptotic length were used as

the features. The results show that tree-based ensemble learning

models significantly improve the accuracy of fish natural mortal-

ity rate estimates compared with statistical regression models as

well as the basic regression tree model (Breiman et al., 1984).

Among tested ensemble learning models, boosting trees and RFs

performed the best, whereas the classification performance of

boosting trees was slightly better.

Li et al. (2020) report on a publicly available dataset,

PMID2019, containing 10 819 microscopic images of phytoplank-

ton from 24 different categories. PMID2019 includes high resolu-

tion colour images with instance level annotations (manually

labelled bounding boxes and corresponding species in each im-

age) that can be used for phytoplankton detection. In order to

generalize the dataset, Cycle-GAN (Zhu et al., 2017) was applied

to differentiate between images of dead and living cells so that

images of dead and living cells can be inter-converted without

losing their original features. This resulted in a synthetic phyto-

plankton living cell image dataset created from the original dead

cell images that could be applied to detect phytoplankton in situ.

PMID2019 was benchmarked by applying several state-of-the-art

object detection algorithms: faster R-CNN (Ren et al., 2015), fea-

ture pyramid network (Lin et al., 2017a), single shot multiBox de-

tector (Liu et al., 2016), YOLOv3 (Redmon and Farhadi, 2018),

and RetinaNet (Lin et al., 2017b). Fast R-CNN produced the best

results: average precision between 70.27 and 96.30% for different

scenarios (e.g. various lighting conditions and complex

background).

Campbell et al. (2020) present a novel plankton camera and

propose a CNN-based classification system that was applied to

the images collected. The plankton camera includes a

0.137mm� 143mm telecentric lens mounted on a 12-MP colour

camera inside a large pressure housing with a sapphire glass opti-

cal port. The camera takes 12-bit colour images at a maximum

frame rate of seven frames per second. This imager also incorpo-

rates an on-board computer system to segment each image and

retain regions of interest that contain images of individual plank-

ton using various image processing algorithms. The CNN archi-

tecture fine-tuned to classify the collected images was “Inception

v3” (Szegedy et al., 2015). The training set was composed of

18 868 images of 43 separate classes. Classification performance

obtained on test data varied among the different classes.

ML and the future of marine science
The articles included in this themed set, and those that they cite

make clear that there is great potential for ML to contribute to

rapid advances in marine science. DL has already supported im-

pressive advances by changing the way that experts analyse and

interpret data, as well as in the amount of data that can be proc-

essed rapidly. However, the volume of data produced in marine

science continues to increase and this introduces new challenges.

Possible solutions follow.

� ML has to be more fully integrated, not only in processing ma-

rine data but also in the collection and management of data
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and, therefore, ML scientists should collaborate more closely

with marine scientists in data collection and infrastructure

design.

� Communication between ML experts and marine scientists

should be improved such that both sides become aware of the

range of potential applications. There should be constant en-

gagement between ML experts and marine biologists. ML

experts should meet with stakeholders to develop and ensure a

mutual understanding regarding the challenges of data analy-

sis. On the other hand, marine experts should try to gain ML

knowledge to better understand the potential and limitations

of ML methods. This would serve to better define the desired

accuracy of any ML pipeline.

� The transparency and intuitiveness of ML methods should be

improved so that ML is more than a black box for marine

scientists.

� Preserving and sharing ML knowledge and expertise within

the marine science community: the size of marine data is huge,

however, the size of data used to evaluate ML methods is gen-

erally very limited. This is because datasets contain an insuffi-

cient amount of labelled data. One solution could be

establishing a common online repository in which researchers

can share their data as well as their trained models and ML

codes that would be aligned with their data.

We encourage submissions to this Journal that follow-up on these

and related topics.
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Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga,
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Oceans constitute over 70% of the earth’s surface, and the marine environment and ecosystems are central to many global challenges. Not

only are the oceans an important source of food and other resources, but they also play a important roles in the earth’s climate and provide

crucial ecosystem services. To monitor the environment and ensure sustainable exploitation of marine resources, extensive data collection

and analysis efforts form the backbone of management programmes on global, regional, or national levels. Technological advances in sensor

technology, autonomous platforms, and information and communications technology now allow marine scientists to collect data in larger

volumes than ever before. But our capacity for data analysis has not progressed comparably, and the growing discrepancy is becoming a major

bottleneck for effective use of the available data, as well as an obstacle to scaling up data collection further. Recent years have seen rapid

advances in the fields of artificial intelligence and machine learning, and in particular, so-called deep learning systems are now able to solve

complex tasks that previously required human expertise. This technology is directly applicable to many important data analysis problems and

it will provide tools that are needed to solve many complex challenges in marine science and resource management. Here we give a brief re-

view of recent developments in deep learning, and highlight the many opportunities and challenges for effective adoption of this technology

across the marine sciences.

Keywords: analysis bottleneck, convolutional neural networks, data processing, deep learning, observations, resource management.

Introduction
In March 2016, Google DeepMind pitched their computer pro-

gramme AlphaGo (Silver et al., 2016) against expert go player

(ranked 9th dan) Lee Sedol in a five-game match, and won. This

happened 20 years after IBM’s chess playing computer Deep Blue

famously played to a draw against grand master Gary Kasparov

(Campbell et al., 2002). Go is considered a notoriously difficult

game for computers, and the event was widely reported in the

press as an important milestone in the development of artificial

intelligence (Wood, n.d.), and it was listed in Science as runner-

up for the title of Breakthrough of the Year (Science, 2016).

Yet, this is only one of a series of remarkable achievements

brought forth by recent developments in the field of artificial in-

telligence, and the triumph was soon overshadowed by new suc-

cesses, for instance when AlphaZero managed to surpass human

level skill in go, chess, and shogi solely from the experience it

gathers playing against itself (Silver et al., 2017).

Systems that are becoming increasingly intelligent are now be-

ing deployed on every scale, from mobile phones to supercom-

puters, and they are involved in a diversity of tasks, including

personalized ranking of search results, selecting relevant adver-

tisements, assisting vehicle driving, recognizing handwriting, and

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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understanding spoken commands. Common to these successes is

the application of a new approach called deep learning (LeCun

et al., 2015).

Many of the high-profile uses of deep learning originate from

corporations like Google, Facebook, Microsoft, and Amazon.

These are consumer-oriented, technology-driven companies with

access to large data repositories and computing resources (three

of the four run commercial cloud services). Interestingly, these

companies are also on the forefront of academic research, Google

lists (Google, 2018) close to 1500 research papers on machine

intelligence, perception, and translation, and another 380 on nat-

ural language processing. Microsoft reports publishing 239 papers

on artificial intelligence in 2017 alone (Microsoft, 2018).

Technological progress has made data collection less costly,

and this also affects the marine sciences. Large infrastructure

projects are being developed to store and organize the data, and

analysis is increasingly becoming a bottleneck. To meet many of

the global challenges in marine science and management, it is

necessary to realize the potential of collected data through auto-

mating more of the analysis. Here, we explore how new analysis

technologies can be exploited to meet this goal.

Navigating an ocean of data
More than two-thirds of the planet is covered by oceans. The ma-

rine environment is a key component of the earth’s climate, and

its diverse ecosystems provide about half the global biological

production and essential ecosystem services. The UN sustainabil-

ity goals 2 (food security) and 3 (health) indirectly address the

ocean, whereas goal 14 (use of oceans) explicitly acknowledges

the need for sustainable development for the oceans and seas.

Marine science must rise to these challenges and provide the

knowledge needed to ensure sustainable use of the marine envi-

ronment. The necessity of an ecosystems approach to marine

management is accepted worldwide (Pikitch et al., 2004; Bianchi

and Skjoldal, 2008; Koslow, 2009; Link and Browman, 2014) and

is reflected in the [revised] European common fisheries policy

and the marine strategy framework directive. Further develop-

ment of models and observing systems is needed to meet these

requirements, and a key challenge is how to extract relevant infor-

mation when data volumes increases, data complexity increases,

and data quality varies.

Increased data volumes

A direct consequence of improvements in sensor technology is an

increase in data volume, usually accompanied by lower cost. This

is brought about by several factors: higher data rates, decrease

cost of sensor equipment, and for sensors operating in situ,

advances in autonomous platforms technologies. New or

upgraded sensors now allow us to observe essential ocean varia-

bles as well as other biological data, in both the field and the labo-

ratory, at scales that were earlier beyond our ability. A few cases

serve to illustrate this.

Acoustics is the primary sensor on acoustic–trawl surveys

(MacLennan and Simmonds, 2005), and calibrated high-quality

echo sounders are mounted on research vessels. These are now

commonly installed on a wider range of platforms including vessels

of opportunity, e.g. fishing vessels (Honkalehto et al., 2011; Fassler

et al., 2016) and autonomous platforms, e.g. autonomous under-

water vehicles (Fernandes et al., 2003), gliders (Guihenet al., 2014),

observatories (Godø et al., 2014), and autonomous surface vehicles

(Mordy et al., 2017). In concert these sensors could form an obser-

vation system that can inform ecosystem models (Handegard et al.,

2013), but the traditional manual data processing is a major

bottleneck.

Research projects now routinely sequence the full genomes

(Berthelot et al., 2014; Lien et al., 2016) or transcriptomes of tens

or hundreds of individuals (Schunter et al., 2014), resulting in

several terabytes of data. Since the landmark Human Genome

Project (Venter et al., 2001), sequence costs have plummeted six

orders of magnitude, and molecular methods are now used in

new contexts like sequencing of marine communities to reveal its

species composition or functional diversity (metagenomics)

(Jackson et al., 2015; Kodzius and Gojobori, 2015), or using ge-

nomic methods to investigate population structure, evolution,

and migration patterns (Larson et al., 2014; Malde et al., 2017).

Camera equipment has become more advanced, robust, and

inexpensive. Still and moving images are now used in a wide

range of applications, including baited video surveys (Cappo

et al., 2007), benthic monitoring (Buhl-Mortensen et al., 2015),

in-trawl monitoring (Rosen et al., 2013), plankton imaging

(Stemmann and Boss, 2012). Processing the resulting wealth of

image data still often requires manual or partially manual label-

ling to extract meaningful information. In some cases, training

data can be simulated (Figure 1), but often the lack of good train-

ing data hampers exploitation of technological advances and lim-

its mass deployment of cameras.

Increased data complexity

Besides increased data quantity, new methods, and technology of-

ten let us collect and derive increasingly more complex data and

information. This is true for model outputs and observations

alike, and combining and analysing complex data are challenging

Figure 1. Simulated image mimicking output from the Deep Vision
trawl camera solution. The simulator produces infinite training data
for a classifier by producing random collages of fish images pasted
onto an empty background. Image courtesy of Thomas Mahiout and
Tiffanie Schreyeck.

Data-driven future of marine science 1275

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3

Deleted Text: In order t
Deleted Text:  
Deleted Text: '
Deleted Text:  (CFP)
Deleted Text:  (MSFD)
Deleted Text:  (EOVs)
Deleted Text: in 
Deleted Text: in 
Deleted Text: -
Deleted Text: (e.g., 
Deleted Text: ve
Deleted Text: z
Deleted Text: is


since the relationships are often non-linear. Like for data quan-

tity, the increased complexity applies almost universally, and a

few cases are presented for illustration.

Early echo sounders emitted a single frequency, and received

an intensity representing the reflected signal, conveniently plotted

in a 2D diagram with time and depth (Sund, 1935). Multi-

frequency equipment emits several frequencies simultaneously,

and the difference in signal response provides valuable informa-

tion about parameters like fish species, sizes, and orientations

(Kloser et al., 2002; Korneliussen and Ona, 2003). But the multi-

ple diagrams are more demanding to interpret. Broadband equip-

ment (Stanton et al., 2010) replaces the multiple frequencies with

continuous spectra, adding further complexity. Methods that can

deal with these data have the potential to increase the information

we get from the observations.

Similarly, most cameras capture visible light in the three pri-

mary colours corresponding to the photoreceptors in the human

eye. In many cases, information is conveyed outside this spec-

trum, as evidenced by species like the mantis shrimps

(Stomatopoda spp.), whose eyes have 16 different photoreceptors

and the ability to detect both ultraviolet and polarized light

(Marshall and Oberwinkler, 1999). Hyperspectral or multi-

spectral photography that can record images both within and be-

yond the visible spectrum are likely to be useful in many settings,

since light absorption and reflection of many substances strongly

depend on the wavelength. For instance, the “colour” of the

ocean is determined by the interactions of incident light with sub-

stances or particles present in the water. By exploiting multispec-

tral data with fine spectral resolution several services provide

frequent updates of a wide range of products based on the ocean

colour (NASA, 2018). Methods to further exploit the increased

data complexity are needed.

End to end ecosystem models have been proposed to be a key

tool in integrated fisheries assessments (Fulton et al., 2014).

These models include components from physical forcing, geo-

chemistry, primary production, and higher trophic levels, and the

resulting model framework and model states are complex.

Methods to extract relevant information, and often combining

information from several sources are required, e.g. through en-

semble modelling (Olsen et al., 2016) or combining information

from different data types. The state space from these models can

be considered a complex data set and analysed as such. Methods

to be able to find patterns and signals in the model states are

needed.

Data quality

Improved technology generally leads to higher quality data, but

occasionally increased data volumes are obtained by trading off

quality for quantity. An example of this is research vessel surveys,

which are costly to scale up. An alternative could be to collect

data from the commercial fishing fleet, but with loss of rigid sam-

pling design employed on research vessel surveys (Fassler et al.,

2016). Alternatively, relatively simple autonomous platforms

could collect acoustics data, but without trawl sampling that has

key information on age structure and species composition.

Similarly, ARGO floats (Roemmich et al., 2009) collect oceano-

graphic data at a fraction of the cost of surveys using research ves-

sels, but they can only drift with ocean currents, and we lose the

ability to actively set up sampling designs or collect water sam-

ples. The information from increased data quantities may

compensate for a loss of quality, but the lack of rigid designs will

often introduce biases which pose new challenges for analysis.

While the cases we highlight here exemplify the growing data

volumes, increasing data complexity, and deteriorating data qual-

ity, they are not exhaustive. Rather they demonstrate how analysis

increasingly is becoming a bottleneck for effective use of collected

data across diverse fields and technologies. Relying on manual

scrutiny by human experts does not scale well, and automatic

analysis of data is necessary to alleviate a rapidly narrowing analy-

sis bottleneck.

The deep learning revolution
Machine learning at a glance

A classical computer programme is an executable expression of

an algorithm. That is, the programmer formulates a precise step-

wise description of how to produce the desired result from the in-

put. In contrast, a machine learning programme requires the

programmer to specify only a more general model or architecture

for the solution. The model is then trained using available data.

Typically, training consists of gradually adjusting the parameters

of the model, causing the programme to produce increasingly ac-

curate results. By definition, a machine learning programme is a

programme that is able to improve its performance from experi-

ence (Mitchell, 1997).

In principle, statistical methods like linear regression and esti-

mation of probability distributions can be considered machine

learning methods, but here we use the term to refer to more com-

plex systems, like artificial neural networks, random forests, and

support vector machines. And in contrast to statistical methods

where the parameters are inherently meaningful, the parameters

of more complex machine learning systems often capture some

general pattern in the data in an opaque way, and the interpreta-

tion of the individual parameters can be difficult.

Neural networks

One of the archetypal machine learning systems, and a corner-

stone of the recent revolution in machine learning, is the artificial

neural network (Parker, 1985; Rumelhart et al., 1986). It is con-

ceptually simple, yet can solve complex problems, in fact, by the

universal approximation theorem any function can be modelled by

a neural network (Cybenko, 1989; Hornik et al., 1989). A neural

network consists of layers of simple computational units (or neu-

rons), arranged so that the output of the units in one layer feed

into the inputs of the next layer’s units (Figure 2). Each unit

calculates a weighted sum of it inputs, and applies a function (the

activation function), f �ð Þ; that introduces non-linearity into the

system. The weights, wij , of the inputs to each unit constitute the

parameters to be learned. This is usually achieved using back

propagation (Rumelhart et al., 1986) to calculate the gradient for

a cost function, which is then minimized iteratively using some

variant of gradient descent.

Deep learning and the renaissance of neural networks

Work on neural networks in the 1980s and 1990s (Parker, 1985;

Rumelhart et al., 1986) was limited by computational power, lack

of sufficiently large labelled data sets for training, and limitations

in the learning algorithms. Hence, the dominant approach to ma-

chine learning was to use application dependent hand-designed

features to describe the data in a compact form, reducing its di-

mensionality. For instance, computer vision would typically

1276 K. Malde et al.
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preprocess input images with a manually designed programme to

detect features like edges and corners (Lowe, 2004; Dalal and

Triggs, 2005). Classification algorithms like decision trees, shal-

low neural networks, and support vector machines (Boser et al.,

1992) would then be applied to learn patterns from the features,

rather than from the raw image data. The input features would

typically be hand-crafted to each problem, and standard feature

sets like scale-invariant feature transform (Lowe, 1999) or

histogram of oriented gradients (Dalal and Triggs, 2005) were

developed to be reusable and applicable to many image classifica-

tion problems. Although these approaches were successful for

many applications, there is a necessary trade-off between general-

ity and the specific task at hand, and reusable but static features

cannot capture the inherent complexity of many objects, nor

translate easily to non-image or higher-dimensional data.

In recent years, the availability of computational power from the

use of graphics processing units (GPUs) (Chellapilla et al., 2006;

Bergstra et al., 2010) and distributed computing (Dean et al., 2012),

large annotated data sets like ImageNet (Russakovsky et al., 2015) as

well as algorithmic improvements (Nair and Hinton, 2010; Hinton,

Srivastava, et al., 2012; Ioffe and Szegedy, 2015; He et al., 2016) has

allowed the construction of much larger and deeper neural networks

than before. The added complexity allows a network to learn rele-

vant features in the data automatically, which is a defining element

of deep learning (LeCun et al., 2015; Schmidhuber, 2015). For in-

stance in computer vision, the lower layers in the network learn to

recognize primitive, general features like edges and corners in an im-

age. Higher layers learn to identify more abstract features as combi-

nations of features (e.g. object parts formed by primitive features).

Finally, the highest layers learn to identify abstract classes as combi-

nations of object parts. This hierarchical structure of the deep con-

volutional neural networks (CNNs) thus naturally models the

hierarchical composition of the objects to be recognized.

In contrast to feature-specific machine learning, where general-

ity of features is at odds with specificity to the problem, deep

learning is a generalized approach for developing the solution

simultaneously with the problem-specific features. Neural net-

work architectures still benefit when tailored to specific data types

and problems, but the ability of deep networks to learn the primi-

tive features directly from the raw data makes the technology di-

rectly applicable to a wide range of problems.

CNNs and computer vision

CNNs (Fukushima, 1988; LeCun et al., 1999) are structured as

stacks of filters, each recognizing increasingly abstract features in

the data. This approach is very effective for many image analysis

problems, where objects are often recognized independent of

their location. The convolutional network applies the same set of

filters to all parts of the image, recognizing the same kinds of fea-

tures regardless of their position. This leads to a dramatic reduc-

tion in the number of weights and consequently a reduction in

training effort and data requirement.

In 2012, Krizhevsky et al. (2012) demonstrated that deep con-

volutional networks could obtain substantially higher image clas-

sification accuracy on the ImageNet Large Visual Recognition

Challenge (ILSVRC) (Russakovsky et al., 2015) than competing

systems. Their success was a result of designing a deep CNN and

training it using new and more efficient strategies, including rec-

tifying non-linearities (ReLUs) (Nair and Hinton, 2010; He et al.,

2015; Xu et al., 2015), dropout regularization (Srivastava et al.,

2014), and batch normalization (Ioffe and Szegedy, 2015). To

train a CNN with performance metrics comparable to the ones

reported by Krizhevsky et al. (2012), a substantial amount of la-

belled training images is needed, in addition to sufficient compu-

tational power (e.g. parallel computers or GPU accelerators).

The great improvements demonstrated by Krizhevsky et al.

(2012) were followed by a sequence of increasingly successful

ILSVRC contestants using deep neural networks (Zeiler and

Fergus, 2014; Badrinarayanan et al., 2015; Long et al., 2014; Yu

and Koltun, 2015; He et al., 2016), and have placed image recog-

nition tasks at the centre of an ongoing deep learning revolution.

Similar techniques have been extended to object localization by

identifying their coordinates and bounding boxes (Ren et al.,

2015; Redmon et al., 2016). Related tasks are semantic segmenta-

tion, where individual pixels are mapped to classes representing

different objects (Badrinarayanan et al., 2015; Long et al., 2014;

Yu and Koltun, 2015; Chen et al., 2018), and instance segmenta-

tion, where each instance of an object is identified in addition to

being segmented (He et al., 2017).

These challenges are important in their own right, and also

pave the way towards complete scene understanding, a core

computer vision problem that is important for a number of

applications, including autonomous driving, human–machine

interaction (Baccouche et al., 2011), earth observation

(Kampffmeyer et al., 2016; Maggiori et al., 2017), image search

engines (Wan et al., 2014), to name a few.

Beyond images

In many cases, machines exceed human level accuracy, e.g. for

optical character recognition (Goodfellow et al., 2013), face verifi-

cation (Taigman et al., 2014), and recognition of specialized ob-

ject categories, like different breeds of dogs or species of birds

(Xiao et al., 2014). Even text obfuscated for the specific purpose

of distinguishing humans from computers (so-called captchas)

are ironically deciphered more accurately by computers than by

humans (Goodfellow et al., 2013). Deep learning has led to rapid

advances in many other areas beside computer vision, and it has

successfully been applied to problems like speech recognition

(Hinton, Deng, et al., 2012), machine translation (Sutskever

et al., 2014; Zhang et al., 2015), and financial applications

(Heaton et al., 2017). The technology is starting to be applied to

data analysis in many sciences, including high energy physics

Figure 2. An artificial neural network typically consists of one input
layer, several hidden layers, and one output layer. Each unit
calculates a weighted sum of the inputs, and applies an activation
function, (f). For simplicity, we have omitted bias terms.
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(Baldi et al., 2014), drug activity prediction (Dahl et al., 2014),

and visual processing of microscope data to reconstruct 3D mod-

els of brain tissue.

Similar methods can also be applied to unsupervised learning,

where data are unlabelled. One of the most popular unsupervised

deep learning approaches is the autoencoder (Hinton and

Salakhutdinov, 2006), which typically learns a representation

(encoding) of the data, by training the network to ignore signal

“noise” (Vincent et al., 2010). Another promising direction for

clustering is to learn representations and simultaneously discover

cluster structure in unlabelled data by optimizing a discriminative

loss function. The deep embedded clustering (DEC) (Xie et al.,

2016) approach represents, to the best of our knowledge, the

state-of-the-art. The DEC is based on an optimization strategy in

which a neural network is pre-trained by means of an autoen-

coder and then fine-tuned by jointly optimizing cluster centroids

in output space and the underlying feature representation. The

restricted Boltzmann machine (RBM) is a type of neural network

that may be used to model probability distributions. RBM algo-

rithms are used in several applications, including dimensionality

reduction (Hinton and Salakhutdinov, 2006), clustering (Beyan

et al., 2018), and collaborative filtering (Salakhutdinov et al.,

2007). Within marine science, Beyan et al. (2017) proposed an

effective outlier detection algorithm that is based on cluster cardi-

nality. Here, clusters were obtained applying a mean-covariance

RBM to group the data such that data points in the same group

are more similar to each other than to those in other groups.

Neural networks are often referred to as feed forward network,

as each layer forwards its output to the inputs of the next. In con-

trast, recurrent neural networks (RNNs) (Pineda, 1987) incorpo-

rate one or more backward links, forming a cyclic architecture.

This allows the network to retain information about previous

states, and RNNs are therefore often applied to time series data.

RNNs have been used successfully to model language (Hochreiter

and Schmidhuber, 1997). Deeper models and special memory

units called long short-term memory have allowed RNNs to

achieve state of the art performance in e.g. speech recognition

(Graves et al., 2013).

Machine learning in marine science
The growing data volumes, increased data complexity, and re-

duced data quality pose challenges for the marine science disci-

pline, but at the same time recent advances in machine learning

offer new possibilities of addressing them. Systems for automatic

data analysis can be considered on several levels, from making

manual work more efficient to novel analyses of complex and het-

erogeneous data.

Emulating basic human expertise

Machine learning systems are typically trained to emulate human

curation, and thus a natural application is to use such systems to

replace labor intensive steps in existing analysis pipelines.

Reliance of manual curation is currently limiting effective data

use, and automatic systems can reduce cost or increase through-

put, for instance identifying fish species from images

(Allken et al., 2019; Siddiqui et al., 2018; Villon et al., 2018), fish

trajectory estimation (Beyan et al., 2018), or automatic age read-

ing of otoliths (Moen et al., 2018). The latter is perhaps of partic-

ular interest, as it demonstrates that a deep learning can obtain

an accuracy comparable to human curators. This is in contrast to

Fisher and Hunter (2018), who reviewed traditional, shallow ma-

chine learning approaches and concluded that they provided no

substantial advantage over human curation.

A fully automated system with accuracy comparable to a hu-

man curator is ideal, but more limited systems have also merit.

The ability to sort out irrelevant data (e.g. frames with no objects

of interest in them) can reduce manual work by orders of magni-

tude, and rudimentary classifiers with limited accuracy can re-

duce it further. As a bonus, with an automatic system taking care

of tedious routine and trivial cases, the curation work remaining

for the human expert is likely to be more interesting and

rewarding.

In many cases, less than perfect accuracy may be sufficient. For

instance, in cases where the sampling variance is large, a small

bias may be acceptable if a larger number of observations can be

exploited. Analysis of plankton images often have many and vari-

able categories and be confounded by detritus and variation in

visibility and lightning conditions, and machine learning methods

are often used to guide or assist the human curator (Uusitalo

et al., 2016). Furthermore, where judgement of human experts

varies, automated systems are consistent and can be duplicated as

needed. They are likely to be cheaper and easier to deploy in hos-

tile conditions. And although initial systems may have an unsatis-

factory accuracy, technology improves over time. With improved

systems, data can be reanalysed with little effort.

Advancing beyond the human expert

In many cases, overwhelming data volumes means that automatic

systems are necessary for analysis. But for an increasing number

of tasks, machine learning systems can surpass human experts in

quality as well as quantity.

Some tasks that can be solved in principle are still too complex

in practice, even for human experts. Analysis can be elusive when

systems consist of many different factors which interact in many

different ways, ecosystems being a typical example. We may have

knowledge of each species involved, their migratory behaviour,

predators, and prey relationships, reproductive biology, and so

on, and a species can be isolated in the lab and its behaviour and

responses studied. However, aggregating this information and de-

riving the behaviour of complex systems in the wild is challeng-

ing. Instead, we often rely on complex ecosystem models based

on assumed interactions between the various components, and

make inferences about the system from the model results (Fulton

et al., 2003). This assumes that we have successfully included the

key processes in our model and that we have correctly parameter-

ized them. A common critique is that we rely too much on the

assumptions (Planque, 2016). Another, more parsimonious, ap-

proach is to use conventional statistical models to fit the data, but

these models may be too simplistic since non-linear effects are

difficult to handle. The deep learning approach may offer a third

approach, where the analysis is still based on observed data, but

the system is more capable detect and model non-linearities.

However, it is prudent to note that the information that we can

extract from the data is limited by the information content in the

first place. Even so, deep learning methods may be able to tease

out patterns the other methods fail to do.

Gaining new scientific insights

A common criticism of many machine learning methods is that

the resulting model is opaque: although it can be shown

1278 K. Malde et al.
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empirically to work, it is often not clear how the model works, or

what knowledge the model captures. For instance, the learned

parameters of a linear regression have clear interpretations as

slope and intercept. In contrast, the individual weights in a

trained neural network do not carry any obvious meaning and

can have very different significance for different inputs. This is

analogous to human knowledge. As observed by Polanyi (2009),

many tasks require knowledge that we are unable to express ex-

plicitly. For instance, we can recognize a face instantly, yet we are

at a loss for describing the exact process of doing so. In science

the goal is often to understand a phenomenon. This is often

achieved by exploring model dynamics, but is less transparent in

typical deep learning models.

Despite this opacity, it is nevertheless possible to get a glimpse

of the knowledge embedded in a machine learning system. For in-

stance, convolutional layers in deep neural networks often recog-

nize specific features of the input. By identifying regions of the

data (parts of an image, say) where specific neurons are triggered,

we can observe the feature recognized by that neuron (Montavon

et al., 2018). Such an approach could for instance reveal whether

a system of automatic otolith reading (Moen et al., 2018) is

counting rings, or whether it is using other geometric features,

like shape or size, and to what extent each feature is informative.

A slightly different method consists of feeding the network

noise, and then using a variant of back propagation to amplify

elements of the input data that cause a particular classification re-

sult (Erhan et al., 2009). Several variations of this method have

been developed (Bach et al., 2015; Yosinski et al., 2015), produc-

ing synthetic images that illustrate the type of features used by the

network to identify a certain class. While recognizable, the result-

ing image is not necessarily representative for actual data.

Reproducibility of science and improved processes

Marine science and management advice for marine resources go

hand in hand. A data processing pipeline for management, start-

ing with data collection, going through various analyses and sim-

ulations, and ending with stock forecasts and management

advice, are central to many marine science institutions. Currently,

this process contains several interpretation steps, where a human

expert must examine data to extract information for use as input

to subsequent steps.

Automating these interpretation steps gives us several advan-

tages. First, the whole process becomes deterministic and repro-

ducible. Verifying the model output from the input data can be

done by simply rerunning the pipeline, and this helps build confi-

dence in the results. More importantly, it lets researchers experi-

ment with the model, adjusting its parameters and inputs to

discover how they affect the output, and let us quantify the conse-

quences of changes. For instance, one can estimate the effect of

reducing cruise activities in favour of less expensive floats or au-

tonomous stations, or whether deployment of more advanced

equipment is justifiable. This knowledge will be important for op-

timizing resource usage and reduce uncertainty in the results.

Heterogeneous data and integrative analysis

Ecosystems are complex networks of biological, chemical, and

physical factors which also includes human activities. It is unclear

to what extent such systems can be understood from a reduction-

ist approach of isolating and studying each component. That a

more holistic approach is necessary is a key tenet of

transdisciplinary science (Nicolescu, 2008). But multi- and inter-

disciplinary approaches could also benefit marine science to a

larger extent. For instance, molecular methods could complement

traditional surveys for detecting the presence of species (Foote

et al., 2012; Thomsen et al., 2012), cameras can detect fragile spe-

cies that are destroyed by more intrusive methods (Remsen et al.,

2004), and autonomous platforms (Mordy et al., 2017) could

augment data from more traditional surveys. Integrative

approaches could collect data from multiple databases represent-

ing a variety of collection regimes and scientific disciplines and

reanalyse these data in new ways to derive new information.

Making data interoperable is a key step for effective integrative

analysis, and several large efforts aim at providing centralized

infrastructures and standardized organization for data collected

by third parties.

An advantage of machine learning methods is their ability to

work well with ambiguous data. Deep learning methods incorpo-

rate multiple levels of representation (LeCun et al., 2015). Lower

layers learn less abstract representations of the input, and these

methods can therefore be applied directly to data without prepro-

cessing (e.g. to images represented as pixel arrays, or free-form

text), identifying and extract salient features automatically. In

contrast to shallower systems which depend on hand-crafted fea-

tures, the relevant structure and information content in the data

is captured implicitly by the model. This has allowed e.g. natural

language processing systems using deep learning methods to deal

with ambiguities and imprecision in human languages. This ro-

bustness is not limited to language, and allows us to construct

compound systems with the ability to deal usefully with existing

data that may be incomplete, inconsistent, ambiguous, and

weakly structured (Raghupathi and Raghupathi, 2014).

Of course, deep learning systems can also be applied to more

abstract features, or to combinations of features and raw data.

For instance, a popular task in computer vision is automatic im-

age caption generation, where image features (extracted directly

from raw data) is fed into a RNN that generates the appropriate

caption describing the image content (Vinyals et al., 2014)

Challenges
To realize the potential of automatic analysis, we need effective

methods capable of handling the large amounts of data generated.

Although successful projects that apply deep learning in the ma-

rine sciences exist (ICES, 2018), the technology has not yet seen

widespread deployment, and several obstacles must be overcome

for successful development and implementation.

Data availability in a form suitable for analysis

One obstacle is the lack of large and well-structured data sets suit-

able for training machine learning models. There is considerable

third party interest in machine learning, and online competitions

like (Kaggle, 2018) show that the availability of clearly defined

problems and curated data sets attracts expertise and effort.

Current efforts to aggregate data in central data servers and to

standardize formats and metadata are steps in the right direction,

but it is important that such efforts are developed in concert with

intended analysis. In many cases, new methods for unsupervised

or semi-supervised analysis of data need to be developed.

Perhaps the most common problem is the lack of adequate

metadata (in this context referring to response variables, classes,

annotations, or labels). Large volumes of raw data are collected
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and stored, but the specific and detailed results from analysis are

not systematically recorded (Harris et al., 2010), leaving the data

essentially unannotated. In other cases, annotation is available,

but made in an ad hoc manner. So where one annotator might la-

bel a plankton image “copepod, large,” another might label it

“large copepod.” Often classes are poorly defined and inconsis-

tent, and do not make use of available standards. And even when

both data and metadata are available, in some cases the link be-

tween them is unreliable.

For applications with sparsely labelled training data, the dis-

covery of the deep CNNs’ ability to generalize and the usefulness

of transfer learning have been a break-through (Razavian et al.,

2014; Yosinski et al., 2014; Azizpour et al., 2014). Transfer learn-

ing concerns the concept of transferring knowledge from one area

to another (usually related) domain, and fully pre-trained nets

trained from large databases with large label spaces (e.g.

ImageNet) have shown good performance on several tasks

(Razavian et al., 2014). The transfer learning for CNNs is typically

performed by either using the pre-trained network as a feature

extractor (Razavian et al., 2014). This approach was used by

Siddiqui et al. (2018), who used trained a support vector machine

to classify fish species based on the output from a pre-trained

neural network. An alternative is to fine-tune the pre-trained net-

work on the new target data. Fine-tuning can be restricted to

higher layers, as the nets here tend to become more specific to

details of the original labels. Less abstract features from lower

layers are often useful for new tasks without modification

(Azizpour et al., 2014).

Most lines of work study and solve the problem of transfer

learning within the same modality. The cross-modality transfer

problem has received less attention, but approaches considering

this typically rely on the existence of paired modalities (Gupta

et al., 2016) or shared label spaces, for example by hallucinating

modalities during training time (Hoffman et al., 2016;

Kampffmeyer et al., 2017), or jointly embedding or learning rep-

resentations from multiple modalities into a shared feature space.

The existence of shared label spaces or images paired with labelled

natural images is, however, not the rule for applications involving

non-standard data, which is often the case within marine science.

Anchoring projects in existing infrastructure and

pipelines

The value of data is in its use, and for marine data to be useful, it

must be analysed and the output used in science, for resource

management, or by industry. With data sets available, methods

can readily be developed, but without integration into existing

processes, the impact is small or non-existent. To reap the bene-

fits of new methods, it is crucial to involve the whole value chain,

from data collection, to data storage and management, to analy-

sis, and final use of the information. Projects must seek to involve

existing stakeholders and have long-term implementation as a

central goal, i.e. technology on its own has no merit in this

context.

Remote electronic monitoring systems like AIS (which broad-

casts position and other information) have been in use for some

time, and can be analysed to identify vessel activities. Such sys-

tems have been used successfully for effective enforcement of fish-

eries policies and marine protected areas (McCauley et al., 2016).

Vessel monitoring systems can provide more detailed informa-

tion, e.g. monitoring catch and bycatch from video surveillance

(Joo et al., 2011; French et al., 2015). Electronic monitoring will

enable effective and more specific policies for sustainable opera-

tions, but depends on automatic analysis to be cost effective (van

Helmond et al., 2017), and stakeholder commitment is crucial for

implementation (ICES, 2018).

Developing new expertise and methods

Since Krizhevsky et al. (2012), machine learning has seen a tre-

mendous increase in interest. In particular, many large, data-

oriented corporations, including Google, Facebook, Amazon,

Microsoft, IBM, and Baidu, are aggressively recruiting people

with machine learning expertise. The academic sector is strug-

gling to compete with enterprises for competence, and recruit-

ment of experienced academic personnel to the commercial

sector is likely to impede development of solutions needed

for scientific progress; as well as having negative consequences

for the education and training that the commercial sector itself

depends on.

Structures are needed that encourage development and reten-

tion of machine learning expertise in the marine sciences. There

is a need to provide motivation and opportunities for people

with this background to work closely with stakeholders in the ma-

rine domains. For standard problems like image classification, it

may be sufficient to adopt methods from other fields, but when

dealing with data types and problems that are more particular to

marine sciences, interdisciplinary approaches are needed, and sci-

entists need to understand both machine learning and the rele-

vant disciplines like biology or oceanography.

Software tools and frameworks
Deep learning has proven to be an effective tool in many similar

situations and fields, and several popular software packages now

exist that can be downloaded, adapted, and deployed quickly and

easily. TensorFlow (Abadi et al., 2015) is a flexible framework

that abstracts computing hardware, but which has a steep learn-

ing curve. Keras (Chollet et al., 2015) builds on top of

TensorFlow or Theano (Bergstra et al., 2010), providing an easier

to use, but less flexible interface. PyTorch (Paszke et al., 2017) is

another popular framework combining ease of use with expres-

sive power. These frameworks are general and can be adapted to

challenges in the marine domain with relative ease (Allken et al.,

2019; Moen et al., 2018; Siddiqui et al., 2018; Villon et al., 2018).

The vast number of online tutorials and documentation is a ma-

jor advantage, and pre-trained models are available from public

repositories (often referred to as model zoos). Although these are

usually aimed at generic tasks like classification of standard image

data sets, they accelerate development of specific solutions by

providing well-tested architectures and initial parameters that are

useful as a starting point (Orenstein and Beijbom, 2017) for fur-

ther training.

Until recently, developing and applying advanced analysis

methods required programming skills as well as a good under-

standing of methods and software frameworks. A variety of pro-

gramming languages—Fortran, MatLab, Cþþ, Java, and R, to

name a few—are used in marine science, but the bulk of commer-

cial and academic development of new machine learning methods

targets Python. A lack of familiarity with Python could limit up-

take of new technologies, or restrict developers to an inferior se-

lection of tools and frameworks available in their preferred

language.
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We are also seeing the introduction of tools and libraries that

target the marine sciences specifically. Such domain-specific solu-

tions provide solutions that are tailored to common use cases and

with intuitive interfaces. This can help to make the technology

much more accessible for non-experts. One recent example is the

VIAME toolkit (Dawkins et al., 2017), which is an ambitious

project that integrates data processing and analyses in a compre-

hensive framework, and supports multiple programming

languages.

In conclusion there are several levels for which the user can use

and deploy these techniques. In general, there is a trade-off be-

tween ease of use and flexibility, and choice of framework and

methods must be tailored to the competence and ambitions of

each individual project. The authors of this paper use Keras and

Theano daily and have found they serve as a reasonable balance

between flexibility and ease of use.

Conclusions
In the near future, the volume and complexity of marine data are

expected to increase by orders of magnitude. Autonomous plat-

forms already drift, float, sail, and glide across the ocean surface

and below it, collecting large amounts of data at relatively low

cost. Additional data are collected from commercial and other

non-scientific vessels, and from stationary observatories.

Simultaneously, sensor technology is advancing rapidly, increas-

ing resolution and detail level of the collected information.

Deep learning and CNNs have made impressive advances, and

is likely to change the way we interpret, analyse, and collect data.

For classification or regression over large, regularly structured

data, existing methods can be (and is) applied more or less di-

rectly. Similarly, methods exist that can deal with time series and

textual data. More speculatively, techniques from deep learning

aimed at dealing with large numbers of parameters may bring

insights in how to better model complex adaptive systems.

Nevertheless, some moderation is warranted, and it is not suf-

ficient merely to accumulate vast amounts of data and expect a

clever enough algorithm to readily extract valuable insights. All

data are not created equal, and no analysis will be able to extract

information that is not present in the data. Careful design of sur-

veys and experiments is and will remain important. Also, deep

learning methods often perform well within its domain, but can

give unpredictable results on unfamiliar data. When such meth-

ods are deployed, a regime of careful monitoring of performance

and subsequent adjustments will be necessary.

The transition into a data rich science is a paradigm shift with

important implications. Current sparse sampling regimes and

population-based models can be replaced with comprehensive

monitoring at high resolution, sometimes down to the individual

level. For locations of particular interest, like rivers or spawning

grounds, it is already within our reach to register the presence of

each individual fish, and classifying its species as well as behav-

iour and interactions. But data collection on this scale requires

data analysis capabilities well beyond current manual methods,

and will only be realized when the analysis bottleneck is solved.
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The ubiquitous spread of digital networks has created techniques which can organize, store, and analyse large data volumes in an automized

and self-administered manner in real time. These technologies will have profound impacts on policy, administration, economy, trade, society,

and science. This article sketches how three digital data technologies, namely the blockchain, data mining, and artificial intelligence could im-

pact commercial fisheries including producers, wholesalers, retailers, consumers, management authorities, and scientist. Each of these three

technologies is currently experiencing an enormous boost in technological development and real-world implementation and is predicted to

increasingly affect many aspects of fisheries and seafood trade. As any economic sector acting on global scales, fishing and seafood production

are often challenged with a lack of trust along various steps of the production process and supply chain. Consumers are often not well in-

formed on the origin and production methods of their product, management authorities can only partly control fishing and trading activities

and producers can be challenged by low market prices and competition with peers. The emerging data technologies can improve the trust

among agents within the fisheries sector by increasing transparency and availability of information from net to plate.

Keywords: artificial intelligence, blockchain, data mining, enforcement, supply chain, traceability

Introduction
Smartphones influence our lives through their multi-purpose ver-

satility. They allow us to communicate, orientate, inform, edu-

cate, and shop at almost any location at any time. Several users

touch their smartphone more than hundred times per day, and

excessive smartphone use can even lead to mental addictions and

psychological disorders (Kwon et al., 2013; Haug et al., 2015;

Samaha and Hawi, 2016). Our reliance on smartphones indicates

how ubiquitous the use of digital networking technologies have

become in everyday life. Currently, a large proportion of digital

innovation is focusing on gaining extra information out of the

large volumes of exchanged data. The economic aim of this data

gathering is to turn the inherent information into added value by

gaining better insight into the behaviour of consumers and their

demands, but also to make production and trading processes

more efficient by monitoring the flow of products, goods, and

services. Digital integration is advancing in many economic sec-

tors and thus it is only reasonable to assume that it will also affect

fisheries production and associated economic branches.

This article sketches potential impacts of emerging internet-

based data techniques, i.e. the blockchain, real-time data mining,

and artificial intelligence (AI), and shows how these techniques

can influence the way fisheries are operated and managed and

fish products are traded and consumed. The article will focus on

these three technologies, because they are based on gathering,

organizing, recording, processing, and analysing large volumes of

data and are expected to drive major technological, economic,

and social developments in the future (Li et al., 2015; Swan, 2015;

Tapscott and Tapscott, 2016; Cath et al., 2018). While data min-

ing and AI are not new disciplines by themselves, they have

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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gained renewed interest by big-data applications and digital inno-

vations, such as autonomous driving or image recognition

(Rajamaran, 2016; Cath et al., 2018).

Fisheries: a global and elusive enterprise
Fish and seafood products are harvested and traded worldwide

(FAO, 2016). For many of these products, it is a long way from

net to plate, as their supply chains cross multiple continents, na-

tional borders, trade zones, and jurisdictions. For consumers and

national controlling agencies, it is therefore not easy to recognize

the true origin of imported seafood products. However, even

products of regional fisheries can be associated with knowledge

gaps on catches, by-catches, and environmental impacts (Hall,

1996; Lewison et al., 2004; Kaiser et al., 2006; Benoit and Allard,

2009; Herr et al., 2009). Consumers, producers, and management

authorities are therefore faced with the challenge to place trust

into producers and the members of the supply chain, while

knowledge on the exact behaviour of the other participants is lim-

ited (Mosler, 1993).

In many commercial fisheries, in which the fishing companies

are referred to as “producers”, only a proportion of the full catch

(or capture) is retained and landed (Hall, 1996). At harbour, the

landed catch is reported to wholesellers and management author-

ities before being traded and processed to be finally sold to the

consumers. What really happens on board of fishing vessels, i.e.

which species in which quantities are really caught, remains elu-

sive to management authorities for the majority of fishing opera-

tions (Benoit and Allard, 2009; Edgar et al., 2016).

Along the supply chain, various mechanism can operate to

control the compliance of the supply chain members to regional

and national jurisdictions. At sea, the national coast guard,

observers-at-sea, or video-monitoring systems can inspect fishing

practices or record the catch (Ulleweit et al., 2010; Kindt-Larsen

et al., 2011; Haskell et al., 2014), but the frequency of these con-

trol mechanisms is often negligible compared to the frequency of

total fishing operations. On land, the most important control

measure is the declaration of the landings to national authorities

to allow the comparison against the allocated annual catch quota.

Depending on the world region of landing, this mechanism cov-

ers a smaller or larger proportion of the landings, as not all

landed species are quota restricted. Also at land, the production

and processing of seafood products are controlled by governmen-

tal or self-committed industry institutions (consumer or eco-

labels) (Gulbrandsen, 2009).

During all steps of the supply chain, the mechanisms of control

can be cheated, leading to unreported and/or illegal catches

(Helyar et al., 2014). During the trading and processing chain,

landings can also be re-declared into another, more valuable spe-

cies or being caught from a different origin (stock or catch area).

Increasing the traceability of fish and seafood products for con-

sumers and management authorities has therefore become a des-

ignated aim of retailers and policy makers (Schröder, 2008).

Data technologies on the rise
The lack of transparency in fisheries production and trading pro-

cesses has led to a trust crisis by consumers into management au-

thorities and the industry (Jacquet and Pauly, 2007; Helyar et al.,

2014). Emerging data technologies may help to overcome some

aspects of this crisis by improving the transparency for control-

ling agents such as end-consumers, NGOs, and management

authorities.

Blockchain and smart contracts

Blockchains have become prominent through the boom of crypto

currencies, for which blockchains provide the technical founda-

tion. Since then blockchains have been modified in multiple way

leading to an ever increasing number of blockchain projects and

crypto currency tokens. But blockchains are not only used for

crypto-currencies. In fact, many companies and independent

institutions are currently looking for possible implementations of

blockchains into their operations (Swan, 2015; Xu et al., 2016, see

also the IBM website for examples of blockchain applications).

In October 2008, an anonymous author with the pseudonym

Satoshi Nakamoto released a whitepaper for a non-institutional

(i.e. non-governmental) currency system called Bitcoin. Bitcoin is

based on a blockchain that records financial transactions in a

decentralized database. Thereby, Bitcoin was originally perceived

by a community of enthusiast as an alternative and independent

financial system, which could overcome institutional structures

which lead to the financial crisis of 2008. The blockchain data-

base, generally referred to as distributed ledger, adds new entries

chronologically within a blockchain network (Swan, 2015,

Figure 1). The entries are combined in blocks, which are linked

by checksums (numbers to validate the integrity of data) to the

previous block (Christidis and Devetsikiotis, 2016). This linkage

as well as the decentralized and synchronized storage on all par-

ticipating nodes of the blockchain network are supposed to make

blockchains invulnerable to subsequent data manipulation and

hacking. At the moment, blockchains find their widest applica-

tion in storing transactions of crypto-currencies such as Bitcoin

or Etherium, but they can contain any sort of information, such

as text, documents, images, or music.

Blockchains solve the problem that electronic transactions be-

tween two partners have to be mediated by a third authority, e.g.

a bank, payment service, or seller (Tapscott and Tapscott, 2016).

Instead, the transactions are verified by the blockchain network,

which is self-organized and cannot be manipulated afterward.

Therefore, blockchains are ideal in situations in which the trust of

network participants into any mediating/controlling party is lim-

ited, i.e. that centralized administration of transactions is not

trusted or technically not feasible. The latter case may arise when

for example supply chains of sea food products cross the limits of

multiple responsible controlling and surveillance authorities, e.g.

by imports from Asia into the European Union or North

American market. Or if any sort of regulating authority is totally

absent, e.g. in remote, artisanal fisheries with unregistered fleets.

Smart contracts are self-executing scripts included into block-

chains that automize predefined operations, e.g. trading rules for

crypto currencies or other assets (Christidis and Devetsikiotis,

2016). Smart contracts thereby extend the functionality of block-

chains to allow for more complicated operations than just simple

transfer of assets, e.g. conditional trades including “if-then” func-

tions and other conditional rules. Further functionalities are con-

stantly added to blockchain platforms and their technological

development is far from finished. Current efforts are focusing on

increasing the speed of blockchain transactions while reducing

the energy requirements to maintain the network.

Data mining and big data

The global use of digital devices generating increasing amounts of

data is growing fast. In 2015, presumably about 8 zettabytes of e-

mails, blogs, social media posts, images, and videos were created

Emerging data technologies in fisheries 1287
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(Rajamaran, 2016). Accordingly, architectures and tools for stor-

ing, exchanging, handling, and analysing large volumes of data

(“big data”) have been developed (Zakir et al., 2015). The process

of analysing big data is commonly referred to as data mining

(Kantardzic, 2011) and includes methods to describe patterns

within the data and to predict events from these data. Data min-

ing itself is not a new branch of information technology, but it

has been boosted with the demand for real-time analysis of large

data volumes in web-based applications and digitized industries

(Zakir et al., 2015). Typical data mining tasks are the identifica-

tion of outliers, classification, and clustering of data, regression

analysis as well as condensing data into summaries and

overviews.

While many analysis in natural sciences traditionally include

some form of data mining, in the context of this article data min-

ing techniques are commonly associated with big data gathered

for non-scientific purposes (Walker, 2014).

Big data are usually described by volume, commonly ranging

in the terra- to petabyte domain, but big data can also be classi-

fied by variety and velocity (Russom, 2011; Rajamaran, 2016).

Variety refers to the type of data available, e.g. structured, semi-

structured, or unstructured, depending on the sources the data is

Figure 1. A simplified representation of blockchains. (a) Transactions are coded by hash values, which in turn are combined into blocks
within the block chain. Single blocks are connected via the hash of the previous block and the hash values of new transactions. (b) The block
chain is shared among the participants of the network, with each participant holding an identical copy of the blockchain. New blocks must
by validated by a critical number of network participants to be added to the blockchain. When this happens, the blockchain version of all
network members will be updated. (c) Smart contracts are implemented within the blockchain, i.e. are blocks that are referred to by
contracting parties (here partners a and b). The smart contract validates the requested action and if approved, executes its content (e.g. a
conditional transaction coded with the contract). The executed contract will be amended to the blockchain when approved by the network.
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coming from and which data sources are combined. Classical

sources for big-data analysis are data warehouses, in which several

data bases of different format and content are combined. Velocity

refers to the frequency of data streams, i.e. whether data are

updated or added in real-time, near real-time, or in batches.

Especially real-time data are most likely to have the strongest po-

tential for innovative applications, but are also the most demand-

ing with regards to storage, processing, and analysing.

Artificial intelligence

AI is a branch of computational sciences which deals with the

ability of machines, i.e. computers to achieve goals by learning

based on previous experience (Russell and Norvig, 2010). AI is

therefore often used interchangeably with the term “machine

learning”, even though AI is a more generic concept, of which

machine learning is only one aspect. The ultimate goal of ma-

chine learning algorithms is to come to automized decisions in

non-determined situations resembling human cognitive abilities,

such as recognizing objects in images or translating sentences

from one language into another. AI finds application in speech

and image recognition (Kantardzic, 2011; Ghahramani, 2015),

crime prediction (Shapiro, 2017), or autonomous driving of

vehicles (Urmson et al., 2008). In the wake of big-data applica-

tions, machine learning algorithms have become very popular, as

they are able to learn as they are trained on existing data (Hastie

et al., 2009; Tayal et al., 2014; Ghahramani, 2015; Rajamaran,

2016; Shapiro, 2017). The major asset of machine learning algo-

rithms is their ability to learn from the training data and to incor-

porate new data into the learning process as the data flow into

the database.

Machine learning algorithms are often categorized into super-

vised and unsupervised learning algorithms (Hastie et al., 2009).

Supervised learning are based on some sort of model, in which

data are separated into input and output features, i.e. into predic-

tor and response variables (Kotsiantis, 2007). Some popular su-

pervised machine learning algorithms are decision trees, support

vector machines, Bayesian networks, boosted regression trees,

random forests, and artificial neural networks. They can be ap-

plied for medical applications such as cancer prognosis and pre-

diction (Kourou et al., 2015) or the analysis of social media

content (Ruths and Pfeffer, 2014). Unsupervised learning meth-

ods analyses the data structure without distinguishing between

input and output variables, with many unsupervised algorithms

working around clustering and discriminating data cases accord-

ing to their features (Hastie et al., 2009). A famous example of a

non-supervised machine learning algorithm is the Google

PageRank algorithm for web searches in the World Wide Web.

How can Blockchain & Co. improve the trust

fisheries?
Blockchain

One of the few documented examples to implement blockchains

in fisheries is the attempt to support the traceability of tuna

around Fiji and other South Pacific islands (Visser and Hanich,

2017). To combat illegal, unreported, and unregulated (IUU)

fishing, participating fisheries attach radiofrequency identification

(RDFI) or quick-response (QR) code tags to each fish immedi-

ately after its catch. These tags are then registered automatically

at various stations of the processing (i.e. supply) chain and each

registration is fed into the blockchain. According to the example

of the South Pacific tuna fishery, a UK-based company called

“Provenance” implements blockchains for agricultural, forestry,

and fishing products including faire-trade and organic consumer

labels (www.provenance.org).

These application exemplify several advantages of blockchains,

i.e. the registration and processing of the product is automized

and the data in the blockchain is supposed to be tamper proof as

it should not be modifiable by a single member of the supply

chain (Pfreundt, 2018, but see section on problems on caveats for

safety issues with blockchains). Furthermore, the blockchain does

not have to be organized by a single controlling agency (non-gov-

ernmental or governmental institution), but is self-organizing

across jurisdictional borders and institutional responsibilities.

And finally, the blockchain transactions are transparent, allowing

all participants of the market, including the consumer, to track

the origin of the fish. This does not mean that tracking of supply

chains by blockchains are invulnerable to fraud and cheating. In

the example of the South Pacific tuna fishery, the most crucial

step within the supply chain is the correct labelling of individual

fish. Mislabelling can still happen and with criminal energy, fish-

ers, traders, ex-, and importers still may find ways to land and sell

ill-declared fish. But the transactions registered within the block-

chain will be unchangeable and hence cheating of a single party

within the supply chain should become much more difficult.

Blockchains may help to monitor landed and traded fish along

the supply chain much better than current, centralized databases,

which are often restricted to national or regional jurisdictions.

Data within blockchains could become a valuable source for en-

forcement agencies, fisher, traders, consumers, and scientists

(Pauly and Zeller, 2003; Sumaila et al., 2007; Mora et al., 2009) to

analyse catch and landing volumes as well as revenues of pro-

ducers, processers, and traders. At the moment, these data have

to be actively gathered by governmental agencies requiring signif-

icant funding and manpower (Stransky et al., 2008; Dörner et al.,

2018). If landed fish and seafood would automatically register to

a blockchain, landing volumes of a species could be counter

checked with global retail volumes to identify and track discrep-

ancies. Even if this sort of tracking would not work on a manda-

tory basis, as many participants in the fishing industry may lack

the capacity or the will to participate in a fully electronical proc-

essing system, the participation could occur on a voluntary basis

within consumer-labelling schemes, e.g. organic, sustainability or

fair-trade labels (Gulbrandsen, 2009; Swan, 2015; Visser and

Hanich, 2017). In such labelling schemes, landing shares as

tonnes of biomass could be purchased by fishing companies to

produce and trade these shares within the blockchain of the label.

This would turn catch quotas into a blockchain asset similar to a

crypto currency. Alternatively, governments (at least in developed

countries) could combine the allocation of catch quotas to fisher-

ies organizations with the obligation to apply a blockchain-based

tracking system. Catches without a share in the blockchain could

thus not be landed and sold, thereby becoming illegal.

When catch quotas are traded as blockchain assets, any quota

share (e.g. 1.000 t of herring) would then be attributed with a vo-

latile trade value, similar to stocks in a stock exchange. If the ac-

tual value of the fish within the quota was higher than the trade

value of the quota, fishermen could decide to actually fish the

quota out and the asset would be annulated from the market. If

the trade value was higher than the price for the fish, fishermen

could decide to keep or sell the quota as financial asset. This sys-

tem would provide interesting options not only for fishing
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companies, but also for non-governmental conservation organ-

izations (NGO) or management authorities to implement buy-

out schemes. The trade value of quota shares could rise if the an-

nual catch quota is low, providing financial compensation to

fishermen.

Finally, blockchains on landing trades may hold an advantage

to fishermen themselves. If they would have access to all trades

that have occurred at the port in their vicinity, they could choose

the trader or port, which pays the best prices for their catch.

Blockchains could also be used to trade catch quotas between

fishing vessels, for example in fisheries with tradable catch quotas

(Branch, 2009). Participating fishing vessels and management au-

thorities would be informed on the ongoing trades in real time

and also across national jurisdictions.

Data mining and artificial intelligence

Data mining and AI are tightly linked, as many AI algorithms re-

quire large datasets and some data mining techniques are in turn

based on AI (Kotsiantis, 2007; Hastie et al., 2009; Kantardzic,

2011). A prominent example of combined data mining and AI is

predictive policing (Tayal et al., 2014; Shapiro, 2017). Predictive

policing uses georeferenced data (e.g. unemployment rate, popu-

lation density, financial income of residents, etc.) to anticipate in

which areas specific crimes such as burglary, mugging, or murder

may occur at significantly high rates (Pearsall, 2013).

Alternatively, some predictive policing software can estimate how

likely previously convicted persons may commit another crime

(Shapiro, 2017). Similar to predicting robberies and muggins in a

city, it is possible to develop decision support tools based on AI

and data mining for law enforcement agencies at sea. An example

is a decision support tool for the US Coast Guard in the Gulf of

Mexico to choose locations for patrolling against illegal fishing

(Haskell et al., 2014). This tool is based on a game-theoretic

model which predicts the response of illegal fishermen to the pa-

trolling scheme of the US Coast Guard in the Gulf of Mexico.

While this example represents a situation with limited data avail-

ability on fishing activities, it is easy to envision even more pow-

erful decision support tools in fully industrialized fishing fleets

equipped satellite tracking devices and electronic logbooks. In

these fisheries, reported catches and locations of fishing opera-

tions can be transmitted in near real time and analysed by data

mining algorithms on land-based servers. If these algorithms de-

tect significant deviations from the common pattern recorded for

the according area, gear type, and season, patrols could be send

out to inspect these vessels at sea. This kind of system would be

most efficient in a fisheries in which the majority of fishers com-

ply with the management rules, as the data created by the “black

sheep” would stand out from the majority of logbook records

and thus should be easy to identify by data mining algorithms.

Data mining algorithms could be also used to improve the im-

plementation of spatial real-time closure (RTC) in fisheries where

high amounts of unwanted by-catch are observed. In 2009 the

Scottish Government implemented a RTC scheme on areas of

high catches of juvenile Atlantic cod Gadus morhua to reduce

mortality and discarding (Holmes et al., 2009; Needle and

Catarino, 2011). In the RTC scheme, data from on-board observ-

ers and satellite-based ship tracking (VMS) are used to determine

areas of high catches. However, data can only be analysed after

the reporting of landings at harbour and thus the designation of

closure sites is associated with a temporal delay. To improve the

implementation of RTC, catch data from e-logs could be trans-

mitted to land-based servers, where they could be analysed by

data mining algorithms even sooner.

A prominent application of AI algorithms is the field of image

recognition. In fisheries, AI-based image recognition could im-

prove electronic observing-at-sea programmes based on video

monitoring. At the moment, the recognition of species and catch

volumes from electronic monitoring is commonly done manu-

ally, requiring human observers to sight video footage and image

stills (Kindt-Larsen et al., 2011; van Helmond et al., 2014).

Consequently, only small proportions of the recorded data are ac-

tually analysed. The automized recognition of species, length, and

catch volume would allow to analyse more data at lower costs

providing a more complete picture of the total removals of com-

mercial fishing fleets. Some studies which have implemented AI-

based image recognition to identify fish species in aquacultures

(Hu et al., 2012) and in catch fisheries (Storbeck and Daan,

2001), achieved classification rates of >90%.

Image recognition is also increasingly used to identify vessels

at sea (Kanjir et al., 2018). Optical remote sensing images can be

combined with satellite or land-based geolocation techniques,

such as vessel-monitoring system (VMS) or automatic identi-

fication system (AIS) to identify ship size and activity type.

Though the satellite-based classification of vessels at sea is still

faced with challenges by cloud cover, solar light input angle and

overflight frequency, refined algorithms based on machine learn-

ing may help to overcome some of these shortcomings to detect

unreported and illegally fishing vessels. Even if this data may not

become available in real-time, similar to radar controls it may be

used as evidence for fining and sanction schemes.

Apart from image recognition, AI may have many potential

applications in fisheries and trading of seafood products. At the

moment, implemented examples are scarce, but AI may find

fruitful application in any situation in which large data volumes

need to be analysed and categorised. Due to the versatility of AI

and its potential applications, this article does not intend to pro-

vide a comprehensive overview on AI applications in fisheries,

but rather intends to spark the creativity of software developers

and decision makers in economic and management institutions.

A word on the “internet of things”

Internet of things (IoT) refers to the automized communication

of electronic devices (Christidis and Devetsikiotis, 2016). Its de-

velopment is tightly linked to the equipment of devices with sen-

sors and communication electronics such as Bluetooth or wireless

network adapters. Recent IoT applications are smart home prod-

ucts that can regulate lighting, entertainment systems, heating

and locking of doors and windows. There are also many applica-

tions in agriculture such as satellite-based harvesting and planting

machines, automized irrigation systems connecting soil sensors

with pumps and water gates or radiofrequency identifiers (RFID)

for tracking free-ranging cattle (Dlodlo and Kalezhi, 2015).

Similarly, RFID have been attached to Tilapia reared in Chinese

aquaculture to follow individual fish through the production and

trading along the supply chain (Bo et al., 2012). This is very simi-

lar to the blockchain tuna example described above, the only dif-

ference being that the Tilapia a tracked without a blockchain.

Without any doubt IoT applications will find many opportuni-

ties within fisheries productions and trades, but they are not in

the focus of this review. While IoT and data applications are
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tightly linked, the former is very much associated with hardware

developments, i.e. the application of sensors in previously not

measured systems. It can easily be imaged that IoT can play a big

role in processing seafood on-board of fishing vessels, e.g. by im-

proving automized grading and gutting. Also a more direct com-

munication between consumers and producers (fishermen)

would be thinkable to enhance direct marketing of fresh caught

fish, leading to better prices and short supply chains. However,

these are just two of many possible IoT applications in fisheries,

reviewing them all is beyond the scope of this article. Nonetheless

it should be noted that several blockchains techniques are explic-

itly developed to accommodate requirements of IoT applications.

A well-known example is the crypto currency IOTA, which the

developers foresee as a native currency for financial transactions

between autonomous devices (see www.iota.org).

Meta-view on potential applications of blockchain,

data mining, and AI
Looking at Table 1, data mining and AI appear to be especially

useful tools to monitor and control fishing vessels/companies by

helping to gain knowledge on catches and to ensure compliance

to management rules at sea. Thereby both techniques are acting

mainly on the first link of the supply chain, the producer, i.e. the

fishing vessel, whereas blockchains and smart contracts are useful

to ensure transparency along the supply chain. It should be noted,

however, that the implementation of each technology is associ-

ated with caveats.

Problems and caveats
Innovations are usually two-sided medals and hence blockchain,

data mining, and AI pose challenges to all participants of fishing

enterprises including fishermen, trader, consumers, management

authorities, and scientist. Fishermen may not be willing to insti-

gate further mechanisms of control, whereas traders and manage-

ment authorities may fear the extra costs and effort of installing

and maintaining new infrastructures. And finally, consumers may

need to engage into the blockchain by downloading apps and

spending time to get informed on their product. Furthermore,

neither blockchains, smart contracts, nor data mining algorithms

are free of fraud, error and uncertainty. It is therefore naı̈ve to as-

sume that these technologies will entirely prevent illegal or unre-

ported fishing. One of the most crucial steps of the fisheries

supply chain will remain the haul of the catch on board of the

fishing vessel and the subsequent designation of labels. Both pro-

cesses will still remain in the hands of the vessel crew. Outside the

fishing vessel, it will be difficult to verify whether all catches are

labelled correctly, whether discarding has occurred or whether

catches are landed unreported or illegally. Labelling also becomes

easier to manipulate when fish and seafood products are not sold

as whole, but are processed into different product categories such

Table 1. Examples of potential applications of blockchains, data mining, and AI in economics and management of fisheries.

Technology Task Strengths and opportunities Weaknesses and threats

Blockchain Tracking of the supply chain of fish and

seafood products by consumers and/

or retailers

Increase consumer trust and

engagement in ecolabels and

sustainability campaigns

Not fraud proof as mislabelling/mal-

codification still may occur

Blockchain and smart

contracts

Trading of quotas/shares among fishing

companies and between

management authorities and fishing

companies

Transparent and self-organized trading

of catch shares/quotas

May not comply with management

specificities

Blockchain and data

mining

Tracing and verifying reported landings

by management authorities

Adds transparency to fisheries data

Facilitated enforcement of fisheries

regulations

Allows to direct inspection efforts to

critical cases

Difficult to implement and demanding

on IT resources

Algorithms may lead to wrong

conclusions

Sell at sea of catch by fishing companies

to wholesalers factories, retailers

Improved trading opportunities for

producers (fishers)

May incentivise the landing in countries

with less strict management

obligations

Data mining Designation of RTC Improved speed in closure designation Requires near real-time transmission of

catch information

Data mining and AI Predictive control against IUUa,

decision support for patrols

Improved allocation of inspection

efforts, higher incentive for fishers to

comply with laws and management

rules

Requires near real-time transmission of

catch information, which can still be

flawed

AI Catch recognition in on-board video

footage

Improved processing of catch, better

data collection for management

authorities

Difficult to implement technically, may

not be error or tamper-proof, high

costs for companies operating fishing

vessels

Vessel identification of optical remote

sensing images

Improved knowledge on vessel location

and activity

May have a deterrent effect on illegal

fishing vessels

Spatial and temporal coverage may

have significant gaps

Error rate in vessel identification may be

high

Note: This list is not intended to be comprehensive, but represents some potential applications together with associated strengths, weaknesses, opportunities,

and threats.
aIllegal, unreported, or unregulated.

Emerging data technologies in fisheries 1291

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3

Deleted Text: s
Deleted Text: paper
http://www.iota.org
Deleted Text:  


as steaks, filets, loins and minced meat (Visser and Hanich,

2017).

The technical infrastructure to maintain blockchains in near

real-time is challenging. Receiving and sending large data vol-

umes at sea is only possible via satellite communication in many

parts of the ocean. Installing satellite communication devices may

be not feasible in small-scale fisheries or fisheries with limited fi-

nancial resources. Transmission prices could still be too high and

the available bandwidth still too narrow to support the transmis-

sion demands of electronic logbooks and synchronised

blockchains.

Blockchains require intense and frequent communication be-

tween the nodes of the blockchain network. The synchronization

of blockchains thus can be tardy (Christidis and Devetsikiotis,

2016) and may not work well in situations in which a large pro-

portion of network nodes are faced with unstable network con-

nections. Classical blockchains as used for Bitcoin are also faced

with the challenge of scalability, i.e. a limited number of transac-

tions that the network can process (Xu et al., 2016). Thus vast ex-

pansion of network participants may pose challenges on the

blockchain network.

Blockchains are also not fully tamper proof, as blockchain con-

sensus could be reached by one party if it manages to hold the

majority of the network nodes (Lin and Liao, 2017; Dey, 2018).

While this may be an unlikely scenario in big blockchain net-

works, it may happen in smaller networks, when only a limited

number of participants is involved.

Predictive policing is commonly criticized for loss of privacy

and civil rights, i.e. introducing ethnical bias into the identifica-

tion of crime sites or individuals (Shapiro, 2017). Accordingly,

fishermen may find their privacy interests breeched when being

controlled by digital surveillance. Repeated protest against video

monitoring at-sea and satellite-based VMSs in Europe indicate re-

luctance of fishermen to implement technologies which increase

surveillance on their operations (Mangi et al., 2015). Thus data

technologies should find their fastest and most widely accepted

implementation in situations, in which fishermen are incentivised

to do so, e.g. if they gain trade benefits or are relieved from paper

work.

Blockchains often require some sort of incentive for participa-

tion to maintain the network, which in cryptocurrencies is a min-

ing reward. Obtaining this reward can be very energy consuming

and costly, making an equitable participation of small and large

stakeholders less likely. However, technical innovations of block-

chain technologies are constantly produced and future applica-

tions may solve many of the aforementioned problems (Xu et al.,

2016; Christidis and Devetsikiotis, 2016). For example, processing

energy requirements can be reduced when blockchain systems are

based on proof-of-stake algorithm instead of the proof-of-work

algorithm (Christidis and Devetsikiotis, 2016; Lin and Liao,

2017). Proof-of-stake allocates the computation of new blocks in

a deterministic way, e.g. based on the amount of currency held by

a participant of the network. Contrary, proof-of-work is a com-

peting scheme in which the potential creators of new blocks (i.e.

miners) are competing by finding the fastest solution to a com-

plex puzzle, which requires significant amounts of computational

power and thus energy.

Conclusions
This article can only sketch some potential applications of block-

chains, big-data analysis and AI in fisheries. Currently

implemented examples and existing literature are too scarce to

provide an in-depth review. Each technology will most likely

evolve further, leading to unforeseen opportunities (and risks).

Thus many of the described applications may never become

realized, or their implementation may come with drawbacks

which are not yet to be foreseen. But it is unlikely that the eco-

nomics and management of fisheries will not be significantly af-

fected by any of these technologies. Thus it is rather question of

when and how enhanced data technologies will find entrance into

the world’s fisheries.

Blockchain, data mining, and AI will not stop IUU fishing, will

not prevent overfishing and discarding. But they may help to

make global streams of fish and seafood products with the associ-

ated flow of money becoming more visible and transparent. In

fact, digital data technologies may work best in fisheries, which

voluntarily intend to demonstrate their compliance to laws, man-

agement rules, and consumer demands or which are looking for a

self-controlling mechanism to foster trust amongst competitors.

Such systems may even evolve in areas, where governmental fish-

eries is currently weakly developed or totally absent, because fish-

ermen may want to organize themselves to reduce conflicts and

improve trade opportunities. Finally, in many situations, these

technologies might allow governmental authorities to improve

surveillance of industry compliance and consumers to place bet-

ter informed decisions on which product they would like to

purchase.
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It is interesting to develop effective fish sampling techniques using underwater videos and image processing to automatically estimate and

consequently monitor the fish biomass and assemblage in water bodies. Such approaches should be robust against substantial variations in

scenes due to poor luminosity, orientation of fish, seabed structures, movement of aquatic plants in the background and image diversity in

the shape and texture among fish of different species. Keeping this challenge in mind, we propose a unified approach to detect freely moving

fish in unconstrained underwater environments using a Region-Based Convolutional Neural Network, a state-of-the-art machine learning

technique used to solve generic object detection and localization problems. To train the neural network, we employ a novel approach to utilize

motion information of fish in videos via background subtraction and optical flow, and subsequently combine the outcomes with the raw image

to generate fish-dependent candidate regions. We use two benchmark datasets extracted from a large Fish4Knowledge underwater video reposi-

tory, Complex Scenes dataset and the LifeCLEF 2015 fish dataset to validate the effectiveness of our hybrid approach. We achieve a detection

accuracy (F-Score) of 87.44% and 80.02% respectively on these datasets, which advocate the utilization of our approach for fish detection task.

Keywords: deep learning, fish assemblage, fish detection, fisheries management, neural networks, stock assessment, underwater video

Introduction
Monitoring the effect of preventive and recovery measures

requires the estimation of fish biomass, and abundances by sam-

pling their populations in water bodies like lakes, rivers and

oceans on a regular basis (Jennings and Kaiser, 1998). This

requires observation of the interaction of different fish species

with changing environmental conditions. This is an essential pro-

cess, especially in those regions of the world where certain species

of fish are either threatened or at the risk of extinction due to

habitat loss and modification, industrial pollution, deforestation,

climate change, and commercial overfishing (Tanzer et al., 2015).

There is a well-established and increasing interest in using non-

destructive fish sampling techniques by marine biologists and

conservationists (McLaren et al., 2015). Underwater video-based

fish detection approaches have been used to achieve non-

destructive and repeated sampling for many years (Harvey and

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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Shortis, 1995; Shortis et al., 2009). Manual processing of under-

water videos is labour intensive, time consuming, expensive and

prone to fatigue errors. In contrast, automatic processing of the

underwater videos for fish species classification and biomass mea-

surement is an attractive alternative. However, high variability in

underwater environments due to changes in lighting conditions,

clarity of water, and background confusion due to vibrant seabed

structure pose great challenges towards automatic detection of

fish. These factors result in a compromise on accuracy, which

supports the continuing practice of less cost effective and cum-

bersome manual sampling and tagging of fish.

In general, automatic fish sampling involves the following

three major tasks: (i) Fish detection, which discriminates fish

from non-fish objects in underwater videos. Non-fish objects in-

clude coral reefs, aquatic plants, sea grass beds, sessile inverte-

brates such as sponges, gorgonians, ascidians, and general

background. (ii) Fish species classification, which identifies the

species of each detected fish from the predetermined pool of dif-

ferent species (Siddiqui et al., 2017). (iii) Fish biomass measure-

ment, using length to biomass regression methods (Froese, 2006).

This article addresses the first task and the interested reader is re-

ferred to the literature for details of the following two steps in the

overall process.

Various approaches have been followed for fish detection and

consequently their assemblage estimation using image and video

processing algorithms. Broadly speaking, these approaches can be

divided into two categories based on the medium available for

sampling, namely constrained and unconstrained sampling. In

the former case, early attempts were made that involved detection

of fish using information of their shape and colour (Strachan and

Kell, 1995) or 3D modelling of fish to acquire features like height,

width, or thickness (Storbeck and Daan, 2001). Harvey and

Shortis (1995) presented an approach to acquire underwater

images of fish under controlled conditions. This was achieved by

making fish swim through a chamber with controlled illumina-

tion. Unconstrained underwater fish detection and classification

does not assume any specific environmental conditions and,

therefore, faces difficulty in achieving the required accuracy due

to high variations in the aforementioned conditions. To address

this problem, Spampinato et al. (2008) presented an image proc-

essing based method for fish detection and counting by capturing

the texture pattern of fish in the natural underwater environment.

They were able to achieve an average accuracy of about 84% on

five underwater videos. In the past, several attempts have been

made to solve the same problem in underwater videos using ma-

chine learning. Principal component analysis (Turk and

Pentland, 1991), linear discriminant analysis (Mika et al., 1999),

and sparse representation-based detection (Hsiao et al., 2014)

presented some ways to capture fish-dependent features through

mathematical modelling, which assumed independence of mod-

elled fish with surrounding environments in videos. In other

words, information like fish colour, texture, and shape was

extracted with the prior assumption that foreground fish instance

was easily distinguishable from the background. In reality, it is

challenging to differentiate fish within underwater video/images

due to camouflage with the background, poor visibility, and loss

of contrast as a result of light attenuation through the water me-

dium, low light, and water turbidity. In pursuit of suppressing

the effects of environmental variability, Kernel Descriptors in

Kernel density estimation (KDE) approach with colour informa-

tion for background pixel modelling in images were used by

Sheikh and Shah (2005). In contrast, texture-dependent features

computed via local binary patterns for background modelling

was proposed in Yao and Odobez (2007).

Background modelling is a popular technique to segment

moving foreground objects from the background in video

sequences. An approach using motion-based fish detection in vid-

eos was presented by Hsiao et al. (2014). This method imple-

ments background subtraction by modelling background pixels

in the video frames using Gaussian mixture models (GMMs).

Although training the GMM, it is assumed that subsequent

frames of video lack fish instances. Motion is detected in the

video frames (apparently from fish) when a certain region of the

frame does not fit into the trained background model. This ap-

proach produces fish detection results with an average success

rate of 83.99% on several underwater videos collected near south-

ern Taiwan. A similar scheme was proposed on covariance

modelling of background and foreground (fish instances) in the

video frames using colour and texture features of fish (Palazzo

and Murabito, 2014). Using a dataset of four underwater videos

with a high variation in luminosity, strong background move-

ments, dynamic textures, and rich background, they were able to

achieve an average detection accuracy of 78.01%. Presently,

GMM- and KDE-based fish detection approaches are considered

state-of-the-art (Spampinato et al., 2014). We will compare the

performance of various state-of-the-art techniques with our pro-

posed approach in a later section.

All of the above-mentioned machine learning and feature ex-

traction approaches fall into the category of shallow learning

architectures (Bengio, 2009). These techniques are unable to ac-

curately model the complexity of fish-dependent features in the

presence of highly variable and diverse environments, and there-

fore these video or image-based fish detection techniques ex-

hibit low performance in real-world scenarios (Siddiqui et al.,

2017). In the last decade, deep learning has been at the centre of

attention for many researchers developing detection and classifi-

cation algorithms in computer vision. Marked by their ability to

extract and model highly nonlinear data, deep architectures

have been utilized in numerous tasks related to computer vi-

sion, including facial recognition, speech processing, generic ob-

ject detection, and classification in video and still images

producing state-of-the-art results (Lin et al., 2015; Ren et al.,

2017). In realizing deep architectures, multilayer deep neural

networks are among the most successful schemes capable of

extracting task-dependent features in the presence of variability

in the images. Most commonly used variants of deep neural net-

works include deep convolutional neural networks (CNNs)

which are parametric neural network models capable of extract-

ing task-specific features and are widely used in computer vision

problems like object recognition in images and facial recogni-

tion (LeCun et al., 2015).

Deep learning is being used lately to solve fish-related tasks

(Moniruzzaman et al., 2017). An important work using CNN was

proposed by Sung et al., (2017) to detect fish in underwater imag-

ery with 65.2% average accuracy on a dataset containing 93

images having fish instances. The system was trained on raw fish

images to capture colour and texture information for localizing

and detecting fish instances in the images. In a similar work, deep

region-based CNN (R-CNN) were used for the abundance esti-

mation of fish from 4909 underwater images recorded in the

coast of Southeast Queensland, Australia. In this work, an accu-

racy of 82.4% was reported using the R-CNN system tuned for

1296 A. Salman et al.
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locating and detecting fish instances in an image with a unified

network framework.

Despite the high accuracy achieved by the deep learning based

fish species classification, the task of vision-based automatic fish

detection in unconstrained underwater videos is still under exten-

sive investigation as most of the previous attempts reported

results on relatively small datasets with a limited variety in the

surrounding environment. Therefore, it is important to judge the

robustness and effectiveness of any system in a large dataset with

a high degree of environmental variation.

In this article, we address fish detection in highly diverse and

unconstrained underwater environments and propose a hybrid

system based on explicit motion-based feature extraction fol-

lowed by a final detection phase using deep CNNs. In the first

step, we use background subtraction by modelling still pixels of

the video frames using GMMs. These models represent pixels re-

lated to a range of coral reefs, seabed features, and aquatic plants.

Foreground objects are segmented from the background based on

the motion in the scene that does not match the background

model. To enhance the quality of the extracted features in each

video frame, we concatenate the GMM candidate output blobs

with the moving candidates generated by optical flow, a well-

established approach used for motion detection in videos (Brox

et al., 2004). However, due to poor image quality, noise and back-

ground confusion, the detection remains far from perfect. To ad-

dress this problem, we tune the parameters of GMM and optical

flow systems to generate high recall by trying various values of

the number of Gaussian distributions, initial variance, blob size

and sensitivity in case of GMM, as well as pyramid size, number

of pyramid layers, and window size in case of optical flow. The

details of these parameters are given in Zivkovic and Heijden

(2006) for GMM and in Beauchemin and Barron (1995) for opti-

cal flow. Specifically, in this step, all entities that exhibit even a

slight movement are detected as fish. In the second step, we dis-

criminate all the candidate regions in the video frames as fish and

non-fish entities using a CNN architecture arranged in a hierar-

chical fashion to fine tune the detection system. Our CNN is

trained using a supervised training style in which the GMM and

optical flow blobs acts as the input while ground truth blobs

(given in the training data) acts as the desired output. We worked

on two different datasets; the Fish4Knowledge Complex Scenes

Dataset, where the aim is fish detection with videos arranged into

seven different categories based on the variation in the underwa-

ter environment; and the LifeCLEF 2015 (LCF-15) dataset, which

is also designed for the detection of freely swimming fish in video

sequences. These datasets contain marine scenes and species; un-

fortunately, there is no public domain benchmark datasets avail-

able containing underwater recordings in fresh water bodies.

The contribution of this work is to overcome the main chal-

lenge faced by the conventional motion detection and image clas-

sification approaches using deep learning. These deep learning

modules are trained to select the relevant information from the

data and minimize confusion which contributes to false alarms or

missed detections. This approach improves the detection and

classification accuracies especially in the data marked by high en-

vironmental variability like unconstrained underwater videos of

fish. Our novelty lies in the proposed hybrid setup to mine the

relevant motion information content by pooling the information

generated by GMM and optical flow and refining the outcome by

deep CNNs. Our approach is capable of detecting fish in the

video in its stationary or moving state with region-based feature

localization. This equips our detection system with motion-

influenced temporal information that is not available otherwise,

in order to enhance detection performance in cases where fish is

occluded or camouflaged in the background.

Material and methods
Dataset

We use two benchmark datasets in our study, both of which are

specially designed to provide a resource for testing algorithms for

detection and classification of fish in images and video sequences

and have been used for benchmarking a number of approaches.

The first dataset is used for the fish detection task and is a collec-

tion of 17 videos under different environmental conditions

(http://f4k.dieei.unict.it/datasets/bkg_modeling/). The second

dataset is taken from the LCF-15 fish task (http://www.imageclef.

org/lifeclef/2015/fish). This dataset contains 93 underwater videos

comprising 15 different fish species. Both datasets are derived

from a very large fish database called Fish4Knowledge (Fisher

et al., 2016). With over 700 000 underwater videos in uncon-

strained conditions, the Fish4Knowledge dataset has been col-

lected over a period of 5 years to monitor the marine ecosystem

of coral reefs around Taiwan. This region is home to one of the

largest fish biodiversity environments in the world with more

than 3000 fish species.

The first dataset, dubbed FCS (Fish4Knowledge with Complex

Scenes) hereinafter, comprises seven sets of selected videos

recorded in typical underwater conditions addressing complex

variability in the scenes. Thereby, the environmental variations

provide a major challenge for fish identification and are catego-

rized as follows:

(1) Blurred, comprising three low contrast, blurred videos.

(2) Complex background, composed of three videos with rich

seabed structures that provide a high degree of background

confusion.

(3) Crowded, in which three videos with a high density of mov-

ing fish in each video frame imposes specific challenges for

fish detection techniques, especially when it comes to high

recall and precision in the presence of occluding objects.

(4) Dynamic background, in which two videos are provided

with rich textures of coral reef background and moving

plants.

(5) Luminosity variation composed of two videos involving

sudden luminosity changes due to surface wave action. This

phenomenon can induce false positives in detection due to

moving light beams.

(6) Camouflage foreground, two videos are chosen, addressing

the challenge of detecting fish camouflaged in the presence

of textured and colourful background.

(7) Hybrid, in which two videos are selected to show a combina-

tion of all the above-mentioned conditions of variability.

Table 1 summarizes the technical information regarding both

datasets used in this article. For the FCS dataset, complexity is

specifically depicted for all seven environmental conditions. The

LCF-15 dataset is used to detect fish instances in the video i.e. to

count all the fish in the video regardless of their species. Of the 93

videos given in LCF-15, 20 are used for training the computer

Automatic fish detection in underwater videos 1297
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vision or machine learning modules, while the remaining 73 vid-

eos are set aside for testing/validating the developed algorithms.

In total, there are 9000 annotated fish instances available in the

LCF-15 training set, and 13 493 annotated instances for the test

videos. All these videos are manually annotated by experts. Apart

from videos, there are 20 000 labelled still images in LCF-15,

where each image comprises of a single fish. These images can

also be used to supplement the training set if required. Thus, in

total there are 42 493 labelled fish instances in videos and still

images in the LCF-15 dataset. The FCS dataset is also designed

and used for the fish detection task. Therefore, ground truth is

available for all moving fish, frame by frame in each video. There

are a total of 1328 fish annotations available for the FCS dataset.

Figure 1 shows some video frames extracted from FCS and LCF-

15 datasets exhibiting the variation in the surrounding environ-

ment, fish patterns, shape, size, and image quality.

Proposed algorithm

To perform fish detection, we propose a hybrid system based on

the initial motion-based feature extraction from videos using

GMM and optical flow candidates. These feature images are

combined with raw greyscale images and fed to the CNN system

to mark final detected fish. Therefore, our proposed hybrid fish

detection system is made up of three components i.e. GMM, opti-

cal flow and a CNN.

Gaussian mixture modelling

In machine learning, GMM is an unsupervised generative model-

ling technique to learn first and second order statistical estimates

of input data features (Stauffer and Grimson, 1999; Zivkovic and

Heijden, 2006). This approach and its variants are frequently

used in computer vision and speech processing tasks. GMM rep-

resents a probability density function P xtð Þ at time t of data x as

a weighted sum of multiple individual normal distributions g xið Þ
for pixel i. Thereby, each density is characterized by the mean

and covariance of the represented data. Using a combination of

individual Gaussian densities, any probability distribution can be

estimated with arbitrary precision (Reynolds and Rose, 1995).

In our case, each pixel value with a fixed location in the video

frame acts as a feature. Multiple such values from successive

frames are combined to form a feature vector. As elaborated in

Figure 2, we end up with a total number of feature vectors that

Table 1. Information about LCF-15 and FCS fish datasets.

Dataset No. of videos Format Resolution Frames/sec No. of labelled fish instances

LCF-15 93 FLV 640 � 480, 320 � 240 24 42 493

FCS 17 FLV 640 � 480, 320 � 240 24.5 1 328

Figure 1. Sample images to illustrate the high variation in underwater environment. The first two rows depict seven categories of the FCS
dataset from left to right top to bottom being Blurred, Complex background, Dynamic background, Crowded, Luminosity variation, Camouflage
foreground, and Hybrid. The last row shows an excerpt from different videos of the LCF-15 dataset.

1298 A. Salman et al.
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equals the total number of pixels in a video frame. The GMM

requires a certain amount of training data to effectively estimate

the mean and covariance of an object class. For fish detection in

videos, there are two classes i.e. background and foreground.

Ideally, the background in underwater videos should cover every-

thing in the frame but moving fish. For example, seabed struc-

ture, coral reef, aquatic plants, and wave action causing variation

in light intensity are categorized as background. Freely moving

fish, on the other hand, constitute as foreground. The GMM is

used to learn the background features in a statistical model using

mean and covariance values of pixel data and separate them from

the foreground pixel distribution. In other words, any random

and sudden change in the pixel value of a frame causes a mis-

match with the background model of that pixel and hence, a mo-

tion is assumed to be detected. The statistical pattern of

foreground (fish in our case) movement is usually different from

the pattern of fixed objects like seabed structures, coral reefs and

also objects with confined movement like to and fro motion of

plants and refracted light rays from the surface. The outputs of

the GMM are the candidate blobs marked by bounding boxes lo-

calizing the moving objects in a frame (see Figure 2).

The video frames that are used to train the GMM should not

include any fish instance but only the background. However, it is

very difficult to capture such videos in a natural environment as

fish can appear in any number of frames. When a GMM is trained

on videos that do not have pure background but also some fish,

the fish will also be modelled as background resulting in misde-

tections in the upcoming test frames.

Optical flow

To compensate for this shortcoming of GMM, we additionally

extracted optical flow features which are purely generated by mo-

tion occurring in the underwater videos (see Figure 2). Optical

flow is a 2D motion vector in the video footage caused by the 3D

motion of the displayed objects (Warren and Strelow, 1985).

There are various methods to estimate optical flow. We opted for

a simple yet effective method where motion is detected between

two successive video images taken at times t and t þ Dt at every

position using Taylor series approximation with partial deriva-

tives with respect to spatial and temporal coordinates

(Beauchemin and Barron, 1995). A region of interest (ROI) in a

video frame at time t and coordinates x; y can be represented in

terms of intensity as I x; y; tð Þ. After any motion in the next

frame, the intensity becomes I x þ Dx; y þ Dy; t þ Dtð Þ where the
notation D represents the change in coordinates and time. Based

Figure 2. (A) Illustration of background subtraction and foreground segmentation using GMM which detects any change in the foreground
by matching it with the background model. (B) Motion detection in an optical flow setup to estimate the direction of moving objects in two
dimensions (x, y) for consecutive frames in time t of a video sequence.

Automatic fish detection in underwater videos 1299
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on the motion constraint, optical flow can be determined as de-

scribed in, for example, Beauchemin and Barron (1995).

Optical flow depends on the analysis of the consecutive frames

to estimate the difference in the intensity vector of a pixel at a

particular location. However, such an analysis is also prone to

false motion detection apart from fish when applied to a dynamic

background with moving aquatic plants and abrupt luminosity

variation due to disturbance at the water surface. The parameters

of the GMM and optical flow algorithm are chosen such that

even the smallest movements are detected. In other words, the

sensitivity of the algorithms is maximized, producing a high rate

of false alarm in addition to detecting fish instances leading to

high recall rates. In the next step, the precision of the system is

further increased by fine-tuning and refining regions in the

frames to localize moving fish. This requires a robust detector to

categorize fish motion in complex and variable environments.

We propose the use of a R-CNNs (hereinafter referred to as R-

CNN) trained on images, created by combining candidate regions

generated by the GMM and optical flow together with the origi-

nal greyscale images in a supervised learning setup.

Region-based convolutional neural network

A deep CNN is a nonlinear parametric neural network model ca-

pable of extracting and learning complex yet abstract features of

the input data. Variations in the lighting condition, size, shape,

and orientation of the fish, poor image quality and significant

noise are the factors that introduce nonlinearity into the data

(Bengio, 2009). Since all of these challenges are encountered in

the videos recorded in an unconstrained underwater scenario, it

is difficult for conventional machine learning algorithms to

model data features in the presence of such nonlinearity.

However deep neural architectures, especially CNNs, learn to ex-

tract invariant and unique features of the objects of interest in

data when properly trained with a sufficient amount of labelled

data (LeCun et al., 2004; Simonyan and Zisserman, 2014). The

deep architecture exemplified by the R-CNN employed in our

study is a hierarchical parametric model composed of two mod-

ules. The first module is a generic deep CNN trained for generic

object recognition on a very large dataset called ImageNet (Deng

et al., 2009). Smaller than the first module CNN, the second

module is another CNN, which acts as the object detector and

called region proposal network (RPN) (Ren et al., 2017). It selects

candidate regions in the feature space of the input image in which

a motion is likely to have occurred.

The entire system is used for detecting moving objects as

depicted in Figure 3. The first module utilizes the concept of

transfer learning (Siddiqui et al., 2017). It learns characteristic

feature representation of the object of interest in the input image

in order to recognize and classify the objects in the imagery. In

transfer learning, a CNN pretrained on totally different, yet rele-

vant dataset, is utilized as a generic feature extractor for the data-

set of interest. In our case, the CNN was trained on the vast

ImageNet dataset that contains 1.2 million images of a very large

and diverse number of objects. This dataset is not related or

designed for fish species recognition or fish detection in underwa-

ter videos. However, it provides a high degree of variability to de-

tect generic objects with different backgrounds in input images

based on their texture, size and shape features. Once the network

is trained, it can be applied to a different dataset, in our case on

underwater video imagery of fish, as a feature extractor. Transfer

learning is suitable for the applications where a large amount of

training data is not available to train the deep CNNs (Siddiqui

et al., 2017). This is exactly the problem in the current underwa-

ter datasets. Training on such relatively small datasets (see

Table 1) overfits a deep CNN to generate better performance on

training dataset and fails on previously unseen test datasets. In

other words, the training dataset is so small that the CNN is able

to memorize it and produce good results only on the training

dataset. We utilize a deep CNN known as ResNet-152 as the pre-

trained model (He et al., 2016). The parameters of this network

are further refined by including examples of our fish dataset video

imagery in training. This network is composed of an input layer,

various hidden layers and an output layer to process an input im-

age to obtain its output feature representation (LeCun et al.,

2004). Starting from an input layer that represents the pixels of

an image, the hidden layers are interconnected by a set of weights

that are tuneable as a result of the training procedure. Thereby,

each hidden layer represents a higher-level form of feature repre-

sentation. There are several types of hidden layers used in our

network, e.g. a convolution layer that performs the mathematical

operation of convolution between image pixels (values of the

Figure 3. The proposed hybrid system, where ResNet-152 CNN is trained on images that are created by combining the motion-influenced
outputs of GMM and optical flow algorithms with raw greyscale video images. This is analogous to three-channel RGB image.
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input layer) or feature values (values of the hidden layers) with

the weight vectors. Convolution is generally used in image proc-

essing for noise reduction or detecting features such as edges or

other patterns (LeCun et al., 1989). In a CNN, convolution is fol-

lowed by a nonlinear activation layer to induce nonlinearity in

the feature vectors. There are several types of nonlinear functions,

e.g. ReLUs (rectified linear units), Sigmoid and Hyperbolic

Tangent (LeCun et al., 2004; Simonyan and Zisserman, 2014; He

et al., 2016). The choice of the nonlinear function depends on the

data distribution and nonlinearity of the input data. Due to the

saturating regions of the Tangent Hyperbolic and Sigmoid func-

tion, the ReLU function is the defacto-standard in the latest state-

of-the-art models. Max pooling and average pooling layers sift

out the most prominent values from the output of nonlinearity

inducing layers based on maxima or an averaging operations to

reduce the dimension of feature vectors and retain useful infor-

mation while discarding the redundancy. The final layer is the

output layer which usually is a classification layer with output

nodes equal to the number of desired classes for a given dataset.

Each output node produces a score or probability for the associ-

ated class. The predicted label is then matched with the ground

truth label to calculate accuracy.

ResNet-152 is a modular deep CNN with various hidden

layers. The architecture is designed to process images of size 224

� 224 given the fact that this resolution is enough to extract use-

ful features within reasonable computational time. Thus, after ap-

plying five pooling layers, the feature map size shrinks to 7 � 7

which can be processed by fully-connected layer of 1000 label pre-

diction nodes, since ResNet-152 was designed to train on a subset

of ImageNet dataset with 1000 classes.

The complete architecture details of ResNet-152 can be found

in He et al. (2016). The arrangement of the above-mentioned

layers in this architecture is experimentally determined to yield

greater success on visual features from the large-scale ImageNet

dataset. Using this network as a pretrained model on our FCS

and LCF15 fish datasets, an informative visual representation of

fish objects and their motion can be extracted. After applying the

pretrained ResNet-152 network on the input which is a concate-

nation of the raw greyscale video frames and the motion candi-

dates generated by GMM and optical flow, we get the output

features. This three-input combination is alternative to the stan-

dard three-channel RGB image. The output features extracted by

applying ResNet-152 are fed into RPN to generate candidate

regions where fish might be present. This is achieved by sliding a

small window of size 3 � 33� 3 on each of the feature maps

to produce k proposals, called anchor boxes, of different aspect

ratio and scale. We use three different scales ð128�
128; 256� 256; 512� 512Þ each with 3 different aspect rations

(2:1, 1:1, and 1:2) to make k ¼ 9 proposals. The aim of using dif-

ferent proposals is to capture fish of different sizes that may ap-

pear in an image. These proposals are then classified with a

binary classification layer of the RPN to detect the ROI. Another

sibling layer of RPN outputs coordinate encodings for each classi-

fied proposal. This operation is depicted in Figure 4. The ROIs

proposed by the RPN are pooled using an ROI pooling layer and

passed onto the final classification head which refines and classi-

fies the proposed ROI into the actual number of classes present at

hand, namely fish and non-fish. The complete network is trained

in an end-to-end fashion using the features generated by ResNet-

152 model as the input and the corresponding ground truths pro-

vided by the dataset. While training, we employ an error backpro-

pagation algorithm (Hinton et al., 2006).

As mentioned earlier, the parameters of the GMM-based mo-

tion detection algorithm are chosen such that it detects even a

very small motion by either fish or non-fish objects producing

high false alarm or recall rates. The R-CNN architecture, which is

a combination of the ResNet-152 based feature extraction and

RPN followed by a final classification layer for localizing moving

objects, refines the output of the GMM and optical flow motion

candidates. Therefore, the information of motion coming from

GMM and optical flow is fed into R-CNN to finally detect and lo-

calize objects. Apart from motion candidates generated by GMM

and optical flow, the use of greyscale raw images in combination

with motion candidates as input to the ResNet-152 CNN helps in

Figure 4. Illustration of the functionality of a RPN to detect and localize fish. The proposal with the best fit to the fish instance is selected
out of k choices.
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preserving the textural information of fish appearing in the video

frame, which increases the capability of the network to induce

separability between fish and non-fish objects. The reason of us-

ing greyscale image instead of RGB to fine-tune the R-CNN is the

observation that colour information in the employed datasets are

not distinct enough to enhance the accuracy of detection as the

background is also vibrant in colours. Moreover, doing so

increases the computational overhead.

In this work, we utilized computer systems equipped with Intel

Core-i7 processors and Nvidia Titan X graphical processing units

(GPUs). The proposed system is trained and tested using

TensorFlow deep learning library (https://www.tensorflow.org)

with Tf-faster-rcnn version while GMM and optical flow source

codes were taken from publicly available authors’ repositories

(https://github.com/andrewssobral/bgslibrary).

Fish detection system utility

Our software system is available for deployment and ready to be

used by marine scientists for automatic fish detection in any data-

set. As described in Region-based convolutional neural network

Section, the deep network, which is the backbone of our algo-

rithm, is pretrained on a large and generic object image reposi-

tory called ImageNet and acts as a generic feature extractor.

However, for using a pretrained network in such a transfer learn-

ing approach, the system must be fine-tuned to the actual datasets

in hand; therefore, a complete end-to-end re-training on a new

dataset is not required. In our case, we utilized FCS and LCF-15

datasets by updating the weights of the top fully connected layers

of ResNet-152 of R-CNN, while keeping the lower layers intact.

Furthermore, the GMM and optical flow algorithms can be used

as is since they only require the available dataset to generate out-

put. The source code for our proposed hybrid system is available

for download from the following repository: https://github.com/

ahsan856jalal/Fish-Abundance. Scientists can use this code off-

the-shelf for fish/object detection in any dataset, video recordings

or even still imagery.

Results
The underwater video background is modelled by GMM using

training data from the initial few frames of the video while the re-

mainder of the video is treated as the test dataset. Since each

video in our datasets has a different background, we need to keep

the first N frames of each video for background modelling. We

take N ¼ 50 in our experiments as this value was chosen on a

trial basis to get optimum GMM performance on our datasets.

Smaller values of N produces an inferior performance, while in-

creasing beyond this value does not bring any improvement and

increases GMM training time. Optical flow does not require any

training data but simply uses adjacent frames to calculate a mo-

tion representation. The R-CNN, on the other hand, requires

more data to tune the weight parameters for refined motion de-

tection. The raw video images and the motion candidates gener-

ated by the GMM and optical flow are fed to the R-CNN for

training. One video from each of the seven categories of FCS

dataset is set aside for training the GMM and R-CNN. On top of

that, GMM also requires the first 50 frames of each video to make

a background model and to generate a blob of moving objects in

the test frames. The LCF-15 dataset, on the other hand, is already

segmented into training and test sets, 20 videos out of a total of

93 are used in training and the remainder is used for testing.

Once again, GMM models for all 93 videos are created using the

N initial frames. Table 2 lists the performance measure for the

fish detection task as an F-measure (Palazzo and Murabito, 2014)

for our proposed hybrid system and its independent constituents

of GMM, optical flow and standalone R-CNN, which are trained

on raw RGB images from videos.

The F-score is calculated as,

F ¼
2� Recall� Precision

Recallþ Precision

where

Precision ¼
True Positives

True Positivesþ False Positives

and

Recall ¼
True Positives

True Positivesþ False Negatives

These scores are computed based on overlap between the areas

of bounding boxes related to ground truths and detected fish. An

average detection accuracy of 87.44% was achieved by the pro-

posed hybrid system for the FCS dataset for all seven categories of

environmental variation. In comparison, the GMM alone yielded

an average accuracy of 71.01% exceeding the optical flow and

standalone R-CNN with significant margins. We also performed

similar experimentation on LCF-15 test dataset of 73 underwater

videos. There, our proposed hybrid system outperforms all the

other systems, yielding an accuracy of 80.02% as compared with

76.21, 52.73, and 77.30% by the GMM, optical flow and stand-

alone R-CNN, respectively.

The parameters of the GMM were carefully chosen to produce

best possible results by altering the variance for model fitting and

the number of frames for training the model on each video.

A fewer number of training frames per video results in degraded

performance. However, increasing the number of training frames

beyond 50 did not improve the overall performance significantly.

Similarly, for our proposed hybrid system and also for the stand-

alone R-CNN trained on the raw RGB images, various state-of-

the-art pretrained CNNs were tried that include Inception-V4

Table 2. Performance analysis of individual components of our

proposed hybrid framework in comparison to their joint accuracy.

Dataset GMM

Optical

flow R-CNN

Our hybrid

system

FCS

Blurred 77.80 45.94 85.62 86.76

Complex background 75.94 49.77 52.74 89.54

Crowded 74.41 67.48 53.23 84.27

Dynamic background 64.30 44.62 62.06 90.36

Luminosity change 59.07 58.67 70.17 81.44

Camouflage foreground object 70.03 67.00 66.25 89.97

Hybrid videos 75.50 59.44 64.90 91.50

Average 71.01 56.13 64.99 87.44

LCF-15 76.21 52.73 77.30 80.02

F-scores (in percentage) for three different methods i.e. GMM (Stauffer and

Grimson, 1999), Optical flow (Warren and Strelow, 1985), and R-CNN (Ren

et al., 2017) on FCS and datasets for seven categories of video complexity.

Highest scores are highlighted in bold
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(Szegedy et al., 2016) and DenseNet (Huang et al., 2017). All of

these networks are pretrained on the ImageNet dataset with the

same experimental settings. Moreover, different numbers of con-

volution layers for the RPN network were also evaluated and the

choice of sliding window size of 2 � 22� 2, 4� 4, and 5 � 5 was

tested, with the performance maximized at 3 � 33� 3. The per-

formance started to deteriorate slightly beyond the 3 � 33� 3

window size probably due to more overlap between intrinsic size

of fish covering the frame of videos in our datasets. The results

generated by Inception-V4 and ResNet-152 were comparable

without any significant difference but the latter utilizes less proc-

essing power in training and testing compared with the former.

Our implementation of optical flow on the other hand is a non-

trainable processing approach for motion detection and

therefore, does not have any trainable parameters. It is worth

mentioning here that the GMM chosen for our proposed hybrid

system differs with the one listed in Table 2 as its parameters were

tuned to produce higher recall rates at the cost of decreased preci-

sion to cover maximum possible pixel motion in the video by

both fish and non-fish objects. The CNN and RPN subsystems

then learn to select the relevant motion candidate through refin-

ing the results generated by the GMM and optical flow. Figure 5

shows the performance outcome on a sample video for GMM,

optical flow, R-CNN, and the proposed hybrid system for both

the FCS and the LCF-15 datasets. It is evident that the optical

flow algorithm generates more false alarms and is sensitive to

even very slight motion, which can be attributed to disturbances

in the scene or luminosity changes. On the other hand, the GMM

and stand-alone R-CNN, which is only trained on raw RGB

images, also exhibits false alarms and/or missed detection.

However, they both yield better scores as compared with the opti-

cal flow due to effective background modelling and end-to-end

supervised training; capabilities which optical flow lacks and are

necessary to reduce the irrelevant motion created by non-fish en-

tities. Our proposed hybrid system, on the other hand is success-

ful in achieving the best performance (see Table 2).

To validate the effectiveness of our system, in Table 3 we have

drawn a comparison with various published benchmark

approaches which are frequently used for motion-based object

detection in either still or video imagery. The comparison is

made on the FCS dataset for which we can directly tabulate pub-

lished scores by these techniques with the same experimental set-

tings as ours. It is evident that our proposed hybrid system

outperforms all others in most environmental conditions and the

overall average F-scores. In another set of experimentation not

reported here, we changed the train-test split in the FCS and

LCF-15 datasets to calculate the detection scores but observed no

significant change. This demonstrates a good generalization capa-

bility of our system.

Discussion
In this study, we have proposed a R-CNN to detect fish using en-

hanced features sensitive to natural fish motion in underwater

videos in addition to features also representing distinguishable

shape and textural information specific to fish in a supervised

training hierarchy. The motivation behind using such a deep neu-

ral network is to model complex and highly nonlinear attributes

in underwater imagery of fish. These attributes are not modelled

effectively by conventional machine learning algorithms and im-

age processing techniques (Hinton and Salakhutdinov, 2006;

Larochelle et al., 2009). This hybrid approach has resulted in a

detection accuracy at reasonable level for use of this technique in

fish detection from recorded videos.

The most important gain of this research is high detection ac-

curacy of freely swimming fish. With our proposed hybrid system

that incorporates motion sensitive features, taken as input to the

R-CNN, we are able to achieve 87.44% detection accuracy on the

FCS dataset. This performance exceeds the best reported results

on this dataset by a significant margin. The second best average

accuracy of 81.80% for all seven categories of variability has been

produced using KDE to model background and foreground

objects by capturing texture information in very low contrast

regions of the video frames (Spampinato et al., 2014). An inter-

esting observation can be drawn from Table 3 for video classes

Dynamic background, Camouflage foreground object and Hybrid

videos that the performance gap between our proposed hybrid

system and rest of the techniques is significantly wide. Dynamic

background videos exhibit disturbance in water surface and move-

ment of aquatic plants which causes confusion with motion of

fish. Therefore, KDE, ML-BKG, and TKDE algorithms, which are

based on estimating foreground data distribution by modelling

background data, fails in separating motion of fish and non-fish

objects. EIGEN and VIBE algorithms also produced poor perfor-

mance due to similar reasons. Here, our proposed hybrid system

utilizes the fish-dependent features captured through the R-CNN

component using greyscale images in accurate detection of fish.

On the other hand, fish in Camouflage foreground object videos

are extremely hard to segregate from the background. Therefore,

all the algorithms once again fail to yield better results due to in-

ability in creating difference between foreground and background

models. Here, our approach makes use of the motion information

from GMM and optical flow to maximize its fish detection poten-

tial as shape, texture and colour of fish in this case resemble the

background and are difficult to detect by the R-CNN component.

Similarly, Hybrid videos combine all the challenges of other six

classes and our proposed hybrid system is more effective than all

other approaches. To further endorse the effectiveness of our ap-

proach, we employed a larger dataset by including LCF-15 with

93 videos. Our solution acquired an average accuracy of 80.02%.

Table 2 lists the comparative performance of our proposed hybrid

system with three other techniques, namely GMM, optical flow

and R-CNN, which are the components of our overall system.

The GMM outperforms optical flow and standalone R-CNN,

trained on raw images, with a significant margin, for the FCS

dataset. On the LCF-15 dataset, the GMM produces better results

than optical flow and is comparable with the R-CNN. This signi-

fies effective learning of the background model by the GMM on

every new video sequence. The model covers all background var-

iations exhibited by non-fish objects for a static underwater cam-

era configuration, which assists in detecting even subtle

movements through non-uniform change in pixel intensities that

does not match with the distribution of background pixels.

We observe that the training of the GMM background model

balances the rate of false alarm and misdetection, which produces

a better F-score. The GMM and its variants are considered to give

excellent performance in general for motion-based object detec-

tion tasks (Yong, 2013; Spampinato et al., 2014). Optical flow, on

the other hand, lagged behind all other methods in terms of per-

formance on both datasets. The reason behind this behaviour can

be attributed to the non-trainable structure of this algorithm, as

the system cannot adapt to the dynamic environment in the vid-

eos. There is no learning involved to discriminate background

Automatic fish detection in underwater videos 1303
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and foreground modelling, like that in the GMM and neural net-

works. Optical flow involves a direct comparison between adja-

cent frames of video and any slight disturbance in the pixel

intensity, either due to fish or non-fish objects generating lumi-

nosity variation, translates into a valid motion. This gives rise to

numerous false alarms, which results in a very high recall

but consequently a low precision that ends up in producing low

F-score. Since the datasets we have chosen involve high environ-

mental variation, especially in the FCS dataset, optical flow fails

to perform well as opposed to the other algorithms. On compara-

tive grounds, both GMM and optical flow lags our proposed hy-

brid system for the FCS and LCF-15 datasets. Another

Figure 5. Example of fish detection outcomes by various algorithms. Left to right, ground truth, optical flow, GMM, stand-alone R-CNN, and
proposed hybrid system on all seven categories of FCS dataset category (the first seven rows) and one video of LCF-15 dataset (the last row).
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explanation for relatively worse performance of these approaches,

as compared with the proposed system shown in Table 2, is an

important observation that can be made by watching the videos

in the datasets. The fish in each frame may not necessary show

motion and sometimes remain dormant for multiple frames,

even though for most of the time they are swimming, making the

Table 3. F-scores (in percentage) for different methods on FCS datasets for fish detection, as given in Spampinato et al. (2014).

Video class KDE ML-BKG EIGEN VIBE TKDE

Our hybrid

system

Blurred 92.56 70.26 81.71 85.13 93.25 86.76

Complex background 87.53 83.67 74.78 74.17 81.79 89.54

Crowded 82.46 79.81 73.87 84.64 84.19 84.27

Dynamic background 59.13 77.51 71.48 67.01 75.59 90.36

Luminosity change 72.06 82.66 70.41 70.37 72.95 81.44

Camouflage foreground object 54.14 73.51 70.20 76.30 82.23 89.97

Hybrid videos 85.69 72.20 80.69 79.75 82.63 91.50

Average 76.22 77.08 74.73 76.76 81.80 87.44

The results of our proposed system are copied from Table 2 for easy comparison in this table. Highest scores are highlighted in bold.

Figure 6. Examples of false detection of fish by all algorithms including our proposed hybrid system. Here, bounding boxes signify either miss
detections of fish or false alarms. The black and white images are corresponding ground truths.
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scenes dynamic. The GMM sometimes confuses the fish with the

stationary profile as background, especially when the appearance

of fish matches the background. Therefore, lack of motion infor-

mation in video frames results in failure to detect fish by the

GMM and optical flow. The R-CNN on the other hand is a tai-

lored neural network used for object localization in the images

(Ren et al., 2017) and learns to capture fish-dependent informa-

tion from stationary images.

Underwater fish detection in unconstrained environments is a

challenging task as the main aim lies in segregating fish and ig-

noring non-fish entities in the entire video frame. Conventional

machine learning and image processing algorithms are generally

designed to detect the objects of interest in the datasets where

they exhibit their distinct presence in the imagery, and hence are

easier to segment out (Russakovsky et al., 2015). In contrast, a

high degree of confusion in separating fish with vibrant, diverse

and variable non-fish objects in underwater videos results in a

performance compromise for a standalone R-CNN with accuracy

of 64.99 and 77.30% on the FCS and LCF-15 datasets, respec-

tively. As mentioned earlier, many videos, especially in the FCS

dataset, lacks textural and shape information of fish, a necessary

ingredient to yield better performance by systems like standalone

R-CNN. This problem is effectively solved by our proposed hy-

brid system using and learning the information from motion-

sensitive and textural features. Figure 6 shows some results from

the FCS and LCF-15 datasets where all algorithms including our

proposed system failed to detect fish. These are the extreme cases

of blurriness, camouflage, water murkiness, and unrecognizable

orientation, texture, and shape of fish which either results in gen-

erating false alarms or miss detections. In these situations, it is ex-

tremely difficult to capture both motion-based and shape/

texture-based features.

In the future, we aim to employ a unified deep architecture ca-

pable of processing the video sequences in real-time through rig-

orous optimization of our algorithm and better mathematical

modelling. Such a setup will be applicable for fish detection as

well as their species classification at the same time and, therefore,

will be more suitable for effective fish fauna sampling.

Furthermore, the accuracy of the system can be improved by

tracking the paths of moving fish and having prior information

of their movement in several frames. This step can improve the

accuracy of detection in the video frames where the proposed ap-

proach fails to recognize fish due to extreme blurriness and the

camouflage of the background. We plan to incorporate this proc-

essing step using recurrent neural networks (Gordon et al., 2018)

with temporal processing capability in videos.

Conclusions
In this article, we have presented an automatic method that

employed deep R-CNN networks to detect and localize fish

instances in unconstrained underwater videos that exhibit various

degrees of scene complexity. The major contribution of this work

is that it utilizes a hybrid approach involving GMM and optical

flow outputs to combine motion sensitive input features with raw

video frames carrying textural and shape information. This mixed

data is used as input to a deep R-CNN to fine-tune the categori-

zation of fish in the presence of non-fish entities in the video

frame. This assisted in achieving state-of-the-art results for the

fish detection task as confirmed by the comparative study. The

proposed hybrid system requires relatively more computational

resources as compared with the conventional computer vision

and machine learning techniques, but comes with the benefit of

higher accuracy. However, with an advent of fast microprocessors

and GPUs, complex mathematical operation involved in deep

neural networks like CNN can be performed quickly, even mak-

ing them suitable for tasks requiring near real-time processing.

Therefore, combining the hybrid fish detection with other fish-re-

lated tasks like fish classification even using deep learning

(Salman et al., 2016) and tracking can be made possible in the

pursuit of realizing fully automated systems for deployment in

real world applications of fisheries. We believe that this research

will help scientists related to fisheries in adopting automatic

approaches for detection, classification and tracking of fish fauna

in non-destructive sampling. Moreover, in the future, we aim to

employ a unified deep architecture capable of processing the

video sequences in real-time through rigorous optimization of

our algorithm and better mathematical modelling. Such a setup

will be applicable for fish detection as well as their species classifi-

cation at the same time and therefore, will be more suitable for ef-

fective fish fauna sampling.
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Underwater imaging is being extensively used for monitoring the abundance of lobster species and their biodiversity in their local habitats.

However, manual assessment of these images requires a huge amount of human effort. In this article, we propose to automate the process of

lobster detection using a deep learning technique. A major obstacle in deploying such an automatic framework for the localization of lobsters

in diverse environments is the lack of large annotated training datasets. Generating synthetic datasets to train these object detection models

has become a popular approach. However, the current synthetic data generation frameworks rely on automatic segmentation of objects of in-

terest, which becomes difficult when the objects have a complex shape, such as lobster. To overcome this limitation, we propose an approach

to synthetically generate parts of the lobster. To handle the variability of real-world images, these parts were inserted into a set of diverse

background marine images to generate a large synthetic dataset. A state-of-the-art object detector was trained using this synthetic parts

dataset and tested on the challenging task of Western rock lobster detection in West Australian seas. To the best of our knowledge, this is

the first automatic lobster detection technique for partially visible and occluded lobsters.

Keywords: deep learning, lobster detection, marine science, synthetic data, underwater images

Introduction
Lobsters are economically important as they are highly prized sea-

food. They are considered as one of the most profitable commod-

ities in coastal areas they populate. The Western rock lobster,

Panulius cygnus, is one of the Australia’s most significant natural

marine resources. The industry is worth over $300 million

Australian dollars a year. From a fisheries perspective, detailed

knowledge on lobster abundance and key habitat associations

within the deeper water fishing grounds is needed for the spatial

management of the species, to increase the capacity to assess

effects of fishing and ultimately enhance the sustainability of the

Western rock lobster fishery. However, it is logistically difficult to

gather the required data as lobsters are cryptic animals that move

from their shelters at night and at water depths that are beyond

scuba capabilities. Pots and traps are the traditional methods for

sampling lobsters (Bellchambers et al., 2010). However, these

methods are heavily biased as baits are used to lure animals with

no record of habitat. Underwater images collected through au-

tonomous underwater vehicles (AUVs) are a potential technique

that will allow for the sampling of lobsters in their natural

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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foraging habitats. AUVs have already been used successfully for

other commercial or ecologically important species (Tolimieri

et al., 2008; Grothues et al., 2008; Williams et al., 2009, 2010).

AUVs are capable of collecting hundreds of thousands of images

during a single survey campaign. As a result, processing the ac-

quired massive data has become the new challenge (Mahmood

et al., 2018).

For automatic detection using deep learning-based lobster de-

tector, a large amount of annotated training data is required to

optimize the large number of parameters (Girshick et al., 2014;

Redmon et al., 2016; Ohn-Bar and Trivedi, 2017; Wei et al.,

2018). Generating large amounts of training data for the afore-

mentioned process is time-consuming and resource hungry.

Moreover, the number of images containing the objects of inter-

est is very limited. This is quite often the case for underwater spe-

cies, such as lobster. This gets more problematic when the labels

are difficult to specify manually without expert knowledge.

Another important limiting factor is the reduced generalization

capability of the learned models across diverse backgrounds and

unseen environments.

To overcome these limitations, the generation of synthetic

data has been investigated (Dwibedi et al., 2017; Tobin et al.,

2017; Tremblay et al., 2018). However, all previously proposed

synthetic data approaches for object detection segment the

whole objects of interest and use them to generate synthetic

data. This approach is simple when the objects of interest

have a simple shape such as most objects in indoor scenes.

For objects with a complex body, such as living organisms,

the task of manually or automatically segmenting the target

objects for synthetic data generation is far more complex. To

solve this challenge, we propose to generate synthetic data for

parts of the lobster rather than the whole lobster. Our proposed

method is especially useful when the object of interest is oc-

cluded and only partially visible. Moreover, in some complex

scenes, an object may only be detected by its most prominent

part(s). In this article, we demonstrate the proposed synthetic

parts data (SPD) generation for the challenging task of lobster

detection.

Automatic detection of lobsters in a complex underwater

background poses an interesting computer vision problem in the

object localization domain. The amount of collected lobster

images is not enough to train a deep learning-based object detec-

tor. Relying on synthetic parts can be a promising approach for

lobster detection because, in most acquired images, the lobster

would be occluded and only its antennae are visible (Figure 2).

This observation helps experts localize lobsters in many images in

their manual annotation process.

In this article, we propose a synthetic data generation ap-

proach for the task of lobster detection. Because a lobster is an

object with a complex shape, we explore the idea of generating

synthetic parts instead of the whole body to achieve a higher

performance. We hypothesize that the synthetic data generated

using the most prominent body part (lobster’s antennae in this

scenario) will achieve the highest detection accuracy. In particu-

lar, we are interested in answering the following questions:

(i) Can SPD achieve better results on real lobster data? (ii) How

much synthetic data used to train an object detector is suffi-

cient? (iii) Can we improve the baseline performance by only

using a small amount of real data with additional synthetic

data? (iv) How can we best bridge the gap between synthetic

and real data?

The main contributions of this article are as follows:

(i) We report the first automated approach for lobster

detection.

(ii) We propose to use a novel SPD approach for generating

synthetic data for the lobster, a complex bodied object.

(iii) We use the SPD to train and apply the state-of-the-art,

YOLOv3 (Redmon and Farhadi, 2018), object detection

framework for lobster detection.

(iv) Based on our results and observations, we offer insights re-

garding the optimal amount of SPD and real data required

for achieving a higher object detection rate for lobster

detection.

The rest of the article is organized as follows. “Related work”

section summarizes relevant previous research. “Proposed meth-

od” section explains our proposed method in detail.

“Experiments” section describes our experimental work and

reports the results. “Results” section concludes this article.

Related work
Lobster detection

Traditional methods for detecting lobsters use pots and traps

(Bellchambers et al., 2010). These methods, however, lack infor-

mation on true habitats of lobsters as baits are used to lure them

outside their habitats. Another semi-automatic approach relies

on underwater videos to detect and count lobsters (Correia et al.,

2007). Their algorithm was based on the observation that lobsters

tend to be in the bright area of images. The following three visual

features were used in their work to track lobsters: intensity, mo-

tion and edges. This work was extended by Lau et al. (2008) to

further enhance the lobster tracking algorithm.

Tan et al. (2018) proposed a comprehensive lobster and bur-

row detection and tracking algorithm based on underwater vid-

eos. This method also relies on detecting lobster from the

brighter regions of the images and uses features based on curva-

ture, local intensity contrast, aspect ratio, and orientation of lob-

ster. However, their method is not generic as the images used in

their experiments do not have a complex background. Most of

the time, the lobster is not occluded and is fully visible, which is

not the case with our dataset.

As seen, there is very limited research conducted on the auto-

matic detection of lobsters. However, there are also works on

detecting species, which are close to lobster, such as crabs and

prawns. Pedersen et al. (2019) introduced Brackish dataset, which

has classes, such as crab, shrimp, jellyfish, and fish. They have

reported baseline results on this dataset using YOLOv2 and

YOLOv3 frameworks. In a similar study (Wang et al., 2018), crab

detection is performed by localizing knuckles instead of the whole

crab using a convolutional neural network (CNN). However, this

method is tested for images of crabs on a meat picking machine,

a relatively simpler scenario as compared with the complex back-

grounds encountered in the ocean in our case.

Synthetic data

In recent years, the use of synthetic data has become popular in

training and testing deep networks for various object detection

and segmentation tasks. Gupta et al. (2016) generated synthetic

images by placing text randomly onto the images for the task of

Automatic detection of Western rock lobster 1309
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text detection in the wild. The resulting synthetic dataset is then

used to train a deep learning-based object detector. Our proposed

method is similar to this approach in the context that we also

place synthetic parts randomly onto diverse background images.

However, our application scenario is more complex than text de-

tection in the wild. The work of Georgakis et al. (2017) shows

that carefully placing synthetic objects in the indoor scenes can

improve the performance of object detectors significantly. They

show that the geometric context and semantics of scenes are

more important than just randomly inserting objects anywhere in

the indoor scenes. However, the underwater scenes do not have

geometric context, such as tables and counter-tops in the kitchen

scenes used in Georgakis et al. (2017).

Tobin et al. (2017) introduced the concept of domain randomi-

zation (DR) to close the gap between real and synthetic data. They

argue if they generate synthetic data with a large amount of varia-

tions, the model will treat the real data as just another variation.

They used DR to train a neural network to estimate the positions

of various objects with respect to a robot. Our proposed method

also uses the concept of DR in a way such that we have used very

diverse background images to generate our synthetic data.

Similar to DR, another approach is to segment real objects

from a source dataset and add them onto background images

from a different dataset to generate synthetic data for training

deep networks (Dwibedi et al., 2017). One limitation of this

method is the automatic segmentation step, which becomes com-

plicated when objects of interest have a complex shape as in the

case of lobsters.

Tremblay et al. (2018) demonstrate that DR is an effective

technique to bridge the gap between synthetic and real images.

They claim that the synthetic data do not need to be photorealis-

tic as patch-level realism is sufficient for training region proposal-

based object detectors. They also introduce the concept of adding

noise in the form of flying distractor objects in the synthetic

images to make the deep networks more robust and accurate. We

have used the concept of patch-level realism in our proposed

method since our generated synthetic data are not photorealistic

at a global level.

All the aforementioned research focus on using whole objects

to generate synthetic data. To the best of our knowledge, no other

previous studies generate synthetic data for parts of objects.

In this article, we also report the first application of synthetic data

to living organisms in general and Western rock lobsters in

particular.

Proposed method
This section introduces the proposed method for lobster detec-

tion. First, we introduce our synthetic data generation approach

for lobster parts. Second, we introduce the You Only Look

Once (YOLO) object detector used in our experiments. Figure 1

illustrates our proposed method for generating SPD for lobster

detection.

Synthetic data generation

Unlike the synthetic objects generated in previous studies, such as

kitchen objects (Dwibedi et al., 2017) and cars (Tremblay et al.,

2018), our proposed method is focused on generating SPD for

objects with complex shapes. The first step in synthetic data gen-

eration is to segment the object of interest from real images either

manually or automatically. Segmenting objects with complex

shapes is a tediously time-consuming task as compared with seg-

menting objects used in previous works (Dwibedi et al., 2017).

For example, segmenting a lobster from real images is a far more

difficult task than segmenting a car or a bottle. Hence, we pro-

pose to generate synthetic data for a prominent part instead of

the whole object. Another benefit of our proposed approach is

that in most of the real images, the object of interest is occluded

and not fully visible. Moreover, in the case of lobster images, the

underwater background is very complex and it is difficult to lo-

cate the lobster if we are looking for its whole body. In many of

the real images, only the antennae are visible and the human an-

notator used the antennae to locate the lobster. This observation

led us to only generate the synthetic parts of the lobster instead of

its whole body. The main steps of our proposed method are

explained below.

Collecting images

In this section, we describe how we collected the lobster parts

from real images and the background images to paste the object

parts on.

Images of lobster parts: We used the lobster images present in

the dataset to segment the parts by hand. The lobster dataset con-

sists of 237 ground annotated images collected from Western

Australia (WA). This dataset was captured using the same sensor as

that of Benthoz15 dataset (Bewley et al., 2015). A stereo camera

pair of 1.4 MP was used to capture both datasets from a distance of

�2m. The camera field of view is �42�� 34�, and the images have

a resolution of 1360� 1024 pixels. The images from the lobster

dataset can have multiple lobsters or no lobsters at all. The lobsters

are usually observed at different scales. Most of the lobsters in this

dataset range between 90 and 120mm in length. Bounding box

annotations are drawn on these images wherever a lobster is en-

countered whether it is occluded or not. To provide an apprecia-

tion of the complexity of this dataset, Figure 2 depicts two sample

images of a lobster in an underwater environment. Figure 2a shows

a lobster in a relatively easy to detect background. However, in

Figure 2b, it is difficult to locate the lobster due to the presence of

occlusions, which make it a challenging object detection task.

We selected sample instances for the following two types of

body parts for lobster: (i) antennae of lobster and (ii) body

of lobster.

Background images of Benthoz15 dataset: We used images

from the Benthoz15 dataset as background scenes for pasting

lobster parts. The Benthoz15 dataset (Bewley et al., 2015) consists

of an expert-annotated set of underwater images captured by an

AUV deployed around Australia. The whole dataset contains

9874 distinct images collected at different depths from nine sites

around Australia over the past few years. We used only a subset

Figure 1. The block diagram of our proposed framework.
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of this dataset with images taken from WA to generate our

synthetic images. Images from year 2012 were used to generate

synthetic data for the lobster’s antennae, and images from year

2013 were used to generate synthetic data for the lobster’s body.

We have selected the Benthoz15 dataset as a source of our back-

ground images because of the proximity of the data sites to the

lobster habitats, which are considered important lobster fishing

grounds. In addition, this dataset offers a vast variety of marine

images, which helps our object detector become more robust to

the diversity and complexity of underwater scenes.

Lobster part segmentation: After collecting images containing

lobsters, the antennae and the body parts were segmented

from the background. This step was performed manually using

the Ratsnake annotation tool. Ratsnake is a publicly available

software to generate segmentation masks for images. We used the

default settings of Ratsnake to segment lobster parts. The afore-

mentioned steps are illustrated in Figure 3.

Adding synthetic parts to images

After segmenting the lobster antennae and body from the input

images, we inserted them into real and diverse background

images from the Benthoz15 dataset. Naively pasting the lobster

parts on the background images without any blending can lead to

boundary artefacts, which can affect the object detectors. These

boundary artifacts may seem subtle but they are known to reduce

the performance of object detection frameworks (Dwibedi et al.,

2017). Moreover, given that state-of-the-art object detectors

largely depend on local features and region proposals (Girshick

et al., 2014), training these networks on input images with bound-

ary artifacts severely reduces their performance. To overcome this

limitation, we have added a blending step to paste the lobster parts

onto the background images. In our proposed method, we used a

Poisson blending scheme (Pérez et al., 2003) to smooth the edges

of the pasted part and to also add illumination variations.

Specifically, we used the Poisson blending with the seamless cloning

and colour shifting options (Pérez et al., 2003). Seamless cloning

option takes care of merging the boundaries of pasted object with

the background. The colour shift setting ensures that there are no

unnatural illumination changes, such as a dark lobster part when

pasted in a brighter region should appear brighter. This step con-

tributes notably towards making the object detector less sensitive to

the induced boundary artifacts and thus more robust when detect-

ing the shape of the blended object.

We also utilized DR to make the synthetic data as diverse and

random as possible. The following three factors of our proposed

method contributed towards DR: (i) using diverse images with

no repetitions from the Benthoz15 dataset as background of the

synthetic images; (ii) using Poisson blending for creating illumi-

nation variations in the synthetic images; and (iii) by randomly

placing, scaling and rotating the lobster parts for synthetic data

generation. This step increases the robustness of the object detec-

tor trained using the SPD. A few randomly chosen synthetic

images of lobster antennae and body are shown in Figures 4 and

5, respectively. These examples illustrate the complexity and di-

versity of the underwater scenes.

Object detection model

We used the third version (YOLOv3; Redmon and Farhadi, 2018)

of the real-time object detection model YOLO (Redmon et al.,

2016) to test the synthetic part data generated by our proposed

method. We have selected YOLOv3 over other object detectors

because it runs significantly faster than other detection methods

with comparable performance. Moreover, the selection of a faster

object detection model will ensure real-time lobster detection.

Figure 6 illustrates the complete proposed framework.

YOLOv3 employs a variant of a Darknet (Redmon and

Farhadi, 2018) as a feature extractor. This variant has 53 layers

and is pre-trained on the ImageNet dataset. YOLOv3 uses the fol-

lowing three scales for the detection of objects: 1/8, 1/16, and 1/

32 of the input image size. It uses nine anchor boxes, three for

each scale. These anchor boxes are generated using the K-means

clustering technique. We have used the same training protocol

for YOLOv3 as described in Redmon and Farhadi (2018). We did

not use any pre-processing for input images. Images of size 892 �
892 pixels were used as input to the YOLOv3. We trained each

model for 50 epochs using an initial learning rate of 0.001 with a

mini-batch size of 8 and no dropout. The learning rate was fur-

ther divided by 10 after every 20 epochs. The momentum and

weight decay were set to 0.9 and 0.0005, respectively, throughout

the training. We used the Adam solver (Kingma and Ba, 2014)

for optimization. We also employed early stopping for situations

where the validation loss stopped decreasing.

Experiments
In this section, we compare the performance of our synthetic part

data approach against the baseline performance achieved using

only real data. We have used 80:20 training to testing split on our

lobster dataset. Throughout our experiments, the test set consists

of 50 images of the total 237 images unless stated otherwise. No

image or part of an image from the test set was used in synthetic

data generation or training the object detector. The test set was

only reserved for evaluation of the proposed method. Regarding

our lobster dataset, it only contains 237 images. These images

were curated from a very large dataset with tens of thousands of

images collected during an AUV survey. Lobsters are very difficult

to locate in their habitats. Moreover, there are no publicly avail-

able lobster datasets. For each experiment, 20% of images in the

training set are used only for validation to optimize the experi-

ment parameters. For synthetic parts dataset, we have generated

500 images with only the lobster antennae and another 500

images with lobster body only. It is important to note that no

background image was used twice in the 1000 synthetic parts

images. Moreover, we have applied scaling and rotation randomly

while randomly placing the lobster parts on background images

to generate the synthetic images. This step adds to the diversity of

the synthetic dataset. For the YOLOv3 object detector, we have

used the weights from a model pre-trained on the PASCAL VOC

Figure 2. Example images from the lobster dataset: (a) easy case
and (b) difficult case.
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dataset because the lobster dataset is not large enough to train

this model from scratch. We did not freeze the weights of any

layer of this pre-trained model while fine-tuning. We will present

the results of the following three studies in this section:

(i) entire lobster dataset and entire synthetics parts dataset;

(ii) entire synthetic parts dataset but varying number of real

images from the lobster dataset; and

(iii) entire lobster dataset but varying number of synthetic

images from the synthetic parts dataset.

In our experiments, we report the mean average precision (mAP)

at the intersection over union of 0.5 for the lobster detection task.

The mAP is defined as the mean precision at the set of 11 equally

spaced recall values (i.e. [0, 0.1, 0.2, . . ., 1.0]) obtained from the

precision–recall curve of the model’s detection output. We also

use a non-maximum suppression (NMS) threshold value of 0.5

to get rid of overlapping detections before the mAP is calculated.

The multiple detections usually occur when a full lobster is pre-

sent in a test image (both antennae and body). The lobster detec-

tor is trained on synthetic body and antennae data as well as real

images and some of them has a full lobster in them. As a result,

the object detector produces multiple boxes for a single lobster.

The imposed threshold on NMS ensures that these multiple

detections are not taken into consideration when calculating

mAP.

Figure 4. Randomly chosen samples from our synthetic lobster
antennae images.

Figure 5. Randomly chosen samples from our synthetic lobster
body images.

Figure 3. Collecting lobster body parts from real images. Left: real images with lobsters. Middle: segmented lobster parts. Right: segmented
parts overlaid on real images.
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Evaluation on entire datasets

To test the effect of SPD on lobster detection, we conducted three

experiments using the entire lobster and synthetic parts datasets.

In the Real Only experiment, we trained the YOLOv3 model with

187 images in the training set. This experiment serves as baseline

for all the remaining experiments. For Synthetic Only experiment,

no real image was used for training. The associated training set

consists of 1000 images (500 images from synthetic antennae and

500 images from synthetic body). For the third experiment, Real

þ Synthetic, the training set consists of 187 real images and the

1000 synthetic images. The same test set was used for all con-

ducted experiments.

Varying real data

We conduct three experiments where 0, 50 and 100 real images

from the lobster dataset are used to train the object detector

along with the entire synthetic parts dataset. Entire synthetic

parts dataset is also included in the training data. Each model is

then tested on the following two sets of images: the standard

test set containing 50 images and a second test set formed by

using all the real images that were not used for training in the

lobster dataset.

Varying SPD

We investigated the effect of varying the SPD combined with the

entire lobster dataset. We conducted multiple experiments with a

varying amount of synthetic parts images and real images.

For each experiment, synthetic antennae images and synthetic

body images contribute equally in forming the synthetic image

set used to train the YOLOv3 detector.

Results
Evaluation on entire datasets

Table 1 details the training and test sets for these three experi-

ments and also reports the achieved mAP. The Real Only experi-

ment achieved an mAP of 21.0, which forms our baseline

performance. We augmented the real dataset by adding flips,

crops, and rotated images for each real image using a random

sampling strategy. The improvement achieved by the data aug-

mentation step was marginal (mAP increased by 1.8) as com-

pared with the performance achieved by adding synthetic data as

demonstrated below. However, we did not add this step to the

remaining experiments because we wanted to investigate the opti-

mal relationship between the amount of real and synthetic images

to achieve high performance gains. Adding a data augmentation

step to the real images would not have given us a clear insight

into this investigation. Therefore, we skipped this step for the

remaining experiments. The mAP reduces drastically to 2.1, when

there is no real data used in training the object detector. This re-

sult highlights the fact that synthetic data cannot generalize to an

unseen set of real test data. However, the Real þ Synthetic experi-

ment achieves an mAP of 46.9, which is an improvement of 25.9

over the baseline mAP. This result shows that synthetic data can

improve lobster detection by a significant margin. When the

model is trained only on synthetic images, it only learns to detect

Figure 6. Synthetic parts data generation for lobster detection: (1) segmenting lobster parts, (2) blending on background images of
Benthoz15 dataset, (3) training a YOLOv3 object detector, and (4) testing on real images.
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partial lobster parts, such as antennae or lower body. When this

model is tested on an image with a full lobster present in it, it will

produce partial bounding boxes and will result in a lower mAP

value. On the other hand, when synthetic dataset is used with real

data to train the model, it adds to the semantic information re-

quired to detect partially occluded lobsters and results in a higher

mAP value.

Figure 7 shows some example images where the model Real þ
Synthetic was successful in detecting the lobster whereas the

model Real Only failed. Figure 8 shows examples of test images

where all of the models failed to detect a lobster. It can be ob-

served that these example images are quite challenging and the

lobster is located either at the edge of the image or in shadows.

We also conducted two more experiments to compare the ef-

fect of different synthetic parts on the model’s performance. In

Real þ Antennae experiment, only the synthetic images with the

lobster antennae are used for training. Similarly, in Real þ Body

experiment, the model is trained on the real images and the syn-

thetic body images only. The results in Table 1 show that the

model trained on synthetic antennae images outperforms the

model trained on synthetic body data by a significant margin of

7.8 in mAP. This result confirms our initial hypothesis that the

synthetic data generated for the object’s most prominent part

(lobster’s antennae in this case as shown in Figure 2a) achieves

the highest detection performance. It is interesting to note that

the model trained only on synthetic antennae images has also

outperformed the model trained on all the synthetic data by a

nominal margin of 1.8. This performance improvement can be

explained by the fact that only the lobster’s antennae are visible in

some of the images. In most cases, the lobster’s body is either oc-

cluded or masked by shadows and is difficult to localize in the

complex background, even by expert human annotators. Hence,

lobster’s antennae are a distinguished landmark, which helps hu-

man annotators to locate a lobster with ease. The performance

improvement achieved by the antennae only SPD is attributed to

this observation.

We also evaluated the performance of our approach against

traditional computer vision-based object detection methods for

the lobster detection task, including the latest variant of deform-

able parts method (DPM) for this experiment (Girshick et al.,

2012). This method was one of state-of-the-art methods before

deep learning method became popular (Girshick et al., 2014).

DPM is based on the histogram of oriented gradients (HOG)

features and it uses latent support vector machines (L-SVM) for

classification. Our experimental results show that our proposed

method outperforms DPM by a large margin for both experi-

ments: Real Only and Real þ Synthetic (Table 1). We also tested

the Regionlets object detection method of Wang et al. (2013) for

lobster detection. This method is based on candidate region selec-

tion (called Regionlets), and it uses HOG and Local Binary

Patterns as descriptors followed by a cascaded boosting classifier,

which is learned by selecting the most discriminative Regionlets.

Table 1 shows that our proposed method achieves a much higher

mAP as compared with Regionlets. To highlight the importance

of the choice of the object detector, we conducted experiments

using the R-CNN object detection framework (Girshick et al.,

2014). We used a model of R-CNN pre-trained on the PASCAL

VOC dataset. The momentum and weight decay were set to 0.9

and 0.0005, respectively, throughout the training. The initial

learning rate was set to 0.001 and was further reduced by a factor

of 10 when the validation loss stopped decreasing. The remaining

hyper-parameters were set to default values as detailed in

Girshick et al. (2014). The reported results show that the more

advanced YOLOv3 object detector outperforms the R-CNN ob-

ject detector in each of the experiment.

Varying real data

Table 2 reports the mAP of experiments of this study where we

vary the number of real images in the training set. Table 2 shows

that the mAP increases as we increase the number of real images

to train the object detector. It also shows that we can achieve a

higher mAP than the baseline mAP of 21.0 by using just the 100

real images from the lobster dataset. The mAP values reported for

each experiment are marginally similar for the two test sets indi-

cating that our standard test set, although small, is a good repre-

sentation of the entire lobster dataset. Moreover, the results of

Table 2 also indicate that our proposed approach reduces the

amount of real annotated training data required to achieve a

higher than baseline performance by a significant margin (100

real images instead of 187 required previously).

Varying SPD

Table 3 reports the mAP of experiments of this study where we

vary the number of synthetic images in the training set. For 187

real images, the highest mAP is achieved by using 500 synthetic

Table 1. Performance evaluation on the entire lobster dataset and the entire synthetic parts dataset.

Experiment

Training data

mAPReal images Synthetic body images Synthetic antennae images

DPM v5 (Girshick et al., 2012): Real Only 187 0 0 12.1

DPM v5 (Girshick et al., 2012): Real þ Synthetic 187 500 500 34.9

Regionlets (Wang et al., 2013): Real Only 187 0 0 16.3

Regionlets (Wang et al., 2013): Real þ Synthetic 187 500 500 38.1

R-CNN (Girshick et al., 2014): Real Only 187 0 0 18.0

R-CNN (Girshick et al., 2014): Real þ Synthetic 187 500 500 41.5

SPD: Real Only 187 0 0 21.0

SPD: Real Only (aug) 187 0 0 22.8

SPD: Synthetic Only 0 500 500 2.1

SPD: Real þ Synthetic 187 500 500 46.9

SPD: Real þ Antennae 187 0 500 48.7

SPD: Real þ Body 187 500 0 40.9

1314 A. Mahmood et al.
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images in the training set (250 each from antennae and body

images). The mAP achieved by including 100 and 250 synthetic

images in the training set is also comparable to the highest mAP

achieved. However, the mAP reduces from 51.1 to 46.9, a drop of

4.2, when we increase the amount of synthetic data from 500 to

1000 images. A similar trend is also observed for the experiment

with 50 real images as shown in Table 3. We further extended this

analysis by selecting the best models for each experiment: (i) 187

real images with 500 synthetic images and (ii) 50 real images with

250 synthetic images for sensitivity analysis. We applied these two

models five times using random combinations of 500 and 250

synthetic images, respectively. The resulting mAP values are

shown in Figure 9 using a boxplot to demonstrate the internal

sensitivity of each model. We observed that there was a greater

Figure 7. Detection examples for different models: (a) ground truth, (b) Real Only, and (c) Real þ Synthetic.

Figure 8. Missed detections on the lobster dataset.

Table 2. Performance evaluation on the entire lobster dataset by

varying the amount of real data from the lobster dataset.

Experiment Real images Test data mAP

Synthetic Only 0 50 2.1

0 237 2.2

50 Real þ Synthetic 50 50 11.9

50 187 12.2

100 Real þ Synthetic 100 50 26.5

100 137 26.4

187 Real þ Synthetic 187 50 46.9
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variability in mAP values of the second model, which had fewer

real images in the training data compared with the first one.

Adding more real images to the training data, thus, makes the

resulting model more robust to the addition of synthetic data.

Moreover, we conducted these experiments by keeping the

amount of real images equal to synthetic images in each mini-

batch for each training epoch. We achieved similar results with

minor improvement in the mAP values (mAP within 60.9 of the

corresponding reported values of Table 3).

The results in Table 3 suggest that adding too much synthetic

data in the training set can be detrimental to a model’s perfor-

mance. Previous studies on synthetic data have not reported any

similar results where increasing the amount of synthetic data after

a certain limit starts to reduce the performance. This performance

drop can be attributed to the fact that when trained with excessive

synthetic data, the object detector gets biased towards synthetic

geometric contexts and results in detection errors when tested on

real images.

Conclusion
We have demonstrated that the SPD approach is an effective

technique to generate synthetic data for the automatic detection

of Western rock lobster. Using the synthetic parts dataset, we

have trained a YOLOv3 object detector and used it to detect

lobsters in challenging underwater images. Our results show a sig-

nificant performance improvement over the baseline method,

which only uses real images for training the network. We have

also demonstrated that using synthetic data of the most

prominent part of an object can further improve the performance

of the object detector as compared with the synthetic data from

other parts. We also show that the synthetic data along with a

small portion of real data can achieve performance higher than

the baseline. Our proposed method is a promising step towards

the automation of marine species detection with complex body

shapes, partially accessible local environments, and limited avail-

ability of training datasets.
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Fish catch species provide essential information for marine resource management. Some international organizations demand fishing vessels to

report the species statistics of fish catch. Conventionally, the statistics are recorded manually by observers or fishermen. The accuracy of these

statistics is, however, questionable due to the possibility of underreporting or misreporting. This paper proposes to automatically identify the

species of common tuna and billfish using machine vision. The species include albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus),

yellowfin tuna (Thunnus albacares), blue marlin (Makaira nigricans), Indo-pacific sailfish (Istiophorus platypterus), and swordfish (Xiphias gla-

dius). In this approach, the images of fish catch are acquired on the decks of fishing vessels. Deep convolutional neural network models are

then developed to identify the species from the images. The proposed approach achieves an accuracy of at least 96.24%.

Keywords: convolutional neural network, deep learning, fish species identification, fishery management, model visualization, transfer learning.

Introduction
Fish is a major dietary protein source. In 2014, �81.5 million MT

of aquatic products were harvested from marine sources world-

wide (FAO, 2016). Because of the high demand and advancement

in fishing technology, fishing grounds in the world have been

tapped rapidly in the past two decades. The Food and Agriculture

Organization of the United Nations reported that 31.4% of the

fish stocks are overfished (FAO, 2016), showing that the manage-

ment of fishery resources is extremely urgent. Hence, interna-

tional organizations have begun regulating fishing practices by

demanding vessels to report fish catch statistics, such as fish spe-

cies (Hosch and Blaha, 2017). The statistics are usually manually

recorded by observers or fishermen, and thus, their accuracy is

questionable because they can be misreported or underreported.

Therefore, an automated approach for fish species identification

is required. Combined with electronic monitoring systems

(Monteagudo et al., 2015), the approach may be used to identify

species of fish catches in images or videos automatically. Thus,

the labor for reporting the fish catch statistics can be reduced and

the accuracy of the reports can be improved.

Image analysis approaches have been increasingly used to col-

lect fish species information. These approaches, in contrast to

conventional manual methods, have benefits of automation, effi-

ciency, truthfulness, and accuracy. Previous studies have

addressed the identification of sea fish types using image analysis.

Rodrigues et al. (2010) developed a nearest-neighbour classifier

for identifying fish of nine species using morphological and col-

our traits. Hu et al. (2012) developed a directed acyclic graph

multi-class support vector machine classifier for distinguishing

fish of six species using wavelet-based texture features as the

inputs. Li and Hong (2014) developed a method using image

processing and statistical analysis for recognizing fish of four spe-

cies with colour, shape, and textural traits. Navarro et al. (2016)

assessed 27 fish morphological traits and found three types of fish

to differ considerably from each other. Huang et al. (2015) com-

bined hierarchical tree with Gaussian mixture model to recognize

15 species of fish in underwater videos. Marini et al. (2018) esti-

mated the abundance of the fish using an autonomous imaging

device and genetic-programming-based classifier. Another proj-

ect, Fish4Knowledge (Fisher et al., 2016), developed tools for

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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analysing the behaviours of fish in underwater videos using image

processing and machine learning approaches. Although presum-

ably accurate, these image analysis approaches typically use hand-

crafted features (i.e. features defined manually). Preprocessing

may be required if these methods are applied to images that are

collected at locations with a high degree of variability in illumina-

tion conditions or of complex backgrounds.

Images of fish acquired on the deck of vessels are usually under

uncontrolled conditions. Figure 1 shows fish images acquired on

longliners: (i) albacore (ALB, Thunnus alalunga), (ii) bigeye tuna

(BET, Thunnus obesus), (iii) yellowfin tuna (YFT, Thunnus alba-

cares), (iv) southern bluefin tuna (Thunnus maccoyii), (v) blue

shark (Prionace glauca), (vi) blue marlin (BUM, Makaira nigri-

cans), (vii) Indo-pacific sailfish (SFA, Istiophorus platypterus),

(viii) swordfish (SWO, Xiphias gladius), (ix) shortbill spearfish

(Tetrapturus angustirostris), and (x) moonfish. The decks where

the fish were located were full of miscellaneous items. Moreover,

the illumination condition varies unavoidably because fishing is

performed 24 h and weather is uncontrollable. Hence, it is chal-

lenging to use the aforementioned image analysis approaches for

identifying the fish species from the images.

Recently, deep learning has emerged as a powerful tool for

addressing complicated image analysis problems. Convolutional

neural networks (CNNs; Fukushima, 1980) are a deep learning

approach specifically used for image classification. CNNs are

multilayer perceptron composed of millions of neurons. The neu-

rons are arranged as sets of filters to perform spatial convolution.

After training the parameters of the neurons, the convolution

operations can extract desired features from the input images

with almost no preprocessing. Hence, CNNs are used to tackle

complex classification problems. Initially, CNNs were used to

perform tasks on images with a simple background, such as hand-

written character recognition (Bengio et al., 1994), mammogram

masses and normal tissue distinction (Wei et al., 1995), textural

pattern classification (Tivive et al., 2006), and face recognition

(Lawrence et al., 1997). With the advances in graphic processing

unit (GPU) computing, CNNs became larger and deeper and

have been applied to solving complicated tasks. Krizhevsky et al.

(2012) developed a deep CNN for distinguishing images of 22 000

classes in 2012 ILSVRC. Lee et al. (2017) developed a CNN-based

system for identifying 1000 species of plants in the 2016

plantCLEF task. Sprengel et al. (2016) developed a deep CNN

model for recognizing 999 species of birds from monophonic

recordings in the 2016 BirdCLEF challenge. Although presumably

powerful, thousands of images are normally required for training

deep CNNs, which may restrict the use of deep CNNs.

Transfer learning has alleviated the demand for a large amount

of training data for CNNs (Pan and Yang, 2010). Originally, trans-

fer learning aimed to transfer knowledge between related sources

and target domains (Caruana, 1995). Starting from this concept, it

has been shown that models trained using huge datasets can be

adopted for other applications because the first layers of neural net-

works deal with generic features (Yosinski et al., 2014). Oquab

et al. (2014) exhibited the high potential of using the mid-level fea-

tures extracted from networks trained using the ImageNet dataset

for classifying images in the Pascal VOC 2007 and 2012 datasets. Li

et al. (2015) detected fish and recognized the species of the fish in

the images of the ImageCLEF dataset using pre-trained CNNs and

fast region-based CNN. Siddiqui et al. (2017) identified 16 species

of fish in underwater videos using pre-trained CNNs. Ali-Gombe

et al. (2017) recognized fish species in images with random noise

using CNNs and transfer learning.

This study aimed to automatically identify the species of ma-

jor tuna and billfish from the images acquired on longliners.

The specific objectives were to (i) collect images of major tuna

and billfish fish, (ii) adapt pre-trained deep CNN models for

identifying the fish species, (iii) demonstrate the performance

of the models, and (iv) visualize the features learned by the

CNN models.

Material and methods
Image collection

A total of 16 517 images of fish catch were provided by Fishery

Agency, Council of Agriculture (Taiwan). The images were ac-

quired on the deck of longliners by observers between 2006 and

2017 using digital cameras. The illumination conditions when the

images were taken varied considerably. Some images were ac-

quired during dark nights using flash light (Figure 1b), while

others were acquired on sunny days (Figure 1f). Shadows may

cover part of the fish body (Figure 1a). The images were sorted

into ten categories: ALB, BET, YFT, other tuna (OT), BUM,

SWO, SFA, other billfish (OB), shark, and other fish (OF)

(Table 1). The category of OT contained two species: southern

bluefin tuna and Skipjack tuna (Katsuwonus pelamis).

The category of OB contained four species: striped marlin fish

Figure 1. Images of (a) albacore, (b) big eye tuna, (c) yellowfin tuna, (d) other tuna, (e) shark, (f) blue marlin, (g) Indo-pacific sailfish, (h)
swordfish, (i) other billfish, and (j) moonfish.
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(Kajikia audax), giant black marlin (Makaira indica), shortbill

spearfish, and longbill spearfish (T. pfluegeri). The category of OT

contained common sea fish other than tuna, billfish, or shark

(e.g. dolphin fish, moonfish, and smooth skin oilfish).

Image preprocessing, cross-validation, and image

augmentation

The dimensions of the fish images ranged from 640� 360 to

4608� 3456 pixels. To reduce the complexity of the CNN mod-

els, the images were resized to 330� 250 pixels. Zero padding was

applied to the resized images for maintaining the aspect ratio of

the images. Subsequently, image augmentation was applied to the

images for model training (i.e. training images). Image manipula-

tion generalizes the images and, hence, increases the robustness of

the models to be developed. The augmentation operations in-

cluded horizontal flipping, vertical flipping, width shifting (ran-

domly between �33 and 33 pixels), height shift (randomly

between �25 and 25 pixels), rotation (randomly between 0� and

30�), shearing (randomly between 0 and 66 pixels), zoom-in (ran-

domly between 1 and 1.2), and zoom-out (randomly between 0.8

and 1) (Figure 2). Each operation was randomly applied to the

images before they were used for training.

Strategies for fish species identification

Two strategies were used for fish species identification. Strategy

one used three models in a cascade (Figure 3). Model 1A was

used to identify fish types: tuna, billfish, shark, and OF. Models

1B and 1C, respectively, were used to identify the species of tuna

and billfish. Strategy two used a single model (Model 2) to iden-

tify fish types and fish species for tuna and billfish. Strategy one

alleviated the issue of unbalanced image numbers (Table 1) in

model training.

Table 1. Numbers of images for each fish species or type.

Species/type Numbers of images

Albacore (ALB, Thunnus alalunga) 2 240

Big eye tuna (BET, Thunnus obesus) 2 240

Yellowfin tuna (YFT, Thunnus albacares) 2 240

Other tuna (OT) 1 735

Blue marlin (BUM, Makaira nigricans) 1 056

Indo-pacific sailfish (SFA, Istiophorus platypterus) 416

Swordfish (SWO, Xiphias gladius) 1 600

Other billfish (OB) 830

Shark 1 600

Other species of fish (OF) 2 560

Figure 2. Image manipulation: (a) original image, (b) horizontal flipping, (c) vertical flipping, (d) width shift, (e) height shift, (f) rotation, (g)
shearing, (h) zoom-in, and (i) zoom-out.
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Model development using transfer learning

Transfer learning was applied to the development of deep CNN

models. In this procedure, a model with parameters pre-trained

using other datasets was adapted. The structures of the output

layers were modified to match the output dimensions (i.e. types

or species). Next, some layers of the model were frozen. Fine-

tuning was then applied to the remaining layers of the model to

update the parameters. In this study, VGG-16 (Simonyan and

Zisserman, 2014) was chosen as the pre-trained model because

the architecture performed well in various classification tasks and

was used in numerous applications (Ballas et al., 2015; Liu et al.,

2016; Lopez et al., 2017; Abas et al., 2018). Originally, VGG-16

consisted of 13 convolutional (C1 to C13), 5 max pooling (S1 to

S5), and 3 fully connected (FC1 to FC3) layers (Figure 4). A con-

volutional layer applies convolution operations to the neurons in

the current layer using filters and passes the results to the next

layer. A pooling layer combines the neurons in the current layer

into a single neuron in the next layer (Huang et al., 2007). A fully

connected layer connects every neuron in the current layer to ev-

ery neuron in the next layer (Viglione, 1970). Convolutional

layers C1 to C13 contained 64, 64, 128, 128, 256, 256, 256, 512,

512, 512, 512, 512, and 512 filters, respectively. The dimension

and stride of the filters in the convolutional layers were 3� 3 pix-

els and 1 pixel, respectively. Zero padding was used in the convo-

lution operations to keep the dimension of the output the same

as that of the input. The dimension and stride of the filters in the

max pooling layers were 2� 2 pixels and 2 pixels, respectively.

In this study, the architecture of VGG-16 was adjusted by

replacing the original FC layers with new FC layers (FC1 and FC2

in Figure 4) with dimension of R256 and RN, where N is the

Figure 4. Architecture of the modified VGG-16 model. C: convolution layer, S: max pooling layer, and FC: fully connected layer.

Figure 3. Two strategies for fish type and species identification. Strategy 1 uses three models to identify fish types, tuna species, and billfish
species. Strategy 2 uses a single model to identify fish types and species.
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number of categories to be classified in each model. The rectified

linear unit (ReLU; Glorot et al., 2011) was used as the activation

function for all convolutional layers and the first FC layer.

Softmax (Bishop, 1995) was used as the activation function for

the second FC layer to determine the confidence scores of the pre-

dicted fish types or species. In this study, parameters in the first

four convolutional layers (C1 to C4) were frozen, while those in

the remaining layers (C5 to FC2) were fine-tuned during training.

Model training

The models were developed using adaptive moment estimation

(Kingma and Ba, 2014) as the optimizer and cross-entropy as the

loss function. The initial learning rate was set to 0.00002. Each

model was trained for 50 epochs. In each epoch, image augmen-

tation was randomly applied to the training images. Effectively,

the images were augmented for 50 times. The models were then

trained using the images and back propagation (Rumelhart et al.,

1986). To prevent the models from being overfitted, dropout

(Srivastava et al., 2014) with a rate of 0.5 was applied to layer

FC1. Hence, in the training stage, each neuron in FC1 had 50%

chance of being ignored. The model development was performed

using Python3 and Keras toolbox (Chollet, 2015). A GPU

(GeForce GTX 1080 Ti, NVIDIA; Santa Clara, USA) was used to

expedite the training. Tenfold cross-validation (Kohavi, 1995)

was applied for assessing the performance of the models. The

mean accuracies were presented.

Visualization of filters in the CNN models

Filters of the CNN model were visualized to realize how the CNN

models work and what features the models had learned. To visu-

alize a specific filter in a CNN model, a loss function that

maximizes the activation of the filter was determined. An image

with a dimension of 330� 250 pixels was next generated and ini-

tialized with random pixel values. The gradient of the loss func-

tion using the image as the input to the CNN model was

calculated. Gradient ascent (Simonyan et al., 2013) was then ap-

plied to update the pixel values in the input image. The afore-

mentioned steps were performed for 200 iterations. The resulting

input image was the visualization of the filter.

Saliency maps and Grad-CAMs of the CNN models

Saliency maps (Simonyan et al., 2013) and gradient-weighted

class activation maps (Grad-CAMs; Selvaraju et al., 2017) were

generated to illustrate the essential information in an input im-

age for the developed models to determine the category (i.e. fish

types or species) of the image. Saliency maps indicate the im-

portance of each pixel in an input image. In the procedure of

calculating a saliency map, an input image of a known category

was fed into a trained CNN model. The derivatives of the model

output with respect to the pixels of the input image were calcu-

lated using guided backpropagation (Springenberg et al., 2014).

The saliency map was then formed as the derivatives reshaped

to the dimension of the input image (i.e. 330� 250). Grad-

CAM indicates the importance of pixels in the feature maps of a

model. In the procedure of calculating a Grad-CAM, an input

image of a known category was fed into a developed CNN

model. The gradients of the model output with respect to the

feature maps of the last convolutional layer in the model were

calculated, and then, the gradients were fed into global average

pooling (Lin et al., 2013). The weighted combination of the fea-

ture maps using the gradients as the weights were calculated.

Figure 5. Model accuracy and loss during training.
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Figure 6. Test accuracy of (a) Model 1, (b) Model 2, (c) Model 1A, (d) Model 1B, and (e) Model 1C.

Figure 7. Challenging cases that were successfully identified: (a) ALB, (b) BET, (c) YFT, (d) BUM, (e) SFA, and (f) SWO.
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Grad-CAM was the output of the ReLU function using the

weighted combination as the input.

Fish species identification using bag-of-features

approach

A bag-of-features (BoF; Sivic and Zisserman, 2003) model was

developed as the baseline for performance comparison with the

proposed CNN-based approach. In the BoF model, the size of the

visual vocabulary was set to 1000. Speeded-up robust features

(Bay et al., 2008) with a Hessian threshold of 1000 were used as

the features. Soft-margin support vector machines (SVMs, Chang

and Lin, 2011) with radial basis function kernels were used as the

classifiers. The SVMs were arranged in the one-vs.-rest fashion to

fulfill the task of multiclass classification. The margin and kernel

parameters of the SVMs were determined using grid search.

Results and discussion
Model accuracy and loss during training

The accuracies and losses of the models during training were ex-

amined (Figure 5). After 50 epochs, both the training and test

losses of Models 1A, 1B, and 2 converged to under 0.16. Both the

training and test accuracies of Models 1A, 1B, and 2 reached over

96%. However, for Model 1C, there was �6% difference between

the training and test accuracies. This observation implied that

Model 1C might be slightly overfitted, which could be caused by

the inadequate amount of training images (Table 1). The issue of

overfitting may be resolved by increasing the amount of the train-

ing images of SFA.

Performance of the models

The performance of the developed CNN models was evaluated

using tenfold cross validation (Figure 6). In the evaluation,

Models 1A, 1B, and 1C were concatenated to form Model 1

(Figure 6a). The mean accuracies of Models 1 and 2 were

95.85% and 96.24%, respectively. The standard deviations of

the accuracies were 0.75% and 0.67% for Models 1 and 2, re-

spectively. The mean processing time for Models 1 and 2 to clas-

sify an image were 0.0226 s and 0.0155 s, respectively, using a

GPU (GeForce GTX 1080 Ti). Models 1 and 2 used 8575 MB

and 8063 MB, respectively, of the GPU memory. Model 2

achieved higher accuracy and used less resource. However,

Model 1 could provide the correct fish type of an image even if

the fish species was misclassified. For both models, the two least

accurate categories were SFA and OB (Figure 6a and b). The low

accuracies in these two categories were also observed in Model

1C (Figure 6e), which may be caused by the imbalanced training

images (i.e. only 416 images for SFA and 830 images for OB;

Table 1).

Figure 8. Visualization of the last fully connected filters of each species or type. The green and orange boxes enclose the visualization of
filters in Models 1B and 1C, respectively.
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Cases that were challenging to be identified were examined.

Figure 7 illustrates the images of ALB, BET, YFT, BUM, SFA,

and SWO that were successfully identified. The challenges

included panned fish body (Figure 7a), low lamination (Figure 7b

and d), colour tone shifting (Figure 7c, e, and f), inadequate

resolution (Figure 7c), slanted fish body (Figure 7d), and incom-

plete fish body (Figure 7f). In Figure 7, the upper jaw of SWO

was cut off.

Figure 9. Saliency maps and Grad-CAM of (a) Model 1 and (b) Model 2. The green and orange boxes enclose the visualization of filters in
Models 1B and 1C, respectively.
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Filters of the CNN models

Filters of the last FC layer in Models 1 and 2 were visualized

(Figure 8). The filters in both models exhibited patterns similar

to parts of the fish body of each fish species or type. The filters of

tuna (ALB, BET, YFT, and OT) displayed curves and sawtooth

waves corresponding to the dorsal and anal fins and finlets, re-

spectively, of tuna. The filters of billfish (BUM, SFA, SWO, and

OB) displayed patterns similar to the dorsal fin and anal fins and

long upper jaw. The filters of shark exhibited patterns corre-

sponding to the first dorsal fin of shark. The filters of OF dis-

played patterns of fish body contours, which were distinct from

those of tuna, billfish, or shark.

The pattern differences between the tuna species were ob-

served. Yellow curves similar to dorsal fins of tuna appeared in

the filters of YFT and BET; however, they were not found in the

filters of ALB and OT. In addition, the curves in YFT filters were

much longer than those in BET filters. Moreover, the horizontal

strips in OT filters were similar to the grain patterns on the bod-

ies of Skipjack tuna. The same patterns were not found in ALB,

BET, and YFT filters. The aforementioned characteristics may

be the benchmarks for the models to distinguish the tuna

species.

The pattern differences between the billfish species were also

observed. The patterns of body contours were found in the filters

of BUM, SWO, and OB, but not in those of SFA. In addition, the

dorsal fin patterns were observed in the filters of all billfish cate-

gories; however, SWO filters exhibited the most substantial pat-

terns of dorsal fins compared with BUM, SFA, and OB filters.

Moreover, the dorsal fin patterns were displayed in SFA filters,

but not in BUM, SWO, and OB filters.

Saliency maps and Grad-CAMs of the CNN models

The saliency maps and Grad-CAMs of the developed models were

generated (Figure 9). The same set of fish images was used as in-

put to the two models for comparison purposes. The saliency

maps displayed that the models paid attention mostly to the con-

tour, pectoral fin, finlets, dorsal fins, and anal fins of the fish,

while Grad-CAMs displayed that the models paid attention

mostly to the abdomen, dorsum, and anal fins of the fish.

For the tuna species, the ALB maps displayed that the pectoral

fins received considerable attention. This observation agreed with

the fact that ALB has longer pectoral fins compared with the

remaining tuna species (Chapman et al., 2015). The OT maps

showed that only anal fins received attention. By contrast, the

Figure 10. Misclassified cases. The true and predicted categories of the images were shown on the left side.
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maps of YFT and BET displayed that both the dorsal and anal

fins received considerable attention. Particularly, the attention to

the dorsal and anal fins of YFT was strong. This observation

agreed with the fact that YFT has longer second dorsal and anal

fins compared with BET. Moreover, the BET maps showed that

the finlets received considerable attention. This observation

agreed with the fact that BET finlets are bright yellow with a black

edge. The areas that received strong attention agreed with the

characteristics of human observers for distinguishing the tuna

species.

For the billfish species, the SWO maps displayed that the pec-

toral fins and first anal fins received considerable attention. This

observation agreed with the fact that the pectoral fins of SWO

can flatten against its body, whereas those of BUM and SFA can-

not. The maps of SFA displayed that the first dorsal fins received

considerable attention. This observation agreed with the fact that

SFA has a large first dorsal fin. The width of its first dorsal fin can

be double its body width (Chapman et al., 2015). The BUM maps

displayed that the abdomen, tail and head received considerable

attention. BUM has two caudal keels, whereas SWO has only one.

In addition, the dorsal fin of BUM is not as large as that of SFA.

These differences were used to distinguish BUM from SWO and

SFA.

For shark and OF, the first dorsal fins and body contours re-

ceived considerable attention. The dorsal fins of shark are usually

larger than those of tuna, billfish and OF. Moreover, the contours

of shark fins are smooth, whereas those of tuna, billfish and OF

fins are tippy. This information was used to distinguish shark and

OF from tuna or billfish.

Study of misclassification cases

Misclassification occurred due to colour tone variation, inade-

quate resolution, low illumination, body part occlusion, or fish

immaturity. Figure 10a displays an image of ALB that was falsely

recognized as BET. The image was acquired at night and was in

green tone. The pectoral fin, one of the most essential traits of

ALB, of the fish were almost invisible. The saliency map and

Grad-CAM of the image confirmed that the pectoral fin received

almost no attention. Instead, the anal fin received attention.

Figure 10b displays an image of YFT that was falsely recognized

as BET. The image was in green tone and was taken from a dis-

tance. The saliency map and Grad-CAM of the image indicated

that the fish contour was not completely identified. The ventral of

the fish received attention at a certain degree. However, the dorsal

and anal fins, two of the most essential traits of YFT, received al-

most no attention. Figure 10c displays an image of BET that was

falsely recognized as ALB. Shadow covered the tail of the fish

body and made the finlets invisible. The saliency map and Grad-

CAM of the image displayed that the fish contour was not

completely identified. Although the anterior of the fish received

attention at a certain degree, the part typically does not contain

traits that are essential for determining the species. Figure 10d

displays an image of SFA that was falsely recognized as OB. The

Figure 11. Test accuracy of the BoF model.
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body of the fish was tilted so that the dorsal fin, one of the most

essential traits of SFA, of the fish was occluded. The saliency map

and Grad-CAM of the image displayed that the posterior received

attention. However, the posterior of the fish typically does not

contain traits that are essential for determining the species.

Figure 10e displays an image of SWO that was falsely recognized

as BUM. The colour of the second anal fin of the fish was similar

to that of the background, making the second anal fin almost in-

visible. Also, the pectoral fin was close to the fish body, making it

almost invisible. The saliency map and Grad-CAM of the image

confirmed that the second anal fin or pectoral fin of the fish did

not receive strong attention. Figure 10f displays an image of YFT

at juvenile stage. The saliency map and Grad-CAM of the image

displayed that the contour of the fish was clearly identified and

the dorsal and anal fin of the fish received strong attention.

However, the lengths of the fins were short. Thus, YFT was falsely

recognized as BET. Although misclassified, a tuna species was

usually falsely recognized as another tuna species and a billfish

species was usually falsely recognized as another billfish species

(Figure 10).

The performance of the bag-of-features model

The performance of the BoF model was evaluated using tenfold

cross validation (Figure 11). The mean accuracy reached 56.03%

and the standard deviation of the accuracy was 1.69%. The ma-

jority of the misclassification cases occurred within the same fish

types. A tuna species was usually falsely recognized as another

tuna species, and a billfish species was usually falsely recognized

as another billfish species. This observation indicated that the

BoF model could distinguish fish with obvious differences in ap-

pearance, such as fish type. However, the model could not effec-

tively recognize the subtle differences in appearance between the

fish species of the same type.

Conclusions
This paper proposed the identification of the species of six com-

mon tuna and billfish using machine vision. In the proposed ap-

proach, images of fish catch were acquired on the deck of

longliners with miscellaneous items in the background and under

various illumination conditions. The images were then resized to

330� 250 pixels with zero padding. CNN models were next de-

veloped to identify the fish species using a pre-trained architec-

ture VGG-16 and the concept of transfer learning. Saliency maps

and Grad-CAMs of the models exhibited that the information the

models learned were the characteristics that human observers

used for distinguishing the fish species. The proposed approach

outperformed conventional BoF approaches and reached an over-

all accuracy of at least 96.24%.
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The dynamics of fish length distribution is a key input for understanding the fish population dynamics and taking informed management

decisions on exploited stocks. Nevertheless, in most fisheries, the length of landed fish is still made by hand. As a result, length estimation is

precise at fish level, but due to the inherent high costs of manual sampling, the sample size tends to be small. Accordingly, the precision of

population-level estimates is often suboptimal and prone to bias when properly stratified sampling programmes are not affordable. Recent

applications of artificial intelligence to fisheries science are opening a promising opportunity for the massive sampling of fish catches. Here,

we present the results obtained using a deep convolutional network (Mask R-CNN) for unsupervised (i.e. fully automatic) European hake

length estimation from images of fish boxes automatically collected at the auction centre. The estimated mean of fish lengths at the box level

is accurate; for average lengths ranging 20–40 cm, the root-mean-square deviation was 1.9 cm, and maximum deviation between the esti-

mated and the measured mean body length was 4.0 cm. We discuss the challenges and opportunities that arise with the use of this technol-

ogy to improve data acquisition in fisheries.

Keywords: convolutional neural networks, deep learning, fish size estimation, landings

Introduction
Ensuring fish stocks sustainability while maximizing fishers prof-

itability is an elusive and still not solved topic (Hilborn, 2007;

Iudicello et al., 2012). Solving this puzzle is specially urgent in the

case of the Mediterranean fleets because they have been going

through a deep crisis for decades, which has been attributed to

the continuous decrease in the sale price of fish, that translates in

a continuous decrease in the number of boats and in a very low

recruitment rate of young fishermen (Palmer et al., 2017). At least

in the case of the Balearic Islands, the root of the problem seems

to be more related to the commercialization of the product that

to the state of conservation of the stocks (Reglero and Morales-

Nin, 2008; Morales-Nin et al., 2010; Maynou et al., 2013).

Comanagement is one of the strategies aimed to match stocks

sustainability and fisher profits (d’Armengol et al., 2018). Several

small-scale fisheries are currently comanaged in the Balearic

Islands (e.g. Aphia minuta and Coryphaena hippurus) suggesting

that fishers are prone to adopt this type of strategy.

Comanagement delivers both ecological and social benefits

(d’Armengol et al., 2018), but periodically updated reviews of the

results are mandatory in order to adopt short-term, operational

management decisions. Moreover, those decisions must be in-

formed by accurate and precise data. Similarly, conventional fish-

ery models may inform on the mid- and long-term trends of the

exploited stocks but must be fed with accurate and precise data

too.

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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Fish length is one of the key variables needed for both taking

short-term management decisions and modelling stock trends.

Nevertheless, in almost all fisheries, the estimation of the length

of landed fish is still made by hand. Length measures are precise

enough for those purposes, but since the observers cost is high,

the sample size used for estimating length at population level

tends to be relatively small. Accordingly, the estimation of the

length distribution at any given time may be imprecise and may

be prone to bias when properly stratified sampling programmes

are not affordable. In contrast with the relatively low efficiency of

observers, a massive amount of images can be processed by com-

puter vision.

Hake (Merluccius merluccius) is considered overfished in the

Mediterranean, with an alarming 20% reduction in catches in the

last 20 years. Overfishing in the Balearic islands has been consid-

ered moderate (FAO, 2016), but the overall status in the

Mediterranean is considered critical (FAO, 2018). Moreover, this

species represents an economically relevant fraction of the land-

ings in the Balearic Islands (Palmer et al., 2009, 2017).

Accordingly, in this study, we propose the hake as case study spe-

cies for implementing computer vision techniques for massively

estimating fish length from images. In particular, we propose to

adapt an existing convolutional neural network (CNN, Mask R-

CNN; He et al., 2017) to the problem at hand. This strategy is

technically feasible in Mallorca (Balearic Islands) because images

of fish boxes are routinely obtained at the conveyor belt, just at

the bidding, in the auction centre. Therefore, at any port with

similar facilities (fish on a conveyor belt is common practice else-

where), length estimates for all the fish boxes sold in a day, all the

days of the year, could be obtained at affordable cost, thus fully

fulfilling the data requirements that would enable taking in-

formed operational decisions at the short-term scale needed for

comanagement and, at the same time, monitoring the mid- and

long-term trends of the stocks.

Some of the earliest attempts at using computer vision techni-

ques for length measurement of fish were reported by Arnarson

et al. (1991) and Strachan (1993). In both cases, a camera was

placed on top of a conveyor belt where fishes passed by, one at a

time. The illumination conditions were controlled in such a way

that fishes were much darker than the background. Therefore, a

simple illumination threshold was used to detect fish. Once

detected, their orientation was determined and normalized and

the (possibly curved) line from nose to tail fork was computed.

The length of this line was used to estimate the actual length of

the fish. More complex versions included edge detection, color

calibration and the distinction between roundfish and flatfish

(White et al., 2006). However, the system setting (conveyor belt

with controlled lighting) remained similar. In a similar way, in

Abdullah et al. (2009) pictures of individual fishes were used as

input and edge-and-corner detection methods were applied to es-

timate the position of head and tail from which the length was

computed.

Detection and measurement of live fish in underwater images

is more challenging. Concerning detection, body silhouettes have

been extracted using edge detection techniques under controlled

illumination conditions (Hardin, 2006; Zion et al., 2007; Miranda

and Romero, 2017). Stereo methods and 3D models have been

proposed to concurrently estimate the fish length and the dis-

tance of the free-swimming fish from the camera (Petrell et al.,

1997; Tillett et al., 2000; Dı́az-Gil et al., 2017). Image

enhancement techniques for the correction of color and illumina-

tion have also been implemented (Martinez-de Dios et al., 2003;

Costa et al., 2006; Al-Jubouri et al., 2017). A common characteris-

tic of these methods is that, once the distance to the camera and

the illumination have been normalized, they use classical image

processing techniques (segmentation by thresholding or edge/

corner detection) to extract the fish’s features of interest.

However, those conventional image processing techniques

have been progressively replaced by methods based on machine

learning for the tasks of detection and classification. One of the

first applications of machine learning was the detection of human

faces (Viola and Jones, 2004). Subsequently, techniques based on

learning algorithms called support vectors machines, and the use

of local image descriptors (Dalal and Triggs, 2005) obtained nota-

ble results in the detection of various types of objects (faces,

vehicles, pedestrians, etc.). The use of CNNs for pattern recogni-

tion received a strong boost in 1990 with the use of new optimi-

zation techniques for network training (Lecun et al., 1998).

In 2012, the use of graphical processing units (GPUs) allowed

the implementation of CNNs with many layers (deep networks)

and trained on large amounts of data that exceeded human per-

formance in image classification tasks (Krizhevsky et al., 2012),

giving rise to the current boom of deep learning (GPUs are hard-

ware devices that speed-up the computations needed to train a

neural network).

Since then, increasingly deep networks have been proposed

and have been applied to detection, classification and segmenta-

tion. Some of the most popular deep learning models for detec-

tion are YOLO (Redmon et al., 2016) and Mask R-CNN (He

et al., 2017).

In the case of fish detection, the use of deep learning techni-

ques is incipient and faces the additional problem that fish are

not rigid objects and networks must learn how to adapt to

changes in posture, position and scale. Nevertheless, fish recogni-

tion has been achieved using a binary classifier (Marini et al.,

2018) or a neural network with only two convolutional layers

(Qin et al., 2016). In French et al. (2015, 2019), a CNN was

designed for counting fish in video. In addition, existing network

architectures (e.g. LeNet, AlexNet, GoogLeNet, and YOLO) have

been used for fish classification (Chen et al., 2017; Meng et al.,

2018; Villon et al., 2018). In Monkman et al. (2019), the authors

describe a system the measurement of fish detected using

R-CNNs.

The goal of the present study is to automatically obtain the fish

length from fish box images obtained in the ports. In our case

study, hakes are arranged inside a fish box in such a way that in

most cases the tails are occluded and a complete view is available

for a few fish only (see Figure 2). Accordingly, in the case of hake,

the target object to be detected cannot be the whole fish but only

a part. Fortunately, many complete heads are visible on the

images; thus, fish heads have been the target object with which

the network has been trained.

In our implementation, we use a similar network architecture

than recently published papers (French et al., 2019; Monkman

et al., 2019), the main difference being the set of pictures used for

training. This set of pictures must necessarily be different for each

application, since the network must be fine-tuned for each spe-

cific task. Another important difference is the final goal of each

system. In our case, we want to measure the fish, even when they

are partially occluded. In (Monkman et al., 2019) they seek a
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similar goal, but they use pictures from online sources for train-

ing (not pictures from the auction centre, as we do), their CNN

does not provide a segmentation of the images and, more impor-

tantly, the developed system cannot cope with occlusions. In

French et al. (2019), the goal is to classify fish in video from

CCTV cameras installed on fishing trawlers. Since their goal is

identification and not measurement, they can use either partial

detections or full detections, as long as the detected parts permit

to identify the fish. Their system does not need to deal with the

problem of inferring the whole length of the fish from the partial

detections. Contrarily to previous published works on the subject

of fish length estimation, the system proposed in the current pa-

per is able to deal with partial occlusions and develops different

statistical models that permit to estimate the total fish length

from the length of the detected heads.

Material and methods
Images

Three sets of images of hake boxes were used for the study. The

photos were obtained with the same webcam (pixel resolution of

1280� 760). The first set (562 images) of hake boxes was

obtained at the conveyor belt in the auction centre of Palma. The

camera was placed top-down, just over the fish boxes and the

images were taken at the bidding moment, when the conveyor

belt stops for a while. The second set (56 images) was obtained at

the laboratory with the same camera setting. For the network im-

plementation, 163 randomly selected images from the first set

and 14 randomly selected images from the second set were used.

Of these total 177 images of both sets used in the network, up to

2112 heads for the training steps and 490 heads for the validation

steps of the network (a total of 2602 heads) were manually anno-

tated using the LABELBOX software (https://labelbox.com/). The

head has been defined here as the area from the mouth to the pel-

vic fin (Figure 1).

The detection performance of the trained network was assessed

using 42 images from the second set, containing 200 visible heads

that had not been used for training. These 200 fish were also used

to implement a statistical model relating the total fish length (in

centimetres) to the head length (in pixels) measured from the

output of the network.

Finally, the third set (10 images) was also obtained at the

conveyor belt in the auction centre. These images were neither

used for training the network nor for building the statistical

model. The model-based estimates of fish length (centimetres)

obtained for the fish heads detected by the network on these

images were compared with the actually measured fish lengths

(centimetres) for assessing the accuracy and precision of the

whole system.

Figure 4 gives an overview of the sampling protocol used to

train the neural network, build the statistical model and measure

the performance of the proposed system.

Provided that fishermen sort hake and most of the landings in

boxes by species, there is no need for any preliminary classifica-

tion task. Some examples of the images used as input of the sys-

tem are displayed in Figure 2.

Figure 1. Head definition: from the mouth to the pelvic fin
(modified from European Commission data; https://mare.istc.cnr.it/
fisheriesv2/javax.faces.resource/images/species/HKE_l.jpg.xhtml).

Figure 2. Examples of input images. Note that whereas the head is
visible from a ventral side, the body tends to be partly hidden.
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Network implementation

The network used (Mask R-CNN; He et al., 2017) is a simple,

flexible, and general purpose network for object instance segmen-

tation, which implies not only recognizing all the objects (or

instances) from the target category in a given image but also ac-

curately segmenting them. Mask R-CNN is based on Faster R-

CNN (Ren et al., 2015), which focuses in object detection (i.e.

each target object is enclosed into a rectangular bounding box),

with an extension for creating a segmentation mask of the target

object within the bounding box.

Mask R-CNN consists of two CNNs that work in parallel: a

“backbone architecture” for the extraction of features over the en-

tire image and a “head architecture” for recognizing regions of in-

terest and producing a mask over them. A scheme of the network

architecture is displayed in Figure 3. The developers of Mask R-

CNN have demonstrated that the proposed architecture outper-

forms more complex networks and that the best results are

obtained with a ResNet-FPN (Lin et al., 2017) backbone with 101

layers and a fully convolutional network head consisting of six

convolutional layers.

The implementation of Mask R-CNN used is available at

Github (https://github.com/matterport/Mask_RCNN). Moreover,

the network uses pre-trained weights from the COCO dataset (a

public dataset of images available at http://cocodataset.org/).

However, these weights must be fine-tuned for each case-specific

target using a user-defined dataset.

The network has been fine-tuned using 2602 heads (Figure 4).

Concerning the training process, the setting was 100 epochs, with

200 steps per epoch, and 50 validation steps. The learning rate

was 0.002 and only weights of the head branch of the network

were learned using the training set.

Evaluation metrics

The performance of the system is assessed in two ways. First, the

detection performance of the network is evaluated in terms of the

percentage of false positives among all the detected objects. A de-

tection is deemed a false positive if the detected object is not a

fish head; conversely, a false negative is a fish head that goes

undetected. Note that in the specific context of our research, false

positives are more relevant than false negatives since we have at

our disposal a huge amount of data (a large number of boxes

may be photographed each day, each box containing several fish)

and, even if we miss some correct fish heads, provided that most

of the detections are correct we shall be able to build an accurate

statistical model of the fish length distribution.

Secondly, the measurement performance of the system is

assessed by comparing the obtained length estimations with the

actual values of length, after manual measurement of the fish.

(a)

(c)

(b)

Figure 4. General overview of sampling design and analyses workflow. The figures in the top row describe the set of samples used for training
and validation of the neural network (a) and for computing the parameters of the statistical model (b). The figure at the bottom (c) depicts
the process for computing the system performance both at fish level and at box level (see text for details).

Figure 3. MASK R-CNN Architecture [modified from He et al.
(2017)].

Estimation of fish size from commercial landings 1333

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3

https://github.com/matterport/Mask_RCNN
http://cocodataset.org/


The system computes the length of a fish as follows: (i) the length

(in pixels) of the detected head is computed (let us denote this

value HLpix), (ii) the length (in centimetres) of the detected head

is computed from HLpix using a statistical model (let us denote

this value HLcm), and (iii) the total length (TL, in centimetres) of

the fish is inferred from HLcm using a second statistical model.

The sampling protocol and the statistical models have been

designed to deal with three sources of variability, namely (i) vari-

ability between the repeated estimates of HLpix from the same

fish (i.e. repeated measures of HLpix for the same fish from dif-

ferent images after changing fish posture), (ii) variability related

to the relationship between HLpix and HLcm, and (iii) variability

related to the relationship between HLcm and TL.

The statistical model is structured into three submodels. The

first submodel assumes that the j repeated measurement for

HLpix of the same fish i from different images after changing fish

posture is normally distributed around a mean value HLpix, with

a standard deviation rHLpix (hereafter, overlined quantities refer

to the expected value):

HLpixi;j � NðHLpix i; rHLpixÞ: (1)

To estimate the parameters of this submodel 135 measures of

HLpix corresponding to 55 fish (i¼ 1–55) were obtained.

Specifically, fish were visually labeled with an ID and were placed

on fish boxes in groups of three to five fish. Several images from

each group were taken after changing the posture of all fish in the

box. Those images were submitted to the unsupervised routine

for head detection described in the previous section. The median

number of repeated measures of HLpix per fish was 3.

Concerning the relationship between HLpix and HLcm (sec-

ond submodel), a linear model with zero intercept was

considered:

HLcmi ¼ bheadHLpix i

HLcmi � NðHLcmi;rHLcmÞ
(2)

where bhead is the slope of the linear relationship. To estimate the

parameters of the submodel, HLcm values of the same 55 fish

were measured with a ruler by the same observer. In a prelimi-

nary analysis, four repeated measures from 70 fish showed that

the standard deviation of the observer’s measurement error of ei-

ther HLcm or TL was 0.2 cm and that this measurement error

was independent of the fish size. Accordingly, this uncertainty

source was considered negligible and hereafter ignored.

Concerning the relationship between HLcm and TL (third sub-

model), four linear models resulting from log-transforming or

not these variables were compared. The model finally selected

(see results in the next section) was as follows:

logTL i ¼ abody þ bbody logðHLcmiÞ

logTLi � NðlogTL i;rTLÞ
(3)

where abody and bbody are the intercept and the slope of the linear

relationship, respectively. To estimate the parameters of the sub-

model, TL values of the same 55 fish were measured with a ruler

by the same observer (Figure 4). However, since that uncertainty

at this level was larger than expected (see Figure 6), TL and

HLcm were measured for 143 additional fish. Therefore, the sam-

ple size for the third submodel was 198 fish.

The parameters of the integrated model (i.e. combining the

three submodels into a single analysis) were estimated using a

Bayesian approach and Markov chain Monte Carlo (MCMC)

methods (Kruschke, 2010). Three independent chains were run.

The convergence of the MCMC chains was assessed by visual in-

spection of the chains and was evaluated using the Gelman–

Rubin statistic (Plummer et al., 2006). Virtually flat priors were

used: normal distribution with zero mean and a huge variance

was assumed for HLpix ; bhead; abody and bbody . Gamma distribu-

tions (rate¼ 0.01, scale¼ 0.01) were assumed for the tolerances

of the three standard deviations (rHLpix; rHLcm and rTL). The

posterior distribution was estimated from at least 30 000

valid iterations after appropriate burning (the first 10 000 itera-

tions were not included) and thinning (only one of the ten itera-

tions were kept because at this thinning level MCMC did not

show autocorrelation). Additional technical details are available

at the R script provided in the Supplementary material, which,

along with the input data, allow reproducing the results reported

here.

The accuracy of the TL predictions obtained from new

HLpix measures was assessed in two ways. First, randomly se-

lected measures of HLpix for each one of the 55 fish available for

submodels 1 and 2 were used to predict TL after properly

propagating uncertainty at the three considered levels. The pre-

dicted value of TL was then compared with the actually measured

TL by the observer (fish-level performance in Figure 4). Second,

ten new images of hake boxes were obtained at the auction

centre and were submitted to the unsupervised routine for fish

head segmentation described in the previous section. Moreover, a

random sample of the fish in each box was measured (TL, centi-

metres) by an observer. Provided that the fish for which HLpix

was available may be different from the fish for which TL was

available, accuracy of the mean fish size at the box level was

assessed instead of fish-level accuracy (box-level performance in

Figure 4).

Results
The Mask R-CNN was successfully implemented according with

the developers specifications and fine-tuned with a data set com-

posed of 2602 manually segmented heads.

Concerning the detection performance of the implemented

system, in the 42 photos used as input a total of 200 visible hake

heads were identified by an observer. Assuming this figure as

ground truth, the network correctly identified 175 hake heads,

which represents a success rate of 87%. Concerning the false posi-

tives, two cases were detected (1%). Some examples of the output

of the network are displayed in Figure 5.

Regarding the measurement performance of the system (accu-

racy and precision attained when estimating the fish length itself),

the relationship between HLcm and TL showed that the four lin-

ear models considered in the previous section (either using log-

transformed values or not), had an excellent explanatory power,

with r (Pearson correlation coefficient) larger than 0.9 (remark

that throughout the article the terms bias and (in)accuracy and

the terms variability and (im)precision are used interchangeably).

However, log(TL) vs. log(HLcm) was finally selected because it

showed the smallest deviance information criterion and normally

distributed residuals. All the parameters of the model have been

successfully estimated (Table 1) using the Bayesian approach de-

scribed in the previous section.
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For assessing the accuracy of the measures at the fish level (de-

gree of closeness of estimates of a quantity to that quantity’s true

value), TLtrue of 55 fish ranging from 20 to 27.5 cm (i.e. the actu-

ally measured length) was compared with TLest, the value esti-

mated from HLpix by the model. The obtained results are

displayed in Figure 6. The root-mean-square deviation (RMSD)

was 1.7 cm, and the median of the unsigned deviations was

1.1 cm, suggesting that the system is accurate. However, precision

(dispersion of predicted values for a given observed value) should

be improved because the averaged interquartile range was

10.0 cm. Note that one random repeated measure of HLpix was

used for assessing the precision and that the uncertainty at the

three levels considered (posture-related error when measuring

HLpix, imperfect relationship between HLpix and HLcm, and

imperfect relationship between HLcm and TL) has been properly

propagated. Thus, this precision estimate is the expected when a

new value of HLpix will be used for estimating TL.

Finally, the system performance for estimating TL from HLpix

at the box level was assessed using ten new fish boxes sampled at

the auction centre (Figure 4). Two independent samples of fish

from each box were used for estimating HLpix and manually

measured (observer) to obtain TLtrue. Again, the total fish length

was estimated from HLpix using the model described in the pre-

vious section. The observed vs. estimated box-level mean fish

lengths are shown in Figure 7. In that case, RMSD was 1.9 cm, the

median of the unsigned deviations was 0.5 cm, and the maximum

Figure 5. Some segmentation results.

Table 1. Median and 95% Bayesian credibility interval of the

posterior distribution for all the model parameters.

Parameters 2.5% Median 97.5% R̂ Neff

abody 1.387 1.468 1.548 1.001 30 000

bbody 0.955 0.998 1.041 1.001 30 000

bhead 0.109 0.110 0.112 1.001 30 000

rTL 0.080 0.088 0.098 1.001 30 000

rHLcm 0.082 0.168 0.266 1.001 10 000

rHLpix 2.724 3.153 3.674 1.001 16 000

Values of R̂ close to 1 denote convergence of the MCMC chains. Neff is a mea-

sure of the effective sample size on the posterior distribution. Note that r val-

ues are at different scales and are not directly comparable.

Estimation of fish size from commercial landings 1335

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3



deviation reported was 4.0 cm, suggesting that the system is accu-

rate at the box level too.

Discussion
In line with many other successful applications of deep learning

in a wide range of domains, in this study, we implemented an au-

tomatic system that uses images of captured fish at landing for

identifying fish heads on those images and estimating fish length

from head length.

The core component of the system is a deep neural network

that permits to detect and delineate the contour of the objects of

interest, or instances in the deep learning jargon. Here, instead of

developing a new network from scratch, a pre-trained Mask

R-CNN network was successfully implemented for identifying

hake heads. This strategy implies that the network training must

be fine-tuned with a relatively large data base of examples of hake

heads. In this case, the contours of 2.602 hake heads have been

manually segmented from images.

The performance of the Mask R-CNN network implemented

in this way for detecting hake heads is noteworthy. The majority

of the heads in an image are properly detected (87%) but more

interestingly for the specific case of study here, the ratio of false

positives is negligible (1%).

The specificities of the case prevent whole fish contours form

being efficiently detected on the images, as fish tails are systemati-

cally occluded when fishermen prepare the fish boxes. Certainly,

other species are not sorted in this careful way, but even when the

contour of the whole fish is visible on an image, the flexible na-

ture of fish would complicate the performance of the detection

step for the Mask R-CNN because the neural network should be

taught with differently bent fish. Conversely, the rigid nature of

fish heads alleviates this problem but introduces a new handicap

Figure 6. Variability at the three levels of uncertainty considered: (a) posture-related variability of the repeated measures of HLpix, horizontal lines
connecting the repeated measures of the same fish head; (b) relationship between HLpix and HLcm; and (c) relationship between HLcm and TL.
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because the final objective here is not to detect fish heads but to

estimate fish size. The former output of Mask R-CNN (segmenta-

tion mask of the pixels belonging to a given head) was first used

to extract head length in pixels. The second step was to transform

this head measure from pixels to cm and the final step was to in-

fer fish length from head length.

Provided that each one of these steps may introduce some un-

certainty, a validation protocol has been implemented for assess-

ing the overall performance of the system in terms of accuracy

and precision, as well as for providing a reliable confidence inter-

val for fish length estimates when new measures of head length

were provided by the net. A sample of fish has been measured by

an observer with a ruler and these empirical measurements have

been compared with the estimates provided by the system devel-

oped here. The median of the unsigned measured-estimated dif-

ferences was 1.1 cm at the fish level and 1.9 cm at the box level

(i.e. mean fish length), suggesting that the system should be con-

sidered accurate at least at the mid-range of the considered sizes.

However, our results show that there is room for improving

the precision of the system. Individual level precision (measured

as the interquartile range) for a newly measured fish length was

around 610.0 cm for fish in the range of 20–27.5 cm. The esti-

mates of the standard deviation related to the three variability

sources considered suggest that they are similarly contributing to

this suboptimal precision at the fish level. Uncertainty related to

the head posture may be specially relevant. It is plausible that pre-

cise delineation of fish head contour may depend on the fish pos-

ture, thus increasing the number of examples of heads in different

postures when training the network may alleviate the problem.

The morphometric relationship between head size and fish

length reported in this study shows larger uncertainty than the

one reported elsewhere for the same species and similar length

range [Pearson product-moment correlation coefficient, r¼ 0.92

in our study and r¼ 0.95 and 0.97 in �Santi�c et al. (2011) and

Philips (2014)]. Certainly, these contributions suggest some sex-

related effects, which have not been accounted for in the current

context.

As stated earlier, conventional, observer-based assessment of

fish length is precise at fish level but, due to the inherent high

costs of manual sampling, sample size will be by far smaller than

the massive sample size that can be potentially processed using

deep learning. Proper comparison of the effects of using

observer-based data vs. deep learning data when assessing fish

stock dynamics is out of the scope of this contribution but cer-

tainly deserves further attention.

The hierarchical Bayesian framework proposed here is not

only appropriate for providing reliable confidence intervals at fish

level. Moreover, it can be expanded for properly propagating

such a fish level uncertainty to the fish box level, the boat level,

the day level, or any other relevant scale that might be of interest

in other case studies. Specifically, in the context of understanding

fish population dynamics and taking informed management deci-

sions on exploited stocks, a relatively low precision at the fish

level may be largely compensated with a massive amount of data

at upper scales.

It is in this context that the advancement in marine science is

foreseen to be boosted in the next few years thanks to the capacity

of generating massive amounts of data from automatic sensors

coupled to high-power computation capabilities (Danovaro et al.,

2017; Lowerre-Barbieri et al., 2019). Many techniques associated

to the Artificial Intelligence are not new in marine science (e.g.

simple neural networks, decision trees, and Bayesian networks).

Many of these techniques are used for ecosystem modelling pur-

poses, spatial planning, decision-making, etc. (e.g. Fernandes

et al., 2010). However, the field of deep learning is advancing at a

greater pace, as in particular those applications related to image

processing.

Until now, most applications of image classification in marine

ecology were semi-supervised or supervised (e.g. Marini et al.

2016, 2018; Dı́az-Gil et al., 2017). Through deep learning, we ex-

ploit the structural characteristics of data and make use of com-

putation capabilities (Hu et al., 2014), which, in our case study,

may offer a better performance than other, more conventional

ways of data extraction. We clearly demonstrate that by using this

method, even when only a percentage of the fish in each box can

be correctly identified, opens the opportunity to massive fish

length sampling of many commercially valuable species, without

interfering with wharf or fishing operations and activity.

Provided that an image of each fish box can be easily obtained

and stored when the conveyor belt stops for bidding, the estimate

number of pictures (each box) per day that currently are arriving

to our system are in the order of thousands. This knowledge may

enable to improve the current biological evaluation models based

in size, to explore short-term effects of the environment on the

species, the control of undersized individuals, or even the analysis

of price dynamics within the season in relation to size. To this

end, we have detected a very positive attitude from the fishery

sector. Both fishermen associations and the wharf owners have fa-

cilitated and supported the initiative for extracting lengths auto-

matically from boxes. This suggests that further development of

these techniques in the near future is guaranteed. According to

the above, several near-future improvements are envisaged, in-

cluding (i) the detection of different species in the same image

(some boxes contain a mixture of species), (ii) the automatic

Figure 7. Observed vs. estimated box-level mean fish length. Each
point represents the mean of fish length of a sample of fish in that
box. The dashed lines around a point denote the between-fish
standard deviation in each box. The numbers denote the sample size
(number of fish) used for estimating those mean and standard
deviation. Note that the fish measured are not necessarily the same
fish detected by the network; thus, sample sizes may differ. The thick
line denotes perfect agreement between observed and estimated
fish length.
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calibration of cameras for the conversion from pixel unit lengths

to centimeters, and (iii) an improvement of the precision of the

estimation of total fish lengths from pelvic lengths.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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We report on the development of a computer vision system that analyses video from CCTV systems installed on fishing trawlers for the pur-

pose of monitoring and quantifying discarded fish catch. Our system is designed to operate in spite of the challenging computer vision prob-

lem posed by conditions on-board fishing trawlers. We describe the approaches developed for isolating and segmenting individual fish and

for species classification. We present an analysis of the variability of manual species identification performed by expert human observers and

contrast the performance of our species classifier against this benchmark. We also quantify the effect of the domain gap on the performance

of modern deep neural network-based computer vision systems.

Keywords: computer vision and CCTV, deep learning

Introduction
The quantity of fish discards on-board fishing trawlers is cur-

rently estimated via measurements obtained during on-board ob-

server sampling. The quantity of discard data is therefore limited

by the availability and cost of the observers. In contrast, more

precise measurements of the quantity of catch landed at port are

available as it is weighed to ensure compliance with the trawlers

individual quota. Quota is assigned according to the total allow-

able catch quota established by the Common Fisheries Policy of

the European Union.

A pilot catch quota management scheme (CQMS) in the UK

aimed to improve the quality of discard estimations by installing

electronic monitoring systems on-board participating trawlers

within the Scottish demersal fishing fleet. These systems included

video surveillance cameras monitoring the conveyor belts on

which fish are processed or discarded. Marine Scotland Science

analysts reviewed the numbers, sizes, and species of fish caught

per vessel by sampling each vessel’s video record when it returned

to port (Needle et al., 2014). Manually counting, measuring and

identifying the species of the discarded fish has proved to be labo-

rious and time consuming, motivating the development of a

computer vision system designed to analyse the footage

automatically.

The intended end result of the project is a system that supports

the experts by automating as much of the tedious and expensive

manual analysis as possible. We can therefore outline the main

requirements of the computer vision component of the system;

first to detect and count fish leaving the discard chute and second

to classify and measure a subset of commercial species. Such a

system must be robust to the multiple occlusions and unstruc-

tured scenes that arise in the unconstrained environment of a

commercial fishing trawler; fish are randomly oriented and fre-

quently occlude one another and the view of the working area

may be occluded by fishers processing the catch (see Figure 1).

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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Deep neural networks have established state-of-the-art results in

computer vision problems including image classification, object

detection, and image segmentation. Their impressive performance

however comes at the cost of requiring large quantities of anno-

tated training data (Lin et al., 2014; Russakovsky et al., 2015).

We review a body of prior work in the “Background” section.

We discuss prior work in automated analysis of fishing data and

work that underpins the computer vision components of our

system.

The experiments that we performed required a body of train-

ing data consisting of images extracted from the video footage

along with precise ground truth annotations. The dataset was de-

veloped in collaboration with observer experts at Marine

Scotland, using a web-based annotation tool developed for this

task. The dataset and the tool are described in the “Dataset and

data acquisition tools” section.

We use instance segmentation to isolate individual fish within

an image. This component is discussed in the “Instance

segmentation” section. We refer our earlier work in French et al.

(2015) that focuses on segmentation and discuss the more mod-

ern Mask R-CNN (He et al., 2017) instance segmentation ap-

proach that we have adopted in its place. The fish that are

detected and isolated by the segmentation system are passed to a

species classifier for identification. The development of this classi-

fier and its performance is discussed in the “Species identi-

fication” section.

To assess the performance of our classifier we conducted an

experiment in which 8 expert human observers were asked to

identify the species of 250 fish that were extracted from the sur-

veillance footage. We analyse the variability of expert human

observers and contrast the performance of our classifier against

this benchmark in the “Inter-observer variability experiment”

section.

The future directions of this work can be found in the

“Conclusions and future work” section.

Background
In this section, we discuss the computer vision research that we

consider relevant from the point of view of addressing our

objectives. We will specifically refer to the requirements we set

out in the “Introduction” section.

Computer vision for fish classification

The first attempts to apply computer vision to the problem of

fish classification were reported in the 1980s by Tayama et al.

(1982), who used shape descriptors derived from binary silhou-

ettes to discriminate between 9 fish species with 90% accuracy.

Further work combined colour and shape descriptors (Strachan,

1993) achieving a reliability of 100% and 98% in identifying 23

species under laboratory conditions. It involved a mechanical

feeding system to ensure that individual fish are correctly ori-

ented and presented to the camera one-by-one, along with tightly

controlled lighting. The author notes potential caveats due to sea-

sonal changes in the physical condition of fish and variability in

the colour of individual specimens, depending to some extent on

the area in which they are caught. This issue is highly likely to af-

fect our system too.

Further work refined approaches for fish species classification

using primarily shape and colour features with fuzzy classifiers

and neural networks (Hu et al., 1998; Storbeck and Daan, 2001;

Alsmadi et al., 2009). White et al. (2006) describe trials of

CatchMeter; a sorting machine capable of measuring and classify-

ing fish based on colour and shape features that achieves fish

length measurement accuracy of r ¼ 1; 2mm and species classifi-

cation accuracy of flat- and round-fish of �99%. Specimens must

be presented individually, but can be in any orientation.

Later research investigates colour, shape, and texture features

and more advanced classifiers but still requiring constrained envi-

ronments avoiding occlusion. As a consequence, counting indi-

viduals is trivial or irrelevant (Hu et al., 2012). However, a recent

review of computer vision in aquaculture and processing of fish

products identifies a wide range of applications for the technology

at all stages of production (Mathiassen et al., 2011; Zion, 2012),

many of which present challenging problems for computer

vision.

Successfully classifying images captured in real-life conditions

requires the use of more sophisticated approaches such as non-

rigid part models (Chuang et al., 2016). Deep neural network-

(a) Vessel A (b) Vessel B (c) Vessel C

(d) Vessel D (e) Vessel R

Figure 1. Images from each vessel. (a) Vessel A, (b) Vessel B, (c) Vessel C, (d) Vessel D, and (e) Vessel R.
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based feature extractors have been successfully employed for fish

species identification on the Fish4Knowledge (Boom et al., 2012),

using unsupervised learning to initialize the network layers (Qin

et al., 2016; Sun et al., 2016). More recent work employs deep

neural network image classifiers trained in an end-to-end fashion

(Zheng et al., 2018), tackling a challenging Kaggle dataset in

which equipment and personnel are present in the images, in ad-

dition to the fish.

Image classification

In recent years deep neural networks have set a number of state-

of-the-art image classification results. A variety of architectures

have been proposed (Krizhevsky et al., 2012; Simonyan and

Zisserman, 2015) with residual networks (He et al., 2016) com-

bining strong performance with computational efficiency.

Practitioners frequently employ transfer learning (Donahue

et al., 2014; Long et al., 2015) in which a pre-trained ImageNet

classifier (e.g. a residual network) is adapted for a new classifica-

tion task by replacing the final layer and fine tuning.

It is worth noting that deep neural networks are prone to over-

fitting (Krizhevsky et al., 2012) and will often exhibit poor perfor-

mance on data drawn from a different distribution to that on

which they are trained. It is for this reason that it is important to

maximize the diversity of the training set by using as wider variety

of lighting and image capture conditions as possible. In situations

where the annotated training images and evaluation images are

drawn from different distributions or sources, the difference be-

tween them is referred to as the domain gap. In such situations we

expect the network to perform poorly on the target/evaluation

domain. The field of domain adaptation (Saenko et al., 2010;

French et al., 2018) is aimed at finding solutions to these prob-

lems. Typical domain adaptation problems involve learning from

annotated synthetic images and unannotated real-life images,

with a view to maximizing performance on the real-life data. In

surveillance situations where data are obtained from a number of

cameras, a small domain gap can be said to exist between the

cameras due to the different lighting conditions and perspective

of each camera.

Instance segmentation

Image segmentation is the process by which an image is seg-

mented into regions, often on a per-pixel basis. In this work, we

focus on instance segmentation as our goal is to locate and isolate

individual fish within an image. Instance segmentation algo-

rithms can be divided into two classes based on how they tackle

the problem.

The first approach combines semantic segmentation with con-

tour detection. Semantic segmentation (Long et al., 2015;

Ronneberger et al., 2015) classifies each pixel according to the

type of object covering it (fish, conveyor belt, detritus, etc.).

Multiple objects of the same class that touch or overlap will form

a contiguous region, as occurs frequently in our CCTV footage

when fish overlap. Contour detection (Xie and Tu, 2015) locates

edges of objects that are used to guide the Watershed algorithm

(Beucher and Meyer, 1993) to split these regions, separating indi-

vidual objects. This was the approach adopted in our earlier work

(French et al., 2015). In practice this is often unreliable. False neg-

atives in the contour predictions result in small gaps that prevent

instances from being separated due to the flood-fill based ap-

proach of the Watershed algorithm. False-positive contour

detections can result in the complementary problem of over-

segmentation. Our prior work had to train separate segmentation

models for each conveyor belt (due to the aforementioned do-

main gap) and use carefully tuned post-processing to mitigate

this problem.

The second approach to instance segmentation combines ob-

ject detection and boundary localization. Object detection sys-

tems detect and locate objects within an image, typically

predicting a bounding box and class category for each detected

object. The instance level segmentation is generated by predicted

object boundaries, often in the form of a mask that identifies the

regions of the image that belong to the object in question. This is

the approach adopted by Mask R-CNN (He et al., 2017). They

combine Faster R-CNN (Ren et al., 2015) object detection

algorithm—an accurate two-stage object detection algorithm—

with a mask prediction module that predicts a low resolution

mask (normally 28 � 28 pixels) that is scaled to fit the bounding

box and identifies the parts of the image covered by the detected

object.

Dataset and data acquisition tools
Marine Scotland provided us with the surveillance footage that

was gathered during their CQMS pilot study (Needle et al., 2014).

In its raw form it was not suitable to be directly processed by our

computer vision system. In this section, we discuss the process

that we developed to extract usable image data from the CCTV

video that could be annotated, allowing us to train and evaluate

the machine learning components of our system.

We will discuss the source video material, the project web ap-

plication, calibration, and segmentation dataset selection and

preparation.

Video sources

The surveillance footage was captured in 800p HD resolution and

stored in MPEG-4 format. The videos come from five sources;

four commercial fishing vessels; and one research vessel operated

by Marine Scotland. The footage from the commercial vessels

captures the real-world working environment and presents chal-

lenging conditions, including occlusions by personnel working at

the conveyor belt and the view being obscured by spatter on the

dome that covers the camera. The footage from the research ves-

sel is similar in terms of content and layout but provides the op-

portunity to capture tailor-made footage for the purpose of

gathering training data.

The footage from the commercial vessels consists of the mix of

species that was being processed on board the vessel at the time

of capture. The footage from the research vessel was specifically

produced by Marine Scotland staff by placing large numbers of

fish of a known species on the conveyor belt and running it past

the camera. Each video from the research vessel contains fish of a

single species; this was done for the purpose of training the spe-

cies classifier, discussed in the “Training data” section. The foot-

age is summarized in Table 1. Example frames are shown in

Figure 1.

Web application

To facilitate collaboration between Marine Scotland and

University of East Anglia personnel, a web application was devel-

oped using the Django Framework (https://djangoproject.com).

The website allows Marine Scotland staff to upload CCTV footage
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and annotate images for training our computer vision systems

(see “Image annotation” section). It was extended to support the

inter-observer species identification variability experiment dis-

cussed in the “Performance evaluation” section.

Belt extraction and calibration

We simplified the task of processing the footage by extracting a

region of interest covering the conveyor belt, thereby excluding

equipment, people and the boat interior, as can be seen in

Figure 1. We used a perspective transformation to extract the

conveyor belt and transform it into rectilinear space (see

Figure 2) with a constant uniform physical distance to image

space ratio.

Lens distortion correction

The surveillance cameras on-board fishing vessels frequently use

fish-eye lenses to increase field of view. This introduces a curved

distortion to the image that complicates later stages of the system.

The OpenCV library (Bradski, 2000) provides functionality for

automatically estimating lens distortion parameters and removing

it from images.

The lens distortion estimation algorithm within OpenCV

requires that a printed checkerboard pattern is captured at vari-

ous positions within the cameras field of view. Its corners are

detected and their positions are used to estimate the lens distor-

tion. We provided Marine Scotland staff with a checkerboard pat-

tern and a procedure for capturing calibration footage on-board

fishing vessels.

Extracting the checkerboard from all frames in which it is visi-

ble typically results in several hundred detections. The lens distor-

tion estimation algorithm run-time scales in a super-linear

fashion with respect to the number of detections used, failing to

complete within a reasonable time. We opted to select a subset of

the detections that significantly differ from one another.

We divide the image into 50 � 50 pixel cells and quantize the

coordinates of the checkerboard corners, generating a map that

specifies which cells are covered (histogram2D in the algorithm).

If >22% (determined by trial and error) of the cells covered by

this checkerboard have not been covered by a previously selected

checkerboard we add it to our selection. The algorithm is given

below:

Belt warping

The checkerboard used for estimating lens distortion parameters

was printed on A3 paper, giving it known physical dimensions.

The checkerboard was placed on the conveyor belt and captured

as part of the calibration process. The checkerboard localization

algorithm within OpenCV is used to find the checkerboard, after

which a perspective transformation is estimated to transform

the checkerboard into a fixed rectangular size. Applying this

transformation to the image of the belt removes the perspective

distortion and scales the image of the belt to a known physical

distance to image space ratio. A tool was developed within

Jupyter Notebook (Kluyver et al., 2016) that allows the user to

correct for any misalignment and crop the region corresponding

to the belt.

Complete belt extraction process

We use the estimated lens parameters to compute a mapping. For

each pixel in the straightened image the mapping provides its

coordinates in the distorted image. The perspective transforma-

tion used for belt extraction can also be expressed as a mapping.

We therefore compute a composite mapping that combines both

the distortion removal and perspective transformation in a single

step. The composite mapping is generated once and used for each

image or frame that must be processed.

The mapping can be applied to an image using GPU acceler-

ated texture map lookups and typically takes <2 ms on a desktop

machine.

(a) (b) (c)

Figure 2. The belt extraction and calibration process: (a) checkerboard on belt, (b) with lens distortion removed, and (c) with perspective
warp used to transform belt into rectilinear space and exterior cropped out.

Table 1. Summary of video footage.

Vessels Types No of videos Running time (HH:MM:SS)

Vessel A Commercial 38 37:30:47

Vessel B Commercial 23 22:45:41

Vessel C Commercial 26 20:38:26

Vessel D Commercial 25 24:26:56

Vessel R Research 53 6:18:41

Total

Algorithm 1 Lens estimation detection selection algorithm

covered BOOLEANARR2D(num cells y, num cells x)

selected dets  ½�
for each det  detections do

det coverage HISTOGRAM2D(det, cell size)

if MEAN(det coverage ^ ´covered) 	 22% then

covered  covered _ det coverage

selected dets.APPEND(det)

end if

end for
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Segmentation and species ID training set

A segmentation dataset consisting of still frames extracted from

the video footage was required to train and evaluate the segmen-

tation system. The conveyor belt moves in irregular and unpre-

dictable short bursts and is controlled by on-board personnel. We

wished to extract frames such that the belt moves by at least half

the length of the visible region of the belt to ensure that the con-

tent changes sufficiently between frames extracted for the training

set. This required a robust estimate of the belt motion. We should

note that there is overlap between successive frames, so some in-

dividual fish are visible in more than one training set frame.

Belt motion estimation

Extracting the belt from the image and transforming it into recti-

linear space simplifies the task of estimating belt motion between

frames as its motion is constrained to horizontal translation. A

natural choice for this would be enhanced correlation coefficient-

based image alignment (Evangelidis and Psarakis, 2008), an im-

plementation of which is provided by OpenCV. Unfortunately

this algorithm is often confused by the repeating texture present

on the conveyor belts in our footage. We developed a more ro-

bust solution based on correlation of neural network features.

While inter-frame correlation between RGB or greyscale pixel

data was sufficient to detect motion, it did not accurately quantify

it. To precisely quantify the motion we computed the correlation

between features extracted using the convolution layers of a

pre-trained VGG-16 (Simonyan and Zisserman, 2015) network

instead of RGB pixel values. We found that later layers of the net-

work would yield more accurate motion estimates, but at reduced

resolution.

Once correlation using RGB pixel values indicated motion,

features were extracted from the pool4, pool3, and pool2 layers of

VGG-16. The pool4 feature correlations provided an accurate es-

timate of motion, but at 1/16 resolution. Correlation between

pool3 at 1/8 resolution was computed and their output con-

strained so as to refine the motion estimate from pool4. Further

refinements were obtained using features from pool2, after which

final refinements were calculated using RGB pixel value

correlation.

Our implementation uses the pre-trained VGG-16 network

provided by the torchvision library that is part of PyTorch

(Paszke et al., 2017).

Image annotation

The images selected for segmentation were uploaded to the web

application after which they were manually annotated by Marine

Scotland staff. Within this application the labelling tool allows

the user to draw polygonal annotations and classify them (http://

bitbucket.org/ueacomputervision/image-labelling-tool). The user

can select from 15 species of fish and several non-fish classes such

as person, belt structure, or guts. There are also classes used to in-

dicate unidentifiable fish or material. The labelling tool can be

seen in Figure 3.

Manually annotating fish by drawing polygonal labels is a la-

bour intensive task. We were able to considerably reduce the la-

belling effort required by partially automating this process. Once

between 100 and 200 images had been manually annotated for

each belt, we found that a segmentation model trained using

these annotations was able to automatically annotate the majority

of fish to a satisfactory standard. We generated automatic

annotations for as-of-yet unannotated images and placed them

on the website to serve as a starting point for the annotators. This

saved considerable effort as the annotators only needed to anno-

tate the few fish that had been missed or fix mistakes. The im-

proved annotations could then be added to the training set that

was used to train a new and more accurate segmentation model,

resulting in a cyclic process.

Data

The training data for the segmentation system consists of 902 an-

notated frames drawn from videos from the five vessels and is

summarized in Table 2. While many more frames were extracted,

this is the subset that has been annotated so far.

Instance segmentation
An effective instance segmentation algorithm is a pre-requisite to

the successful operation of the complete system as later stages rely

on accurate detection and segmentation to reliably classify the

species of individual fish and estimate length and mass.

During the course of the project we experimented with a vari-

ety of approaches to solving this problem. Our first attempt used

semantic segmentation to identify regions of the image contain-

ing fish and subsequently split them into individuals using con-

tour detection. By using a separate segmentation model for each

conveyor belt and finely tuned post-processing we were able to

achieve some success using VGA resolution footage (French et al.,

2015). This process proved unreliable when applied to higher res-

olution HD footage as false negatives from the contour detector

would prevent separation of individual fish from one another.

Mask R-CNN (He et al., 2017) proved to be an effective and ef-

ficient instance segmentation algorithm, hence we adopted it for

use in our system [We use the COCO (Lin et al., 2014) pre-

trained implementation of Mask R-CNN provided by the torchvi-

sion library that is developed by the PyTorch (Paszke et al., 2017)

team. It produces good results and trains quickly.]. As stated in

Figure 3. Web-based segmentation annotation tool.

Table 2. Segmentation training set.

Vessels No of annotated images No of annotated fish

Vessel A 204 1 459

Vessel B 263 1 254

Vessel C 145 1 588

Vessel D 153 4 809

Vessel R 137 1 498

Total 902 10 608
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the “Background” section, it combines object detection with

mask prediction and is therefore much more robust than our pre-

vious approach. It generates high quality labels as shown in

Figure 4. Furthermore our segmentation model is trained on

images from all vessels simultaneously.

As stated in the “Image annotation” section, the segmentation

system was used to automatically annotate images on the labelling

tool section of the project web application, after which mistakes

in the annotations could be fixed manually. We maximized the

quality of the automatically generated annotations using test-time

augmentation (He et al., 2017); each image was segmented eight

times, with random augmentation consisting of horizontal and

vertical flips, lightening and darkening, scaling and rotation. The

resulting predictions were averaged, increasing their accuracy.

Doing so comes at significant computational cost, so this is only

feasible for offline use when accuracy outweighs run-time

performance.

Separate species identification

The object detection network that forms the basis of Mask R-

CNN (He et al., 2017) incorporates a classifier that identifies

detected objects and a multi-class mask head that learns class-spe-

cific shapes for segmentation. In principle this could be used to

perform fish detection, segmentation, and species identification

in a single pass. In spite of this we opt to use separate networks,

using a single class Mask R-CNN network for only fish detection

and segmentation. We do this for several reasons that we will

now explain.

Identifying the species of fish in our surveillance footage

requires annotators with the relevant training and experience. In

contrast outlining individual fish for segmentation can be per-

formed by a wide variety of individuals. To support this we allow

annotators to outline fish in an image without specifying their

species. As a consequence many images in our dataset have fish

outlined for segmentation but with some individuals having no

assigned species. Training a multi-class Mask R-CNN model

requires per-object class labels to select the class-specific bound-

ing box regressor and mask head to optimize for each object. As a

consequence images with partial species annotation would not be

usable for training a multi-class Mask R-CNN model.

Furthermore, as stated in the “Classifier” section we were able

to improve the performance of our classifier by rotating the

images of segmented fish so that they lie horizontally, as doing so

eliminates a source of irrelevant variation. Mask R-CNN does not

provide a mechanism for altering the orientation of objects prior

to classification.

For these reasons we train our Mask R-CNN model to detect

and segment objects of a single fish class and identify species in a

subsequent step.

Training procedure

Data augmentation artificially expands the training set by modify-

ing the existing image samples to increase variability and is fre-

quently used to improve performance (Krizhevsky et al., 2012; He

et al., 2016). While training our segmentation network we aug-

ment the images using random horizontal and vertical flips, ran-

dom rotations between �458 and 458, applying a random

uniform scale factor in the range of 0.8–1.25 and randomly modi-

fying the brightness and contrast by multiplying the RGB values

by a value drawn from eNð0;lnð0:1ÞÞ and adding a value drawn from

Nð0; 0:1Þ.
We split our dataset into 90% for training and 10% for valida-

tion. We train for 350 epochs with one epoch consisting of the

iterations necessary to train using all training images. We report

the mean average precision (mAP; Lin et al., 2014) score for the

validation samples in our logs. We use the validation score for

early stopping; we save the network state for use after the epoch

at which it achieved the highest validation mAP score. We use a

learning rate of 10�4 for the new randomly initialized later layers

and 10�5 for the pre-trained layers that come from the torchvision

(Paszke et al., 2017) Mask R-CNN implementation. We randomly

crop 512 � 512 pixel regions from our rectilinear belt images and

build mini-batches of crops from four randomly chosen images

during training. We train our models on a single nVidia GeForce

1080-Ti GPU.

In addition to the bounding box non-maximal suppression

used in Mask R-CNN (He et al., 2017) we apply NMS to the

masks predicted during inference. If >10% of the pixels predicted

as belonging to object are already occupied by other objects with

a higher predicted confidence, the lower scoring object is ignored.

Species identification
In this section we describe our species classifier, the development

of the dataset required for training and our evaluation of the per-

formance of our classifier.

Classifier

Our species classifier is a 50-layer residual network (He et al.,

2016) adapted and fine tuned using transfer learning. It operates

on images of individual fish that are identified by the instance

segmentation system (see “Instance segmentation” section).

We found careful pre-processing of images of individual fish to

be essential for good classification performance. While the fish in

our surveillance footage are arbitrarily oriented, we found that ro-

tating images of individual fish so that they lie horizontally elimi-

nated a source of irrelevant variation, improving accuracy. We

used the regionprops function from the Scikit-Image (van der

Walt et al., 2014) library to estimate the orientation from the

shape/mask predicted for each fish and rotate it so that the longest

axis lies horizontally. This ensures that most fish lie horizontally,

Figure 4. Instance segmentation applied to a frame from footage
from Vessel R (research vessel); the outlined shapes are generated
automatically.
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although they vary in horizontal and vertical direction (left-to-

right or right-to-left, upside-down). Given that the masks pre-

dicted by the segmentation system are often imperfect we found

that expanding the mask in all directions by seven pixels (using bi-

nary dilation) improved performance. Each image was scaled to a

constant size of 192 � 192 pixels and centred within a 256 � 256

image. Pixels outside of the masked to 0, removing any distracting

cues from parts of the image outside the bounds of the fish.

Training data

Our species identification training data is drawn from footage

from the commercial vessels and from the research vessel.

A summary of the species identification training data broken

down by vessel and species is given in Tables 3 and 4.

The commercial training samples were drawn from commercial

footage and their species was determined manually. This is a time

consuming and laborious process, hence the limited amount of

commercial samples, as shown in Table 3. With a view to address-

ing this, Marine Scotland staff prepared placed large quantities of

fish of known species on the research vessel conveyor belt and ran

it past the camera. Applying the segmentation system allowed us to

extract large numbers of training images of a known species class,

resulting in the research training samples summarized in Table 4.

This further illustrates the advantage of separating segmentation

and species classification into separate steps, as mentioned in the

“Separate species identification” section.

The commercial training samples were extracted using manually

prepared polygonal segmentation as the annotators used the label-

ling tool to provide both polygonal segmentation and species iden-

tification annotations for commercial images at the same time. In

contrast, the majority of the research samples was extracted using

boundaries generated by the segmentation system, with test-time

augmentation in use. We should note that a system deployed in

the field would not use test-time augmentation as segmenting each

image multiple times under differing augmentation parameters

incurs significant computational load. While as a consequence, a

real-life species classifier would receive slightly lower quality seg-

mentation labels than those used here, we believe that with the

increased size of the training set that we are continually growing,

this should not be a significant problem in the final application.

It should be noted that the complex and unstructured scenes in

our CCTV footage frequently feature fish that are oriented such

that useful discriminative features or parts are hidden from view or

fish that are only partially visible due to being occluded by overlap-

ping fish or personnel working at the belt. Operating in these chal-

lenging conditions is one of the challenges posed by this project.

Selected examples from each species are shown in Figure 5.

Performance evaluation

To understand the performance of our classifier we evaluate it in

four scenarios. In our first scenario we train and test the classifier

on research samples. Given the large number of available training

samples, uniform lighting and appearance and the fact that there

are typically less occlusions that in the commercial footage we ex-

pect this to provide an upper bound for the performance of our

classifier. In our second scenario we train and test using commer-

cial samples. There are considerably less training samples avail-

able and the conditions are more challenging so we expect our

classifier to overfit the training data to a greater extent and ex-

hibit worse performance. We also add the research samples to the

training set to assess their effect. In our third scenario we use

leave-one-belt-out cross validation to test on samples from one

commercial belt and train on samples from the other commercial

belts and the research samples. This scenario is more representa-

tive of a system deployed in the field that must operate on sam-

ples from a belt that was not in the training set. In our final

scenario we train on research samples and test on commercial

samples. This is by far the most challenging scenario for the clas-

sifier due to the domain gap between the research and commer-

cial belts. It is also the ideal scenario from the perspective of

preparing training data due to the reduced annotation effort.

In scenarios in which samples from one or more belts are used

for both training and testing we split the samples between train

and test using fourfold cross validation. As stated in the

“Segmentation and species ID training set” section individual fish

may be seen in multiple successive frames extracted from video

footage. We split samples using the video from which they were

drawn (all the samples from a video are placed into either train

or test), ensuring that a sample cannot appear in both the train-

ing and the test set.

We present the performance of our classifier using a confusion

matrix. Each row of the matrix shows the distribution of how

samples of that class were predicted and mis-predicted by the

classifier. The values along the diagonal give the class accuracies;

the proportion of samples belonging to a class that are correctly

identified by the classifier. Other entries in the same row show

Table 3. Summary of species identification dataset from commercial

vessels.

Vessel Cod Haddock Whiting Saithe Hake Monk

Vessel A 47 109 12 370 116 1

Vessel B 21 89 25 9 9 7

Vessel C 19 229 23 70 31 2

Vessel D 12 258 42 21 16

Total 99 685 110 470 172 10

Table 4. Summary of species identification dataset from the research vessel.

Cod Haddock Whiting Saithe Hake Monk Mackerel

No of fish 1 451 12 482 14 068 861 304 1 837

No of videos 3 18 13 2 2 1

Horse mackerel Norway pout Plaice Long rough dab Common dab Grey gurnard Red gurnard

No of fish 496 5 574 2 402 1 495 1 601 1 599 65

No of videos 1 2 3 1 2 3 1

1346 G. French et al.
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(a) Cod

(b) Haddock

(c) Whiting

(d) Saithe

(e) Hake

(f) Monk

(g) NorwayPout

(h) Plaice

(i) CommonDab

(j) GreyGurnard

Figure 5. Examples from the species identification dataset. All fish were from the single species research vessel footage, apart from monk
which were taken from commercial footage. Samples were chosen to illustrate that the classifier often receives only a partial fish or one
whose orientation hides useful details.
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the proportion of samples mis-predicted as belonging to other

classes. Perfect performance is indicated by 100% along the diag-

onal and 0% everywhere else.

Train and test on research samples

The research footage covers 13 species out of the 14 considered in

this project. We do not consider monk as there are no examples

in the research footage. We also skip mackerel, horse mackerel,

long rough dab, and red gurnards as these species are only fea-

tured in one video each, preventing us from splitting the videos

between train and test. When training and testing on research

samples we obtain the performance shown in Figure 6. While

deep neural network classifiers are effective, problems can arise

when attempting to distinguish classes that are broadly visually

similar, hence saithe being mis-predicted as haddock and com-

mon dab mistaken for plaice. The distribution of the confidence

predicted by the classifier does not sufficiently differ between cor-

rectly and incorrectly predicted samples to allow one to reliably

estimate the correctness of a specific prediction, however the dif-

ference would suggest that confidence could be used as a signal to

prioritize difficult unannotated samples for manual annotation

(Wang and Shang, 2014).

Train and test on commercial samples

Figure 7a and b shows the performance obtained on commercial

samples when training using (a) commercial samples and (b)

both commercial and research samples. Adding the research

samples—of which there are �20 times as many as there are com-

mercial—incurs the risk of the classifier being dominated by the

research samples. Combining these datasets initially appears to

degrade performance as the mean class accuracy drops from

59.16 to 56.71%. If we ignore the monk class due to lack of repre-

sentation in the research samples the mean class accuracy

increases from 59 to 62.05%. Adding the research samples with

its large number of examples of whiting increases class accuracy,

partially compensating for the poor whiting class accuracy in (b)

due to the scarcity of whiting in the commercial samples.

Leave-one-belt-out cross validation

In practice a system such as the one discussed here would need to

be deployed for usage on vessels for which there is no annotated

training data. To assess the potential impact on performance in

practical scenarios we trained five classifiers, each one on samples

from four out of five vessels, with samples from the remaining

vessel held out for testing. The results are presented in Figure 8.

The large variation in performance evident in (b) and (d) when

evaluating on samples from Vessel B and Vessel D indicates per-

belt bias in the training samples that needs to be explored further.

The reduction in accuracy in comparison to that in Figure 7 illus-

trates the effect of the domain gap.

Train on research and test on commercial samples

The performance obtained from training with samples from re-

search footage that contains only cod, haddock, whiting, saithe,

Figure 6. Confusion matrix for research samples, fourfold cross validation.
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and hake and testing on the commercial samples is shown in

Figure 7c. Comparing the performance between (a) and (c) illus-

trates the effect of the domain gap; in spite of the fact that there

are �20 times as many research samples as commercial, training

using only research samples results in considerably worse accu-

racy, with significant numbers of samples from all classes being

mis-predicted as whiting.

Inter-observer variability experiment
In this section, we describe the species identification inter-

observer variability experiment that was designed to measure the

accuracy of expert human observers, against which we compare

the accuracy of our classifier.

Two hundred and fifty images of fish were extracted from the

mixed species footage. Their background was darkened and

blurred to suppress irrelevant cues and they were oriented hori-

zontally. These images were presented to expert observers in a

web–based tool—see Figure 9—that asked them to assign a spe-

cies and difficulty rating to each image. The species identification

tool was integrated into the project web application. It allows

users to pan and zoom to focus on fine details. The user may

choose a more comfortable orientation using the controls along

the top to flip the image or rotate it by 1808.

We selected fish from the mixed species data as these are repre-

sentative of real-world conditions. We decided that we needed at

least 50 instances of each species used in the experiment to ensure

sufficient representation for the purpose of meaningful analysis.

Given the class imbalance present in our data (see Table 3) we

used the existing species annotations to select samples for the

dataset. While these individual fish had been previously anno-

tated by Marine Scotland staff who later participated in this ex-

periment, the samples were originally annotated in the context of

a complete image including other fish, the conveyor belt and sur-

roundings, whereas in this experiment the fish were extracted

from their surroundings. The requirement of 50 samples per class

prevented us from using monk in our assessment due to insuffi-

cient availability of samples. Fifty samples were selected from the

remaining five classes (cod, haddock, whiting, saithe, and hake),

hence the dataset containing 250 samples.

We should note that observers from Marine Scotland reported

that several samples belonged to species that could not be chosen

from the five species available. Due to the fact that we did not an-

ticipate this situation, no option indicating a different species was

available, so the observers chose a combination of unidentifiable

species with very easy difficulty. This issue persists in our data

and would need to be corrected in future experiments.

Expert observer agreement

We present our results in the confusion matrices shown in

Figure 10. Each confusion matrix compares the species choices of

one observer with the majority choice of the other seven.

The expert observers are largely in agreement with one another

with mean class accuracy scores ranging from 74.4 to 86%, with

the exception of observer 6 with a score of 51.4% due to low

scores on whiting and hake.

Comparing the classifier with expert observers

We use the majority species choice for each sample in the inter-

observer variability dataset as the ground truth for evaluating

three classifiers: one trained on single species samples from the

research vessel, one trained on the mixed species samples from

the commercial vessels and one trained on a combination of

both. In each case the samples in the inter-observer variability

dataset are held out as test data with other samples used for train-

ing. The results are presented in Figure 11. Following the leave

one belt out strategy discussed in the “Leave-one-belt-out cross vali-

dation” section, we obtain the results in Figure 12.

The comparison between the agreement between human

observers shown in Figure 10 and the performance of the classi-

fier shown in Figure 11 show that there is a significant gap that

must be crossed before human accuracy is reached, especially

when crossing the domain gap as in Figure 12. Expert human

observers typically score a mean class accuracy of between 74 and

86%, whereas the classifier reaches around 58%, slightly out-

performing observer 6, the lowest scoring human observer.

(a) (b) (c)

Figure 7. Confusion matrices for (a) train and test on commercial (fourfold cross validation), (b) train on research and commercial, test on
commercial (fourfold cross validation), and (c) train on research, test on commercial. Without the monk class the mean class accuracies are
(a) 59%, (b) 62.05%, and (c) 33.3%.
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(a) (c) (e)

(b) (d) (f)

Figure 8. Performance when evaluating on samples from one vessel while training on others. Overall performance the result of computing
the sum of the other confusion matrices. Overall mean class accuracy without under-represented monk class is 52.6%.

Figure 9. Inter-observer variability species identification tool as seen by the participants.
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Conclusions and future work
We have discussed the development of a system for analysing and

quantifying fish discards from CCTV footage captured on fishing

trawlers. Is designed to operate in the challenging real-world con-

ditions present in these environments. The major components of

the system are in place. The remaining challenges include length

estimation, tracking fish between frames and reidentification to

handle situations where fish go out of view temporarily due to oc-

clusion. There is a significant body of work on the topic of person

re-identification (Li et al., 2018), some of which could be adapted

to this problem.

The segmentation system is performing adequately and we be-

lieve that its performance will continue to improve as more train-

ing data is gathered.

The main outstanding challenge is improving the performance

of the species classifier. The performance obtained using footage

from the research vessel (shown in the “Train and test on research

samples” section and Figure 6) demonstrates that effective species

classification is possible given sufficient training data. Good per-

formance on commercial samples was achieved for some species

provided that training data from all belts was used (see Figure 7a

and b). We believe that growing the number of annotated

Figure 10. Inter-observer agreement confusion matrices. Each confusion matrix compares the species choice of an observer with the majority
vote of the other seven observers.
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commercial samples will further improve performance, reaching

that of the research footage. This would however involve consid-

erable manual effort. This effort could be supported by improving

the user interface of the annotation tools. We also note that active

learning offers the possibility of estimating the difficulty of unan-

notated samples and using it to prioritize them for manual anno-

tation, optimizing the use of the annotators’ time.

The single species research footage proved to be a highly effec-

tive approach for gathering a large number of labelled training

samples in an efficient manner, although it had the disadvantage

of having relatively uniform lighting and visual characteristics.

The effect of the domain gap can be seen by comparing the results

presented in Figure 7a and c. An avenue we intend to explore

with Marine Scotland staff involves the use of an on-shore con-

veyor belt that affords us the opportunity to change the belt ma-

terial and appearance and modify the lighting to increase the

diversity of visual characteristics expressed by the dataset. If this

results in sufficient accuracy, this would support the efficient pro-

duction of large quantities of annotated training samples.

Active learning offers the possibility of estimating the difficulty

of unannotated samples and using it to prioritize them for man-

ual annotation, optimizing the use of the annotators’ time.

Fine-grained classification is a field of on-going research aimed

at developing classifiers that can distinguish between classes of

objects whose overall appearance is very similar with only subtle

or small differences differentiating them. Effective fine-grained

classifiers locate regions of an image—often bounding boxes—

that are likely to be discriminative (Yang et al., 2018; Guo and

Farrell, 2019). Such classifiers could be well suited to the problem

of fish species identification.

We can conclude that the use of computer vision to quantify

fish discards from surveillance footage is feasible with current

state-of-the-art algorithms.
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Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier,
M., Frederic, J., Kelley, K. et al. 2016. Jupyter Notebooks—a pub-
lishing format for reproducible computational workflows. In 20th
International Conference on Electronic Publishing, pp. 87–90.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. ImageNet classi-
fication with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25, pp. 1097–1105.

Li, M., Zhu, X., and Gong, S. 2018. Unsupervised person
re-identification by deep learning tracklet association. In
Proceedings of the European Conference on Computer Vision
(ECCV), pp. 737–753.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L. 2014. Microsoft, coco: common
objects in context. In European Conference on Computer Vision,
pp. 740–755. Springer.

Long, J., Shelhamer, E., and Darrell, T. 2015. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
3431–3440.

Mathiassen, J. R., Misimi, E., Bondø, M., Veliyulin, E., and Østvik, S.
O. 2011. Trends in application of imaging technologies to

inspection of fish and fish products. Trends in Food Science &
Technology, 22: 257–275.

Needle, C. L., Dinsdale, R., Buch, T. B., Catarino, R. M. D., Drewery, J.,
and Butler, N. 2014. Scottish science applications of remote elec-
tronic monitoring. ICES Journal of Marine Science, 72: 1214–1229.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z. et al. 2017. Automatic Differentiation in PyTorch. Neural
Information Processing Systems Autodiff Workshop, Long Beach,
CA, USA.

Qin, H., Li, X., Liang, J., Peng, Y., and Zhang, C. 2016. Deepfish: ac-
curate underwater live fish recognition with a deep architecture.
Neurocomputing, 187: 49–58.

Ren, S., He, K., Girshick, R., and Sun, J. 2015. Faster R-CNN: towards
real-time object detection with region proposal networks.
Advances in Neural Information Processing Systems, 28: 91–99.

Ronneberger, O., Fischer, P., and Brox, T. 2015. U-Net: convolutional
networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-assisted
Intervention, pp. 234–241. Springer.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z. et al. 2015. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115:
211–252.

Saenko, K., Kulis, B., Fritz, M., and Darrell, T. 2010. Adapting visual
category models to new domains. In European Conference on
Computer Vision, pp. 213–226. Springer.

Simonyan, K., and Zisserman, A. 2015. Very deep convolutional net-
works for large-scale image recognition. In International
Conference on Learning Representations.

Storbeck, F., and Daan, B. 2001. Fish species recognition using com-
puter vision and a neural network. Fisheries Research, 51: 11–15.

Strachan, N. J. C. 1993. Recognition of fish species by colour and
shape. Image and Vision Computing, 11: 2–10.

Sun, X., Shi, J., Dong, J., and Wang, X. 2016. Fish recognition from
low-resolution underwater images. In 2016 9th International
Congress on Image and Signal Processing, BioMedical
Engineering and Informatics (CISP-BMEI), pp. 471–476. IEEE.

Tayama, I., Shimdate, M., Kubuta, N., and Nomura, Y. 1982.
Application of optical sensor for fish sorting. Refrigeration, 57:
1146–1150.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E. et al. 2014. scikit-image: im-
age processing in Python. PeerJ, 2: e453.

Wang, D., and Shang, Y. 2014. A new active labeling method for deep
learning. In 2014 International Joint Conference on Neural
Networks (IJCNN), pp. 112–119. IEEE.

White, D. J., White, C. J., Svellingen, C., and Strachan, N. C. J. 2006.
Automated measurement of species and length of fish by com-
puter vision. Fisheries Research, 80: 203–210.

Xie, S., and Tu, Z. 2015. Holistically-nested edge detection. In
Proceedings of the IEEE International Conference on Computer
Vision, pp. 1395–1403.

Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., and Wang, L. 2018.
Learning to navigate for fine-grained classification. In
Proceedings of the European Conference on Computer Vision
(ECCV), pp. 420–435.

Zheng, Z., Guo, C., Zheng, X., Yu, Z., Wang, W., Zheng, H., Fu, M.
et al. 2018. Fish recognition from a vessel camera using deep con-
volutional neural network and data augmentation. In 2018
OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp. 1–5.
IEEE.

Zion, B. 2012. The use of computer vision technologies in
aquaculture—a review. Computers and Electronics in
Agriculture, 88: 125–132.

Handling editor: Cigdem Beyan

Automated analysis of fisheries surveillance video 1353

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3

https://opencv.org/
https://openreview.net/forum? id=rkpoTaxA-
https://openreview.net/forum? id=rkpoTaxA-


Contribution to the Themed Section: ‘Applications of machine learning and artificial

intelligence in marine science’

Original Article

Automatic segmentation of fish using deep learning with

application to fish size measurement

Rafael Garcia 1,2*, Ricard Prados2, Josep Quintana3, Alexander Tempelaar3, Nuno Gracias1,
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One of the leading causes of overfishing is the catch of unwanted fish and marine life in commercial fishing gears. Echosounders are nowadays

routinely used to detect fish schools and make qualitative estimates of the amount of fish and species present. However, the problem of esti-

mating sizes using acoustic systems is still largely unsolved, with only a few attempts at real-time operation and only at demonstration level.

This paper proposes a novel image-based method for individual fish detection, targeted at drastically reducing catches of undersized fish in

commercial trawling. The proposal is based on the processing of stereo images acquired by the Deep Vision imaging system, directly placed in

the trawl. The images are pre-processed to correct for nonlinearities of the camera response. Then, a Mask R-CNN architecture is used to lo-

calize and segment each individual fish in the images. This segmentation is subsequently refined using local gradients to obtain an accurate es-

timate of the boundary of every fish. Testing was conducted with two representative datasets, containing in excess of 2600 manually

annotated individual fish, and acquired using distinct artificial illumination setups. A distinctive advantage of this proposal is the ability to

successfully deal with cluttered images containing overlapping fish.

Keywords: deep learning, fish sizing, trawl camera system

Introduction
According to the UN Food and Agriculture Organization, 33% of

commercially important marine fish stocks worldwide are overf-

ished (FAO, 2018). One of the causes of overfishing is that, in ad-

dition to targeted species, the fishing gears often catch other

unwanted fish and marine life. Globally, nearly 11% of total

catches are discarded because they are not the proper species or

sizes (Pérez Roda et al., 2019). In some cases, the quantity of this

by-catch can exceed that of the targeted species. Excessive by-

catch is an immediate problem for fishers as it slows their catch

sorting operations considerably, increases fuel consumption and

wear on their fishing gear. Under management systems utilizing

by-catch caps or closures to protect juveniles, fishing opportuni-

ties may be curtailed. In the long term, high levels of by-catch can

contribute to overfishing jeopardize the long-term sustainability

of the fishery.

Some countries and regions have enacted prohibitions on dis-

carding unwanted catches. The most recent revision to the EU

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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Common Fisheries Policy (EU regulation 1380/2013) institutes a

landing obligation requiring all catches of regulated commercial

species to be landed and counted against quota. This includes

catches of undersized individuals, which can be utilized to avoid

waste, but not for direct human consumption or at a profit which

could result in the establishment of markets.

Most fishermen use echosounders to detect fish schools and

make qualitative estimates of the amount of fish and species pre-

sent. Advanced “split beam” echosounders can give an indication

of fish size, and characteristics such as frequency-response and

school geometry can be used to differentiate between some spe-

cies (Korneliussen et al., 2009). However, systems to provide

quantitative real-time species identification and measurement

during fishing are largely in the demonstration phase (Pobitzer

et al., 2015; Berges et al., 2018). As a result of this uncertainty,

vessels relying on acoustics to target-specific species may catch

undersized individuals or other species.

This paper proposes a novel fish sizing method when capturing

fish using a trawl. The proposal is based on the use of the existing

Deep Vision system (Rosen and Holst, 2013), directly placed in

the trawl, to acquire stereo image pairs at a fixed frequency of five

or ten images per second. The images are saved in a solid-state

unit capable of storing �1 million image pairs, equivalent to 60 h

of data collection. In this paper, the images have been processed

offline, but we aim at processing them onboard the Deep Vision

system in the near future which will make real-time active sorting

possible. This will enable more sustainable fishing activities by re-

ducing catches of undersized individuals and unwanted species.

Material and methods
Data acquisition

Data were obtained on two testing cruises in the North Atlantic,

the first in the North Sea onboard the Norwegian R/V “Dr

Fridtjof Nansen” during March of 2017 (hereafter dataset 1), and

the second in the Norwegian Sea with the chartered fishing vessel

M/S “Vendla” during May of 2017 (hereafter dataset 2). Both ves-

sels used an 832-m circumference pelagic trawl designed for sur-

veys of small pelagic species in the Northeast Atlantic. Dataset 1

included images of saithe (Pollachius virens), blue whiting

(Micromesistius poutassou), redfish (Sebastes spp.), Atlantic mack-

erel (Scomber scombrus), velvet belly lanternshark (Etmopterus spi-

nax), and Norway pout (Trisopterus esmarkii), while dataset 2

included images of Atlantic mackerel, blue whiting, and Atlantic

herring (Clupea harengus).

Acquisition of stereo image pairs of fish in the trawl was done

using the Deep Vision system which is currently used to provide

fisheries survey operations with information about depth and po-

sition of fish entering the sampling trawl. Using Deep Vision, it is

also possible to conduct surveys which retain images rather than

the actual fish. This lessens the environmental impact of the sam-

pling and the workload of handling and measuring the catch. At

the same time it provides images and metadata that can be used

for length measurements and species classification. Combined

with acoustic measurements this information provides higher

confidence data used as input for stock assessment.

The Deep Vision system is divided into a subsea system and a

topside system. The subsea system has a stereo camera, strobe

lights, battery, and an enclosing studio frame designed for opti-

mal image quality and consistency. The studio frame is integrated

into the trawl to ensure smooth flow of catch through the system,

and protects the electronic components from the rigours of trawl

handling and operations (see Figure 1).

The topside system provides a graphical user interface for size

measurement and species classification, through a combination

of manual and more automated processes. The output from the

analysis software is combined with the data from the subsea sys-

tem into an annotated dataset that can be used to produce statis-

tical data.

During both surveys, the stereo image pairs were recorded at 5

fps, in JPG format, with an image resolution of 1392 � 1040 pix-

els. Lighting was provided by two synchronized strobes producing

�18 000 lumen each at a colour of 4100 K. Although the lights

were pointed to the ceiling and floor of the studio frame to pro-

vide diffused lighting, their angle varied slightly between cruises

resulting in slight differences in reflection and illuminance inside

the volume where objects pass through the Deep Vision canal

(Figure 4). In addition, the user was allowed to make changes to

camera exposure time, gain and gamma correction, introducing

an additional source of inconsistency in image appearance. The

impact of this uneven appearance on further image analysis

prompted a full mechanical redesign of the lights to a production

model with both higher total light output and fixed angle

(Figure 1).

All the acquired images are analysed using the processing pipe-

line illustrated in Figure 2. First, images are pre-processed to cor-

rect nonlinearities and non-uniform lighting effects. Next, we use

a Mask R-CNN architecture to localize and segment every indi-

vidual fish in the image. The obtained segmentation is then re-

fined in the next step using the local gradient to estimate the

boundary of every fish. Finally, the length of the fish is computed

exploiting stereo information. The different processing phases are

detailed below.

Image pre-processing

Image pre-processing aims at correcting non-uniform lighting to

produce images with a similar contrast between the fish and the

background regardless of the location of the fish in the image. To

carry out this correction, we should first linearize the image

(Prados et al., 2017).

Linearization is a desirable pre-processing step since cameras

provide RGB values that are non-proportional with the incoming

light energy. This is so because the human visual system has a

nonlinear response (Burton, 1973). If an image encodes light in a

[0,255] interval, a value of 128 is perceived as half the lightness by

the human eye, but in reality that point is reflecting (�) 25% of

the light. That is, the camera response functions for all the colour

channels are adapted to the human eye, and therefore they are

nonlinear, especially if images have been stored using the JPG for-

mat, as it is often the case to minimize disc space to store large

datasets. Therefore, since most processing algorithms assume that

the value of a pixel is proportional to the amount of light col-

lected by that specific pixel, linearizing the image would provide a

better-conditioned set of pixel values for further processing.

Moreover, using linearized images ensures providing the process-

ing algorithms with a more accurate representation of the mea-

sured spectra, and consequently its behaviour and outputs

become more consistent. In our case, images are linearized using

the camera linearization method described in Debevec and Malik

(1997). After this process, the RGB values become proportional

with the irradiance on the sensor pixels, and the image is ready to
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undergo further linear operations, such as the correction of the

non-uniform lightning. All subsequent operations are performed

in linear RGB values.

Although the Deep Vision system provides images with a good

overall illumination, the amount of light on the central area of

the images is higher than that at the corners of the image.

Therefore, once the images are linearized, we also correct the

images for non-uniform lighting. To do this, we first convert the

images from RGB to HSV (Hue, Saturation, Value), where V cor-

responds to the image luminance (Schwarz et al., 1987). The lu-

minance channel is the only component that will be used to

correct the illumination effect. The illumination correction is per-

formed by modelling the background, i.e. we compute the

median of a sufficiently large set of images of the scene (typically

300). The high power of the lighting system makes any external

lighting contribution negligible, and consequently the illumina-

tion can be assumed as constant during the whole trawl. Ideally

the images are selected at the beginning of the trawl haul before

fish begin entering the field of view, although the only require-

ment is that, for the volume of 300 images, every pixel coordinate

should not contain fish in slightly more than half the images

(>150). The median value for each image pixel will be later on

computed. If a given coordinate show no fish most of the time,

the appropriate background value will be kept for this pixel loca-

tion by the median measure. Once the median image has been

computed from the V component of the set of images, we obtain

a background luminance image that allows us to infer the illumi-

nation of the scene. The estimated background image is then

inverted and applied as a non-uniform illumination compensa-

tion pattern to correct the luminance (V) of every image of the

sequence. The RGB values of the final images are recovered from

the HSV representation, ensuring that the correlation between

the RGB channels is preserved, i.e. the original colours are kept.

It should be noted that working directly on the RGB colour

space using channel-wise processing, as is commonly done in sev-

eral image processing algorithms, may lead to a loss of the corre-

lation between the values of the RGB triplets, thus shifting the

original colours acquired by the camera.

Compensating the non-uniform illumination on all the images

has proved to better condition the data to perform the subse-

quent fish segmentation (Prados et al., 2014).

Figure 1. Deep Vision subsea system. The system is placed inside a
trawl net (a) and contains a stereovision camera set and indirect
lighting source. The arrows in the middle figure (b) define the
“studio” section, corresponding to the area where the catch flows,
and which can be seen in detail in the bottom schematic (c). Fish
cross through a trapezoidal plexiglass section which ensures they
maintain at least 20 cm distance from the cameras and lights and
are within the field of view of the cameras.

Figure 2. Automatic fish measurement pipeline. The process starts
with the pre-processing of the image, and then a CNN localizes
every individual fish. The CNN also provides a segmentation mask
for the fish. Next, these masks are refined using local contrast
information to delineate the boundary of every fish, and finally the
length of the specimen is measured based on stereo cues.
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Single fish detection

Our aim is to be able to segment individual fish in the images,

so that measuring the fish once it has been segmented becomes

a trivial task. Figure 3 illustrates the problem we want to solve.

Figure 3a shows a situation in which fish segmentation is quite

easy since the background of the Deep Vision system can be

modelled, and everything that is not background could be as-

sumed to be a fish. However, Figure 3b shows a more challeng-

ing situation in which the fish to be measured are overlapping,

making it difficult to determine their outline. In these situations

in which we are not able to formalize an algorithm to recognize

an object (e.g. a fish), using of machine learning methods

has shown to be the best alternative. Among machine learning,

deep convolutional neural networks (CNNs) have proved to be

capable of achieving the best results on challenging datasets us-

ing supervised learning (Krizhevsky et al., 2017). CNNs have

also demonstrated good accuracy in automatic classification of

species using simulated Deep Vision images (Allken et al.,

2019).

One of the state-of-the-art CNN-based deep learning object

detection approaches is Region-CNN (or R-CNN). R-CNN pro-

vides a solution to the fast detection of regions of interest (RoI)

within an image. Based on this approach, more complex architec-

tures have recently appeared such as Faster R-CNN (Girshick,

2015) for faster speed object detection, as well as Mask R-CNN

(He et al., 2017) for object segmentation. In this paper, we use a

Mask R-CNN architecture for fish detection and segmentation.

Mask R-CNN combines Faster R-CNN for object detection in

which the number of objects may vary from image to image, and

fully convolutional networks (FCNs) for segmentation to estab-

lish what pixels in the image belong to what object. This step of

detecting and delineating the boundaries of every individual ob-

ject in an image is called “semantic segmentation,” and allows us

to differentiate individual fish when two or more instances of a

fish overlap in the image, as illustrated in Figure 3b.

Faster R-CNN performs individual fish detection in two stages.

First, it determines the bounding boxes (i.e. RoIs) using the re-

gion proposal network (RPN) standard. The RPN is basically a

lightweight neural network that scans the image in a sliding-

window fashion to find regions that contain objects. Second, for

each RoI it determines the class label of the object through RoI

pooling. Therefore, Mask R-CNN incorporates these two stages,

but it performs RoI pooling in such a way that there is no loss in

stride quantization due to rounding when pooling is performed,

as opposed to the rounding performed by Faster R-CNN (Ren

et al., 2015). Moreover, the sliding window is handled by the con-

volutional nature of the RPN, which allows it to scan all regions

in parallel exploiting the GPU architecture.

FCNs are used to predict the mask for every RoI.

Convolutional layers retain spatial orientation and this informa-

tion is crucial for location-specific tasks such as creating a mask

for every individual fish (He et al., 2017). This is a clear advantage

with respect to fully connected layers, in which the spatial orien-

tation of pixels with respect to each other is lost as they are

squeezed together to form a feature vector (Long et al., 2015).

Our Mask R-CNN architecture was initially pre-trained for the

COCO dataset (Lin et al., 2014). Then, the last layer was modified

to classify between fish and background and we re-trained the last

layers using our fish training data for 20 iterations. This fine-

tuning strategy allows us to reduce the training time and the

needed amount of data compared to training from scratch. Next,

the full network was trained with our trawling data. In all cases,

during training we tried to reduce overfitting on image data by

artificially enlarging the dataset using data augmentation, which

included image translations, horizontal and vertical reflections,

rotations, and shear transformations.

Segmentation refinement

The mask computed by Mask R-CNN has been obtained using a

low-resolution image. Thus, the mask that segments the fish has a

lower accuracy than those that can be obtained from the full-

resolution original images. Therefore, a final stage of mask refine-

ment is applied to obtain a much finer spatial layout of the fish,

i.e. a more accurate segmentation.

The blobs estimated by Mask R-CNN are first scaled and trans-

ferred to the full-resolution image (1228 � 1027 pixels). Then,

the gradients of the V channel on the original image are com-

puted. This results in an image were the boundary of the objects

is clearly distinguishable. The gradient magnitudes are thresh-

olded to keep only the higher values, that is, the most prominent

boundaries. Finally, both the Mask R-CNN masks, resulting in

most cases in conservative segmentation, and the gradient-based

boundary refinement masks, are fused into a single one for each

image object. Empty inner areas are filled using binary morpho-

logical operators.

In case of overlapping fish, Mask R-CNN masks are used to

guess where the boundaries of every specimen should be placed,

given that the gradient-based refinement cannot distinguish

among different objects. To determine which pixel belongs to

each fish, Mask R-CNN masks are dilated using a customized

multi-label dilate operation, which stops growing in a given di-

rection when another neighbouring object is growing in the op-

posite direction and colliding with the first. The result of this

dilate operation is used to determine the contribution of the gra-

dients image to each fish mask.

Segmentation performance

To evaluate the performance of the masks obtained by our proc-

essing pipeline, a detection accuracy measure is required. A stan-

dard set of metrics [intersection over union (IoU) and pixel

accuracy] is used to quantify the segmentation results, since they

are the de facto evaluation metrics used in object detection. IoU,

also referred as Jaccard index, is an evaluation metric used to

measure the accuracy of object segmentation on a particular data-

set. IoU is often computed using the bounding box predicted by

the CNN detector and the ground-truth (i.e. hand labelled)

bounding box. In our case, since our detector generates a pixel re-

gion (mask) containing the pixels that correspond to a given fish,

and the ground-truth is also a hand-labelled pixel region, IoU is

computed using these two regions. The final score is obtained by

dividing the area of overlap of the predicted region and the

ground-truth region by the area of union of both the predicted

region and the ground-truth region:

IoU ¼
ground-truth \ prediction

ground-truth [ prediction
:

However, the measure of pixel accuracy corresponds to the

percentage of pixels in the image which were correctly classified.
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Usually it is presented for each class and the mean of all classes is

provided. In our case both values are the same as we only have

the “fish” class.

For this metric we need to introduce the notions of TP, TN, FP,

and FN. True positive (TP) represents a pixel that is correctly pre-

dicted to belong to the given class whereas a true negative (TN)

represents a pixel that is correctly identified as not belonging to the

given class. False positives (FP) and false negatives (FN) are defined

accordingly. The accuracy metric is then computed as

accuracy ¼
X TP þ TN

TP þ TN þ FP þ FN
:

Length estimation

Once the specimens have been properly segmented, the final stage

consists of finding a line that accurately describes the length of

the fish. For this purpose, we estimate the fish skeleton using

morphological operations applied to the labelled image, but it

should be noted that the actual length of the fish should be esti-

mated taking into account its 3D pose. The thinning morphologi-

cal operation involves eroding the segmented region until

skeleton level (Dougherty, 1992), i.e. shrinking the region corre-

sponding to the individual fish until the blob becomes 1 pixel

wide. This typically leads to a line centred along the main axis of

the fish. Before performing morphological skeletonization, the bi-

nary masks resulting from the segmentation of the previous sec-

tion are smoothed by applying a “closing” morphological

operation. In this way, a continuous and typically smooth line is

obtained, representing the main axis of the fish.

The next step is the estimation of a curve following the trajec-

tory described by the pixels of the skeleton. Once the points

defining the skeleton have been obtained, a cubic polynomial is

estimated using RANSAC (Fischler and Bolles, 1981). In this way,

the points of the skeleton are classified in inliers and outliers, and

after a number of iterations, a consensus solution is computed by

least squares fit of the largest set of inliers, obtaining the final esti-

mation of the curve.

Once the curve equation is derived, the starting and ending

points defining the length of the fish are determined as the inter-

section between the estimated curve and the boundaries of the

smoothed fish blob. Since the stereo system has been calibrated

and the images rectified (Hartley and Zisserman, 2003), these

points can then be easily transferred from the right to the left im-

age of the stereo pair by applying the axis constraints determined

by the stereo rectification. Then, once front and back points have

been established in both images of the stereo pair, a set of uni-

formly distributed points along the curve are selected in the right

image. These points are transferred to the left image following the

same uniform distribution, using the image rectification to deter-

mine its Y location. Finally, the set of measurement point pairs

from the right and left images is used to compute the distances of

the segments connecting them using epipolar geometry, thanks to

the calibration of the stereo system.

Results
A total of 1805 manually annotated images (corresponding to the

left camera of the stereo pairs) have been used to validate the

pipeline proposed in this paper, with a total of 2629 fish annota-

tions. These images have been acquired in two different cruises.

Dataset 1, including 1605 annotated images, was acquired by R/V

Dr Fridtjof Nansen on March 2017. This dataset represents a

small subset of all the images acquired during the survey, and

includes frames from three different hauls (138 055 stereo pairs).

Figure 3. Fish segmentation. In simple cases such as (a), fish can be segmented into individual specimens simply by background subtraction
(b). However, we need a cognitive understanding of the image to be able to segment the three fish instances in (c) shown in (d).
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Dataset 2 was acquired by F/V Vendla on May 2017 and it

includes 200 annotated images, all of them from the same haul

(28 117 stereo pairs). Both surveys consist of thousands of images,

but only small samples containing fish suitable for an appropriate

labelling (a large percentage of images contain no fish at all) can

be used. The annotation effort is significant, taking into account

that the labelling procedure implies a precise manual segmenta-

tion of each specimen, not a simpler approximate bounding box

specification.

Figure 4 illustrates the appearance of the images of both data-

sets, as well as the result of correcting non-uniform illumination.

It should be noted that the appearance of the images in both

datasets is different due to the change of lighting arrangement

and camera parameters (with a gain factor of 1.2 in case of dataset

1 and gain factor of 2 in case of dataset 2). In dataset 2, the central

part of the image is considerably brighter than in dataset 1, and

as a consequence, the margins of the image are darker than in the

first dataset. After applying the strategy to compensate the non-

uniform lighting, using a specific per-haul pattern to maximize

precision, the images of both datasets become better suited for

posterior processing. The frames attain a more even appearance,

with uniform light distribution, making the contained data better

conditioned for the subsequent steps.

Two different sets of experiments have been conducted. In the

first experiment, we aimed at evaluating the capability of the ar-

chitecture to generalize the problem of fish detection by training

using the 1605 images of dataset 1, and then testing on the 200

annotated images of dataset 2, in which lighting conditions and

camera settings have changed.

It should be noted that the two datasets also present different

characteristics in terms of the type of fish present. Saithe domi-

nated in the first cruise, which also included blue whiting, redfish,

Atlantic mackerel, velvet belly lanternshark, and Norway pout.

The second cruise included images of Atlantic mackerel, blue

whiting, and Atlantic herring. In addition to these fish, the second

dataset also included northern krill, Meganyctiphanes norvegica,

in most images. Moreover, the average number of fish per image

is also much larger in the second dataset.

The Mask R-CNN was trained with the images of dataset 1, ac-

quired by the R/V “Dr Fridtjof Nansen,” but applying the data

augmentation techniques described above. The original dataset

was split into 80% for training and 20% for validating.

After finishing this training we applied the obtained weights

on 200 annotated images from the second dataset acquired by F/

V “Vendla.” This dataset is completely independent from the

images used for training and validation. Test images were previ-

ously segmented by hand, creating a ground-truth to compare all

methods. Fifty of these images contain overlapping fish while the

other 150 contain one or more fish, but with no overlap. Table 1

illustrates the results obtained in this first trial.

Analysing the values of Table 1, the reader would think that

the CNN is doing a good job. We differentiate between “single

fish,” which is the detection of fish when the masks correspond-

ing to the fish are not connected to each other (see Figure 3a),

and “overlapping fish,” which corresponds to the cases in which

these masks overlap (see Figure 3b, central fish). In Table 1, IoU

is ranging between 0.84 for “single fish” detection, and 0.82 for

“overlapping fish.” And the accuracy is even higher with values of

>0.98 in both cases. Therefore, at first glance, the Mask R-CNN

architecture seems to have done a good job to generalize the

problem of fish detection.

It should be noted, however, that in our case we want to seg-

ment every isolated fish to enable its later sizing. In the case of

overlapping fish (see Figure 3b), applying IoU out of the box

would only take into account if a pixel that was predicted as class

“fish” belongs to a fish in the ground-truth. However, this is not

what we need in our application. Consider the example of

Figure 5. The ideal ground-truth masks are shown in Figure 5a,

with the red fish labelled as 1 and the blue fish with label 2.

Figure 5c shows a fish segmentation in which the two overlapping

fish are detected as a single fish. This would be considered as a

very good segmentation in the standard IoU metric frequently

used in the literature, e.g. (He et al., 2017), but in our case we

consider this a bad result since it is missing the detection of fish

2, and over-segmenting fish 1. Therefore, we introduce a new

metric, namely IoU*, to measure IoU on a slightly different way

that better serves our purposes. This measurement of IoU* will

work as follows. An IoU* measurement will be computed for ev-

ery fish in the ground-truth. The IoU* corresponding to the red

fish as the area of intersection between the red region in Figure 5a

and the red area in Figure 5c, and that value will be divided by

the union of the same two regions. In this way, the detection of

fish 1 will have a low IoU, as we will divide by a large area of

union. Equally, for fish 2 we will divide the area of intersection by

the total area of union of Figure 5b plus the blue area of

Figure 5a, also producing a low IoU* value since it will have also

a large number in the denominator. Using this metric, large val-

ues of IoU* guarantee that only one fish has been detected, while

low values indicate that two or more overlapping fish in the

ground-truth have been predicted as a single fish in the detection

phase. Experimentally, this threshold has been set as 0.7.

The results of this new metric are given in Table 2. Again, we

distinguish between the previous two cases depending on

whether fish are overlapping to have a better insight of the per-

formance of the system under this critical situation. In the first

two columns the table details the number of images of the sec-

ond dataset, and the total number of fish manually annotated in

those images. The third column states how many of these fish

are detected with an IoU* with a value of >0.7, which intuitively

means that the detection is good, i.e. two fish in the ground-

truth are detected as two fish in the trial, and not as a single,

larger fish. For the case of single fish (non-overlapping) we ob-

serve that 334 fish are correctly detected out of the 368 fish in

the ground-truth. This is really a good performance if we take

into account that several of the fish manually annotated in the

datasets correspond to partially visible fish that are entering or

leaving the field of view of the camera. However, for the images

in which fish are overlapping, only 154 out of 272 fish are

detected with an IoU* >0.7. And 94 fish are detected with IoU*

<0.7, i.e. one fish is detected when >1 fish appeared in the

ground-truth. It can be observed that, as opposed to what it

seemed in Table 1 using the standard IoU metric, the perfor-

mance of Mask R-CNN in this first trial is not so great, espe-

cially in the case of overlapping fish. The next two columns

present the number of false negatives, i.e. fish not detected at

all, and false positive. In this dataset the false positives normally

correspond to the prediction of fish in areas of the image that

correspond to northern krill, present in all the images of se-

quence 2. Finally, the last column corresponds to the average

IoU* measurement, giving a value of 0.76 for the single fish

case, and 0.58 in the case of overlapping fish. It should be noted

that this average is computed from all the IoU* values of all the
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images in the corresponding dataset. We average all IoU* values

for every fish in the ground-truth, but we also accumulate and

account for 0 if FN or FP occur in the test images. Therefore,

our average IoU* metric strongly penalizes false detections.

The last two rows of Table 2 detail the results of taking the fish

detection masks obtained in this first trial by Mask R-CNN and

applying the gradient mask refinement to them. We notice that

gradient refinement is not able to improve fish detection, al-

though it raises IoU* to 0.80 and 0.61, respectively. This basically

means that the segmentation mask is more accurate after gradient

refinement.

Table 3 reports the results of the second experiment. In this

case, both datasets were used to create the train, validation, and

test sets. Out of the total number of images (1805), roughly a

10% is used to evaluate the final model fit on the training dataset

(test set), and the remaining 90% of the images were further di-

vided into 80% for training and 20% for validation to tune the

hyperparameters of the Mask R-CNN. Again, to better under-

stand the performance of the network, we divided the test set

images between (a) single fish and (b) overlapping fish situations.

For the single fish scenario, as expected, we see that the perfor-

mance of the detection is better than in the first experiment, since

the training data includes images of datasets 1 and 2. More than

96% of the fish are correctly detected when there is no overlap-

ping fish, i.e. 225 correct detections from 233 annotated fish. This

percentage goes down to roughly 79% when fish are occluded by

other fish. These results with overlapping fish drastically improve

the results of experiment 1, with 57% of correct detections of

overlapping fish. It can also be observed that the number of FN

and FP has also been drastically reduced with respect to the previ-

ous trial. Finally, the last column of Table 3 includes IoU* average

values of 0.89 and 0.79 for non-overlapping and overlapping fish,

respectively. These values are slightly improved by the gradient

refinement technique, on 0.01 in every case. This is a sign that the

masks generated by Mask R-CNN in the second experiment are

more accurate than the ones predicted in the first trial, but can

still be improved through gradient refinement. Some sample

results of the second experiment can be shown in Figures 6 and 7.

Figure 7 shows intermediate qualitative results of the proposed

pipeline. It can be observed how the individual fish segmentation

algorithm provides a much better fish delineation with respect to

the labelled image provided by Mask R-CNN.

Discussion and conclusions
Fish length estimation and catch composition are among the

most crucial information collected in fisheries research. The Deep

Vision system allows fishing vessels to collect stereo imagery, and

proper processing of these data enables gaining critical informa-

tion about average fish size and catch composition during the

trawling operation.

Figure 4. Correction of non-uniform illumination in dataset 1 (top) and dataset 2 (bottom). (a) Image from the Dr Fridtjof Nansen March
2017 dataset. (b) Image after non-uniform illumination compensation. (c) Image corresponding to the Vendla May 2017 dataset. Note the
different appearance of the image with respect to (a). The centre of the image is brighter, while the boundary areas are still significantly dark.
(d) Image after non-uniform illumination compensation.

Table 1. Results obtained by Mask R-CNN.

IoU Accuracy

Single fish 0.845 0.994

Overlapping fish 0.824 0.984

The network was trained using dataset 1, and the test has been quantified us-

ing the images of dataset 2. The results suggest a very good generalization ca-

pability of the network for detecting fish.
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Several works in the literature have tried to segment fish in un-

derwater video sequences. Some achieve fish detection based on

matrix decomposition (Qin et al., 2014) or exploiting texture and

shape features that characterize fish with respect to the back-

ground (Spampinato et al., 2010). Other works rely on salient fea-

tures (Fernandes et al., 2016), carefully selected double thresholds

(Chuang et al., 2016), or the guided filter (Sanchez-Torres et al.,

2018). In many cases, the approach involves a static camera that

allows modelling the background to then isolate the fish to carry

out monocular detection or stereo measurements (Costa et al.,

2006; Pérez et al., 2018), while other works train-specific Deep

Learning architectures for fish classification (Qin et al., 2016).

However, in all cases the detected fish where not overlapping

with other fish in the field of view of the camera. Proper delinea-

tion of individual fish in overlapping situations still remains a

challenge.

Stereo imaging is often employed to obtain depth information,

and depth cues can be used to segment RoI in some well-

conditioned situations. However, traditional stereo matching

techniques such as Semi Global Matching (Hirschmuller, 2005) or

Block Matching (Konolige, 1998) fail to reliably detecting the fish

boundaries in cluttered situations, as depicted in Figure 8. Depth

cues from stereo alone can potentially be used to separate fish

standing at clearly different distances, such as in the case of

Figure 8a and b. On the contrary, we find in our datasets many

cases in which multiple fish stand at approximately the same dis-

tance while overlapping, or are imaged while being significantly

rotated from the ideal fronto-parallel configuration (such as in

Figure 8e and f), In these situations, stereo matching fails to pro-

vide enough information to successfully and robustly separate the

fish (Figure 8g and h). Figure 9 illustrates the result of our ap-

proach for this particular complicated case. While the result is

not perfect in Figure 9b, it can nonetheless be considered as a suc-

cessful detection and separation.

The processing pipeline proposed in this paper is able to pro-

vide accurate segmentations of individual fish in images acquired

during standard fisheries surveys using the Deep Vision commer-

cially available system. The pipeline involves three main phases:

pre-processing, CNN-based segmentation, and gradient refining.

Each phase contributes decisively to the performance of the over-

all system.

Pre-processing aims at exploiting the fact the imaging acqui-

sition setup is well defined and constrained in terms of

optical sensors, illumination characteristics, and background.

By performing adequate modelling of the camera response

and background illumination field, the variability of the visual

appearance is reduced across different datasets and surveys.

This, in turn, promotes the performance of the CNN, and, to

(a) (b)

(c) (d)

Figure 5. Fish masks. (a) Ground-truth hand annotation. (b) Example of masks detected by the CNN. The dashed lines show the
corresponding ground-truth. The coloured area outside the dashed region corresponds to a false positive area, the white area inside the
dashed region defines a false negative. (c) Example of an incorrect segmentation in which the CNN detects as a single instance the two fish of
(a). (d) False detection of a non-existent fish, giving rise to another false positive.

Table 2. Experiment 1: results obtained by Mask R-CNN after training with dataset 1 (D#1) and testing with dataset 2 (D#2).

No. of images

Total no. of

annotated fish

No. of detected fish

with IoU* >0.7

No. of detected fish

with IoU* <0.7 FN FP IoU*

Mask R-CNN train and valid.

on D#1 þ test on D#2

Single fish 150 368 334 15 19 25 0.76

Overlapping fish 50 272 154 94 24 16 0.58

Gradient refinement Single fish 150 368 333 16 19 24 0.80

Overlapping fish 50 272 156 95 21 15 0.61

Performance taking into account the new metric IoU* that penalizes detection of a single fish when two or more fish instances are labelled in the ground-truth.
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a lesser extent, also benefits the gradient refinement step at the

end.

The Mask R-CNN architecture was selected for the CNN-based

segmentation. A central reason behind this choice was its superior

performance reported by He et al. (2017), when compared to

closely related instance-aware alternatives such as Multi-task

Network Cascades (Dai et al., 2016) and Fully Convolutional

Semantic Segmentation (Li et al., 2017).

Finally, the gradient refining phase improves the delineation

of the fish by using local contour cues. The impact of this step

is clearly visible on Tables 2 and 3 regarding the IoU* mea-

surement, where there was a noticeable improvement. The

improved delineation is also of clear benefit for fish sizing

accuracy.

In this study, we have also proved that standard IoU values are

not adequate to quantify the performance of segmentation of in-

dividual fish in the overlapping situations in which specimens are

occluded by other fish. A modification of the previous metric has

been proposed (IoU*) as a statistic that can effectively be used for

gauging the similarity of the detected masks with respect to the

hand-labelled ground-truth masks.

The approach in this paper has been developed with the op-

erational goal of achieving real-time execution on dedicated

hardware inside the Deep Vision imaging system. The testing

Figure 6. Fish detection and semantic segmentation performed by Mask R-CNN. (a) and (c) correspond to the original images. (b) and (d)
illustrate the outcome of the algorithm. Note how Mask R-CNN is also able to detect overlapping fish, as shown in (d).
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reported in this paper was conducted offline on a high-end

desktop computer with a NVIDIA TITAN V GPU. The seg-

mentation was run on the GPU at a frame rate was 2.67 images

per second. The refinement in the current state is not opti-

mized for speed.

A number of extensions to this work is planned in the near

future. The validation of the size measurements is currently

being pursuit with the intent of using fish specimens or accu-

rate fish shape reproductions of known dimensions. The test-

ing is to be conducted in water, to take into account the

Figure 7. Automatic fish detection and length estimation. (a) Original image. (b) Fish detection and semantic segmentation through the
Mask R-CNN processing. Note that the system is able to correctly detect the central fish, although it fails to detect the two tails on the left as
two separate fish. (c) Labelled image as provided by Mask R-CNN. (d) Fish boundary gradient refinement mask. Note that, in this case, the
segmentation is not able to distinguish among touching fish. (e) Multi-label dilate morphological operation of the Mask R-CNN
segmentation. (f) Fish mask resulting of the combination of both gradient refinement and multi-label dilate. (g) Final segmented fish. (h)
Skeleton pixels (in green) of the segmented fish and measurement points (in red) of the estimated fish-shape curve used to perform an
automatic size measurement.

Table 3. Experiment 2: results obtained by Mask R-CNN after training with randomly selected 90% images from dataset 1 (D#1) and dataset

2 (D#2), the other 10% is reserved for testing.

No. of

images

Total no. of

annotated fish

No. of detected fish

with IoU* >0.7

No. of detected fish

with IoU* <0.7 FN FP IoU*

Mask R-CNN train and valid. on 90%

(D#1 þ D#2), test in 10% (D#1 þ D#2)

Single fish 170 233 225 7 1 10 0.89

Overlapping fish 26 104 82 16 6 5 0.79

Gradient refinement Single fish 170 233 224 8 1 10 0.90

Overlapping fish 26 104 84 14 6 4 0.80

Performance taking into account the new metric IoU* that penalizes detection of a single fish when two or more fish instances are labelled in the ground-truth.
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refraction effects of the flat-port camera housing and how it

affects the stereo geometry.

A second extension is directed towards achieving an execution

frame rate in the order of 10 fps, on the target embedded process-

ing hardware. This hardware is based on NVIDIA Jetson AGX

Xavier modules and will be deployed with Deep Vision imaging

system. The intended frame rate will allow performing tracking of

fish across time, given that multiple instances of the same fish are

likely to occur when images are acquired at 10 fps or higher, for

nominal trawling speeds. This will enable the ability of estimating

in real time the amount of fish in the trawl as well as the average

size. Finally, as more data becomes annotated, future develop-

ment will extend this work to use Mask R-CNN for automatic

fish species identification.
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(right) Block Matching (Konolige, 1998).

1364 R. Garcia et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3

Deleted Text: the 
Deleted Text: Acknowledgements


collection onboard R/V “Dr Fridtjof Nansen” was supported by

the Institute of Marine Research under the CRISP centre for re-

search innovation (Research Council of Norway project 203477)

and vessel time onboard M/S “Vendla” was provided by the

REDUS project with funding from the Norwegian Ministry of

Trade, Industry, and Fisheries. The authors would like to thank

Roger Portas for his assistance with this project.

References
Allken, V., Olav, N., Rosen, S., Schreyeck, T., Mahiout, T., and

Malde, K. 2019. Fish species identification using a convolutional
neural network trained on synthetic data. ICES Journal of Marine
Science, 76: 342–349.

Berges, B., Sakinan, S., and van Helmond, E. 2018. Practical
Implementation of Real-time Fish Classification from Acoustic
Broadband Echo Sounder Data—RealFishEcho Progress Report.
Wageningen Marine Research (University & Research Centre),
Wageningen. Wageningen Marine Research Report, C062/18. 42
pp.

Burton, G. J. 1973. Evidence for non-linear response processes in the
human visual system from measurements on the thresholds of
spatial beat frequencies. Vision Research, 13: 1211–1225.

Chuang, M., Hwang, J., and Williams, K. 2016. Automatic fish seg-
mentation and recognition for trawl-based cameras. In Computer
Vision and Pattern Recognition in Environmental Informatics,
pp. 79–106. Ed. by J. Zhou, X. Bai, and T. Caelli. IGI Global,
Hershey, PA.

Costa, C., Loy, A., Cataudella, S., Davis, D., and Scardi, M. 2006.
Extracting fish size using dual underwater cameras. Agricultural
Engineering, 35: 218–227.

Dai, J., He, K., and Sun, J. 2016. Instance-aware semantic segmenta-
tion via multi-task network cascades. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
3150–3158. DOI: 10.1109/CVPR.2016.343.

Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range ra-
diance maps from photographs. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques
(SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, pp. 369–378.

Dougherty, E. 1992. An Introduction to Morphological Image
Processing. SPIE Optical Engineering Press. ISBN0-8194-0845-X.

FAO. 2018. The State of World Fisheries and Aquaculture. Meeting
the Sustainable Development Goals, Rome, Italy. http://www.fao.
org/3/i9540en/I9540EN.pdf.

Fernandes, P. G., Copland, G., Garcia, R., Nicosevici, T., and
Scoulding, B. 2016. Additional evidence for fisheries acoustics:
small cameras and angling gear provide tilt angle distributions

and other relevant data for mackerel surveys. ICES Journal of
Marine Science, 73: 8.

Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 24:
381–395.

Girshick, R. 2015. Fast R-CNN. In IEEE International Conference on
Computer Vision (ICCV), Santiago, 2015, pp. 1440–1448. DOI:
10.1109/ICCV.2015.169.

Hartley, R., and Zisserman, A. 2003. Multiple View Geometry in
Computer Vision. 2nd edn, Cambridge University Press, New
York, NY.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. 2017. Mask R-CNN.
In IEEE International Conference on Computer Vision (ICCV),
Venice, pp. 2980–2988. DOI: 10.1109/ICCV.2017.322.

Hirschmuller, H. 2005. Accurate and efficient stereo processing by
semi-global matching and mutual information. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 807–814. IEEE, San Diego, CA.

Konolige, K. 1998. Small vision systems: hardware and implementa-
tion. In Proceedings of the 8th International Symposium in
Robotic Research, Springer, London, pp. 203–212.

Korneliussen, R. J., Heggelund, Y., Eliassen, I. K., and Johansen, G.
O. 2009. Acoustic species identification of schooling fish. ICES
Journal of Marine Science, 66: 1111–1118.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2017. ImageNet classi-
fication with deep convolutional neural networks.
Communications of the ACM, 60: 84–90.

Li, Y., Qi, H., Dai, J., Ji, X., and Wei, Y. 2017. Fully convolutional
instance-aware semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
2359–2367.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P. et al. 2014. Microsoft COCO: common objects in
context. In European Conference on Computer Vision
(ECCV), Springer International Publishing, pp. 740–755. DOI:
10.1007/978-3-319-10602-1.

Long, J., Shelhamer, E., and Darrell, T. 2015. Fully convolutional net-
works for semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA,
2015, pp. 3431–3440. DOI: 10.1109/CVPR.2015.7298965.
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The statistics of harvested fish are key indicators for marine resource management and sustainability. Electronic monitoring systems (EMSs)

are used to record the fishing practices of vessels in recent years. The statistics of the harvested fish in the EMS videos are manually read and

recorded later by operators in data centres. However, this manual recording is time consuming and labour intensive. This study proposed an

automatic approach for prescreening harvested fish in the EMS videos using convolutional neural networks (CNNs). In this study, harvested

fish in the frames of the EMS videos were detected and segmented from the background at the pixel level using mask regional-based CNN

(mask R-CNN). The number of the fish was determined using time thresholding and distance thresholding methods. Subsequently, the types

and body lengths of the fish were determined using the confidence scores and the masks predicted by the mask R-CNN model, respectively.

The trained mask R-CNN model attained a recall of 97.58% and a mean average precision of 93.51% in terms of fish detection. The proposed

method for fish counting attained a recall of 93.84% and a precision of 77.31%. An overall accuracy of 98.06% was obtained for fish type

identification.

Keywords: convolutional neural networks, fish body length, fish type identification, instance segmentation, resource management

Introduction
Fish is a primary source of food. In 2016, >90 million tonnes of

fish were harvested globally and the economic value of the fishery

industry reached US$130 billion (FAO, 2018). Fishery manage-

ment plays a crucial role in sustaining marine resources. Regional

fisheries management organizations require fishing vessels to re-

port the statistics of harvested fish (FAO, 2017). Conventionally,

the reported statistics are recorded manually by observers or fisher-

men on vessels. Manual recording is time consuming and increases

the workload of fishermen. Thus, some countries have imple-

mented electronic monitoring systems (EMSs; Ames et al., 2007;

Kindt-Larsen et al., 2011; Needle et al., 2015; Bartholomew et al.,

2018) on vessels in recent years to record the fishing process. Then,

the information pertaining to the harvested fish [e.g. fish count,

type, and body length (BL)] in the EMS images or videos are man-

ually screened and analysed in offshore data centres. However,

manual screening of the EMS images and videos is time consuming

and labour intensive (Needle et al., 2015; Van Helmond et al.,

VC International Council for the Exploration of the Sea 2020. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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2017). Moreover, misreporting could occur due to human fatigue.

To reduce the workload of interpreters, an automated approach is

required for prescreening the EMS images and videos and for en-

abling the recording of the harvested fish statistics.

The prescreening tasks of EMS images and videos are as fol-

lows: (i) detecting harvested fish in the videos, (ii) counting the

number of fish, (iii) identifying the types of the fish, and (iv) esti-

mating the lengths of the fish. Studies have been conducted to au-

tomatically fulfil the aforementioned tasks using conventional

image processing and machine learning techniques. White et al.

(2006) detected fish and determined the lengths and species of

the fish using a conveyor belt-based machine vision system.

Larsen et al. (2009) identified three types of fish in images ac-

quired under controlled illumination using manually annotated

shape and texture features and linear discriminant analysis.

Shafry et al. (2012) evaluated the BLs of fish in images acquired

with a white background using image processing techniques.

Morais et al. (2005) tracked and counted fish in underwater

images acquired in a laboratory using machine vision techniques.

Spampinato et al. (2008) detected, tracked, and counted fish in

coral reef videos collected with a high-contrast background using

moving average and feature-matching algorithms. Toh et al.

(2009) detected and counted feeder fish in static containers using

image processing techniques. Although all the aforementioned

approaches achieved excellent performance, they required the

images of fish to be acquired under specific conditions. However,

EMS images or videos acquired from vessels are complex

(Figure 1). Fishing is conducted during the day, the night, sunny

Figure 1. Video images acquired using an EMS on a longliner under: (a) sunny day, (b) rainy day, (c) dark night, and (d) rainy night.

Figure 2. Flowchart of collection of the statistics of harvested fish from an EMS video: (a) EMS video frames; (b) mask R-CNN model; (c) fish
candidates in the frames; (d) time and distance thresholding; and (e) fish counting, type identification, and BL estimation.
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days, and rainy days, and the illumination conditions are uncon-

trollable. The acquired images and videos can be blurred by the

presence of water drops on the lens of the camera. Moreover, the

decks of fishing vessels are usually filled with miscellaneous items.

Thus, the image processing and machine learning-based

approaches may be suboptimal for detecting fish in EMS images

or videos.

Recently, convolutional neural networks (CNNs) have been

applied for solving complex machine vision problems (LeCun

et al., 1998; Krizhevsky et al., 2012). CNNs are derivatives of mul-

tilayer perceptrons that utilize spatial convolutional operations in

networks. Once trained, CNNs can extract features from input

images with almost no preprocessing requirements and can

achieve remarkable performance in machine vision tasks (e.g.

classification and localization). Studies have employed CNN

approaches for solving fish detection and recognition problems.

French et al. (2015) detected and counted discarded harvested

fish in fishing trawler videos using CNNs and the nearest neigh-

bour algorithm. Li et al. (2016) detected fish and identified fish

species in underwater videos using faster regional-based CNN (R-

CNN; Ren et al., 2015). Qin et al. (2016) recognized fish in un-

derwater videos through CNNs, matrix decomposition, and sup-

port vector machine. Zhuang et al. (2017) completed three fish

recognition tasks in coral reef videos using CNNs of single shot

multibox detector architecture (Liu et al., 2016). Lu et al. (2019)

identified eight common species and types of harvested tuna and

billfish using CNNs of VGG architecture (Simonyan and

Zisserman, 2014). Sung et al. (2017) located fish in unconstrained

underwater videos using CNNs of you-only-look-once architec-

ture (Redmon et al., 2016). Jäger et al. (2017) tracked the move-

ments of multiple fish in streams in underwater videos using a

two-stage graph-based approach and CNN models. Zheng et al.

(2018) detected fish and recognized the species of the fish in

images acquired from vessels using the local region-based model-

ling approach and deep CNNs. Tseng et al. (2020) measured fish

BL using CNN in images acquired on vessels. Another work

detected fish in images and estimated the lengths of the fish using

three R-CNNs (Monkman et al., 2019).

The first essential step in identifying the types of fish and esti-

mating the lengths of the fish involves localization and segmenta-

tion of fish in images. Mask R-CNN (He et al., 2017), which

combines the localization function of a faster R-CNN and the

pixel-wise segmentation function from a fully convolutional net-

work (Long et al., 2015), satisfies this requirement. Several exam-

ples of this technique are being used in marine sciences. Ditria

et al. (2019) employed the mask R-CNN framework for detecting

luderick (Girella tricuspidata) in underwater images for fish abun-

dance quantification. Francisco et al. (2019) detected animals in

three-dimensional underwater images and estimated the BLs of

the animals at the pixel level by using mask R-CNN. One of the

studies that applied mask R-CNN to fishery was conducted by

French et al. (2019). They counted and identified the species of

discarded harvested fish in closed-circuit television videos ac-

quired from fishing trawlers using mask R-CNN. Garcia et al.

(2019) utilized mask R-CNN to localize and segment fish in

images captured during commercial trawling for fish size mea-

surement. Another study estimated the lengths of boxed fish at

port using mask R-CNN and unsupervised learning approach

(Álvarez-Ellacurı́a et al., 2019).

This study proposed a novel procedure to prescreen fishing

videos and to collect statistics of the harvested fish in the videos.

The statistics included fish count, type, and BL in pixels. The pro-

posed approach used an existing EMS to acquire fishing videos.

Operators only have to verify the fish detected by the proposed

procedure, instead of watching the entire videos. Thus, hundreds

of labour hours could be saved. In the proposed procedure, EMS

videos acquired from longliners were converted to images using a

rate of one frame per second (fps). A mask R-CNN model was

developed and used to automatically detect and segment the fish

from the background at the pixel level (Figure 2b). Subsequently,

the fish were counted using time thresholding and distance

thresholding to remove false-positive detections and avoid double

counting the detected fish in sequential frames (Figure 2d). The

types (i.e. tuna, marlin, shark, or others) and BLs of the fish were

also determined using the information obtained from the mask

R-CNN model.

Material and methods
Image collection and training data preprocessing

Seven hundred videos pertaining to fish harvesting were provided

by the Fisheries Agency, Council of Agriculture, Taiwan. The vid-

eos were acquired on the deck of a longliner using SeaTube

(Satlink, Madrid, Spain) in 2018. Each video had a length of

10min. The frame rate and resolution of the videos were 30 fps

and 1280� 720 pixels, respectively. The videos were acquired un-

der uncontrolled weather conditions (e.g. sunny days, rainy days,

and dark nights; Figure 1 and Table 1). A total of 500 videos were

used for training and validating the mask R-CNN model for fish

detection and segmentation. The remaining 200 videos were used

Table 1. Statistics of the weather conditions of the fish harvesting videos.

Sunny day Dark night Rainy day Rainy night Total

Training and validation 80 240 45 135 500

Test 18 83 25 74 200

Total 98 323 70 209 700

Table 2. Number of the training and validation images and labelled

objects.

Training Validation

Image Object Image Object

Tuna 1 600 1 769 400 440

Marlin 400 428 100 104

Shark 400 409 100 107

Others 400 478 100 104

Buoy 400 441 100 106

Total 3 200 3 525 800 861

Detecting and counting harvested fish 1369
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for assessing the proposed fish counting method (e.g. mask R-

CNN, time thresholding, and distance thresholding). These vid-

eos were referred to as test videos.

A total of 4000 images were generated from the 500 training

videos. Each image contained at least one harvested fish or buoy

(Table 2). Approximately 80 and 20% of the images were used for

Figure 4. Fish detection and counting in the videos: (a) consecutive input frames, (b) frames of fish candidates, (c) false-positive removal, (d)
geometric centre of the true-positive fish candidates, and (e) counting the number of fish in the video.

Figure 3. Architecture of the mask R-CNN. The outputs of the mask R-CNN include the class (tuna, marlin, shark, other fish, or buoy),
bounding box, and mask (red filled area of the fish body) of the object.
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training and validating the mask R-CNN model, respectively.

These images were referred to as training and validation images.

The images were resized to 1024� 576 pixels to reduce the proc-

essing time. The four classes of fish (i.e. tuna, marlin, shark, and

other fish) and buoys in the training and test images were labelled

manually using the LabelMe toolkit (Russell et al., 2008).

Mask R-CNN and training methodology

Mask R-CNN (Figure 3) was used to detect and locate objects

(e.g. fish or buoys) in the images. The mask R-CNN model com-

prised a feature extractor (FE), region proposal network (RPN;

Ren et al., 2015), bounding box recognition (BBR), and mask

network (MN). The FE generated feature maps from an input im-

age. The RPN then suggested the regions of interest (ROI; i.e.

regions that contain fish or buoys) in the feature maps. Next, the

ROI and corresponding feature maps were input into the BBR to

determine the classes (e.g. tuna, marlin, shark, other fish, or

buoys) and the precise bounding boxes of the objects. The ROI

and corresponding feature maps were also input into the MN to

generate binary masks for the objects. The binary masks were

pixel-wise foreground layers of the objects located in the ROI

(Figure 3).

In this study, a combination of ResNet101 (He et al., 2016)

and a feature pyramid network (Lin et al., 2017) was used as the

FE (see Supplementary Material for more details of the FE). The

settings of the RPN are described as follows. The RPN proposed

ROIs of four scales (32� 32, 64� 64, 128� 128, and 256� 256

pixels) and three aspect ratios (1:2, 1:1, and 2:1). The ROIs were

positive or negative. An ROI was defined as positive if the ROI

and any ground-truth object (i.e. fish or buoy) had an intersec-

tion over union (IoU) value >0.7. An ROI was defined as nega-

tive if the ROI and all the ground-truth objects had IoU values

<0.3. Nonmaximum suppression (NMS; Neubeck and Van Gool,

2006) was applied to reduce the ROI proposals of the same

object. The threshold of NMS was set to 0.7 (see Supplementary

Material for more details of the BBR and MN).

The training of the mask R-CNN model was conducted as fol-

lows. The model was first initialized with the parameters pre-

trained using the COCO dataset (Lin et al., 2014). The BBR and

MN were trained for 1000 epochs using a minibatch of eight

training images. During the training, the parameters of the FE

and RPN were fixed. Subsequently, FE, RPN, BBR, and MN were

fine-tuned for another 1000 epochs using a minibatch of four

training images. At each epoch, image augmentation was applied

to the images for enhancing the model performance. The aug-

mentation operations included rotation (randomly rotated be-

tween �15� and 15�), horizontal and vertical shifting (randomly

shifted one-tenth of the width or height), brightness variation

(randomly multiplied between 0.8 and 1.2), blurring (using a

Gaussian kernel with a sigma of 3), and scaling (randomly scaled

between 0.8 and 1.2). Zero, one, or two operations were ran-

domly applied to each training image. The RPN was set to pro-

vide 200 ROIs. The ratio of positive to negative ROIs obtained

from the training images was set to 1:3. Stochastic gradient de-

scent (Bottou, 2010) was used as the optimizer. The initial learn-

ing rate, momentum, and weight decay were set to 0.001, 0.9, and

0.0001, respectively. The model was trained using an open-source

Python environment (Van Rossum and Drake, 1995) and

Tensorflow (Abadi et al., 2016) and Keras (Chollet, 2015). Two

graphic processing units (GPU; GeForce GTX 1080Ti, Nvidia,

Santa Clara, CA, USA) were used to expedite the training process.

Fish counting in the videos

The fish were counted using the developed mask R-CNN model,

time thresholding, and distance thresholding (Figure 4). In the

procedure, a video (10 min) was first converted to images using a

rate of 1 fps. Then, the 600 frames of the video were fed into the

developed mask R-CNN model sequentially for detecting fish

(Figure 4a). If an object in a frame was detected as fish, then the

object was segmented at the pixel level (Figure 4b) and was la-

belled as a fish candidate of the frame. The geometric centre of

the fish candidate was located, and the confidence score and class

of the fish candidate from the mask R-CNN model were also

recorded. After the completion of fish detection on all the 600

frames, time thresholding was applied to remove false-positive

fish candidates (Figure 4c). The fish candidate in a frame was

considered as a false positive if no fish was detected in the follow-

ing five frames (5 s). Subsequently, distance thresholding was ap-

plied to determine whether the fish candidates presented in

consecutive frames were the same fish. In the procedure, the dis-

tance between the geometric centres of the fish candidates in two

consecutive frames (Figure 4d) was calculated. If the distance was

less than a threshold, then the fish candidates were considered the

Figure 5. Precision–recall curves of the four types of fish (tuna,
marlin, shark, and other) and buoy.

Table 3. Receiver-operating characteristic analysis of the developed

mask R-CNN model.

Type Precision (%) Recall (%) F1-score (%) AP (%)

Tuna 88.04 99.30 93.33 98.10

Marlin 73.64 95.00 82.96 86.98

Shark 86.60 97.00 91.50 95.89

Others 75.83 91.00 82.72 86.79

Buoy 96.15 100.00 98.03 99.82

Overall 86.91 97.58 91.93 93.51
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same (Figure 4e). Otherwise, the fish candidates were considered

different. In this study, the threshold was set to 125 pixels.

Fish type identification and BL measurement

After the number of fish was counted, the type of each

counted fish was determined using five instances of the fish

candidates with the top five confidence scores and majority

rule. The BL of a fish was also determined as the mean BL

of the five instances. The BL of an instance was measured to

be the distance in pixels between the farthest ends of the fish

mask. To prevent the occlusion cases from being included,

the BL of an instance was not used if the length of the in-

stance was smaller than 85% of the mean BL of the five

instances.

Results and discussion
Training loss of the mask R-CNN model

The training, training mask, training bounding box, training clas-

sification, validation, validation mask, validation bounding box,

and validation classification losses of the mask R-CNN model

Figure 6. Precision–recall curves of the four weather conditions: (a) sunny day, (b) dark night, (c) rainy day, and (d) rainy night.
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Figure 7. Successful detection of fish and buoys in the validation images. The first and second detected objects are coloured in red and cyan,
respectively.

Figure 8. (a–c) False-negative detections; (d–h) false-positive detections; and (i) TP detection. (d) A bamboo hook misidentified as a fish, (e)
the rope misidentified as fish, (f) a miscellaneous item misidentified as a buoy, (g) a water drop on the lens misidentified as a tuna, and (h)
one fish occluded by a water drop on the lens misidentified as two fish.
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were examined. After 1000 epochs of the BBR and MN training,

the training and validation losses converged to 0.4 and 0.65, re-

spectively. After 1000 epochs of all training layers, the training

and validation losses converged to 0.25 and 0.35, respectively.

These observations indicate that the model learned the features of

the fish and buoys in the videos.

Performance of fish and buoy detection

The performance of the developed mask R-CNN model was

assessed using the receiver-operating characteristic analysis

(Fawcett, 2006) and the 800 validation images (Table 3). In the

analysis, the confidence score threshold of the developed mask R-

CNN model was set to 0.8. The model attained an overall preci-

sion of 86.91% and an overall recall of 97.58% (Table 1). The

high recall of 97.58% indicated that the trained model could

avoid false identification of a fish as not a fish. This observation

indicated that the developed mask R-CNN model can be useful

for prescreening EMS videos. Certain items on the deck may be

misidentified as fish because of the mediocre precision of 86.91%.

Nevertheless, the false-positive detections could later be verified

and removed by operators. Figure 5 illustrates the precision–recall

curves (Manning et al., 1999) used for detecting the four types of

fish and buoys by using the validation images. The developed

mask R-CNN model attained a mean average precision (AP;

Everingham and Winn, 2011) of 93.51%.

Performance of fish and buoy detection under various

weather conditions

The performance of the developed mask R-CNN model under

various weather conditions was also assessed (Figure 6) using the

Figure 9. Results of fish counting: (a) fish detection using the mask R-CNN model, (b) false-positive removal using time thresholding, (c) fish
counted using distance thresholding, and (d) fish type identification and BL estimation.

Table 4. Analysis of the proposed fish counting method.

Ground truth TP FP FN Precision (%) Recall (%) Error (%)

Fish 276 259 76 17 77.31 93.84 21.37

The unit for count, TP, FP, and FN is number of fish.

FP, false-positive count; FN, false-negative count.

Table 5. Analysis of fish frame detection.

True

positive

Precision

(%)

Recall

(%)

Average frame error

Start

(F)

End

(F)

Total

(F)

Total

(%)

Fish 259 96.38 99.33 1.07 1.55 2.62 5.95

F, frame.
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800 validation images. The validation set contained 140, 320, 110,

and 230 of sunny day, dark night, rainy day, and rainy night

images, respectively. The trained mask R-CNN model achieved

recalls of 96.64, 98.03, 95.57, and 98.21% on sunny day, dark

night, rainy day, and rainy night images, respectively. The results

indicated that the trained mask R-CNN model could be utilized

under various weather conditions. The recalls of dark night and

rainy night were slightly better than those of sunny day and rainy

day because there were more training images of dark night and

rainy night (Table 1). We believe that increasing the number of

training images can further improve the performance of the

model.

Successful case study of fish and buoy detection

Figure 7 illustrates the successful detection of fish and buoys in

the validation images. The images had a high complexity level.

Miscellaneous items and fishermen filled the deck. Moreover, the

weather conditions of the images varied considerably, including

dark nights (Figure 7a, b, d, g, and h), sunny days (Figure 7c, e,

and i), and high contrast (Figure 7f). Furthermore, sea water

drops on the lens caused a blur in some images (Figure 7b, c, d, f,

and g). Despite these challenges, the trained model correctly

detected and segmented tuna (Figure 7a, f, and 7g), marlin

(Figure 7d and e), common dolphinfish (Coryphaena hippurus;

Figure 7b, c, and f), and buoys (Figure 7g–i). The model also

detected multiple objects presented in an image (Figure 7a, d, f,

and g).

Failure case study of fish and buoy detection

Images with unsuccessful detection of fish and buoys were exam-

ined. False negatives of fish detection occurred due to an occlu-

sion by a fisherman (Figure 8a), image blur caused by water

drops on the lens (Figure 8b), or pose change by a fisherman

(Figure 8c). False positives of fish and buoy detections are illus-

trated in rows 2 and 3 of Figure 8 (except for Figure 8i). Certain

items on the deck were misidentified as fish (e.g. bamboo hook,

the cyan object presented in Figure 8d, and tube, the cyan object

presented in Figure 8e) or buoy (e.g. a miscellaneous item, the

cyan object displayed in Figure 8f). Certain water drops on the

lens were also misidentified as fish (the cyan object presented in

Figure 8g) or the same fish was detected as two fish (Figure 8h).

Figure 8e displays a false-positive detection case of fish (in cyan).

The shape of the false-positive object highly resembled a true-

positive (TP) object in Figure 8i. The differences between the TP

and false-positive objects can be subtle. Nevertheless, these false-

positive objects were usually isolated in certain frames and could

be filtered out using the subsequent time thresholding method.

Fish counting performance

The proposed fish counting approach is illustrated using a fish

video (Figure 9). In the procedure, fish candidates in the 600

frames of the video were detected using the trained mask R-CNN

model (Figure 9a). Then, false-positive fish candidates were re-

moved using time thresholding (Figure 9b). Subsequently, the

fish candidates present in the consecutive frames were determined

to be the same fish by using distance thresholding (Figure 9c).

Finally, the type and BLs of each fish (Figure 9d) were then deter-

mined based on the majority class and the mean BL, respectively,

of the fish candidates that correspond to the top five confidence

scores of the fish. The mean processing speeds of fish detection

and counting were 3 and 1.6 fps, respectively, and the processing

was conducted using the GPU.

The performance of the proposed fish counting approach was

evaluated using the 200 test videos. The operators verified that

the videos contained a total of 276 ground-truth fish. The pro-

posed method attained a precision of 77.31% and a recall of

93.84% (Table 4). The high recall and intermediate precision in-

dicated that the proposed approach can be useful for prescreening

EMS videos. The false-positive detections could later be verified

and removed by operators.

The frame detections of the 259 TP fish were evaluated

(Table 4). The 259 TP fish contained a total of 20 666 frames. For

each TP, the corresponding fish frames ranged between 5 and 552

frames. The proposed approach obtained a precision of 96.38%

and a recall of 99.33% in frame detection (Table 5). The start,

end, and total frame errores of the 259 TP fish were also evalu-

ated. The start frame error of a fish was defined as the difference

between the start frame predicted by the proposed approach and

the ground-truth start frame. Similarly, the end frame error of a

fish was defined as the difference between the end frame predicted

by the proposed approach and the ground-truth end frame. The

total frame error was the summation of the start and end frame

errors. The mean total frame error was 2.62 frames (5.95%;

Table 5).

Performance of fish type identification

The performance of the proposed method in terms of fish type

identification was evaluated using the 200 test videos. According

Figure 10. Confusion matrix for fish type identification based on
TPs.

Table 6. Analysis of the proposed fish type identification for the

four types of fish based on ground truth.

Class Count TP FP FN

Precision

(%)

Recall

(%)

F1-score

(%)

Error

(%)

Tuna 195 186 40 9 82.30 95.38 88.35 15.89

Marlin 35 30 8 5 78.94 85.71 82.18 8.57

Shark 26 22 9 4 70.96 84.61 77.18 19.23

Others 20 16 24 4 40.00 80.00 53.33 100.00

Overall 276 254 81 22 75.82 92.02 83.13 21.37
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to the ground truths (276 in Table 4), the proposed approach

attained an overall precision of 75.82%, the recall of 92.02%, and

the F1-score of 83.13% (Table 6). The trained model misidenti-

fied certain miscellaneous objects as other fish, thus causing low

precision and high error of the other fish class. However, this

type of false-positive errors can be corrected by operators when

they verify the prescreening results. By only considering the TP

detections (259 TPs in Table 4), the fish type identification

reached an overall accuracy of 98.06% (Figure 10).

Performance of fish BL estimation

The performance of the proposed method in terms of fish BL esti-

mation was evaluated using the 259 TP fish. The 259 TP fish were

associated with 1295 frames (five frames per fish corresponding

to the top five confidence scores). Among the frames, the fish

bodies in 118 frames were occluded (Figure 11b and d). The pro-

posed 85% rule excluded 95.53% of the 118 frames of occluded

fish bodies from being used in BL estimation. Thus, the perfor-

mance of BL estimation was improved. The fish BL obtained in

pixels could be converted to the fish lengths in physical units if an

EMS camera was calibrated during installation.

Potential implications of the proposed approach

The proposed approach could potentially be used in data centres

to assist the reporting of fishing statistics. In some practices, the

videos of fishing trips recorded using EMSs are transferred to

data centres after fishing vessels return to ports. The reporting of

fish counts, types, and BLs in the EMS videos is then manually

performed. The proposed approach could be used to prescreen

harvested fish in the EMS videos. Operators then can verify the

results annotated by the proposed algorithm and generate the sta-

tistics of the harvested fish semi-automatically. Hundreds of

hours of manually analysing EMS videos could be saved. The pro-

posed approach is compatible with existing EMSs. No modifica-

tion in EMSs is required.

Conclusion and future work
This study proposed an automated method for counting harvested

fish, estimating the types of the fish, and measuring the BLs of the

fish in EMS videos. The method applied mask R-CNN to detect

fish in the video frames, time thresholding to remove false-positive

detections and distance thresholding to avoid double counting

fish. The type of fish was determined based on majority rule and

the types of the fish in the frames with the top five confidence

scores predicted by the mask R-CNN model. The BL of fish was

determined as the mean BL of the fish in the frames corresponding

to the top five confidence scores. The trained mask R-CNN model

attained a recall of 97.58% and a mean AP of 93.51% in object de-

tection. The proposed fish counting method obtained a recall of

93.84%. The fish type identification provided an overall accuracy

of 98.06% of TP fish. The high recall and accurate frame detection

of the proposed method indicate that the approach can be used to

automatically prescreen EMS videos; thus, the time and effort re-

quired for reporting fishing practice statistics can be reduced.

The achievement of this research can be a foundation for fully

automatic fish counting. The remaining challenges include more

accurate fish counting and species identification. In this study,

time thresholding and distance thresholding were used for fish

counting because they had high computational efficiencies.

Figure 11. Effect of occlusion in fish BL estimation: (a and c) complete fish bodies and (b and d) fish bodies partially occluded by fishermen.
The bodies in (a) and (b) pertain to the same fish. The bodies in (c) and (d) are of the same fish. The underestimated BLs in (b) and (d) were
filtered out by the proposed 85% rule.
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Nevertheless, certain state-of-art tracking approaches can be ap-

plied to identify the same fish in a series of frames if computa-

tional burden is not an issue. As for fish species identification, we

believe that increasing the number of annotated training samples

will further improve the performance of the trained deep CNN

models. We conclude that using computer vision to acquire the

statistics of harvested fish from EMS videos recorded on long-

liners is feasible.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Biomass of the schooling fish Rastrineobola argentea (dagaa) is presently estimated in Lake Victoria by acoustic survey following the simple

“rule” that dagaa is the source of most echo energy returned from the top third of the water column. Dagaa have, however, been caught in

the bottom two-thirds, and other species occur towards the surface: a more robust discrimination technique is required. We explored the

utility of a school-based random forest (RF) classifier applied to 120 kHz data from a lake-wide survey. Dagaa schools were first identified man-

ually using expert opinion informed by fishing. These schools contained a lake-wide biomass of 0.68 million tonnes (MT). Only 43.4% of identi-

fied dagaa schools occurred in the top third of the water column, and 37.3% of all schools in the bottom two-thirds were classified as dagaa.

VC International Council for the Exploration of the Sea 2020.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.
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School metrics (e.g. length, echo energy) for 49 081 manually classified dagaa and non-dagaa schools were used to build an RF school classifier.

The best RF model had a classification test accuracy of 85.4%, driven largely by school length, and yielded a biomass of 0.71 MT, only c. 4% dif-

ferent from the manual estimate. The RF classifier offers an efficient method to generate a consistent dagaa biomass time series.

Keywords: artificial intelligence, big data, dagaa, Lake Victoria, machine learning, Rastrineobola argentea, school analysis, species identification,

stock assessment

Introduction
In recent years, and parallel to the development of ever-cheaper

computer-processor power, machine learning and artificial intel-

ligence (AI) methods have been applied increasingly in ecology to

ask “big questions” of “big data”. These methods have delivered

promising results in species identification, biodiversity mapping

and animal behaviour studies (Christin et al., 2019). Active

acoustic data collected during fish stock assessment surveys are a

form of big data. A typical month-long survey can gather tens of

gigabytes of data per narrowband frequency and, with the in-

creasing inclusion of broadband echosounders and multibeam

sonars in fish stock assessment surveys, this will increase by at

least tenfold per vessel in the future (Demer et al., 2017).

Multiple autonomous platforms including wave gliders (Bingham

et al., 2012; Greene et al., 2014) and saildrones (Mordy et al.,

2017; De Robertis et al., 2019) are increasing the temporal and

spatial coverage of fish stock monitoring, and the volume of data

now being collected in some ecosystems exceeds institutional ca-

pacity for manual processing. Machine learning methods can po-

tentially be utilized to automate data analysis pathways and, at

the same time, reduce human error-induced uncertainty in stock

biomass estimates.

During the analysis of acoustic survey data, visual scrutiniza-

tion—classification by eye of features on echograms [the two-

dimensional (2D) plots showing echo energy by depth and dis-

tance/time along track]—is often used to partition echo energy

between species, but results can be operator dependent. Efforts to

overcome this by the application of rigid “rules” can also be un-

satisfactory. Identification of Antarctic krill (Euphausia superba),

for example has been achieved by a simple “dB difference” ap-

proach that uses the difference in backscattering intensity be-

tween two frequencies as a diagnostic characteristic (Madureira

et al., 1993) but has in some areas of continental shelf been sus-

ceptible to erroneous inclusion of echoes from ice fish

(Channichthyidae; Fallon et al., 2016). In Lake Victoria, the silver

cyprinid (Rastrineobola argentea; known locally as “dagaa”) is

identified using a simple depth distribution rule that holds that

most of the backscattered echo energy from the top third of the

water column is from dagaa (LVFO, 2006). This approach—that

was incorporated in to the Lake Victoria acoustic analysis stan-

dard operating procedure (SOP; LVFO, 2012) in a period when

limited resources precluded anything more sophisticated—is,

however, known to be flawed: not all the fish obey the rule. Here,

we apply AI to the identification of echoes from schools of Lake

Victoria fish in an effort to illustrate an example of the potential

for AI in fisheries ecology and to improve the accuracy of stock

assessments for the lake.

The Lake Victoria fishery

Lake Victoria is the world’s largest tropical lake (68 800 km2).

Fisheries are vital for local food provision and for export

earnings and contribute 2–3% to the gross domestic products of

the lake’s three riparian states (Uganda, Kenya, and Tanzania).

Sustainable fisheries management is a regional priority, and there

is an aspiration to move towards ecosystem-based fisheries man-

agement (LVFO, 2018).

Dagaa are a small (maximum length c. 9 cm) pelagic zooplank-

tivorous fish (Wanink, 1999) native to Lakes Victoria, Nabugabo,

and Kyoga in East Africa. It is one of the few species in Lake

Victoria to remain abundant following the introduction of the

Nile Perch (Lates niloticus) in the 1950s (Goudswaard et al., 2008;

Sharpe and Chapman, 2014). Dagaa make up �60% of the total

annual Lake Victoria catch, with �0.6 million tonnes (MT) being

landed in 2015 (Mangeni-Sande et al., 2019). Typically 100–

500 kg of dagaa can be caught per boat per night using small seine

nets and light attraction (LVFO, 2016a), and �18 700 boats target
dagaa (LVFO, 2016b). Dagaa fishing employs �70 500 fishermen,

and �16 500 women are engaged in the labour-intensive drying

of the catch (Okedi, 1981; LVFO, 2016b); fish are spread out for

drying—often simply on the sand—in the sun and are turned

regularly by hand. Dagaa are sold into the local and regional mar-

kets and consumed almost exclusively in southern and eastern

Africa: dagaa is a cheap source of animal protein for the rural

poor. High-quality dried fish are sold for human consumption,

and lower-quality products (�70% of the total catch) are used

for animal feed (Odongkara et al., 2016).

The emphasis of research on fisheries in Lake Victoria has to

date been largely on Nile Perch because of its importance in gen-

erating foreign currency revenue (US$300 million; LVFO, 2018).

However, for economic and ecological reasons, it is essential to

establish effective management for sustainable exploitation of

other species as well, including dagaa (Kolding et al., 2019), and

accurate estimates of stock biomass are an essential prerequisite

for that.

Present estimates of dagaa biomass

Estimates of dagaa stock biomass are determined from acoustic

data collected during bi-annual lake-wide fish stock assessment

surveys. Dagaa, which are superficially similar to anchovy, are an

obligate schooling pelagic species that possess swim bladders: as

such dagaa is highly suitable for acoustic assessment. During day-

light, dagaa aggregate into small schools (a few metres in length

and height) that appear as distinct needle-like features in echo-

grams when observed at typical survey setting, i.e. vessel speed of

between 8 and 10 knots and ping intervals of between 0.2 and

0.5 s (Getabu et al., 2003). Dagaa are presently evaluated by echo

integration of 120 kHz data from the top one-third of the water

column. It is assumed that all echo energy remaining in the top

third of the water column after single-target detections (which

are all attributed to Nile Perch; Kayanda et al., 2012) have been

removed arises from dagaa, and only dagaa. It is clear though,

even from just a cursory reference to Getabu et al. (2003), that

this is a false assumption: dagaa occupy a broader depth range

than just the top third, and other species are known to inhabit

1380 R. Proud et al.
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the top third. A new method for dagaa identification is needed

urgently to improve the accuracy of stock assessment and, even-

tually, to improve the management that stems from the biomass

estimate. Since the objective of the acoustic survey is to allocate

all energy correctly, improving dagaa allocation will lead to

improvements in the assessment of other species as well.

Fish school analysis using acoustic data

In order to establish reliable and reproducible methods to identify

and discriminate species detected acoustically during surveys, we

need first to identify acoustic characteristics, or sets of character-

istics, that are unique to particular target species and that are

therefore diagnostic. For schooling species, these characteristics

can be at the school level (rather than at the level of the individual

fish), and the physical shape, echo intensity, frequency response

and behaviour of schools of different fish species can be diagnos-

tic (Coetzee, 2000; Reid et al., 2000; Lawson, 2001; Bertrand et al.,

2008; Fernandes, 2009; Paramo et al., 2010). Since the develop-

ment of standard methods for extracting school characteristics

(Barange, 1994; Coetzee, 2000; Reid et al., 2000; Diner, 2001),

analyses have been conducted to study the shapes and behaviours

of schools of many species of fish (Lawson, 2001; Fernandes,

2009; Fallon et al., 2016) and the swarm characteristics of krill

(Tarling et al., 2001; Klevjer et al., 2010; Cox et al., 2011). Such

analyses are now being used to aid species identification, and

hence to reduce uncertainty around estimates of fish stock bio-

mass (e.g. for herring and mackerel; Fernandes, 2009).

Schools of a specified minimum size (horizontal and vertical

dimensions) and echo intensity can be extracted automatically

from acoustic observations [both 2D observations from conven-

tional vertical echosounders and three-dimensional (3D) observa-

tions from multibeam sonar surveys], and school metrics

pertaining to morphology, position, and acoustic scattering prop-

erties (e.g. echo energy across different frequencies) can be col-

lated to characterize schools (Barange, 1994). Performing such an

automated school extraction process for a typical month-long

Lake Victoria vertical echosounder survey results in over 100 000

extracted schools. These include schools of dagaa, small (<10 cm)

Nile Perch, and haplochromine cichlids (aggregations of the pe-

lagic crustacean Caridina nilotica are also apparent). More than

25 acoustic surveys have been conducted on Lake Victoria over

the past 20 years (Taabu-Munyaho et al., 2014), and school data

within them offer an incredibly valuable resource for examining

potential change as a function of, for example, fishing pressure

and environmental variability (Brierley and Cox, 2010, 2015).

Fundamental to these types of analyses and indeed to fish stock

assessment are consistent and reproducible methods to identify

and discriminate species, including dagaa. It is impractical to at-

tempt to use manual visual scrutinization to discriminate dagaa

schools from the more than 2.5 million estimated schools now

potentially accessible from the combined 25-survey database.

Therefore, the main objective of the work reported here was to

develop a robust and consistent approach that was both cost- and

time-effective, and that used machine learning/AI to perform the

automatic classification of dagaa schools (e.g. Fernandes, 2009;

Cox et al., 2011; Fallon et al., 2016; Escobar-Flores et al., 2019).

Machine learning

It is now common practice to use machine learning techniques to

classify data (Malde et al., 2019). Features isolated in acoustic

survey data, such as schools, scattering layers, and single targets,

have been classified using a wide range of machine learning tech-

niques including mixture models (Fleischman and Burwen, 2003;

Escobar-Flores et al., 2018), artificial and convolutional neural

networks (Haralabous and Georgakarakos, 1996; Simmonds

et al., 1996; Korneliussen et al., 2016; Brautaset et al., 2020), deci-

sion trees, random forests (RFs), and boosted regression trees

(Fernandes, 2009; D’Elia et al., 2014; Fallon et al., 2016; Escobar-

Flores et al., 2018, 2019), discriminant-function analysis and

principal components analysis (Nero and Magnuson, 1989;

Scalabrin et al., 1996; Brierley et al., 1998; Lawson, 2001), and k-

means clustering (Tegowski et al., 2003; Proud et al., 2017).

Ensemble tree methods (e.g. RF and boosted regression trees)

have only been adopted in the past decade but have been found

to be particularly good (having high accuracy) for classifying fish

schools (Fernandes, 2009; D’Elia et al., 2014; Fallon et al., 2016).

Objective of the present study

The objective of this study is to develop a robust, automated

method to identify echoes from dagaa schools in echosounder

data collected during Lake Victoria fish stock assessment surveys.

Previous work (Getabu et al., 2003; LVFO, 2006), and a large ac-

cumulation of local experience, suggests that dagaa form schools

that have a distinct needle-shaped (vertically tall, horizontally

narrow) appearance in underway echograms. We set out first to

confirm that needle-shaped acoustic features are in fact dagaa

schools, and then to develop a machine learning method to iden-

tify dagaa schools amongst all extracted schools. In this study, we

make no attempt to classify aggregations of the other common

Lake Victoria pelagic species because there is presently not

enough ground-truth data (e.g. trawl data) to underpin such an

analysis.

Methods
Determining the characteristics of dagaa schools

We conducted target fishing during an October 2019 field study

in a coastal region (c. 40m lakebed depth) of the Ugandan sector

of the lake. We fitted a standard Lake Victoria bottom trawl with

a fine-mesh cod-end cover and used this to target needle-like and

non-needle-like pelagic echogram features. The net had an esti-

mated vertical opening of <10 m, and was fished at 4 knots for

15min at each sampled depth. Catch samples were sorted into

species groups and the individuals in each group were counted,

measured and weighed. The acoustic data recorded during each

trawl were resampled to typical survey settings (vessel speed ¼ 9

knots and ping interval ¼ 0.2 s) to reconstruct echograms that

would have been produced had the fished schools been encoun-

tered at typical survey speed.

Acoustic survey data collection

Acoustic and environmental data collected during the November

2015 fish stock assessment survey in Lake Victoria (LVFO, 2015)

were used to build a dagaa school classifier. That survey was se-

lected because, when this work began, it was the most recent sur-

vey that had been processed. The survey was conducted from

research vessel (RV) Victoria Explorer between 1 and 29

November (including 4 days breaks for reprovisioning). It cov-

ered c. 4 000 km of survey track over most of the lake, across a

range of lakebed depths between 2 and 70m. Most of the survey

was conducted in daylight hours, and sampling effort was highest

Automated classification of dagaa schools 1381
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in the more productive inshore regions of the lake (Figure 1). The

night-time vertical distribution and echogram appearance of

dagaa schools may differ from the daytime distribution and form,

and so night-time observations were excluded from the analysis:

only acoustic data collected between sunrise and sunset (exclud-

ing astronomical twilight) were analysed. Acoustic data were col-

lected using two hull-mounted Kongsberg (Horten, Norway)

Simrad EK60 scientific echosounders operating at 70 and

120 kHz, both with a 7� nominal beam width. A pulse length of

0.256ms was used, with a ping interval of 0.2 s. A standard split-

beam echosounder calibration (Foote et al., 1983; Demer et al.,

2015) was carried out prior to the survey. In this study, we use

and report only 120 kHz data because one objective of the work is

to develop a route for the reanalysis of historic surveys, and early

surveys only used 120 kHz. However, at an early stage of this

study, we investigated the benefit of including 70 kHz data as well

but found no improvement in decision tree-based school classifi-

cation using two frequencies.

Hydrographic measurements were taken at predefined stations

(N¼ 58, see Figure 1) using a Sea and Sun Conductivity,

Temperature, and Depth (CTD) probe and a YSI 650 multi-

parameter sonde to measure temperature (�C), dissolved oxygen

concentration (DO, mg l�1), conductivity (lS cm�1), pH, turbidity

[Formazin Turbidity Units (FTU)], and chlorophyll a concentration

(lg l�1).

School extraction and manual classification

The “Schools Detection Module” in Echoview software (v9;

Myriax, Hobart, Tasmania) was used to extract all schools from

the echosounder data. Before running the school detection algo-

rithm, echosounder data were thresholded at �54 dB re 1m�1

(i.e. any samples below this value were excluded from analysis).

Recalling that Sv¼ 10� log10(10
(TS/10)� packing density), the

threshold was set with the consideration of an expected mean tar-

get strength (TS) at 120 kHz of dagaa with a mean length of

5.3 cm of �57.6 dB re 1m2 and a very conservative minimum

school packing density of c. 2 fish per m3 (Tumwebaze, 2003).

The school detection algorithm [Shoal Analysis and Patch

Estimation System (SHAPES)] is based on the work of Barange

(1994) and Coetzee (2000) and requires a number of parameters

to be set. From preliminary analysis, local prior knowledge, and

the work of Getabu et al. (2003), dagaa schools were perceived to

be characteristically very narrow (a few pings) relative to vertical

extent (tens of samples) in echograms, dense, and compact (i.e.

without any vacuoles or holes), and so the SHAPES algorithm

parameters were set conservatively to ensure that all schools of

this nature, as well as schools with the more usual rounded echo-

gram appearance, would be captured. Thus, all school detection

parameters, except for the horizontal linking distance, were set to

their minimum possible values, i.e. the minimum candidate

height, minimum candidate length, minimum school height,

minimum school length, and vertical linking distance were all set

to 1m. The maximum horizontal linking distance was set to 5m

to ensure that, given the vessel speed and ping rate, consecutive

pings could be linked. The SHAPES algorithm was run across the

entire acoustic dataset. It identified schools with a diversity of

forms, from small compact needle-like schools typical of dagaa

(see Figure 2) to large amorphous schools hundreds of metre in

length that were layer like in appearance. The expert view is that

Figure 1. Map of Lake Victoria, East Africa, showing the cruise track
and the CTD stations (solid points) for the November 2015 fish
stock assessment survey.
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Figure 2. Echoview-generated 120 kHz echogram of automatically
detected and manually labelled schools (grid size 10 by 10m). Three
dagaa schools are labelled and have the characteristic needle-like
echogram appearance (vessel speed ¼ 9 knots and ping interval ¼
0.2 s). In this example, the lakebed is at 32m and the top third line
(that under the existing standard operating procedure would
demark the lower limit of the dagaa habitat) is at 10.7m: the dagaa
schools extend deeper than the top third line and the non-dagaa
schools can be seen above the top third line, well illustrating the
inability of depth alone to differentiate dagaa and non-dagaa.
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these layers are comprised of haplochromine cichlids and small

Nile Perch (<10 cm). Any “schools” that were longer than 100m

in length were deemed to be scattering layers (Proud et al., 2015)

and were excluded from further analysis. All remaining schools

were examined manually and categorized by eye (visual scrutini-

zation) as either dagaa or non-dagaa.

School metrics (Table 1) were exported from Echoview.

Environmental variables (Table 1) were ascribed to each school as

those at the nearest CTD station by distance.

Using machine learning to build a school-based classifier

An RF model was built using a subset of the manually identified

schools. During the survey, on-transect vessel speed varied be-

tween 6 and 13 knots, but c. 84% of effort was between 8 and 10

knots (which is the typical range of survey speeds across all his-

toric acoustic surveys on the lake). Historic manual classification

has identified needle-like echo traces as dagaa schools, but the as-

pect ratio (height to width) of echogram features is of course a

function of vessel speed and ping rate. This raises the possibility

that schools detected at slow speed would be rejected by eye as

dagaa because they would appear too rounded: this is an impor-

tant illustration of one of the weaknesses of visual classification

methods. To avoid incorporating any potential speed-related bias

in the RF model of dagaa school characteristics, only visually clas-

sified schools detected in the range of usual survey speeds (8–10

knots) were used to build the RF model.

Following the standard RF protocol (Breiman, 2001), schools

remaining after speed filtering were split randomly into a training

dataset (80% of data are typically used to train an RF classifier,

and we adhered to that) and a test dataset (20% of data are typi-

cally used to test RF classifiers). The R packages “caret”, “party”,

and “trees” (Strobl et al., 2008, 2009; Kuhn, 2019; Ripley, 2019)

were used to build RF models. RF algorithms have two tuning

parameters: these are mtry, the number of variables to select ran-

domly from the total available list of school metrics (Table 1)

when splitting data at each node in a tree, and ntrees, the number

of trees to build. In this study, mtry was initially set to 4 and

ntrees to 500 (these are the default values), but a range of different

mtry and ntrees values was also used to assess their impact on RF

classification accuracy.

We used repeated (three times) tenfold cross-validation to as-

sess the accuracy of the RF (Stone, 1974; Breiman, 2001). This

validation process involved splitting the training dataset into ten

equally sized subsets (or folds), building the RF model using a

dataset containing nine of the tenfolds, and then validating the

model on the other remaining fold. This process was repeated ten

times such that each fold acted as the validation dataset once.

This process was repeated three times (with random, so probably

different, tenfold splitting on each of the three occasions), and

the accuracy of the model was calculated by taking an average

over the resultant 30 accuracy values (3� 10 folds).

Assessment of the RF model

The RF model was assessed using the mean and standard devia-

tion of the training accuracy, and the kappa statistic j (the pro-

portion of classification agreement beyond that expected to occur

by chance, where j¼ 0 is suggestive of classification only match-

ing what would be expected by random chance assuming a bino-

mial distribution; Cohen, 1960). RF models are difficult to

interpret, since they are typically comprised of hundreds of fully

grown decision trees. In the majority of cases, RF models are

assessed by accuracy metrics and the importance of each predic-

tor (each school metric in this case) is assessed by single specific

or multiple so-called “importance metrics” (Breiman, 2001).

Here, we use conditional variable importance (Strobl et al., 2008)

to assess each predictor’s ability to discriminate between target

classes (i.e. dagaa or non-dagaa): unlike other importance meas-

ures (e.g. mean decrease in accuracy), conditional variable impor-

tance is robust against correlated variables (Fallon et al., 2016),

e.g. water temperature and school depth are likely to be

correlated.

Dagaa stock biomass estimates

The RF model, which was built using a subset of the extracted

schools, was used to classify the entire dataset of schools from the

2015 survey. School-based estimates of dagaa stock biomass were

then calculated using both the manually classified schools and the

Table 1. School metrics used to build an RF model to classify detected schools

School metric Description Unit

Length Mean length of school corrected for beam width m

Depth Mean depth of school m

Height Mean height of school corrected for pulse length m

Image compactness School perimeter squared/(4�p� school area); for a perfectly circular school this

would be 1

Unitless

NASC School NASC is an historic acoustic unit that is the average amount of echo energy

produced by the school per m2 of lake surface, scaled up to an area of 1 nautical

mile squared

m2 nmi�2

Lakebed depth Depth of lakebed as detected by the 120 kHz echosounder m

Temperature Measured value at school depth obtained from the closest CTD station �C

DO Measured value at school depth obtained from the closest CTD station mg l�1

pH Measured value at school depth obtained from the closest CTD station Unitless

Turbidity Measured in Formazin Turbidity Units. Measured value at school depth obtained

from the closest CTD station

FTU

Chlorophyll a concentration Measured value at school depth obtained from the closest CTD station lg l�1

Longitude Taken from vessel GPS Degrees East

Latitude Taken from vessel GPS Degrees North

Time of day Decimal time, calculated from vessel GPS Hours

Automated classification of dagaa schools 1383
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RF classified schools. Echo energy from schools classified as dagaa

(either manually or via the RF model) was converted into bio-

mass following the Lake Victoria Fisheries Organization SOP for

stock assessment (LVFO, 2012). Accordingly, mean dagaa nauti-

cal area scattering coefficient (NASC) values were determined for

each of the 18 SOP-defined lake areas, which are split by country

(3; Uganda, Tanzania, and Kenya), lake quadrant (4; NW, NE,

SE, SW), and depth (3; “inshore” <10m; “coastal” 10–40m, and

“deep” >40m). These 18 mean NASC values were converted to

biomass density (T m�2) using the mean dagaa TS per kg (TSkg,

i.e. the amount of 120 kHz echo energy produced by 1 kg of

dagaa) of �29.4 dB kg�1 (Tumwebaze, 2003). Biomass densities

were multiplied by associated areas to scale to biomass (T) in

each of the 18 areas, and these were summed to give a whole-lake

value. This process was repeated 1000 times, resampling with

replacement dagaa school NASC values by area on each iteration

(i.e. bootstrapping), and 95% confidence intervals were calculated.

Results
A total of 120 181 schools (larger than 1m in length and height)

were detected by the SHAPES algorithm in the echosounder data.

Schools in “bad data” regions (e.g. sections of transect with no

GPS) and schools detected at night were removed reducing the

useable dataset to 115 778 schools.

Confirmation that needle-like echo traces are dagaa

schools

It is generally believed, based on the work of Getabu et al. (2003)

and on accumulated local expert opinion, that schools with a

needle-like appearance in 120 kHz underway echograms are dagaa

schools. To this end, needle-like schools were fished during an

October 2019 field study (Figure 3 and Table 2).

A total of 93 schools were detected acoustically during Haul 1

(near surface), and 99.5% of the total catch by number (399 fish)

was dagaa. The only non-dagaa component of the combined

catch was two haplochromine cichlids, each just 4 cm long (the

mean length of dagaa was c. 3.8 cm). These cichlids would have

contributed c. 1% to integrated trawl echo energy (estimated us-

ing haplochromine TS¼ 20logL� 66.65; LVFO, 2015). Dagaa

and needle-like schools were also present in Hauls 2–5 along with

similar numbers of haplochromines, conforming with the view of

Getabu et al. (2003) that dagaa are not restricted to the near-

surface layer (Table 2). However, since catch obtained from

Hauls 2–5 was likely contaminated during time spent at the sur-

face whilst deploying and recovering the net, these observations

were not quantitatively assessed.

Manual classification of schools using the lake-wide 2015

survey data

A total of 56 079 of the 115 778 schools passed for manual visual

identification were classified as dagaa. The remaining 59 699

schools, judged by experts to be non-dagaa, would have con-

tained haplochromines, Tilapia spp., small Nile Perch (<10 cm)

and other species, but the present state of knowledge is
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Figure 3. Example dagaa trawl (Haul 1) during the October 2019
field study in Ugandan waters aboard the RV Ibis: (a) 120 kHz
echogram showing needle-like schools, which are commonly
believed to be dagaa schools; (b) catch from needle-like schools
being sorted; and (c) dagaa, which comprised >99% of the catch by
number.

Table 2. Net haul and catch information (numbers of individual fish)

Haul Wire out (m) Headline depth (m) Dagaa (N) Haplochromines (N) Needle-like schools (N)

1 25 6 399 2 93

2 50 11 288 1 16

3 75 26 73 86 0

4 100 30 86 103 0

5 125 34 68 22a 0

The water depth was 40m.
aThe decapod Caridina nilotica was also present, in small number, in the catch from Haul 5.

Table 3. Distributions of dagaa and non-dagaa schools by depth according to expert manual classification, and median lake-wide biomass

estimates (bootstrapped 95% confidence intervals given in square brackets)

Depth zone Dagaa schools (N) Non-dagaa schools (N) Total schools (N) Dagaa school biomass (T)

Top third 24 357 6 403 30 760 370 701 [361 388–379 408]

Bottom two-thirds 31 722 53 296 85 018 312 707 [301 747–324 400]

Total 56 079 59 699 115 778 683 107 [668 957–697 721]

1384 R. Proud et al.
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insufficient to classify them by species; that will be the task for a

subsequent project.

Only 43.4% of the manually classified dagaa schools occurred

in the top third of the water column, but 89.3% of non-dagaa

schools occurred in the bottom two-thirds: together these pro-

portions give the “top third” method an overall school classifica-

tion success rate by number of c. 72.6% (see Table 3). Dagaa

school biomass was found to be almost equally distributed be-

tween the top third and bottom two-thirds of the water column.

The dagaa stock biomass estimate arising from the manual classi-

fication was 0.68 MT (see Table 3).

RF model

The 49 081 manually classified schools remaining after filtering

for vessel speed were split into a training dataset (13 547 dagaa

schools, 25 718 non-dagaa schools) and a test dataset (3 319

dagaa, 6 497 non-dagaa). The training dataset was used to train

the RF classifier. An RF classifier was constructed using all 14

available school and environment metrics (Table 1). The default

values of mtry (4) and ntrees (500) produced the best model as

evaluated by model accuracy; other mtry and ntrees parameter

values were tested (mtry: 2–8 and ntrees: 200–2000) but provided

no improvement in accuracy. The RF model had a training classi-

fication accuracy of 85.0% (SD¼ 0.49%), a test classification ac-

curacy of 85.4%, and a j-value of 0.66 (SD¼ 0.011).

RF predictions

The RF model was used to classify all schools in the full dataset

of 115 778 schools (i.e. not just the schools that passed the

speed filter). Since school dimensions were determined from

GPS position, there were no speed-related artefacts in the auto-

matically extracted school metric values. Schools classified by

the RF model as dagaa were used to estimate lake-wide bio-

mass, and are summarised in Table 4. The RF-derived biomass

value differed by only 4.02% from the manual school classifica-

tion result (see Tables 3 and 4). The largest difference between

manual classification and the RF model classification was of

non-dagaa schools in the top third depth zone. The manual

scrutinization classified 1 814 more schools as non-dagaa. We

believe that this occurred when slow vessel speed served to

stretch observations of dagaa schools horizontally, giving them

a non-dagaa appearance in the echogram. The RF approach

takes school dimensions from GPS locations so is not “misled”

by variability in vessel speed.

Importance of different school metrics to overall RF

model effectiveness

Evaluating the importance of each school metric (Table 1) to

the RF model, regardless of any correlation between the metrics

(known as “conditional variable importance”), showed that

school length was the most important metric, followed

by school height, school NASC, school depth, school image

compactness, and lakebed depth (Figure 4). Environmental vari-

ables other than lakebed depth contributed very little to the

overall predictive power of the model, and when all environ-

mental information was removed, the overall RF accuracy re-

duced by only c. 1%. This suggests that, during the 2015 survey,

school structure was not influenced strongly by environmental

variability across Lake Victoria.

Table 4. Distributions of dagaa and non-dagaa schools by depth according to RF classification, and median lake-wide biomass estimates

(bootstrapped 95% confidence intervals given in square brackets)

Depth zone Dagaa schools (N) Non-dagaa schools (N) Dagaa school biomass (T)

Top third 26 171 (þ7.44%) 4 589 (�28.33%) 394 373 [385 006–403 609] (þ6.38%)
Bottom two-thirds 32 534 (þ2.56%) 52 484 (�1.52%) 315 853 [305 435–327 424] (þ1.01%)
Total 58 705 (þ4.68%) 57 073 (�4.40%) 710 547 [695 426–725 205] (þ4.02%)

Brackets indicate percentage change relative to manual classification.

Figure 4. Relative variable importance (conditional variable importance
normalized between 0 and 1) for school metrics used to build the RF
model.
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Figure 5. Violin plots, which show smoothed probability density, with boxplots overlaid, for important school metrics used in the RF model
to classify dagaa schools. Plotted school metrics are: (a) school length, (b) school depth, (c) school nautical area scattering coefficient (NASC)
value, (d) school height, (e) lakebed depth and (f) school image compactness. Black filled circles show distribution means.
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School metrics

Distributions of the school metrics found to be important for

dagaa classification were plotted as violin (Hintze and Nelson,

1998) and box plots, displaying the first quartile (Q1), median

(M), third quartile (Q3), and probability density of each distribu-

tion (Figure 5). Dagaa school length (Figure 5a) (Q1¼ 2.88m;

M¼ 4.23m; Q3¼ 6.34m) was found to be significantly different

to non-dagaa school length (Q1¼ 6.82m; M¼ 11.63m;

Q3¼ 20.87m; Kolmogorov-Smirnov (KS) test: p< 0.001;

D¼ 0.53), a finding which provides quantitative support for the

descriptive picture painted by Getabu et al. (2003) of dagaa

schools as “needles”. Both dagaa and non-dagaa schools were

found across all lake strata (inshore, coastal, and deep—see

Figure 5b), but dagaa schools were typically found shallower in

the water column (Q1¼ 10.51m; M¼ 17.63m; Q3¼ 26.94m)

than the non-dagaa schools (Q1¼ 16.97m; M¼ 27m;

Q3¼ 36.48m), which is some limited endorsement of the simple

“top third” rule (but note that there are many dagaa schools in

deeper water that the third-rule does not capture). School heights

were similar between dagaa and non-dagaa schools (Figure 5d),

but image compactness values of dagaa (Q1¼ 10.02; M¼ 18.03;

Q3¼ 31.3) were significantly smaller (KS test: p< 0.001;

D¼ 0.38) than non-dagaa (Q1¼ 23.38; M¼ 40.29; Q3¼ 72.19),

i.e. in equidimensional x, y space, dagaa schools were paradoxi-

cally actually the more circle like in appearance: although appear-

ing as needle-like features in echograms, if the aspect ratio of the

image was to be set to 1:1, dagaa schools would in fact appear as

squashed circles with a median length and height of 4.23 and

1.68m, respectively (see Figure 5).

Discussion
We have developed a new automated and standardized method to

classify schools extracted from Lake Victoria echosounder data as

either dagaa or non-dagaa using an RF model. The RF model had

a school classification accuracy of 85.4% as judged against a test

dataset of 9 816 manually classified schools. When used to classify

all detected schools, the RF model picked out schools that resulted

in a total lake-wide biomass of c. 0.71 MT, which was within c. 4%

of the biomass derived from schools classified manually as being

dagaa (0.68 MT): bootstrapped confidence limits for biomasses

arising from manual and RF classification overlapped.

Implications for fish stock management

The dagga biomass estimate reported here of c. 0.7 MT is likely to

be an underestimate for several reasons, such as: (i) since vertical

echosounders are used to collect the data, and because dagaa are

known to occupy shallow depths, some of the signal will be lost

in the acoustic near-field (approximately the top 1.85m for the

120 kHz transducer presently used); (ii) a component of the fish

population may respond to the vessel (most likely avoiding, but

possibly being attracted) (Brehmer et al., 2019); and (iii) dagaa

schools observed at present survey settings are relatively narrow

(just a few pings in length) and it is possible that some particu-

larly narrow schools (<1m in length in some dimension) are not

detected because the distance along survey track between consec-

utive pings, from beam edge to beam edge, is >school length.

Although conservative, the biomass is determined by what will be

a reproducible method that will be able to deliver an internally

consistent relative index of variability over the years that will be

valuable for management under the precautionary approach

(Francis, 1996). Suggestions for progressing towards absolute

dagaa stock estimation are given below, and include the use of

multibeam sonar to sample the near surface.

Method performance

The RF classifier provides a robust and consistent means of dagaa

school classification that, assuming software capable of perform-

ing school extraction is available, is both time- and cost-effective:

the RF approach can achieve in minutes a classification task that,

for the November 2015 survey (classifying manually 120 181

schools), took c. 100 person hours. The RF method will enable re-

peatable estimates of dagaa stock biomass to be calculated (esti-

mates that would not be subject to any potential expert operator

bias) and make this component of the stock assessment process

resilient to the loss of expertise that might arise due to changes in

personnel. Assuming stability in school morphology over time

(and there is evidence from stocks of other pelagic species that

this is likely; Cox et al., 2011; Brierley and Cox, 2015), the RF

method will enable the reanalysis of historic data (there are �20
pre 2015 surveys), and future surveys (surveys are accumulating

at �2 per year presently) in an equivalent manner to produce ro-

bust and consistent time series.

One of the strengths of the RF classifier is that it uses actual

length/widths/echo energies of schools to identify them, rather

than relying on a visual interpretation of a feature the appearance

of which will be influenced by vessel speed, ping rate, colour scale,

feature depth, and echosounder beam angle (see Diner, 2001). In

recognition of these potential impediments to successful and reli-

able visual classification, the RF model was built using only

schools detected at usual survey speeds (8–10 knots), so avoiding

the distortion in school appearance at the extremes of vessel

speed that we believe is at the root of the differences in numbers

of schools classified as dagaa/non-dagaa by RF and manual meth-

ods. In future studies relying on visual identification to test AI

approaches, prior to visual scrutiny, echosounder data should be

resampled in distance such that ping width is constant and con-

sistent with typical survey settings. Changes in school width with

depth (as the acoustic beam widens) should also be accounted for

(Diner, 2001).

Potential for future development

Vertically orientated echosounders commonly used in fish stock

assessment (Fernandes et al., 2002; Simmonds and MacLennan,

2005) have very narrow beam widths at short range (at 10m

range, the acoustic beam of the 120 kHz echosounder used in this

study has a width of c. 1.2m) and so offer a limited window of

observation on species that inhabit the near surface.

Consequently, the pelagic trawl used to fish near-surface dagaa

schools in this study (Table 2 and Figure 3) would likely have en-

countered many schools that were not detected acoustically.

Near-field effects also mean that echo returns from close to the

transducer (c. 1.85m in the case of the 120 kHz transducer used

here) are not quantitatively reliable, such that typical surveys are

effectively blind to the top few metres, potentially missing bio-

mass. Use of multibeam sonar, instruments that typically sample

a fan of acoustic beams spanning up to 180� beneath the vessel,

or horizontally oriented echosounders, can open a window on

the near surface (Gerlotto et al., 1999; Paramo et al., 2010).

Multibeam has been used to make 3D measurements of fish

schools at or close to the surface, and has also delivered valuable
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3



data on the scale of avoidance by schools of research vessels

(Gerlotto et al., 2004). Incorporating multibeam instrumentation

into Lake Victoria fish stock assessment surveys would effectively

increase the volume of the lake sampled, provide valuable infor-

mation with regard to school morphology, lead to more school

detections for a given area (which could be readily integrated into

the RF model) and hence reduce uncertainty in fish stock biomass

estimates.

The RF model was trained and tested using data collected dur-

ing a single survey (it was impractical to try to manually classify

schools from more than one survey given available resources),

but a future objective is to apply the RF classifier to the full range

of available survey data (1997–present). We will need then to be

wary of the potential for seasonal and/or annual changes in

school characteristics. Lake Victoria shows strong seasonal physi-

cal change between fully mixed in the rainy season and stratified

in the dry season. Deeper waters can become oxygen depleted in

stratified times (Njiru et al., 2012), and this may serve to verti-

cally restrict dagaa habitat. Vertical habitat compression has been

reported in the seas off Peru when the oxycline shallows

(Bertrand et al., 2008). Year-to-year variability in school structure

may be less important: work on a variety of species over years

spanning strong fluctuations in stock biomass has suggested that

school shape does not vary significantly, but rather that it is the

number of schools that varies with fluctuations in stock biomass

(Brierley and Cox, 2015).

Between 2005 and 2014, total Lake Victoria fish stock biomass

(including dagaa, Nile Perch, haplochromine cichlid species and

others) has, on the basis of echosounder data analysis, appeared

to be stable at c. 2.5 MT (Taabu-Munyaho et al., 2016): the bio-

masses of Nile Perch and dagaa have both appeared to fluctuate

from year to year, but in opposite directions. It is questionable

how this apparent total biomass invariability can be ecologically

possible given the greatly varying sizes, trophic levels, and ages-

at-maturity of dagaa and Nile Perch. How much of this apparent

zero-sum game is an artefact of fish not obeying the “top third”

rule remains to be determined and will be the subject of an inves-

tigation that the repeatable RF classifier developed here will

enable.

The next step will be to recalculate the time series of dagaa bio-

mass from school information extracted from 20 years’ worth of

acoustic survey data. This will be achieved by (i) pre-processing

of the historic acoustic survey data (e.g. filtering noise spikes,

which may resemble dagaa schools) and collating calibration

results; (ii) building a new training dataset, composed of schools

manually classified in different seasons and years, to study tempo-

ral changes in dagaa distribution, and investigate the validity of

the “top third” method and drift in RF model parameters across

the time series; (iii) applying geostatistical and or maximum en-

tropy methods (Petitgas, 2001; Brierley et al., 2003) to map dagaa

echo intensity; and (iv) converting echo intensity to biomass us-

ing the latest measurements of dagaa TS and length–weight rela-

tionships derived from catch data. The new Lake Victoria dagaa

biomass time series will enable any emerging interannual fluctua-

tions in biomass to be considered in light of annual catches and

environmental variability.

Concluding remarks
The work reported here is a first step in moving Lake Victoria

fisheries data analysis towards a fully automated processing chain

built on machine learning and AI methods. Due to the automated

nature of these methods, time-series reanalysis will no longer be

impractical and a severe drain on resources, but will be achievable

rapidly with minimal manual effort. This will pave the way for a

spectrum of studies on spatial and temporal variability in species

distributions and progress along the road to ecosystem-based

management of Lake Victoria fisheries, and to underpinning sus-

tainable economy and food security in East Africa (Kolding et al.,

2019).
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Acoustic target classification is the process of assigning observed acoustic backscattering intensity to an acoustic category. A deep learning

strategy for acoustic target classification using a convolutional network is developed, consisting of an encoder and a decoder, which allow the

network to use pixel information and more abstract features. The network can learn features directly from data, and the learned feature space

may include both frequency response and school morphology. We tested the method on multifrequency data collected between 2007 and

2018 during the Norwegian sandeel survey. The network was able to distinguish between sandeel schools, schools of other species, and

background pixels (including seabed) in new survey data with an F1 score of 0.87 when tested against manually labelled schools. The network

separated schools of sandeel and schools of other species with an F1 score of 0.94. A traditional school classification algorithm obtained sub-

stantially lower F1 scores (0.77 and 0.82) when tested against the manually labelled schools. To train the network, it was necessary to develop

sampling and preprocessing strategies to account for unbalanced classes, inaccurate annotations, and biases in the training data. This is a step

towards a method to be applied across a range of acoustic trawl surveys.

Keywords: acoustic classification, big data, deep learning, machine learning, sandeel

Introduction
Acoustic trawl surveys (Simmonds and MacLennan, 2005) are

commonly used in fisheries assessments to provide data that

support advice on total allowable catches for a wide range of fish

stocks. Echosounders are instruments that produce soundwaves

and record the intensity of backscattered soundwaves produced

by targets in the water column. Echosounder observations are cal-

ibrated (Foote et al., 1987) and can be integrated over specific

depth ranges to calculate the area-backscattering coefficient (the

average backscattering intensity per metre square; Maclennan

et al., 2002). The area-backscattering coefficient is linearly

related to fish abundance (Foote, 1983) for a given representative

target strength (Ona, 2003), and under the assumption that the

backscattering intensity can be correctly assigned to a species or a

group of species. The categorization of species into groups is

aided by trawl samples of the fish, which are used to estimate the

age and length distributions of fish populations. This method is

typically used for pelagic or semi-pelagic species, such as walleye

pollock (Karp and Walters, 1994), herring, blue whiting

(Gastauer et al., 2016), capelin (Gjøsæter et al., 2015), and sandeel

(Johnsen et al., 2009).

The process of assigning values of acoustic backscattering

intensity to an acoustic category or group is typically a manual

operation. An operator, based on information discerned from

trawl catches, multifrequency echosounder observations, and any

other auxiliary information, assigns values of acoustic backscat-

tering intensity to an acoustic category, which can represent a

species or a group of species. The process is typically time-

VC International Council for the Exploration of the Sea 2020. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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consuming and often incurs operator-based biases (Simmonds

and MacLennan, 2005). To reduce bias and increase efficiency,

several features ascertained from the acoustic observations have

been used to aid, automate, or partially automate the process

(Korneliussen, 2018). In addition to trawl sampling, features

such as the location and position, environmental variables, and

acoustically derived morphometric and energy features may also

have discriminatory power (e.g. Horne, 2000; Reid, 2000). The

main feature used in species classification is the relative frequency

response, i.e. the fraction of backscattering intensity observed at

one frequency relative to a reference frequency, typically 38 kHz

(Kloser et al., 2002; Korneliussen and Ona, 2003). Based on these

features, different methods have been used to classify values of

backscattering intensity, including Bayesian methods

(Korneliussen et al., 2016), semi-supervised methods (Woillez

et al., 2012), and machine learning methods including random

forest (Proud et al., 2020; Fallon et al., 2016) and artificial neural

networks (Haralabous and Georgakarakos, 1996).

The current methods require that the feature space used for

the classification is predefined, e.g. averaging the relative fre-

quency response over a suitable number of pixels or defining the

most efficient morphometric features, but this step is not trivial,

i.e. how much should we smooth and what are the best morpho-

logical shapes? Defining the feature space for broadband fisheries

echosounders (Mukai and Amakasu, 2016), where small-scale

features in the frequency response may have large discriminatory

power, may be even more challenging. A method that combines

the feature extraction with the classification is preferable.

In recent years, deep convolutional neural networks (CNNs)

have emerged as the leading modelling tools for image classifica-

tion, segmentation, and semantic mapping both generally

(Hariharan et al., 2015; Long et al., 2015) and also within marine

science (Malde et al., 2020). CNNs do not require features to be

designed in advance as they can learn the appropriate features

from “raw” data, like images, and they have been shown to be su-

perior in solving problems in computer vision and image analysis

(Russakovsky et al., 2015). A CNN consists of a sequence of oper-

ations, referred to as layers, applied to the input image. The out-

put from one layer is thus the input to the subsequent layer. Each

layer typically consists of a number of separate convolutions with

small filter kernels, followed by some non-linear function, and

may also be combined with other operations. Each filter kernel

consists of a number of coefficients, and using gradient-based

optimization, these filter coefficients are tuned to minimize the

classification error on annotated training data, referred to as

training (Rumelhart et al., 1986). During training, the first layers

will typically learn to recognize edges, lines, and corners, and

the later layers can represent more abstract features. With this

approach, the network can use the raw data directly as opposed

to the traditional approach where the features must be prede-

fined. Training a CNN requires large amounts of training data,

i.e. ground truth data with corresponding annotations.

Image segmentation using CNNs can be carried out using sev-

eral different approaches. One strategy is to train a classifier on

small image patches and then either classify all pixels using a slid-

ing window approach, or more efficiently, by converting the fully

connected layers in the CNN to convolutional layers (Sermanet

et al., 2013), thereby avoiding overlapping computations.

Another approach is pixel-to-pixel semantic mapping using end-

to-end learning (Long et al., 2015). It uses a fully convolutional

network (FCN), consisting of an encoder and a decoder, where

the encoder maps the image to a low-resolution representation

and the decoder provides a mapping from the low-resolution

representation to the pixel-wise representation. An FCN has the

advantage that the input size can vary since the convolutions

“slide” over the data set, as opposed to networks that have fully

connected layers requiring a fixed input size. A popular network

architecture for semantic mapping is the U-Net (Ronneberger

et al., 2015), characterized by skip connections between the corre-

sponding encoder and decoder layers.

The objectives of this article are to (i) develop a deep learning

strategy that is suitable for segmenting and classifying

echosounder data collected during acoustic trawl surveys without

prior feature extraction; (ii) demonstrate that the strategy devel-

oped in (i) works on a real test case, and (iii) provide perspec-

tives, e.g. pros and cons, on the use of deep learning algorithms

in the classification of acoustic observations into acoustic catego-

ries (e.g. species groups).

Material and methods
The sandeel survey

Data collected during the Norwegian North Sea Sandeel survey

were used as test case for this study (ICES, 2016). The lesser san-

deel (Ammodytes marinus), hereafter sandeel, is a small fish that

does not have a swim bladder. For large parts of its life the san-

deel hides by burrowing in sandy seabed, where the proportion of

fine silt and clay particles is low (Macer, 1966; Wright et al.,

2000). During the feeding season in spring, adults that have bur-

rowed into the sandy substrate at night emerge at dawn

(Winslade, 1974) to form large schools in the upper pelagic zone

and predate on zooplankton (Freeman et al., 2004; Johnsen et al.,

2017). The sandeel is a key species in the North Sea ecosystem,

being a major prey species for several predators, including sea

birds, seals, and larger fish (Furness, 2002), and is also a valuable

target for commercial fishing.

The Institute of Marine Research, Norway, has been conduct-

ing acoustic trawl surveys for sandeel during April and May since

2005 in the sandeel areas of the north eastern part of the North

Sea (Johnsen et al., 2017). The survey series (2005–2018) was con-

ducted using the RV Johan Hjorth (2005–2008, 2010–2011), RV

GO Sars (2009), FV Brennholm (2012), and FV Eros (2013–

2018). All vessels were equipped with multifrequency Simrad

EK60 echosounder systems operating transducers at 18, 38, 120,

and 200 kHz, except for the FV Brennholm (2012) that was with-

out a 120-kHz EK60 echosounder but collected 120 kHz using a

Simrad ME70 sonar (Trenkel et al., 2008). In addition, the RV

GO Sars and FV Eros (from 2014) were equipped with a 70- and

333-kHz echosounder. The echosounders were calibrated in

accordance with standard procedures before each survey (Foote

et al., 1987). During operation, the pulse duration and ping repe-

tition frequency were set to 1.024ms and 3–4Hz, respectively, for

all frequencies and vessel speed was kept at approximately ten

knots. Echosounder observations were stored as values of volume

backscattering coefficient (sv; average amount of backscattering

intensity per cubic metre) by frequency (Maclennan et al., 2002).

See Johnsen et al., 2009 for further details.

Data preprocessing

In some instances, the pulse duration (i.e. range resolution) and

ping rate differed from the standard settings. To be consistent,

the data were interpolated into a common time-range grid based

1392 O. Brautaset et al.
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on the resolution of the 200-kHz data. The median ping rate was

used to detect missing pings, and, when missing pings occurred,

columns of zeros (mapped to �75 dB re 1m�1 after log transfor-

mation) were inserted into the sv data. If the range vector of the

other frequencies was of a lower resolution, the data were inter-

polated onto the 200-kHz range vector. If the range vector had a

higher resolution, the sv values were averaged into bins defined by

the 200-kHz range vector. This resulted in sv values in a uniform

time-range grid (Figure 1a–d), similar to pixels in a four-channel

image, and we refer to these values as pixels hereafter. The seabed

was approximately located as the depth with maximum increase

in vertical gradient for each ping. This was used for balanced

sampling (see below) and to avoid false predictions.

The survey series uses “sandeel”, “other”, “0-group sandeel”,

and “possible sandeel” as acoustic categories, denoted “classes”

hereafter, that were manually annotated by the same operator

across all years. The annotations were interpolated into a pixel

map corresponding to the echosounder data, and each pixel was

allocated to one class. The acoustic classes “other” and “sandeel”

have been used for all years, and the “sandeel” class is the only

class used in official survey estimates. In addition, “possible

sandeel” was introduced for schools where the frequency response

was not consistent with sandeel but where the operator was in

doubt and, for the 2016 survey, the “0-group sandeel” was intro-

duced due to an extraordinary high density of juveniles. Each

school varied from a few metres in length and height to >1 km in

length extending across large parts of the water column (Johnsen

et al., 2017). The 200-kHz data were used as the primary fre-

quency during annotation since it has the highest sandeel signal-

to-noise ratio, and each school was annotated and classified by

acoustic category using the Large Scale Survey System (LSSS)

postprocessing software (Korneliussen et al., 2016). The manual

annotations were mainly based on the frequency response of each

school (see Johnsen et al., 2009) and validated by trawl samples

where applicable. The “0-group sandeel” and “possible sandeel”

classes were added to an “ignore” pseudo class, and all other

pixels not associated with a class were set to “background”. This

resulted in pixel-based annotations with classes “sandeel”,

“other”, “background”, and “ignore” (Figure 1e). Note that the

bottom echo is included in the “background” class. Table 1 shows

the total number of schools for each class.

The purpose of the annotations is to estimate sandeel abun-

dance, which is calculated by summing up the 200-kHz backscat-

tering intensity (Figures 1d and 2a) of the sandeels over a given

region and dividing by their mean target strength. Heave meas-

urements of the survey vessel were used to correct the echogram

data and annotations. However, all figures are presented without

heave corrections. The annotations were often coded as rectangu-

lar bounding boxes (when viewed with heave corrections;

Figure 2b), and a portion of the bounding box would, conse-

quently, include background pixels. This does not substantially

affect the abundance estimate since adding low-value pixels does

not substantially contribute to the total integrated backscattering

intensity, but it may confuse a pixel-based classifier trying to

Figure 1. Echogram with four frequency channels (a–d, 18, 38, 120 and 200 kHz) and original (e) and modified (f) annotations, where black is
the “background” class, red (grey in print) is the “sandeel” class, green (dark grey in print) is the “other” class, and yellow (light grey in print) is
the “ignore” pseudo class, the predictions from the benchmark method (g), and the predictions from our method (h). Here, black and red
(grey in print) are the background/other and sandeel classes, respectively. The seabed is shown as a white curve in all panels.
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predict the “background” class. To amend this problem, we mod-

ified the original annotations based on the sv values. Any pixel an-

notated as “sandeel” or “other” with a corresponding 200-kHz sv
value outside the interval [10�7 m�1, 10�4 m�1] was assigned to

the “ignore” pseudo class (Figure 2). We set the threshold values

based on a visual inspection of multiple echograms. We further

smoothed the fish annotated pixel regions by applying binary

morphological closing to the modified “sandeel” and “other” anno-

tations, using a 7� 7 disk-shaped structure element (Figure 2c).

Training data

For each survey, the acoustic data were comprised of a single con-

tinuous echogram for each frequency, but for training purposes,

we divided each dataset into 4 � 256 � 256 pixels crops, where

4 is the number of frequencies. We also applied a decibel trans-

form to the sv values and applied a hard threshold to values

below �75 dB re 1m�1 and above 0 dB re 1m�1. Each annotated

echogram also possessed a heavy class imbalance; there were

many more “background” pixels (99.8%) than “sandeel” (0.1%)

and “other” pixels (0.1%). To expose the network to enough

samples with fish schools when training, we first created an algo-

rithm to get crops that were composed entirely of background

pixels and similarly for crops that included “sandeel” and “other”

pixels, respectively. We then balanced the dataset by applying an

equal sampling probability to crops containing seabed only,

“sandeel”, “other”, seabed and “sandeel”, and seabed and “other”

(see Table 2). All these crop types include the “background” class,

but, in addition, we randomly sampled a smaller fraction of crops

that had “background” pixels only (see Table 2). In addition,

most of the sandeel schools resided close to the seabed and the

balanced sampling during training mitigated the network from

classifying all schools close to the seabed as sandeel, or worse,

classifying the bottom itself as sandeel.

We partitioned the dataset into a training and validation data-

set and a test dataset by different years, where 2011–2016 was

used for training and validation and 2007–2010 combined with

2017–2018 was used for testing. From the training and validation

set, we used 85% randomly drawn echograms for training and

the remaining 15% for validation to select the best model.

Among the test sets, the final year (2018) was unseen until the

final evaluation.

Deep learning model and training

In this study, we built a classifier that was based on a slightly

modified version of the U-Net architecture (Ronneberger et al.,

2015). The U-Net is a pixel-wise image segmentation network

with a convolutional encoder–decoder architecture (Figure 3 and

Supplementary Tables S1 and S2), originally developed for the

segmentation of medical images. An encoder–decoder architec-

ture can represent both pixel-wise and abstract features simulta-

neously. Our modified U-Net takes four frequency channels, 18,

38, 120, and 200 kHz, and a 256 � 256 range-time subset of

the echogram as the input (4 � 256 � 256), and “encode” it to a

Table 1. Number of schools annotated as “sandeel”, “other”, and

“ignore” per year in the final dataset.

Year Sandeel schools Other schools Ignored schools

2007 453 605 0

2008 1 664 4 378 0

2009 699 2 755 30

2010 3 206 2 560 542

2011 623 1 685 177

2013 2 015 5 133 527

2014 1 121 6 113 549

2015 1 515 4 866 523

2016 829 4 423 2 130

2017 3 602 2 362 755

2018 4 678 1 917 255

Total 20 405 36 797 5 488

Figure 2. (a) Small patch from an echogram (200-kHz channel)
with (b) original and (c) modified annotations. Modified
annotations were obtained from original annotations using
thresholds on the 200-kHz channel followed by morphological
closing. The classes “background”, “sandeel”, and “ignore” are
presented in black, red, and yellow (black, grey, and light grey in
print), respectively. Axes are similar to Figure 1, where the vertical
and horizontal axes represent depth and time, respectively.

Table 2. Sampling strategy for drawing random 4 � 256 � 256

crops for training.

Classes Probability Description

Background 1/26 Random crop from area without fish,

above the seabed

Seabed 5/26 Random crop from area containing

seabed

Sandeel 5/26 Random crop from area containing

“sandeel” class

Other 5/26 Random crop from area containing

“other” class

Seabed þ sandeel 5/26 Random crop from area containing

both seabed and “sandeel” classes

Seabed þ other 5/26 Random crop from area containing

both seabed and “other” classes

We divided regions of the echograms into these six classes and drew random

samples from each class with the given probabilities.

1394 O. Brautaset et al.
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16 � 16 “image” with 1024 abstract features (16 � 16 � 1024).

The decoder then takes these features and generates (decode) an

output for the classes “background”, “other”, and “sandeel” (3 �
256 � 256) for each of the input pixels. The architecture also

copies the lower level features at each step when decoding, result-

ing in the decoder to both have access to low-level features (e.g.

the frequency response in a small region) and more abstract fea-

tures (e.g. like the overall shape). Finally, the output is passed

through a “softmax” function where each of the three output

classes is mapped to the interval [0, 1] and add up to 1, like a

probability for each class for each pixel. Contrary to the original

implementation, we inserted a batch normalization layer (Ioffe

and Szegedy, 2015) between each convolutional layer and its sub-

sequent activation function to reduce covariate shift, i.e. normal-

izing the distribution of outputs from each convolutional layer.

We trained the model over 5000 iterations using batches of 16

random 4 � 256 � 256 crops. We used random uniform weight

initialization and optimized with stochastic gradient descent with

initial learning rate 0.01 and momentum 0.95. The learning rate

controls how much the model parameters can change in each

training iteration, while the momentum controls how much a

training sample will influence the change of model parameters in

the subsequent iterations. The learning rate was reduced by a fac-

tor of 0.5 every 1000 iterations. The model was evaluated on the

validation set every 20th iteration. Due to the class imbalance, we

used a weighted cross entropy loss with class weights (background

¼ 1, sandeel ¼ 30, and other ¼ 25) to further adjust for imbal-

anced classes, giving less weight to each background pixel to

compensate for this class being more frequently observed. We

randomly flipped the training crops about the vertical axis and

added random multiplicative noise to a random 5% of the pixels.

The hyperparameters were set by training the model multiple

times, each time with a different combination of hyperpara-

meters. We observed the impact on classification accuracies on

the training and validation set for different combinations and

fine-tuned the hyperparameters further based on the combination

that gave the best initial results.

Since the network is based on convolutions only, the input

image can be of any size during prediction and does not have

to resemble the 4 � 256 � 256 crops used for training. When

using the network for prediction, we applied it to tiled seg-

ments (corresponding to the echosounder raw files) of the full

survey echograms, including an overlap between segments of

40 pixels to avoid edge effects. As a postprocessing step, we

also removed any predictions of fish more than ten pixels be-

low the seabed.

Due to the heavy class imbalance, we used precision/recall

curves rather than receiver operating characteristic curves to eval-

uate the performance. The network is considered a binary pixel

classifier (positive/negative) by fixing a threshold value between 0

and 1, classifying a pixel as positive if the network output for the

“sandeel” class is above this threshold value and negative other-

wise. Using “sandeel” as the positive class, the precision is the

proportion of predicted “sandeel” pixels that are correct, and the

recall is the fraction of “sandeel” labels that are correctly predicted

as “sandeel”. By predicting all pixels as “sandeel”, recall would be

Figure 3. The network architecture, a slightly modified version of the original U-Net. The input is the 4 � 256 � 256 crops, and the 3 � 256
� 256 output is the softmax for each pixel by class (“sandeel”, “other”, and “background”).
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1, but precision would be low, and conversely, by correctly pre-

dicting one pixel as sandeel, precision would be 1, but recall

would be low. Varying the threshold value results in different pre-

cision and recall values, where the recall may increase at the cost

of lowering the precision. For a good classification, both precision

and recall should be high and the F1 score at a given threshold

value, defined as

F1 ¼
precision�1 þ recall�1

2

� ��1

;

is typically used to test a methods performance. In our case, we

only report the maximized F1 score, i.e. choosing the threshold

value that gives the highest F1 score.

When evaluating the performance, we used two slightly differ-

ent approaches when calculating the precision/recall curves for

the background class. The first approach classifies echograms us-

ing all the echogram pixels, whereas the other approach evaluated

echogram regions that were within 20 pixels of any original

school annotation (c.f. Figure 4). The rationale behind using

these two approaches was that we suspected that a proportion of

schools was not classified during annotation, and therefore, com-

paring “sandeel” predictions to annotations for entire echograms

may result in a high number of erroneous false positives. This

would again yield poor precision/recall curves and not reflect the

actual performance of the model.

When calculating the precision/recall curves, we used different

combinations of classes as positives and negatives, i.e. “sandeel”

as positive vs. “other” as negative to test the ability to separate

species given a school is detected and “sandeel” vs. “other” and

“background” to test the overall ability to detect sandeel schools,

which is the purpose of the survey. Predictions of the “ignore”

pseudo class were not considered when calculating the curves (c.f.

Figure 4).

Evaluation

To test our approach against a traditional automated processing

pipeline, we used the Sandeel case in Korneliussen et al. (2016) as

a benchmark. This was implemented as a Korona processing

pipeline in LSSS and consisted of a range of operations, including

noise filtering (spike noise, spot noise) smoothing, bottom detec-

tion, thresholding, school detection, and categorization. We used

the exact same setup and parameters as used by Korneliussen

et al. (2016). The categorization was exported to a file and

imported and treated similarly as the predictions from the U-Net

algorithm, except that the threshold for accepting a pixel as san-

deel was fixed, resulting in one point in the prediction recall plot

as opposed to the curves from our method. The testing was only

performed in the years that we used as test cases, i.e. our network

had never seen the data where we compare the methods.

Results
We trained and validated the model using echograms derived

from 2011 to 2016 survey data and tested the trained model using

echograms derived from 2007 to 2010 and 2017 to 2018 survey

data. Figure 1h shows an example of classification based on

model predictions for a four-channel echogram. In this example,

the trained network successfully separated the sandeel schools

from other types of fish and the background class. Figure 1g

shows the corresponding classification based on the benchmark

method.

The network’s ability to discriminate “sandeel” (positive) vs.

“background” and “other” (negative) is good (F1 score 0.87,

Figure 5) when excluding background pixels that are at a distance

of 20 pixels or more from the school annotations. In this case, a

total number of 170 million pixels were evaluated (positives and

negatives) and the annotations consisted of 90% “background”,

6% “sandeel”, and 4% “other” (Supplementary Table S3). This

resulted in an overall F1 score of 0.87 for the overall test set across

Figure 4. Illustration of evaluated pixels for computing precision/recall curves. (a) The 200-kHz echogram, (b) modified annotations where
yellow pixels (light grey in print) are the ignore pseudo class, while in this example, “sandeel” (red, grey in print) is treated as positive and
“other” (green, dark grey in print) and “background” (black) are regarded as negatives when calculating the precision/recall curves. (c) The
predictions of the “sandeel” class where a high softmax is shown as bright red and a low softmax is shown as dark red (grayscale in print).
Axes are similar to Figure 1, where the vertical and horizontal axes represent depth and time, respectively.
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years, with a corresponding threshold, precision, and recall of

0.80, 0.85 and 0.89, respectively. For the training and validation

set, the years 2013, 2015, and 2016 did not perform as well when

compared to the other years, and for the test set, the years 2007

and 2008 did not perform as well as the other years. The bench-

mark method achieved an overall F1 score of 0.77 for the overall

test set across years, with a corresponding precision and recall of

0.80 and 0.74, respectively (Figure 5).

We also tested the network’s ability to discriminate between

“sandeel” (positive) and “other” (negative) while excluding both

“background” and the pseudo-class “ignore”, i.e. the ability to

determine the species given that a school is detected. In this case,

a total number of 18 million pixels were evaluated (positives and

negatives) and the annotation consisted of 0% background, 57%

“sandeel”, and 43% “other”. Our model’s separation of sandeel

vs. other species obtained an overall F1 score of 0.94 for the test

set. The corresponding threshold, precision, and recall were 0.50,

0.93, and 0.95, respectively. The test set results by year were also

more consistent than the previous case (including background

pixels), with the exception of 2007 and 2008, indicating that the

network is well suited to differentiate between species

(Supplementary Figure S1). The benchmark method achieved an

overall F1 score of 0.82 for the test set, with a corresponding pre-

cision and recall of 0.91 and 0.74, respectively (Supplementary

Figure S1).

Our model did not perform as well when tested using entire

echograms as input (Supplementary Figure S2). The performance

on the test set for the years 2017 and 2018 was satisfactory

(F1 score 0.61 and 0.78, respectively) but was substantially poorer

for earlier years 2007–2010 (F1 score 0.11, 0.51, 0.78, and 0.68,

respectively). The benchmark method achieved even lower F1

scores, both for the years 2017 and 2018 (0.32 and 0.62, respec-

tively) and for the years 2007–2010 (0.03, 0.07, 0.42 and 0.50, re-

spectively; Supplementary Figure S2). When looking into these

specific results in more detail, we found two main reasons for the

discrepancies, including missing annotations, incomplete annota-

tions, and erroneous predictions close to the sea surface.

Missing annotations were found in several echograms, and an

example of this is provided in Figure 6c, where the entire right-

hand side of the echogram does not contain any annotations of

fish. On closer inspection of the 200-kHz echogram (Figure 6a),

clear fish marks were not annotated. In these circumstances,

Figure 5. Precision/recall curves per year, where “sandeel” (positive) is compared to “other” and “background” (negatives) in a 20-pixel region
extending beyond the original school annotations. The remaining pixels annotated as “background” or “ignore” were excluded. The red and
blue curves (dark grey and light grey in print) denote the training data (years 2011–2016) and test data (years 2007–2010 and 2017–2018),
respectively. Each diamond denotes the corresponding precision/recall value for the benchmark method (evaluated on test data years only).
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positive predictions made by the model will be penalized when

calculating the precision/recall curves. This illustrates a common

problem encountered in the data, where image data are recorded

with an abrupt absence of annotations (the remaining part of the

echogram is annotated as “background”), c.f. the discussion for a

possible explanation.

In some cases, the model makes false-positive predictions for

“sandeel”. This is a common problem near the surface, where the

model often classifies high sv values, which could be caused by

dense plankton layers, as “sandeel”. This class is annotated as

“background” during training, but since we did not balance the

training dataset for this case, as we did for the bottom, the model

was not exposed to these “background” layers. The model has,

consequently, not learned to annotate it as “background” and

occasionally erroneously classifies them as “sandeel” instead.

Discussion
The objectives of this article were to define, train, and apply a

deep CNN model that performs automatic classification of la-

belled multifrequency echosounder data and discuss how deep

CNNs may be utilized for acoustic data. One of the main

strengths of this model is that it does not require prior feature ex-

traction steps, as it works directly on the output from the

echosounder. These learned features may be both energetic and

morphometric (Reid, 2000; Korneliussen, 2018), and there is no

need to specify the features explicitly or to what degree one or the

other should be used. The method also avoids any pixel averaging

by school or region before applying the classifier, as the method

works on high-resolution data. As with all neural networks,

model interpretation is difficult. In its current design, the CNN

does not provide information relating to feature importance,

making it less transparent when compared to conventional meth-

ods (e.g. random forest) that work using hand-crafted features.

The manual annotations from survey data may be uncertain,

and the uncertainty is not explicitly coded within the data. When

using predefined features, the number of parameters in the classi-

fication model is typically lower than what is needed for CNNs.

In those cases, it has been recommended to use a high-quality

training set where classifications are certain (Korneliussen et al.,

2016). Training a CNN requires a large amount of training data,

and utilization of the full set of annotations from the survey may

be needed. This has the drawback that low-quality annotation

data may be used in training and validation but has the advantage

that the data span the full variability across the survey. To some

extent, we worked around this by adding the “possible sandeel”

class to the “ignore” pseudo class. We recommend that future

implementations use a combination of the above and assign a

larger weight to annotations that have high certainty, e.g. those

from a feature library (Korneliussen et al., 2016), or allocate them

to the test set only.

Using non-standard image data with annotations not made

specifically for machine learning is a challenge. The annotations

from the survey were designed for integrating sandeel backscat-

tering intensity values, and assigning low sv values to the sandeel

class does not substantially contribute to the integrated sandeel

backscatter. Consequently, using square bounding boxes that in-

clude background pixels does not substantially affect the inte-

grated backscatter and is more efficient during manual

annotation than drawing the school outlines. This represented a

challenge in this study as the objective was to separate sandeel

and background classes, and hence, refining the annotations was

necessary. The modified annotations were important in making

the method work. Modification of manually annotated acoustic

observations may be a necessary step when using annotations to

build automatic classification models such as CNNs.

Addressing the class imbalance by exposing the network to bal-

anced mini batches of the data that contained all classes was nec-

essary. The “other” and “sandeel” classes could be balanced, since

they were annotated, but balancing the “background” class

was more challenging. This class was a combination of seabed,

plankton layers, empty water, and any other unknown scatterers.

For the seabed, we solved this by balancing the training set with

respect to crops close to seabed (since we had the bottom approx-

imately detected), but we did not balance this for the unlabelled

surface layer. This layer is most likely composed of near-surface

phytoplankton blooms, specifically high densities of the gas

Figure 6. (a and b) The 200-kHz echograms. (c and d) Modified “sandeel” annotations in red (grey in print), the “ignore” pseudo class in
yellow (light grey in print), and the “background” class in black. (e and f) Prediction of the “sandeel” class. (a, c, and e) Echogram with the
absence of fish annotations in the right-hand side of the image. (b, d, and f) Echogram with false-positive predictions of sandeel close to the
surface, possibly due to a zooplankton layer that the network is not trained to recognize. Axes are similar to Figure 1, where the vertical and
horizontal axes represent depth and time, respectively.
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producing Phaeocystis, which produce high levels of acoustic

backscattering intensity at 18 and 38 kHz. Since there is some

overlap in the backscattering intensity of the surface plankton

layer and of sandeel schools, the network would occasionally mis-

classify the “background” class as “sandeel”. A possible solution

to this problem could have been to have implemented an unsu-

pervised segmentation of the background class and then balance

the training dataset based on the resulting classes. Consequently,

addressing class imbalance is important for the actual classes in

the data, not only for those that are annotated, and represents a

general challenge when implementing supervised methods on

acoustic data.

Processing the whole survey time series using the same auto-

mated algorithm is more efficient, consistent, and cost-effective

than processing the data manually. We deliberately separated the

training and test dataset by years to see if the network could gen-

eralize across years. The results showed that the performance

changed by year, but this was not necessarily explained by the

training and test datasets (Figure 5 and Supplementary Figure

S2). The annotation issues noted above could account for parts of

the discrepancies, but there were also other features that may

have caused the network to perform differently across years. The

annotation of sandeel schools is easier for large schools (due to

more stable frequency responses and higher signal to noise), and

school size tends to increase with high sandeel abundance

(Johnsen et al., 2017). In years with low sandeel abundance, a

higher proportion of small schools cause a more uncertain cate-

gorization. Furthermore, weather condition may affect the

schooling behaviour, which affects sandeel school detection.

When reviewing model performance by year, especially when

including all background pixels (Supplementary Figure S2), some

of the discrepancies may have arisen due to erroneous annota-

tion. For survey years up to 2008, the labelling tool was under de-

velopment and labelling was less efficient, and typically square

annotation boxes were used. A bug in the annotation software

was discovered in 2013 that led to incorrect storing of the annota-

tion information (but not the exported backscattering intensity

values). This may explain the improvement in performance in

later years. For 2015, the weather conditions were rough, which

led to underestimated biomass as stated in the 2015–2017 survey

reports. For 2016, the “0-group sandeel” class was introduced due

to large amounts of juveniles, which indicates a change in the sys-

tem that may cause the model to perform differently, or alterna-

tively, caused the labelling to be more challenging. From this

perspective, reviewing the performance of the model across years

is an efficient tool to identify any potential biases in the data se-

ries, but these considerations also apply to our benchmark.

There are several future directions in which we would like to

take this. Further improvements of the model could be to include

net sampling data and depth as separate inputs, where net sam-

ples could provide additional species information, and due to the

conical shape of the echosounder beam, range could be used to

compensate for range effects (e.g. that schools at short range look

different at longer ranges). We would also want to include the

uncertainty of the acoustic categorizing to the survey abundance

estimates and, consequently, the fisheries advice when fully auto-

mating the annotation process. Another particularly interesting

property of CNNs is transfer learning, i.e. that a network can be

initialized from a previously trained network, and when presented

with new data can update its weights. When a network is devel-

oped for sandeel classification, we can apply transfer learning and

adapt the network for different species, ideally across a wide range

of surveys.

We have shown that a CNN can be reliably trained to catego-

rize acoustic multifrequency observations. The main strength of

this method is that the parameters can be learned directly from

the echosounder output using manual labels as training data, i.e.

there is no need to predefine features like frequency response,

school morphology, etc., as the network learns the features di-

rectly from the training data. The method also allows us to code

the tacit “knowledge” of a skilled operator, and it would be inter-

esting to see if the method could be used to replicate different

operators. In conjunction with more traditional, physics-based

methods, this would enable us to study drift in expert judge-

ments, explain annual differences, etc. When the network is

trained on other surveys, we can transfer networks between sur-

veys and look for differences in practices and test the implica-

tions. In our opinion, an end-to-end training approach opens

possibilities not achievable when using conventional methods.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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A new simplex-based simulation approach (Spx) was developed to highlight multidirectional and multi-scale relationships between morpho-

metric variables helping to functionally differentiate biological (fish) groups for better stocks definition and monitoring. Application con-

cerned Merluccius hubbsi sampled in 1968–1972 and 2004 in six Southwestern Atlantic areas. Simulation results highlighted negative trends

opposing front to back compartments indicating competition for body biomass distribution. However, top and bottom parts within these

compartments were positively correlated indicating cooperative processes in favour of target local growth regulation. Positive and negative

trends of growth regulation were also highlighted at lower body scale, notably between smaller components constituting body front compart-

ment. On a geographical scale, average regulation levels of same morphometric variables showed monotonic or alternated variations between

successive fish groups. This highlighted target and modulated growth regulations governing biomass distribution in different body parts by

geographical-dependent ways. Under dynamical aspect (1968–1972 vs. 2004), growth regulation of mouth tended to increase with time lead-

ing to conclude on morphometric responses of M. hubbsi to overfishing pressure. Spx results were confirmed by several traditional approaches

which showed less integrative aspect.

Keywords: Huxley model, mixture design, morphometrics, simplex, simulation, stock identification

Introduction
Growth represents complex process associated with variable dis-

tributions of biomass at several biological scales extending from

individual body to intra- and inter-population balance states.

Growth states and mechanisms serve as key criteria to define

groups with homogeneous vital rates (stock units in fishery man-

agement; Kerr et al., 2017). The questions of identity, assessment,

and monitoring of unit stocks represent classical aims in fishery

management. Complexity of growth system is linked to

multifactorial, multidirectional, and multi-scale regulation trends

between body components (morphometric variables) leading to

specific aspects of different biological groups. Multiple aspects of

growth in biological populations are classically approached by

means of several complementary quantitative methods (Cadrin,

2000; Cadrin et al., 2014; Secor, 2014):

Principal component analysis (PCA) is unsupervised method

providing correlation charts between variables helping to high-

light different trends associated with different groups (Semmar,

VC International Council for the Exploration of the Sea 2019. All rights reserved.
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2011). Multiple correspondence analysis (MCA) highlights how

different groups are associated with different variation ranges and

ways of discrete variables (Escofier and Pagès, 1991).

Discriminant analysis (DA) is supervised method used to iden-

tify/predict groups from quantitative profiles of measured (mor-

phometric) variables (Seber, 1984). Linear and non-linear

modelling methods provide relational aspects of growth governed

by a limited number of significant variables (Seber, 1984). Body

sizes and weights are generally used to model growth processes by

traditional methods including Huxley and von-Bertalanffy mod-

els (Huxley, 1924, 1932; Weatherley and Gill, 1987; Weatherley,

1990; Saborido-Rey and Kjesbu, 2005).

Alternatively to several decomposition approaches, simulation

methods provide integrative structured information on a studied

population by exploring potentially its overall variability.

Simulation methods helping to treat with multidimensional,

multi-scale, and overlapping/mixing aspects of biological groups

were encouraged in the recent years under the framework of

management evaluation strategy (MES; Kerr et al. 2017).

Integrative aspect can be satisfied by Markov Chain Monte Carlo

sampling methods (Manly, 2007, Panikian et al., 2015). The

current work presents a new simulation approach based on popu-

lation stratification, simplex mixture design, and bootstrap sam-

pling technique. Simplex rule is appropriate for mass distribution

analysis between system constituents and through organization

ways obeying to mass conservation law (Semmar and Roux,

2014). Stratification and bootstrap provided robust sampling

ways for heteroscedasticity treatment and variability integration,

respectively.

The new simulation simplex method (Spx) treats mixing

aspects of biological groups constituting heterogeneous popula-

tion and characterized by variability of morphometric profiles.

In silico differential mixing and averaging of morphometric pro-

files helped to highlight growth regulation trends manifesting

within and between groups. Mixing-based methodology of Spx is

appropriate to treat the natural connections and overlapping as-

pect of biological groups.

Spx allowed fish stock identification, monitoring, and manage-

ment from morphometric variability by responding to key ques-

tions: (i) “how length-expressed biomass was relatively

distributed through different body parts conditionally to different

fish groups considered a priori?” and (ii) “how lengths of differ-

ent body parts can reflect specific growth ways of ecological pop-

ulations in relation to intrinsic and/or external governing

factors?”

Spx was applied on morphometric variables of the Argentine

hake Merluccius hubbsi to analyse growth regulations of different

body parts in fish groups associated with several geographical

areas. Despite the overlapping aspects in natural populations, Spx

was able to extract differentiation mechanisms specific to differ-

ent groups helping for functional stock management.

Merluccius hubbsi Marini 1933 is one of the most important

fishing resources in the Southwestern Atlantic Ocean, east coast

of South America (Lloris et al., 2005). It is a demersal species

continuously distributed from Brazil (21�S) to Argentina (55�S)

in the continental shelf and slope, associated with water temper-

atures up to 23�C. In Brazilian waters (21�–34�S), two stocks (I

and II) were defined (Southeastern, SE: 21�–29�S; Southern, S:

29�–34�S) and differentiated by several parameters including

spawning’s areas and periods, first maturity, growth rate, otolith

ring formation, otolith morphology, and young-of-the-year

development (Vaz-dos-Santos et al., 2009, 2017; Costa et al.,

2018). Nevertheless, there is a southward gradient favouring dy-

namical exchanges between fish populations leading to mixing

aspects of groups with unknown relative levels (Kerr et al.,

2017). This leads to misleading risks that need to be overcome

to avoid bias in stock identification, assessment, and manage-

ment. Spx provided appropriate simulation approach to high-

light how different groups can be functionally distinguished

within their heterogeneous and naturally interconnected whole

biosystem.

Spx was applied on two sampling periods of M. hubbsi (A:

1968–1972 vs. B: 2004). Six geographical sites were concerned (all

in A vs. four in B) and were parts of the two conventional fish

stocks (I and II). Traditional statistical analyses were performed

on the two stocks (I and II) using log-transformed length data.

Results showed limited differentiation between stocks. More inte-

grative information was provided by Spx which used morphomet-

ric variables standardized by their sum (relative levels) to

simulate growth regulation mechanisms governing variability and

differentiation between and within population groups (stock

units). This integrative approach is the first of its kind in fishing

management field and it responds well to the need of MES devel-

opment (Kerr et al., 2017).

Material and methods
Study area

The studied area concerned the Southwestern Atlantic Ocean be-

tween 21� and 34�S: Brazilian coast and its Economic Exclusive

Zone (Figure 1). It included two defined stocks (I and II) associ-

ated with the Southeastern (21�–29�S) and Southern (29�–34�S)

areas, respectively.

In the Southeast region, the cold-water mass “South Atlantic

Central Water” (6�–20�C, 34–36 PSU) occupies the upper slope

during all the year; during the austral spring to summer (October

to March) it also moves to the continental shelf, remaining sub

superficial (Piola et al., 2018). This is the main water mass in

which M. hubbsi lives, although the species is also found in the
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Figure 1. Merluccius hubbsi: sample sites in the two study periods
1968–1972 (A) and 2004 (B). Strata Aj and Bj were considered in Spx
for simulations of growth regulation ways in different fish groups of
periods A, B. I, II, conventionally defined stocks.
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Shelf Water, a mixture of water masses close to the coast. The

South region presents the same pattern, but during the austral au-

tumn to winter (April to September), it experiences intrusions of

the Sub-Antarctic Water (12�–15�C, 33 PSU; Piola et al., 2018).

Two important upwelling areas occur at 23�S (Cape Frio) and

28�400S (Cape of Santa Marta Grande). In this second area, M.

hubbsi does not spawn and juveniles do not occur (Vaz-dos-

Santos and Schwingel, 2015).

Sampling and data acquisition

Merluccius hubbsi was sampled in two periods A (1968–1972) and

B (2004; Figure 1) by reference to the scientific collection of

Zoology Museum of S~ao Paulo University (MZUSP) (A) and

commercial landings (B). The specimens A (231 fishes) were

obtained in bottom-trawl surveys performed in six areas (A1–A6)

between 21� and 36�S along the continental shelf (up to 200m

isobaths; Supplementary material S1). The specimens B (516

fishes) were attained during January to February and July to

August of 2004 from bottom-trawlers operating along the

Brazilian coast (21�–34�S) in four areas (B1–B3, B5) with depths

varying between 40 and 590m (Supplementary material S1). The

specimens were cleaned, fixed in formalin (10%), and stored in

alcohol (70%) for ulterior analysis.

Morphometric data of M. hubbsi concerned 18 body measure-

ments which were attained with a digital calliper (0.05mm preci-

sion; Figure 2; Supplementary material S2; Inada, 1981; Lloris

et al., 2005). The specimens B were measured 2–3 d after sam-

pling, avoiding shrinkage bias.

Traditional data analysis

Traditional computational analysis of growth processes based on

morphometric data involved five steps detailed in Supplementary

material S3 and summarized below (Cadrin, 2000):

(1) Comparison of length frequency distributions between the

two temporal populations A, B using three tests:

Kolmogorov–Smirnov, Scheirer-Ray-Hare (non-parametric

two-way analysis; an extension of Kruskal–Wallis test),

Permutational Multivariate Analysis of Variance

(PERMANOVA) (non-parametric permutation test to im-

prove Multivariate Analysis of Variance (MANOVA);

Supplementary material S3 and S4; Sokal and Rohlf, 1995;

Anderson et al., 2008).

(2) Predictive modelling of the variation of 17 morphometric

variables Y in relation to the total lengths (X) by applying 17

Huxley models (Y ¼ aXb) (Supplementary material S5;

Huxley, 1924, 1932).

(3) Correction of morphometric measures by using calculated

parameter b and standard length L0 (fixed at 210 mm): Y 0

¼ Y (L0/Lt)
b (Lombarte and Lleonart, 1993).

(4) Effect analysis of both fish stock and total length on the 17

morphometric variables by analysis of covariance (ANCOVA)

(Sokal and Rholf, 1995).

(5) Application of DA for fish stocks (I and II) recognition from

multivariate morphometric patterns (Gotelli and Ellison, 2004).

Simplex approach

Preliminary data processing

Spx is initially based on stratification of whole population into

several groups characterized by different relative levels of system

constitutive variables. Principle of Spx refers to mass conservation

law where a whole resource can be distributed by multiple com-

peting ways under unit sum constraint (sum of all distributed

mass parts ¼ 1, 100%) (Cornell, 2002). This conservative princi-

ple can be applied to measured lengths of different body parts, il-

lustrated here by M. hubbsi.

Initially, size effect was removed by relativizing the different

measured lengths by reference to their sum that was associated to

a whole unit representing the perimeter of the covered body

space. Figure 3a and b represents a generic fish with four body

measurements combining front/back and top/bottom with illus-

trative values. Relativization of different body parts by reference

to their perimeter (sum) leads to a morphometric profile with

different segments varying relatively the ones at the expense of

the others (Figure 3b and c). In the current study, two systems of

morphometric variables standardized by their sum were consid-

ered: (i) Pdd2, Lpa, Lbsd, and Lba were considered to cover over-

all body perimeter of M. hubbsi. (ii) At lower morphometric

scale, body front compartment was characterized by five constitu-

tive variables: Lbfd, Lpso, Ed, Lpo, and Lppv (Figure 2).

Spx initially required population stratification into q groups

representing q modalities or levels of a growth-influencing factor

(Figure 3c). The effects of such a factor on growth are highlighted

by smoothing group-dependent relationships between morpho-

metric variables (Figure 3i). In this study, fish population was

stratified by considering geographical sites and periods. This

helped to analyse flexibility and stability of fish developments un-

der spatial–temporal aspect. Initially, fish population was strati-

fied into q¼ 6 and 4 groups sampled in periods A (A1–A6) and B

(B1–B3, B5), respectively (Figure 1; Supplementary material S1).

Two Spx were applied on A and B datasets, respectively.

Simulation methodological steps

Growth regulation processes governing length variation of body

parts within and between q fish groups were simulated by Spx using

a complete set of N combinations between groups (Figure 3e). The

N combinations are given by a mixture design (Scheffé’s matrix)

containing N rows and q columns (Scheff-, 1958, 1963; Cornell,

2002, 2011). Each row s is associated with a specific mixture
Figure 2. Merluccius hubbsi: body measurements for morphometric
analyses.
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Figure 3. Different methodological steps of simulation simplex approach (illustrated here by q¼3 groups).
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combining the q groups j (j¼ 1 to q) with q weight values wj (con-

tributions) under the constraint of constant sum w:

X

q

j¼1

wj ¼ w (1)

With wj ¼ 0 to w.

For instance, for q¼ 3, (w1 þ w2 þ w3) ¼ (1þ 2þ 7) means a

mixture made by 10%, 20%, and 70% of groups 1, 2, and 3, re-

spectively (Figure 3d). The total number N of mixtures is initially

given by a combinatorial formula depending on q and w:

N ¼ C
wþq�1
q�1 ¼

ðw þ q � 1Þ!

ðq � 1Þ!w!
: (2)

With w¼ 10 contributing individuals per mixture of q groups,

the formula gives N¼ 286 and 3003 mixtures with q¼ 4 and 6,

respectively (associated with 4 and 6 fish groups in 2004 and

1968–1972, respectively).

Each mixture was applied by randomly sampling w¼ 10 indi-

viduals (fishes) from the q groups j by respecting the q weights wj

given by Scheffé’s matrix. At the output of each mixture, the w

contributing individuals representing the q weighted groups were

averaged to calculate a barycentric profile containing average rela-

tive levels of morphometric variables. In all, a response matrix of

N barycentric profiles was calculated (Figure 3f).

At this step, each barycentric profile was calculated from only w

randomly sampled individuals whereas each population group con-

tained much more individuals which did not contribute to mixtures

leading to underestimation of variability within and between

groups. This sampling deficit was solved by iterating the mixture

design and its response matrix by bootstrap technique (Figure 3g;

Manly, 2007): in all, K¼ 30 iterations were applied to the random

sampling of w¼ 10 individuals for each mixture of Scheffé’s matrix.

This led to K¼ 30 elementary response matrices containing

N¼ 286 and 3003 barycentric profiles in B and A, respectively.

Finally, the 30 matrices were averaged to obtain a smoothed matrix

integrating potentially the variability between and within groups

(Figure 3h). From the smoothed matrix, regulation trends between

morphometric variables were plotted (Figure 3i).

Geometrical highlighting of regulatory growth trends

Group-dependent relationships between paired morphometric

variables were highlighted by projecting the weight values wj (0–

10) of group j on the corresponding points of simplex space.

Points with equal weights were statistically covered by a 95% con-

fidence ellipse. The succession of the wþ 1 (¼11) weight

ellipses from 0 to w¼ 10 provided a trajectory indicating how the

two considered morphometric variables varied the one relatively

to the other in favour of the considered fish group (stock unit).

Comparison of Spx results to traditional methods

Checking, validation, and highlighting advantages of Spx results

were performed by comparison with results from other methods

(Supplementary material S7–S14).

Variation ranges analysis of growth regulation variables

Box plots of relative morphometric variables initially helped to

characterize spatial–temporal fish groups by different variation

ranges and levels of growth regulations.

Association analysis between geographical groups and growth

regulation profiles

DA was applied to separate fish groups by their profiles of relative

morphometric variables taken in single or combined forms.

Attributions of growth regulation profiles to fish groups were car-

ried out using Bayesian rule allocating a profile to the group

showing maximal assignment probability (Seber, 1984).

Analysis of growth regulation trends and levels

Signs and levels of growth regulation trends in different groups

were checked by several statistical methods including non-

parametric Spearman correlations (Spm), correlation-based

PCA and MCA (Escofier and Pagès, 1991; Semmar 2011,

2013):

Preliminary correlation analysis between relative levels of

morphometric variables was invested by calculating Spm in dif-

ferent fish groups (Semmar, 2013). PCA was applied on relative

levels of morphometric variables to obtain correlation charts

highlighting characteristic regulation trends of groups

(Semmar, 2011). MCA provides visualized trend analysis by

considering variation levels of variables within fish groups.

MCA was applied on a complete binary dataset where the varia-

bles were organized into four modalities corresponding to val-

ues less than first quartile Q1, between Q1 and median (Q2),

between Q2 and third quartile (Q3), and more than Q3

(Escofier and Pagès, 1991).

Results
Traditional data analysis

Morphometric measures of total length are summarized in

Table 1.

The size effect removal was necessary due to significant tempo-

ral variation in terms of total length (p< 0.05 in the three tests,

Supplementary material S4). After size effect removal, data from

both periods were joined (FPERMANOVA ¼ 58.96, p¼ 0.629) for

the subsequent analyses.

Huxley models fitted to each stock did not show significant

differences (Table 2), except for Pdd2, Lpspe, and Lpa due to the

values of a coefficient (ANCOVA, p< 0.05).

For Pdd2, the values for each stock were aSE ¼ 1.95178 and aS
¼ 1.94695; for Lpspe aSE ¼ 1.95217 and aS ¼ 1.94942; for Lpa aSE
¼ 1.95532 and aS ¼ 1.95128, revealing longer morphometric

measures of M. hubbsi in Southeastern stock (SE) than Southern

stock (S).

Concerning b-coefficient, negative values revealed a decrease in

the proportion of the measurements when Lt increased (Table 2).

The models showed low level of multicollinearity (Variance

Inflation Factors close to 1, the value of no correlation) and the

residue analysis did not show any trend. Mann–Whitney test

highlighted only Pdd2 and Lpa as measurements capable to dis-

tinguish stocks after size effect removal.

The joint analysis of the measurements reinforced the differ-

ence between the SE and S stocks (FPERMANOVA ¼ 3.843,

p¼ 0.007), although it was difficult to distinguish clear patterns.

In the DA, the correct assignments after cross-validation pre-

sented an overall coincidence of 58.96%, with 62% for SE stock

and 50% for S stock, revealing a limited power for stock identifi-

cation based on body measurements.
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Spx-simulation results

Compared growth regulations between the two periods at

overall population scale

Spx provided smoothed regulation trends between morphometric

variables (Figure 4a and b). Initially, these trends were analysed at

overall population scale including all the fish groups of period A

vs. period B.

Period A showed larger variation ranges (diversification) than

period B concerning growth regulations of perimeter body varia-

bles (Pdd2, Lpa, Lbsd, Lba; Figure 4a). This could indicate some

perturbations in B due to overfishing activities. Periods A and B

showed distinct variation spaces in (Pdd2 vs. Lpa) and (Pdd2 vs.

Lba) leading to strong differentiation between the two temporal

populations.

Positive trends concerned the pairs (Pdd2, Lpa) and (Lbsd,

Lba) whereas negative trends opposed (Pdd2, Lpa) (front body

variables) to (Lba, Lbsd) (back body variabes), especially in A.

Moreover, in B, Lbsd showed a loss of monotonicity towards the

other variables.

At lower body scale, regulation trends between front body vari-

ables (Lbfd, Lpso, Ed, Lpo, Lppv) showed distinct variation spaces

separating periods A and B (Figure 4b): higher regulation levels

concerned Lbfd, Ed in A vs. Lpo, Lpso, Lppv in B. This highlighted

significant increase of growth regulations of mouth part in B.

Functional differentiations between fish groups

Spx highlighted group-dependent trends making morphometric

variables to reach different balance levels through different varia-

tion ways and relational shapes according to fish groups

(Figure 5). The pairs (Pdd2, Lpa) and (Lpso, Lppv) were consid-

ered to illustrate such growth flexibility through body perimeter

and within front compartment, respectively.

Pdd2 vs. Lpa showed positive global trends resulting from

monotonic succession of different full-weight ellipses (w¼ 10) as-

sociated with different fish groups (Figure 5). This indicated that

perimeter front variables (Pdd2, Lpa) were similarly influenced by

environmental conditions associated with different geographical

sites: growth regulation levels of both Pdd2 and Lpa were high in

groups A2, A4, B3, B5, low in A1, A6, B1, intermediate in A3, A5,

B2. These different levels highlighted diversified/heterogeneous

aspects within conventional stocks (I and II) due to different

growth regulation mechanisms between neighbour fish groups

(A1 vs. A2 vs. A3), (B1 vs. B2 vs. B3) (for stock I) and (A4 vs. A5

vs. A6) (for stock II). Such intra-stock diversity showed alterna-

tion of high and intermediate growth regulation levels in middle

sites vs. minimal states in extreme sites (A1, B1, A6). Positive

global trends were also highlighted for back variables (Lbsd, Lba)

which were opposite to (Pdd2, Lpa) Supplementary material S6a,

b, e, and f). This could be directly due to two different

Table 1. Merluccius hubbsi: summarized morphometric measures (Lt) in different stocks and years.

Years Stock Mean 6 SD (mm) [Min, max] (mm) Sample size

1968–1972 SE (21�–29�S) 166.34 6 68.60 74 
 Lt 
 352 59

S (29�–34�S) 161.48 6 63.60 66 
 Lt 
 430 172

2004 SE (21�–29�S) 310.83 6 84.03 144 
 Lt 
 618 491

S (29�–34�S) 374.60 6 73.20 246 
 Lt 
 501 25

Table 2. Merluccius hubbsi: summary of models (pooled) from analysis of covariance between log-data of body measurements and total

length (Lt) of Southeastern and Southern stocks

Variables

ANCOVA

Mann–Whitney testConstant Lt Stock

VIFa 6s.e. b 6s.e. p-Value Coefficient 6s.e. p-Value U p-Value

Hc 1.47260 0.02250 �0.002710 0.00969 0.780 0.001040 0.002090 0.618 1.48 186531.0 0.8029

Hpc 0.87750 0.01920 0.005060 0.00821 0.538 �0.002180 0.001770 0.219 1.34 201298.0 0.2306

Lbfd 1.35480 0.01470 �0.000380 0.00626 0.952 0.000170 0.001350 0.901 1.35 204250.5 0.9529

Lbsd 1.91500 0.00794 �0.001770 0.00339 0.601 0.000755 0.000730 0.301 1.34 206671.0 0.4004

Lba 1.91773 0.00755 �0.000440 0.00322 0.892 0.000179 0.000695 0.796 1.34 207094.0 0.5918

Lh 1.75498 0.00765 0.000330 0.00326 0.920 �0.000134 0.000705 0.849 1.35 208294.5 0.2681

Pdd1 1.77879 0.00643 0.002090 0.00274 0.447 �0.000911 0.000593 0.125 1.35 202483.0 0.2562

Pdd2 1.94936 0.00605 �0.005700 0.00258 0.027 0.002415 0.000554 <0.001 1.34 208052.0 0.0005

Lpo 1.29500 0.01020 0.000540 0.00434 0.900 �0.000227 0.000938 0.809 1.35 206634.0 0.6407

Lm 1.45569 0.00906 �0.001760 0.00387 0.650 0.000762 0.000836 0.362 1.35 207861.5 0.3470

Lppv 1.71126 0.00899 �0.002990 0.00383 0.436 0.001258 0.000827 0.129 1.35 209239.0 0.0845

Lppe 1.75729 0.00741 �0.002830 0.00316 0.371 0.001197 0.000683 0.080 1.35 209325.5 0.1322

Lpspe 1.95080 0.00748 �0.003200 0.00319 0.317 0.001377 0.000690 0.046 1.34 206592.0 0.1883

Lpa 1.95330 0.00736 �0.004740 0.00314 0.132 0.002017 0.000679 0.003 1.35 201406.0 0.0210

Ed 1.07250 0.01510 �0.001080 0.00645 0.867 0.000470 0.001390 0.736 1.34 205779.0 0.8077

Lpso 1.42701 0.00995 �0.000480 0.00424 0.909 0.000198 0.000917 0.829 1.35 205605.0 0.7490

Lpv 1.45800 0.01160 �0.000490 0.00497 0.922 0.000220 0.001070 0.837 1.34 203838.5 0.6403

The cut-off probability for significance of model parameters was p
 0.05. In bold: significant values.

s.e., standard error of the coefficient; VIF, variance inflation factor; U, Mann–Whitney statistics, p-value, probability.
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mechanistic needs in fish: eating vs moving; it could also indicate

opposite effects of environment on growth regulatory ways in

body front and back compartments.

At local (within-group) scale, Pdd2 vs. Lpa showed different

inclinations of full-weight ellipses indicating flexible correlations

between same variables (Figure 5): correlations were negative in

A3, A4, A6, B5, slightly positive in A1, B1, and not significant in

A2, A5, B2, B3. Negative local trends could be indicative of com-

petition between top (Pdd2) and bottom (Lpa) body parts for

biomass distribution in front compartment (A3, A4, A6, B5).

However, positive trends indicated some cooperation mechanism

between Pdd2 and Lpa in favour of their common front compart-

ment (in A1, B1). Local competing and local cooperative mecha-

nisms were also highlighted for the pair (Lbsd, Lba) of back

compartment with negative trends in A4, A6 vs. positive in A2,

A5 (Supplementary material S6d and f vs S6b and e).

Further differentiations of fish groups were provided by analy-

sing growth regulation trends between lower constituents of body

front compartment (illustrated by Lppv vs. Lpso; Figure 6): in A,

Lpso and Lppv showed strong negative trends at both global and

local scales (Figure 6a–f). This indicated growth differentiation

processes based on opposite regulations between top and bottom

body segments. Extreme cases concerned A2 and A3 where (Lpso,

Lppv) showed (maximal, minimal) and (minimal, maximal)

states, respectively (Figure 6b and c). In B-fish groups, extreme

global states concerned B3 and B5 with (minimal, maximal) and

(maximal, maximal) regulation levels of (Lpso, Lppv), respectively

(Figure 6i and j). Double maximum in B5 indicated a trend for

bigger mouth development favoured by some environment con-

ditions. However, locally, negative inclinations of full-weight el-

lipses indicated well-conserved intra-compartment competition

for biomass distributions between top (Lpso) and bottom (Lppv)

segments within the body front compartment (Figure 6j).

Spatial-temporal monitoring of average growth regulation

states of stock units

Smoothed average states of body perimeter variables showed

higher variability in period A than in B (Figure 7a). This could in-

dicate higher resiliency of fish groups in A. Stock units were more

differentiated by growth regulation levels than variation ranges:

A4–A6 (stock II in 1968–1972) showed high Lba vs. low Lpa

whereas B1–B3 (stock I in 2004) showed opposite aspect in favour

of bigger mouth trend. A1–A3 (stock I in 1968–1972) had inter-

mediate aspect with particularly extreme state in A2 (low Lbsd,

Lba vs. high Pdd2, Lpa) making this fish group to be well distin-

guished. Opposition between A4–A6 and B1–B3 concerned also

morphometric variables of front compartment (Figure 7b): high

Lbfd, Lpso, Lpo vs. low Ed in B1–B3 with opposite trends in A4–

A6. This highlighted clear effects of both geographical location

and time to differentiate stock units.

Successive geographical areas resulted in target or modulated

regulations of growths: for instance, in Ed vs. Lbfd, Ed increased

from A1 to A6 whereas Lbfd showed alternated (cyclic) variations

(Figure 7b). Target and modulated aspects were also highlighted

for Lba vs. Lbsd, respectively (A2–A6; Figure 7a).

Comparison between Spx results and other methods

Variation ranges analysis of growth regulation variables

Box plots showed different average relative levels (growth regula-

tions) of morphometric variables in different fish groups

(Supplementary material S7; Table 3). Mann–Whitney test

highlighted significant differences between the two periods A and

B concerning Lba, Ed (higher in A), Lpa, Lpso, Lpo, Lppv (higher

in B; p< 10�4; Supplementary material S7). This agreed with Spx

results showing clear variations of relative growth investments in

fish groups with time (Figures 4 and 7). Also, box plots showed

characteristic growth regulation levels of fish groups that agreed

with Spx results (Table 3; Figure 7; Supplementary material S7):

low Lpa (A1), low Lbsd vs. maximal Lpa (A2), maximal Lbfd vs.

low Lpo (A3), maximal Pdd2 vs. minimal Lbsd (A4), maximal Ed

vs. minimal Lpo (A5), minimal Pdd2, Lpa, Lpo vs. maximal Lbsd,

Lba (A6). In B, extreme growth regulation levels essentially con-

cerned site B5 showing minimal Lba, Lbfd, Ed vs. maximal Lpa,

Lpso, Lpo, Lppv.

Figure 4. Merluccius hubbsi: smoothed trends between
morphometric variables of body perimeter (a) and front part (b).
Dark and light greys: periods A and B, respectively. Numbers of
points in scatter plots ¼ 30030 in A (10� 3003) and 2860 in B
(10� 286) due to 10 replications of smoothed matrix.
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Association analysis between growth regulation profiles and

geographical groups

DA used morphometric variables with single and/or combined (in-

teractive) forms to provide predictive models of the ten fish groups

(A1–A6, B1–B3, B5; Supplementary material S8). The percentages of

corrected predictions varied between 65% (A5) and 83% (B5)

(Supplementary material S9). Discriminant variables showed

extreme average levels in associated groups (Supplementary material

S7 and S9; Table 3): A1, Lbfd (minimum average level); A2, Lppv

(Min), Lbfd (high); A3, Pdd2 (Max), Lpso (Min); A4, Lbsd (Min),

Lpso (Low); A5, Ed (Max), Lpso (Min); A6, Lba, Lbsd (Max), Lpa,

Pdd2 (Min); B3, Lpso, Lppv (Max), Lpa (high), Ed, Lba (low); B5,

Lpo (Max), Ed (Min). These variables showed extreme locations of

full-weight ellipses of corresponding fish groups in Spx (Figure 7).

Figure 5. Merluccius hubbsi: smoothed plots showing different trends (bold trajectories) and local variations (weight ellipses’ inclinations)
governing regulations of morphometric variables Lpa and Pdd2 in different fish groups associated with different geographical sites: A1 (a), A2
(b), A3 (c), A4 (d), A5 (e), A6 (f) in 1968–1972, B1 (g), B2 (h), B3 (i), and B5 (j) in 2004. The numbers of smoothed points in the scatter plots
were equal to 30 030 in A (10� 3003) and 2860 in B (10� 286) due to 10 replications of smoothed matrix.
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Although DA models highlighted differentiation roles of mor-

phometric variables, the development ways of groups remain un-

answered question.

Analysis of trends between growth regulation variables

Spm negative correlations corresponded to negatively inclined

full-weight ellipses in Spx (Supplementary material S10).

Negative trends mainly concerned (Lpa, Lbsd), (Pdd2, Lba),

(Lbfd, Lppv), (Ed, Lpso) in periods A and B followed by (Pdd2,

Lbsd), (Lpa, Lba), (Lpo, Lppv), (Lpso, Lppv) in B (Spm) and both

periods (Spx). These negative trends were also highlighted by

PCA through opposite projections of variable points

(Supplementary material S11): (Lpa, Lbsd) in A1, A3, A5, B3;

(Lba, Lpa) in A2, B1, B2, B5; (Pdd2, Lba) in A1, A5; (Ed, Lpso) in

A2, A5, A6, B1, B2, B3; (Lppv, Lbfd) in A2, A3, A6, B2, B3, B5;

(Pdd2, Lpa) in A4.

Spm positive trends corresponded to positively inclined full-

weight ellipses in Spx (Supplementary material S10). The most

concerned pairwise was (Lpo, Lpso) in A2, A3, B1, B3, B5 (Spx) vs.

B1, B2, B3 (Spm). It was followed by (Ed, Lppv) in A3 (Spx) vs.

A3, B1, B3 (Spm), (Lpso, Lbfd) in A1, A2, A4 (Spx) vs. A4 (Spm),

(Pdd2, Lpa) in A1, B1 (Spx). These positive correlations were con-

firmed in PCA by variable points showing close projections in

factorial plots (Supplementary material S11).

Also, Spx and Spm agreed concerning not detected (not signifi-

cant) trends indicated by high p-values in Spm and by circular or

not inclined full-weight ellipses in Spx (Supplementary material

S10): e.g. Lba vs. Lbsd in A1, A3, B1–B3, B5 (Supplementary ma-

terial S6a, c, and g–j). This could reveal non-linear dependences

between the variables.

Compared with Spm and PCA, Spx advantageously provided

visualization of variation spaces of group-dependent trends. Such

group-depending associations between correlation signs and vari-

ation ranges of variables were checked by MCA leading to further

validation of Spx results.

Multiple correspondence analysis

MCA highlighted strong separation between fish groups of

periods A and B due to differences in growth regulation of

front body variables (Supplementary material S12a). Period B

showed high regulations of Lpso and Lpo (Lpso4, Lpo4) con-

trary to Ed (Ed1) vs. opposite aspect in A (Lpso1, Lpo1, Ed4;

Supplementary material S12b). These results agreed with those

of Spx which highlighted strong separation between groups

A1–A6 and B1–B3, B5 within the variation space of balance av-

erage regulations Lpso vs. Ed (Supplementary material S12c

and d).

MCA applied on body perimeter variables (Pdd2, Lpa, Lbsd,

Lba) highlighted clear differentiations between fish groups A1–A6

(Supplementary material S13a and b). Results highlighted ex-

treme states of A6, A4, and A2: high regulations of Lba, Lbsd vs.

low levels of Lpa, Pdd2 in A6 (Lbsd4, Lba4, Lpa1, Pdd2.1); high

Figure 5. continued
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Figure 6. Merluccius hubbsi: smoothed plots showing different trends (bold trajectories) and local variations (weight ellipses’ inclinations)
governing regulations of morphometric variables Lppv and Lpso in different fish groups associated with different geographical sites A1 (a), A2
(b), A3 (c), A4 (d), A5 (e), A6 (f) in 1968–1972, B1 (g), B2 (h), B3 (i), and B5 (j) in 2004. The numbers of smoothed points in the scatter plots
were equal to 30 030 in A (10� 3003) and 2860 in B (10� 286) due to 10 replications of smoothed matrix.
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regulations of Lpa, Pdd2 vs. low levels of Lbsd in A4, A2 (Lpa4,

Pdd2.4, Lbsd1) and Lba in A2 (Lba1). A1 showed intermediate

states between A6 and A2, A4 (Pdd2.2, Pdd2.3, Lbsd2, Lbsd3,

Lba3, Lpa3). All these results agreed with those of Spx

(Supplementary material S13c). Concerning intermediate states

of A3, A5 highlighted by Spx, they were revealed by MCA by

widely dispersed points along F1 for A5 and F2 for A3. ACM

results highlighted some heterogeneity aspects of A3, A5 com-

pared with other groups.

MCA applied on constitutive parts of front compartment

(Lbfd, Lpso, Lppv, Lpo, Ed) highlighted differentiations between

the four fish groups (B1–B3, B5) in 2004 (Supplementary material

S14a and b). The four modalities of different variables were pro-

jected in different factorial subspaces that were associated with

different fish groups: Lpso and Lpo increased from B3 to B5 via B2

and B1, respectively; Ed showed opposite trend. Regulation levels of

Lbfd increased from B5 (Lbfd1) to B1 (Lbfd4) via B3 and B2, respec-

tively; Lppv showed opposite trend. These results were highlighted

by Spx which also provided the balance levels of variables the ones

relatively to the others (Supplementary material S14c).

Discussion
Spx provided an original simulation method of growth regulation

trends between body constitutive variables helping to understand

better mechanistic origins of population diversification and dif-

ferentiation ways of biological groups. Based on population strat-

ification and groups’ weighting (combinations), Spx has the

advantage to treat heterogeneous systems containing several

groups characterized by unlimited number of variables whatever

their variability levels could be.

Spx highlighted different scales mechanisms governing com-

plex growth variability between and within several fish population

groups: global trends governed growth regulation levels and dif-

ferentiations between groups (under different overall/environ-

mental conditions). However, local trends highlighted intrinsic

growth regulation ways within groups leading to competing or

cooperating body parts for local biomass distribution. By this

way, Spx provides mechanistic information helping to define/

identify stocks with specific growth regulation ways of different

body parts. This provides highlighting of characteristic processes

responsible for self-sustainability and resiliency of population

groups in responses to environmental conditions and fishing

activities.

Six fish groups coming from six geographical areas in 1968–

1972 were well discriminated by well distinct regulation levels of

body perimeter variables including Pdd2, Lpa in front compart-

ment and Lbsd, Lba in back compartment (Figure 5;

Supplementary material S6a and c). This indicated a strong order

of biomass distribution in fish groups at whole body scale due to

intense growth rates of juveniles (Vaz-dos-Santos and Rossi-

Wongtschowski, 2007; Costa et al., 2018). However, in 2004, reg-

ulation ratios among most hierarchical variables (Pdd2, Lpa,

Lbsd, Lba) showed narrower variation ranges indicating more ho-

mogeneous growth of adults (Figure 4a). This could result from

lower intraspecific competition for foraging due to overfishing:

overfishing leads to a reduction of stock abundance favouring rel-

atively high prey abundance and subsequently higher capture per

individual predator (M. hubbsi) (Perez et al., 2009; Vaz-dos-

Santos et al., 2010). Moreover, higher and lower variability in A

and B, respectively, seemed to be associated with two develop-

ment strategies in fish populations (Minto et al., 2008; Panikian

et al., 2015): higher resiliency in A vs. higher viability in B due to

overfishing resulting in lower intraspecific competition for

feeding.

At low body scale, Lpso, Lppv, and Lpo showed frankly higher

regulation levels in 2004 than 1968–1972 indicating strong posi-

tive trend within body front compartment during the three deca-

des (Figure 7b). Considering the relatively higher food availability

(prey abundances) in 2004 (Muto and Soares, 2011), bigger jaws

could be developed for higher capture-yielding in M. hubbsi vs. a

decrease of relative growth of back body part (Lba; less required

moving for prey capture; Figure 7a and b). This provides mecha-

nistic argument on the fact that overexploited fishes tend to grow

faster with target biomass distribution in body (Hart and

Reynolds, 2002).

Figure 7. Merluccius hubbsi: variation of average states of
morphometric variables corresponding to full-weight ellipses in
different smoothed relationships by Spx. (a) Body perimeter variables
and (b) front compartment variables. A1–A6, fish groups of period A
(1968–1972); B1–B3 and B5, fish groups of period B (2004).
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Spx results were compatible with regional hydrological phe-

nomena: in the period of 1968–1972, A3 was distinct from the

Southeast A1 and South extremes (A5, A6) by extreme growth

regulations of front body parts (more particularly Lbfd;

Figure 7b). This result reinforced the key role of the upwelling

systems and the Patos-Mirim and La Plata systems (Piola et al.,

2018). Moreover, the sequence and closeness of A4, A5, and A6

confirms that M. hubbsi is shared with Uruguay and Argentina

(Vaz-dos-Santos et al., 2017).

Spx shows several methodological strengths and application per-

spectives for stock identification, monitoring, and management:

Fish groups can be openly characterized by regulation trends

of several types of constitutive body variables including length,

weight, feeding, body composition, otoliths, etc. Moreover, pop-

ulation stratification admits flexible criteria that can be intrinsic

(physiological states, maturity degrees, ages, body length ranges,

population sizes, stock biomasses) or extrinsic (environmental

conditions, fishing activities). Therefore, simulated growth regu-

lation trends could provide helpful information on gradual,

transitory, or chained mechanisms implied in variability, persis-

tency, adaptive strategies, and/or stock recruitment relationships

(Minto et al., 2008; Panikian et al., 2015). However, higher

number of stratification groups q can be limiting because of

resulting drastic increase of total number of combinations (N).

Although Spx does not provide predictive formulation, it has

the ultimate advantage to highlight multidirectional, multi-

shape, and multi-scale trends (group-dependent trends) prepar-

ing for next predictive modelling between regulation variables.

Application perspectives of Spx extend beyond fishpopula-

tions. Among modern approaches, DNA barcoding provides re-

liable background reference libraries from which unidentified

states or specimens can be delineated, classified, or precisely rec-

ognized (Hubert and Hanner, 2015). DNA barcodes can be used

as categorical variables for population stratification in Spx. This

helps to highlight regulation trends associating genomic catego-

ries of fish populations with different body constitution patterns

(length, weight, feeding, metabolism, etc.).

Critics were given about working with preserved and fixed

specimens leading to shrinkage bias on morphometric measures.

Such a bias is strongly reduced by Spx because of three methodo-

logical factors: (i) initial working on ratio variables followed by (ii)

pattern averaging then (iii) iteration of complete set of average

patterns. Working on ratio variables (X/Y) leads to variation space

with considerably lower variance and coefficient of variation com-

pared to measured variable X (Supplementary material S15).

Using morphometric data initially increased with random errors

of 5–10%, simulation revealed stable regulation trends indicating

strong attenuation of shrinkage bias with relative variables

(Supplementary Material S16). Finally, mathematical demonstra-

tion based on error theory was given on bias reduction associated

with ratio variable (Supplementary Material S17).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Acknowledgements
NS and AMVS thank the Brazilian National Council for the

Scientific and Technological Development (CNPq) for the finan-

cial support (Process 453871/2016-0) and research grant

(Process 310451/2018-3). AMVS is grateful to ProfessorsT
ab
le
3
.
M
er
lu
cc
iu
s
h
u
b
b
si
:m

ea
n
s
an
d
st
an
d
ar
d
d
ev
ia
ti
o
n
s
o
f
re
gu
la
ti
o
n
le
ve
ls
o
f
d
if
fe
re
n
t
m
o
rp
h
o
m
et
ri
c
va
ri
ab
le
s
o
f
b
o
d
y
p
er
im
et
er

(L
b
sd
,L
b
a
,P
d
d
2,
Lp
a
)
an
d
fr
o
n
t
co
m
p
ar
tm

en
t
(L
b
fd
,L
p
so
,

Ed
,L
p
o,
Lp
p
v)
in
fi
sh

gr
o
u
p
s
o
f
p
er
io
d
s
A
(A
1–
A
6)

an
d
B
(B
1–
B
3,
B
5)
.

S
tr
a
ta

Lb
sd

Lb
a

P
d
d
2

Lp
a

Lb
fd

Lp
so

Ed
Lp
o

Lp
p
v

A
0.
24
1
6

0.
00
9

0
.2
4
6
6

0
.0
0
8

0.
25
6
6

0.
00
7

0
.2
5
7
6

0
.0
0
9

0.
17
2
6

0.
01
1

0
.1
9
8
6

0
.0
0
9

0
.0
9
8
6

0
.0
1
1

0
.1
4
9
6

0
.0
0
8

0
.3
8
3
6

0
.0
1
2

B
0.
24
1
6

0.
00
6

0
.2
4
3
6

0
.0
0
6

0.
25
5
6

0.
00
5

0
.2
6
1
6

0
.0
0
7

0.
17
2
6

0.
00
9

0
.2
0
8
6

0
.0
0
8

0
.0
8
2
6

0
.0
0
8

0
.1
5
2
6

0
.0
0
5

0
.3
8
6
6

0
.0
1

A
1

0.
24
2
6

0.
00
8

0.
24
4
6

0.
00
6

0.
25
6
6

0.
00
6

0.
25
8
6

0.
00
7

0.
17
6

0.
01
2

0.
19
8
6

0.
01
1

0.
09
9
6

0.
01
2

0.
14
9
6

0.
00
5

0.
38
3
6

0.
01
1

A
2

0.
23
7
6

0.
00
7

0.
24
3
6

0.
00
8

0.
25
8
6

0.
00
6

0
.2
6
2
6

0
.0
1
2

0.
17
4
6

0.
01
1

0.
20
2
6

0.
00
9

0.
09
4
6

0.
01
2

0.
14
9
6

0.
00
9

0
.3
8
1
6

0
.0
1
3

A
3

0.
24
0
6

0.
00
9

0.
24
4
6

0.
00
8

0.
25
8
6

0.
01

0.
25
8
6

0.
00
9

0.
17
6
6

0.
01
4

0
.1
9
5
6

0
.0
1

0.
09
7
6

0.
00
9

0
.1
4
8
6

0
.0
0
6

0.
38
4
6

0.
01
1

A
4

0
.2
3
6
6

0
.0
1

0.
24
4
6

0.
00
8

0
.2
5
9
6

0
.0
0
6

0.
26
1
6

0.
00
9

0.
17
2
6

0.
01
2

0.
19
8
6

0.
00
8

0.
09
6
6

0.
01
1

0.
15
0
6

0.
01
5

0.
38
3
6

0.
01
6

A
5

0.
24
0
6

0.
00
9

0.
24
4
6

0.
00
8

0.
25
7
6

0.
00
6

0.
25
9
6

0.
00
9

0.
17
1
6

0.
01
1

0
.1
9
7
6

0
.0
1
2

0
.1
0
1
6

0
.0
1
2

0
.1
4
8
6

0
.0
0
6

0.
38
3
6

0.
01
2

A
6

0
.2
4
4
6

0
.0
0
9

0
.2
4
8
6

0
.0
0
7

0
.2
5
3
6

0
.0
0
7

0
.2
5
5
6

0
.0
0
8

0.
17
2
6

0.
01

0.
19
8
6

0.
00
8

0.
09
8
6

0.
01
1

0
.1
4
8
6

0
.0
0
5

0.
38
3
6

0.
01

B
1

0.
24
1
6

0.
00
6

0.
24
4
6

0.
00
6

0.
25
4
6

0.
00
5

0.
26
6

0.
00
6

0.
17
3
6

0.
00
9

0.
20
9
6

0.
00
8

0.
08
6

0.
00
8

0.
15
2
6

0.
00
5

0.
38
5
6

0.
00
9

B
2

0.
24
0
6

0.
00
6

0.
24
3
6

0.
00
6

0.
25
6
6

0.
00
6

0.
26
1
6

0.
00
7

0.
17
3
6

0.
01

0.
20
9
6

0.
00
7

0.
08
2
6

0.
00
8

0.
15
2
6

0.
00
5

0.
38
4
6

0.
00
9

B
3

0.
24
1
6

0.
00
6

0.
24
1
6

0.
00
6

0.
25
6
6

0.
00
5

0.
26
2
6

0.
00
8

0.
17
0
6

0.
00
9

0.
20
6
6

0.
00
9

0.
08
4
6

0.
00
8

0.
15
1
6

0.
00
6

0
.3
8
8
6

0
.0
1

B
5

0.
24
1
6

0.
00
4

0
.2
4
0
6

0
.0
0
5

0.
25
6
6

0.
00
4

0
.2
6
4
6

0
.0
0
6

0.
16
8
6

0.
00
9

0
.2
1
1
6

0
.0
0
7

0
.0
7
7
6

0
.0
0
5

0
.1
5
5
6

0
.0
0
5

0
.3
8
9
6

0
.0
1

B
la
ck

an
d
gr
ey

h
ig
h
lig
h
ti
n
g
in
d
ic
at
ed

m
ax
im
al
an
d
m
in
im
al
le
ve
ls
o
f
d
if
fe
re
n
t
sy
st
em

s.

1412 N. Semmar and A. M. Vaz-dos-Santos

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz240#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz240#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz240#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz240#supplementary-data
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Empirical studies are popular in estimating fish natural mortality rate (M). However, these empirical methods derive M from other life-history

parameters and are often perceived as being less reliable than direct methods. To improve the predictive performance and reliability of empir-

ical methods, we develop ensemble learning models, including bagging trees, random forests, and boosting trees, to predict M based on a

dataset of 256 records of both Chondrichthyes and Osteichthyes. Three common life-history parameters are used as predictors: the maximum

age and two growth parameters (growth coefficient and asymptotic length). In addition, taxonomic variable class is included to distinguish

Chondrichthyes and Osteichthyes. Results indicate that tree-based ensemble learning models significantly improve the accuracy of M esti-

mate, compared to the traditional statistical regression models and the basic regression tree model. Among ensemble learning models, boost-

ing trees and random forests perform best on the training dataset, but the former performs a slightly better on the test dataset. We develop

four boosting trees models for estimating M based on varying life-history parameters, and an R package is provided for interested readers to

estimate M of their new species.

Keywords: empirical methods, ensemble learning methods, life-history parameters, natural mortality, regression tree, statistical learning

Introduction
Various empirical (indirect) methods have been developed to es-

timate natural mortality rate (M) of fish based on surrogate life-

history parameters (Pauly, 1980; Hoening, 1983). The commonly

used estimators can be divided into four groups according to the

parameters used in the formula: (i) based on maximum age, tmax

(Bayliff, 1967; Hoening, 1983; Hewitt and Hoenig, 2005), (ii)

based on von Bertalanffy growth coefficient K (Beverton, 1963;

Jensen, 2001), (iii) based on growth parameters K and L1 and

with or without water temperature T (Pauly, 1980; Roff, 1986;

Gulland, 1987), and (iv) based on both K and tmax (Alverson and

Carney, 1975; Zhang and Megrey, 2006). However, these empiri-

cal methods are often perceived as being less reliable than direct

methods, such as mark-recapture (Brooks et al., 1998; Hewitt

et al., 2007) and telemetry techniques (Hightower et al., 2001;

Heupel and Simpfendorfer, 2002), as the fundamental form of re-

lationship between M and surrogate life-history parameters is

generally unknown, as well as life-history parameters themselves

are often measured with errors (Hamel, 2014; Rudd et al., 2019).
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For example, Kenchington (2014) reviewed 30 M estimators and

found that none of them can provide accurate estimation for ev-

ery species and none appears sufficiently precise for use in analyt-

ical stock assessments, while several perform so poorly as to have

no practical utility.

Another concern is the application of empirical methods for

estimating natural mortality in Chondrichthyes because a very

small number of Chondrichthyes have been included in the data-

set used to develop empirical estimators (Braccini et al., 2017;

Smart et al., 2018; Harry et al., 2019). Frisk et al. (2001) found that

the link betweenM and life-history parameters for cartilaginous fish

was significantly different from those of other taxonomic groups.

However, there are very few studies on M estimation for

Chondrichthyes. Most studies have focused on the Osteichthyes

hitherto (Djabali et al., 1993; Jensen, 2001; Griffiths and Harrod,

2007). For example, Then et al. (2015) compared and ranked the

predictive abilities of the four major empirical estimation

approaches and finally recommended two updated estimators:

Hoenignls estimator (Mest ¼ 4:899t�0:916max ) and Paulynls�T estimator

(Mest ¼ 8:87K 0:73L�0:331 ). More than 200 records were used in that

study, but only four (<2%) are Chondrichthyes (all in order

Carcharhiniformes). When we tested these two estimators recom-

mended by Then et al. (2015) on a new dataset of 60

Chondrichthyes samples, we found that both estimators overesti-

matedM for Chondrichthyes and Paulynls�T’s estimator, in particu-

lar, significantly overestimatedM for almost all 60 Chondrichthyes.

Clearly, using estimators derived from Osteichthyes to predict

M of Chondrichthyes can produce incorrect estimates and conse-

quentially lead to wrong stock assessment and fisheries manage-

ment decisions.

Recently, the use of statistical learning methods, such as tree-

based methods for classification and regression, is becoming

more and more commonplace in the bio-medical field (Li and

Wong, 2003; Tomar and Agarwal, 2013) and a myriad of other

domains (Tso and Yau, 2007), including fishery research (Walsh

and Kleiber, 2001; Soykan et al., 2014; Zhou et al., 2018). Tree-

based regression models have various advantages, including effec-

tively handling the quantitative and qualitative information si-

multaneously without pre-processing. In addition, these models

do not need to specify the form of the predictors’ relationship to

the response (Max, 2008).

This study has two innovative features. First, we compiled a data-

set containing 196 records of teleost fish and 60 records of cartilagi-

nous fish from existing datasets and literature. Second, considering

the difference of M between Chondrichthyes and Osteichthyes, we

developed tree-based ensemble learning models, including bagging

trees, random forests, and boosting trees using this dataset to esti-

mate M of Chondrichthyes and Osteichthyes simultaneously and to

improve its prediction accuracy. The accuracy of four tree-based

models is compared to the traditional statistical regression models.

The study demonstrates the advantages of regression tree and en-

semble learning models in estimating natural mortality rates and

suggests potential use in other areas of fish and fisheries research.

Material and methods
Data sources

We conducted a literature search and collected the necessary data

from a variety of sources, including published research papers,

reports, and grey documents. The key information we were inter-

ested in included directly estimated M and associated life-history

parameters on maximum age (tmax) and von Bertalanffy growth

parameters (K and L1).

Some M estimators (such as Pauly, 1980) include water tem-

perature as another predictor in addition to life-history parame-

ters. However, Gislason et al. (2010) and Then et al. (2015)

confirmed that the correlation between temperature and natural

mortality was weak so they excluded water temperature in their

M estimators. We adopted their approaches and focused on life-

history parameters.

After carefully checking and reconfirming the source ofM esti-

mates, we adopted 196 of the 230 samples compiled by Then

et al. (2015). Their data were composed of existing compilations

of estimates of M (including Pauly, 1980; Hoening, 1983;

Gislason et al., 2010) as well as their own literature searches. In

addition, from individual published literature, we collected addi-

tional 60 estimates of M for Chondrichthyes. We examined the

original studies and their methods used to derive these M esti-

mates. The data used in this study contains a total of 256 records

from 2 classes (Chondrichthyes and Osteichthyes), 28 orders, 70

families, and 223 species (see Supplementary Table S1).

Our dataset included both commercial and non-commercial

fish stocks. All the data were critically reviewed and compiled

according to the following criteria:

(i) We used only independently estimated M obtained from, for

example directly estimated from tagging mark-recapture stud-

ies, telemetry studies or visual census (Grant et al., 1979; Knip

et al., 2012), population dynamics models (Fletcher, 1995;

Cortés and Parsons, 1996), and field observations (Hutchings

and Griffiths, 2010). M estimated from previously published

empirical relationships like Hoening (1983) are excluded.

(ii) If M estimate is a new estimate made based on already pub-

lished data that cannot be fully identified as direct estimates,

for example 33 samples that are marked by * in Then et al.

(2015) are excluded.

(iii) Total mortality based on catch-at-length (Cortés and

Parsons, 1996) or catch-at-age (Williams et al., 2008) data is

adopted if the data come from an unexploited or just lightly

exploited stock.

(iv) We examined and re-verified each of the original and di-

rectly estimated M , excluding some data with obvious

errors, or extremely rare species, such as the miniature spe-

cies of coral reef fish from the genus Eviota (Depczynski

and Bellwood, 2006), which has a natural mortality rate as

high as 50 (year�1), while the natural mortality rate of all

other fish is <8 (year�1).

(v) All parameters for the same species are derived from the

same study if possible, or from the studies upon same spe-

cies of the same location and timing of the study.

(vi) Not all three life-history parameters (i.e. K , L1; and tmax) are

available for all stocks. For example, there are nine records

without growth parameters (K and L1) and three records

without maximum age (tmax). However, these samples with

one or two missing variables can still be used in tree-based

models. Unlike traditional predictive models, tree-based mod-

els can specifically account for missing data by adjusting the

information gain statistic since information gain is an impor-

tant indicator of attribute selection in the process of decision

tree construction. For example, when the predictor contains

Natural mortality estimation 1415
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missing value, the number of branches is increased by one;

missing data are treated as an “extra” category or value of the

predictor (Max and Kjell, 2013).

Among life-history parameters, tmax, K , and L1 are widely avail-

able and clearly correlate with M (Beverton, 1992; Kenchington,

2014; Then et al., 2015). However, the non-linear relationship be-

tween M and these life-history parameters may not be simply de-

scribed by a mathematical equation. The M distribution of

Osteichthyes and Chondrichthyes shows significantly different

characteristics. In addition, it is not uncommon when multiple

M correspond to a same predictor value in different studies

(Figure 1). In these cases, M may vary widely across the values of

predictors. For these reasons, partitioning methods, such as re-

gression trees, may be able to isolate the predictors within the

model and more effectively predict M.

It is well known that fish belong to a same taxonomic group pos-

sess similar trait (Zhou et al., 2012; Thorson et al., 2017). Hence, in

addition to life-history parameters, we include taxonomy (class) as a

categorical (qualitative) variable in the models, so the predictors

used are tmax (years), K (year�1), L1 (mm), and class.

Tree-based ensemble learning methods

Basic regression tree

Classification and Regression Trees algorithm is a binary tree, which

can be used for both classification and regression problems accord-

ing to the types of response variable. Tree-based regression methods

involve segmenting the predictor space into several simple regions.

Regression trees typically use the mean value of the training observa-

tions in the region to which it belongs to make a prediction for a

given observation (Breiman et al., 1984). Tree-based regression

methods are ideal for dealing with real-value prediction, such as M ,

for several reasons. First, they generate a set of conditions that are

highly interpretable and are easy to implement. They can effectively

handle many types of predictors (sparse, skewed, continuous, cate-

gorical, etc.) without the need to pre-process them (e.g. data trans-

formation) (Strobl et al., 2009). In addition, these models do not

require the user to specify the form of the predictors’ relationship to

the response, for example linear, polynomial, or exponential rela-

tionship (Max and Kjell, 2013).

However, the basic regression tree may not be competitive

with the best supervised learning approaches in terms of predic-

tion accuracy. In this study, we use several ensemble learning

models, i.e. bagging trees, random forests, and boosting trees,

that combine many trees into one model to yield a single consen-

sus prediction. Ensemble learning methods can often result in

dramatic improvements in prediction accuracy, at the expense of

some loss in interpretation (Dietterich, 2000).

Bagging trees

The basic idea of bagging trees is to generate B different boot-

strapped (Johnson, 2001) training datasets and then train the re-

gression tree on the ith bootstrapped training set to get

prediction f̂
�i
ðxÞ and finally average all the predictions to obtain

f̂ bag xð Þ ¼ 1=B
P

B

i¼1
f̂
�i
ðxÞ, hence increasing the prediction accuracy

(Breiman, 1996). These trees are grown deep and are not pruned,

so each individual tree has high variance, but low bias. Averaging

these B trees reduces the variance. Bagging has been demon-

strated to give impressive improvements in accuracy by combin-

ing hundreds or even thousands of trees into a single procedure.

It is illustrated simply in Algorithm 1.
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Figure 1. Scatter plot of M over three life-history parameters used as predictors.

Algorithm 1 Bagging trees
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Random forests

Breiman (2001) proposed random forests, which provide an im-

provement over bagging trees by way of a random small tweak

that reduces correlation among trees. As in bagging, we built a

few decision trees on bootstrapped training samples. When build-

ing these decision trees, random forests algorithm randomly

selects a subset of k predictors at each split from the total p

Algorithm 2 Random forests

Algorithm 3 Boosting trees

Natural mortality estimation 1417
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predictors. Therefore, tree correlation will necessarily be reduced.

The random forests are illustrated in Algorithm 2.

Boosting trees

In bagging tree models, each tree is built on a bootstrap dataset,

independent of the other trees. Boosting works in a similar way,

except that the trees are grown sequentially: each tree is grown us-

ing information from previously grown trees (Schapire et al.,

1998). Boosting does not involve bootstrap sampling, instead

each tree is fit on a modified version of the original dataset. The

process of boosting trees is described in Algorithm 3.There are

three important tuning parameters in boosting process: (i) the

number of trees B. Unlike bagging and random forests, boosting

can overfit if B is too large, although this overfitting tends to oc-

cur slowly if at all. We use cross-validation to select B. (ii) The

shrinkage parameter k, a small positive number. This controls the

rate at which boosting learns. Typical values are 0.01 or 0.001,

and the right choice can depend on the problem. Very small k

may require using a very large value of B to achieve good perfor-

mance. (iii) The number d of splits in each tree, which controls

the complexity of the boosted ensemble. Often d ¼ 1 works well,

in which case each tree is a stump, considering of a single split.

More generally, d is the interaction depth and controls the inter-

action order of boosted model, since d splits can involve at most

d variables (Max and Kjell, 2013).

Modelling process

We used a random sample of 75% of the data for training set and

25% of the data for holdout test set to create a series of models

and evaluate them. First, a tenfold cross-validation with ten

repeats technique (Arlot and Celisse, 2010) was used to tune vari-

ous models on the training set, since it gave the mean value of the

k-division test results, which was more robust and more practical

on smaller dataset compared to the out-of-bag error widely used

in bagging models. We then applied the models to the test set to

evaluate the performance of the four models (i.e. basic regression

tree, bagging trees, random forests, and boosting trees). Once the

final model is selected, the model is used to predictM of new spe-

cies. All results were produced using the R package “caret” (Max,

2008), which contains numerous tools for developing predictive

models.

The tree-based methods require tuning several control param-

eters to achieve the best performance. For example, the number

of trees needs to be determined in each ensemble learning model.

For random forests, the number of predictors considered in each

split also needs to be chosen. And for boosting trees, more

parameters need to be determined, including shrinkage parameter

that represents the learning rate of the models, interaction depth

controlling the model complexity, and the minimum number of

observations in trees’ terminal nodes.

The number of trees and the number of predictors considered

in each split in random forests can be automatically determined

by the tenfold cross-validations. In the boosting trees, for our

dataset, a tuning parameter grid was constructed where interac-

tion depth ranged from 1 to 10, number of trees ranged from 50

to 5000, shrinkage ranged from 0.001 to 0.01, and the minimum

number of observations in trees’ terminal nodes ranged from 1 to

3. From these arrays, the best tuning parameter can be chosen by

tenfold cross-validation with ten repeats technique as well.

tmax >= 3.5

tmax >= 11

tmax >= 17

tmax >= 35

Class = Chondrichthyes

tmax >= 6.5

K >= 0.33

Linf >= 485

0.44
100%

0.36
97%

0.21
72%

0.17
57%

0.1
22%

0.2
36%

0.4
14%

0.79
25%

0.4
4%

0.87
21%

0.79
16%

0.72
8%

0.86
8%

0.68
3%

1
4%

1.1
5%

2.6
3%

yes no

Figure 2. Basic regression tree model to predict M. For each split, the first line in the shaded box is M value and the second line is the
percentage of the samples.
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Model performance assessment

We used three metrics to compare alternative models in this

study: (i) mean absolute error (MAE ¼ 1=n
Pn

i¼1 Mobs;i �Mest;i),

which measures the average absolute difference between observed

and predicted outcomes; (ii) root mean squared error (RMSE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=n
Pn

i¼1 ðMobs;i �Mest;iÞ
2

q

), which measures the average er-

ror performed by the model in predicting the outcome for an ob-

servation; and (iii) mean absolute relative error

(MARE¼ 1=n
Pn

i¼1ðMobs;i �Mest;iÞ=Mobs;i . We calculated the

three metrics using both original and log-transformed values.

However, only log-transformed results are presented in this study

because with log-transformation the distribution of model resid-

uals was closer to the normal distribution and the variance was

more homogeneous.

Results
Interpretation of regression tree approaches

We first used a basic regression tree to illustrate how tree-based

method works (Figure 2). It consists of a series of splitting rules,

starting at the top of the tree. Overall, the tree segments M into

nine regions (nine terminal nodes) of predictor space. The num-

ber in each terminal node is the mean of the response for the

observations that fall into this space.

In this four-predictor model (tmax K, L1, and class), the tree

shown in Figure 2 indicates that tmax is the most important factor

in determining M . Fish with larger tmax experience a lower M ,

and vice versa. When a species has a low tmax (tmax < 3:5), the

taxonomic class plays little role in M prediction. When the con-

tribution of class becomes significant, Chondrichthyes (class ¼ 1)

have lower M than Osteichthyes (class ¼ 0). Therefore, an inter-

action effect between tmax and class occurs when the effect of ex-

planatory variable tmax on the response variable M depends on

the level of class. The interactions between other variables are pre-

sented in the same way. It is the hierarchical structure of a tree

that guarantees the interactions between predictors to be auto-

matically modelled (Elith et al., 2008). In contrast to tmax, fish

with higher values of K and L1 experience a higher M as well.

Figure 2 is likely an oversimplification of the true relationship be-

tween M and tmax; K ; L1 and class, though it is easy to inter-

pret and has a nice graphical representation. More advanced

ensemble learning methods described in this study follow the

similar concept as in the basic regression tree.

Model fitting using training dataset

In machine learning, model training is to fit a model on training

dataset. To determine which tree-based method performs best so

it can be used to further develop predictive models for estimating

M, we used all four predictors (tmax, K, L1, and class) to training

the four models (i.e. basic regression tree, bagging trees, random

forests, and boosting trees) on the training dataset. Figure 3

shows boxplots for the tenfold cross-validation with ten repeats

resampling results across different models. The results obtained

from three performance metrics (MAE, RMSE, and MARE) are

consistent. The best-performing model is the boosting trees, fol-

lowed by random forests. Bagging trees show modestly improved

results relative to the basic tree but are clearly worse than the

boosting trees and random forests. However, all these three en-

semble learning methods outperform the basic regression tree

model. The model rankings remain unchanged whether the data

are log-transformed or not.

Model prediction using test dataset

The prediction results on test dataset (Table 1) are consistent

with the cross-validation rankings in Figure 3. The best model is

the boosting trees, followed by random forests and bagging trees.

Boosting trees performs slightly better than random forests on

test set, regardless of which performance metric is used. Visually,

the residual (Mobs, i � Mest, i) diagnostic plots support the con-

clusion that the boosting trees performs best among four meth-

ods (Figure 4).

Model performance comparison using full dataset

After the best method is selected above, the prediction perfor-

mance of boosting trees and the two estimators suggested by

Then et al. (2015) are compared based on the newly compiled

dataset of 256 samples. Here, we use the tenfold cross-validation

repeat 20 times to estimate the test error of the boosting trees

models. We build four models with varying predictors: BRT1

uses tmax and class; BRT2 uses K, L1, and class; BRT3 uses tmax,

K, L1, and class; and BRT4 uses K and class. Again, the predic-

tion RMSE (also referred to as cross-validation prediction errors),

MAE and MARE are used as measurements of the model

performance.

Clearly, boosting trees BRT1 performs better than the

Hoenignls estimator when only tmax is used (Table 2). Boosting

trees BRT2 also performs better than Paulynls�T estimator when
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Figure 3. Comparison of four tree-based models by three performance metrics using training dataset. Basic, basic regression tree; bagging,
bagging trees; RF, random forests; boosting, boosting trees.
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only K and L1 are used in the model. Moreover, boosting trees

produce unbiased estimates compared to Paulynls�T estimator

that overestimates M when the value increases (Figure 5b). BRT3

that involves all four predictors significantly outperforms BRT1

against the three metrics (Table 2). Visually, BRT3 achieves the

best results as well, with all the residuals within 6 0:5
(Figure 5c).

Although Hoenignls and Paulynls�T estimators were recom-

mended by Then (2015), we noticed that the two-parameter K

estimator was actually comparable to Paulynls�T estimator in

the study of Then et al. (2015). Compared to the two-

parameter K estimator in Then et al. (2015), our boosting trees

model BRT4 with parameters K and class performs better

against all performance metrics (Table 2). In addition, like the

difference between BRT3 and BRT1, BRT2 model, which has

one more parameter L1 than BRT4, yields noticeable improve-

ment over BRT4.
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Figure 4. Residual diagnostic plots of four tree-based models on the test (validation) dataset.

Table 1. Performance of model prediction on test (validation)

dataset.

Models

Model performance metrics

MAE RMSE MARE

Basic regression tree 0.32533 0.41155 0.65378

Bagging tree 0.28750 0.37698 0.53369

Random forests 0.14910 0.20346 0.28572

Boosting trees 0.11286 0.14407 0.24686

The models have four predictors (tmax, K, L1, and class).
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Figure 5. Comparison of predictive residuals between boosting trees models (BRT) and traditional regression models. BRT1 uses predictors
tmax and class; BRT2 uses predictors K, L1 , and class; BRT3 uses predictors tmax , K, L1 , and class; and BRT4 uses predictors K and class.

Table 2. Model performance comparison using full dataset.

Model Predictors

Model performance metrics

MAE RMSE MARE

BRT1 tmax; class 0.10665 0.18640 0.25020

Hoenignls tmax 0.16942 0.25973 0.37875

BRT2 K; L1; class 0.12315 0.19638 0.23830

Paulynls-T K; L1 0.35066 0.54028 0.59875

BRT3 tmax; K; L1; class 0.05790 0.08662 0.13779

BRT4 K; class 0.17321 0.27182 0.36590

Two-parameter K K 0.35506 0.54681 0.67822

BRT1, boosting trees model with parameters tmax and class; BRT2, boosting

trees model with parameters K, L1 , and class; BRT3, boosting trees model

with parameters tmax , K, L1 , and class; BRT4, predictors K and class:

Table 3. The best boosting trees obtained by tenfold cross-

validation with 20 repeats.

Model Predictors

Tuning parameters

B k d N

BRT1 tmax; class 3900 0.001 45 1

BRT2 K; L1; class 1900 0.001 45 1

BRT3 tmax; K; L1; class 2700 0.001 45 1

BRT1, boosting trees model with parameters tmax and class; BRT2, boosting

trees model with parameters K, L1 , and class; BRT3, boosting trees model

with parameters tmax , K, L1 , and class; B, number of trees; k, shrinkage param-

eter; d, interaction depth; N, minimum number of observations in trees’ ter-

minal nodes.
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Boosting trees—the best model

We further describe the detailed features of the boosting trees

model that performs best on the fullest dataset. Based on the

tenfold cross-validation with 20 repeats analyses, the optimal

prediction can be achieved using the controlling parameters in

Table 3.

Based on optimal values for the four controlling parameters,

we can obtain the relative importance of each predictor in the

model (Figure 6) by calculating the residual sum of squares

[RSS ¼
PJ

j¼1 ðMobs;j �Mest ;jÞ
2], where J represents the number

of observations in the J th predictive space. In the case of boosting

regression trees, we can record the total amount of RSS decreased

due to splits over a given predictor, averaged over all B trees. A

large value indicates an important predictor.

The most important variable in M prediction is tmax, followed

by K . Although the variable class only makes a small contribution

compared to other predictors, its biological significance is clear:

given identical life-history traits, Chondrichthyes’ M is almost

0.02 year�1 lower than Osteichthyes (Figure 7).

Although the ensemble learning methods suffer from a lack of

intuitive interpretability compared to a single regression tree and

traditional linear regression models, the partial dependence plots

(pdps) show how each predictor affects the model’s predictions

(Figure 7). Each panel illustrates the marginal effect of the se-

lected variable on the response after integrating out the other var-

iables. The volatility in the pdps indicates that the response

variable M is very sensitive to changes in the predictors within

this range, especially for the predictors K and L1. The flat seg-

ments mean that the predictors have stable effect on the response

variable M within this range. For example, when tmax is smaller

than �30 years, the value ofM decreases rapidly as tmax increases.

However, when tmax is greater than 30 years, M is much less

dependent on tmax (Figure 7a). The partial dependence of predic-

tors K and L1 shows obvious non-linear and piecewise character-

istics. This is mainly because values of K and L1 are not evenly

distributed across their range and their relationships with M be-

tween Chondrichthyes and Osteichthyes are significantly different

(Figure 1). For example, when K is larger than 1.3 (year�1), the

partial dependence effect of K on M jumps from about 0.5 to

0.9 (Figure 7b), which mainly because the partial dependence ef-

fect of variable K to M for Osteichthyes is much higher than that

for Chondrichthyes and all Chondrichthyes have K smaller than

1.3 (year�1) (Figure 1a). The results of pdp appear to be consis-

tence with Figure 1. When L1 is smaller than 1000mm, the pre-

dicted value of M gradually decreases as L1 increases. When L1
is between 1000 and 1500 mm, the partial dependence of M on

L1 increases with the increase of L1, which is mainly due to few

data points and all of teleosts. The last panel in Figure 7 indicates

that Chondrichthyes have a lower M than Osteichthyes even

when other life-history parameters are identical.

Application of the boosting trees model to predict M of

new species

We have developed an R package for our boosting trees models

(see Supplementary Materials), and here, we provide examples

for using the package to estimate M of new species. The examples

include three flatfish species from Hamel (2014) and three shark

species from Clarke et al. (2015): English sole (Parophrys vetulus),

rex sole (Glyptocephalus zachirus), Petrale sole (Eospetta jordani),

Blue shark (Prionace glauca), Shortfin mako shark (Isurus oxyrin-

chus), and Oceanic whitetip shark (Carcharhinus longimanus)

(Table 4). Note that M values from literature may not be direct

estimates but may also be based on life-history correlations.

Our R package Mestimate provides a function named

“Mestimate”. To estimate M for a new species that is not in our

dataset, this function only requires one or more life-history

parameters and an indicator of class (0 for Osteichthyes and 1 for

Chondrichthyes) as inputs. This package provides three alterna-

tive boosting trees models according to the life-history parame-

ters used for M estimation. Users can use one or all three models

depending on the availability of life-history parameters. We rec-

ommend using the BRT1 (tmax and class) model when only tmax

is available and BRT2 (K , L1, and class) model when only K and

L1 are available. When all life-history parameters are available,

we recommend using the BRT3 (tmax, K , L1, and class) model,

which performs best in M estimation.

For the six species tested here, the results of BRT1 and BRT3

are comparable. However, like the results of Paulynls�T estimator,

BRT2 produces a larger M for Osteichthyes than the other two

boosting trees models (Table 4). Noticeable difference in some

species estimated M exists between the boosting trees models and

literature.

Discussion
Natural mortality rate is considered as an important but poorly

quantified parameter in most mathematical models of fish stock

dynamics (Vetter, 1988; Zhang and Megrey, 2006). In addition,

existing empirical M estimators are almost always based on com-

bined data for Osteichthyes and Chondrichthyes, ignoring the

difference between these two groups of fish. In this study, we

compile a new dataset containing 60 samples of Chondrichthyes

and 196 samples of Osteichthyes. Our study demonstrates that

tree-based regression methods can effectively estimate natural

mortality rate of two classes of fish at the same time without the

need to use dummy variables like traditional linear regression

models do. More importantly, the tree-based ensemble learning

models can significantly improve prediction accuracy compared

to the traditional regression estimators suggested by the most

t m
a

x
K

L
∞

c
la

s
s

Relative influence

P
re

di
ct

or
s

0 20 40 60

Figure 6. Relative importance of the four predictors in the boosting
trees model.
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comprehensive study (Then et al., 2015). Among the ensemble

learning models, the boosting trees and random forests are the

two best models, with the boosting trees performing a slightly

better than random forests.

Although using various surrogate life-history parameters to es-

timate natural mortality rate has received extensive discussion in

the literature (Jensen, 2001; Griffiths and Harrod, 2007; Mangel,

2017), to our knowledge this is the first study to estimateM using
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Figure 7. Partial dependence of predicted natural mortality on four predictors.

Table 4. Comparison of estimated M for six new species not used in model building.

Species

Predictors
M in literature

Predicted M by estimators in Then (2015) Predicted M in this paper

tmax K L1 Class Mlit Hoenignls Paulynls-T BRT1 BRT2 BRT3

PV 23 0.36 40.56 0 0.307 0.277 0.580 0.276 0.569 0.237

GZ 29 0.39 41.82 0 0.261 0.224 0.609 0.183 0.563 0.153

EJ 32 0.16 54.31 0 0.177 0.205 0.291 0.172 0.203 0.196

PG 15.5 0.142 327.4 1 0.273 0.398 0.316 0.194 0.238 0.242

IO 30.5 0.098 248.9 1 0.132 0.214 0.264 0.138 0.155 0.126

CL 21 0.095 262.6 1 0.180 0.301 0.253 0.156 0.153 0.138

PV, Parophrys vetulus; GZ, Glyptocephalus zachirus; EJ, Eopsetta jordani; PG, Prionace glauca; IO, Isurus oxyrinchu; CL, Carcharhinus longimanus. Mlit, M value from

literature; BRT1, boosting trees model with parameters tmax and class; BRT2, boosting trees model with parameters K, L1 , and class; BRT3, boosting trees model

with parameters tmax , K, L1 , and class.
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ensemble learning technique. The major difference between our

approach and the traditional regression models is that tree-based

regression models do not need to specify a mathematical formula

between the predictors and the response variable. The complex

biological, physiological, and ecological processes often rend a

simple mathematical model problematic. Traditional regression

also requires an assumption that there is no strong collinearity

between the independent variables (Jensen, 2001). The boosting

trees models generate a suit of different modified version of the

original data set to create hundreds of models to reduce predic-

tion bias and variance. In contrast to traditional regression, tree-

based models do not require an assumption of no collinearity be-

tween predictors as the construction of each tree is based on a

greedy algorithm that follows the problem-solving heuristic of

making the locally optimal choice at each stage with the intent of

finding a global optimum, so redundant features are not added to

the model (Tomaschek et al., 2018). Therefore, we can use boost-

ing trees model containing all available parameters to get the best

prediction ofM .

We only include taxonomic variable class in the ensemble

learning models, noting that it is possible to involve finer level of

taxonomy, such as order and family. We preliminarily explored a

boosting trees model that includes class, order, and family as pre-

dictors. Because there are only 256 samples in our dataset, involv-

ing 28 orders and 70 families, the number of samples in each

order and family is relatively small. Therefore, the results from

these models have limited reference value and they are not

reported in this study.

Our analysis supports the finding that tmax-based estimator

performs the best among all estimators evaluated (Then et al.

2015). Our analysis also demonstrates that asymptotic length

only makes a minor contribution to model prediction. Therefore,

when parameter L1 is not available, the boosting trees model

based on growth coefficient K and class can yield as good result as

the model with all three predictors (K , L1; and class).

Although the tree-based ensemble learning models developed

in this study can predict M reasonably well, these models only

produce a mean value of the observations in terminal nodes of

the regression trees (Breiman et al., 1984). Therefore, combining

the traditional linear regression models and regression trees to

create a hybrid model that produces a specific value of the M by a

linear regression model in terminal nodes instead of the mean

value of the observations may be a good way to produce better

predictions and leads to better interpretability. This idea can be

explored in the future studies. When boosting trees models are

used for prediction, such as predicting M for a new species, the

models currently could only give a point prediction of the re-

sponse value but not the uncertainty around the point estimate.

Instead, uncertainty estimated by cross-validation from model

testing is usually adopted for the predicted M . Therefore, the

RMSE shown in Table 2 represents the prediction error, which

can be used as a proxy for the standard deviation.

Computing time may become a concern for boosting trees

models when the dataset is large. Boosting trees models are grown

sequentially: each tree is grown using the information from previ-

ously grown trees so it takes more time than other ensemble

learning models, such as bagging trees and random forests.

Statistical modelling, including ensemble learning methods,

can only be as good as the original data used to train the models.

The data used in this study, whether from existing dataset or col-

lected individually from literature, may contain high uncertainty.

Life-history parameters cannot be accurately measured. An exam-

ination of the life-history parameters compiled for Pacific sharks

reveals high variability across studies (Zhou et al., 2019). In par-

ticular, maximum age may have been underestimated for many

stocks because this parameter is either the observed or estimated

maximum age from a population that has been fished for many

years so very old fish rarely exist in the population. Sample sizes

may also be inadequate (since the old fish are more likely to be

included with larger sample sizes), and fishing may have selected

smaller, younger fish, either through gear selectivity or because of

fishing in areas where older fish are not present (Zhou et al.,

2019). In teleost, tmax is typically obtained from hard body parts

such as scales or otoliths. Irregular early growth patterns or struc-

tural resorption near the primordium can lead to ageing error

(Campana, 2001; Kolody et al., 2016). It is even more difficult to

age Chondrichthyes as these cartilaginous fishes lack the large,

calcareous otoliths (Francis et al., 2007). Usually, vertebrae are

used for studies of Chondrichthyes growth and age. Recent stud-

ies show that the common method of ageing sharks and rays,

counting growth zones on calcified structures, can substantially

underestimate true age (Francis et al., 2007; Harry et al., 2019). If

tmax is severely underestimated in Chondrichthyes but not in

Osteichthyes, the different result between the two classes as

shown in Figure 7 may be spurious (i.e. smaller M for

Chondrichthyes is due to their much large lifespan). The depen-

dent variable M measured using direct or “information-

intensive” estimation approach (Kenchington, 2014; Then et al.,

2015) is also uncertain. Furthermore, all empirical approaches

treat M as a constant for a particular species or stock, but natural

mortality is rarely time-invariant (Vetter, 1988; Johnson et al.,

2015). Therefore, ensemble learning models should be updated

when new data become available. In addition, it is also possible to

combine the Bayesian measurement error models with tree-based

methods to incorporate measurement error in both dependent

and independent variables in the future work.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Phytoplankton plays an important role in marine ecological environment and aquaculture. However, the recognition and detection of phyto-

plankton rely on manual operations. As the foundation of achieving intelligence and releasing human labour, a phytoplankton microscopic

image dataset PMID2019 for phytoplankton automated detection is presented. The PMID2019 dataset contains 10 819 phytoplankton micro-

scopic images of 24 different categories. We leverage microscopes to collect images of phytoplankton in the laboratory environment. Each ob-

ject in the images is manually labelled with a bounding box and category of ground-truth. In addition, living cells move quickly making it

difficult to capture images of them. In order to generalize the dataset for in situ applications, we further utilize Cycle-GAN to achieve the do-

main migration between dead and living cell samples. We built a synthetic dataset to generate the corresponding living cell samples from the

original dead ones. The PMID2019 dataset will not only benefit the development of phytoplankton microscopic vision technology in the fu-

ture, but also can be widely used to assess the performance of the state-of-the-art object detection algorithms for phytoplankton recognition.

Finally, we illustrate the performances of some state-of-the-art object detection algorithms, which may provide new ideas for monitoring ma-

rine ecosystems.

Keywords: deep learning, microscopic image, object detection, phytoplankton dataset

Introduction
Marine phytoplankton is the foundation of marine ecosystems

(Charlson et al., 1987). It is an ecological concept that refers to tiny

plants floating in water. As one most important primary producer

in the ocean and the global ecological environment, phytoplankton

activates the marine food chain. Consequently, some marine shell-

fish can accumulate poisonous phytoplankton. Phytoplankton also

participates in the biogeochemical cycle of biogenic elements such

as carbon, nitrogen, and phosphorus. In addition to its important

ecological significance, it also plays a vital role in aquaculture.

Some harmful ecological phenomena, such as red tides and canola

in coastal areas of China, are all caused by marine phytoplankton,

which can directly lead to the death of numerous aquatic organ-

isms because of the lack of oxygen.

Recently, the research of phytoplankton community structures

mainly relies on scientific researchers to manually identify and count

through microscopes, most of which belongs to the non-in situ cate-

gory of observation methods. These traditional methods are time-

consuming, labour-intensive, and require a high level of professional

knowledge. In the past few years, automated identification of phyto-

plankton has drawn lots of attention. However, researchers only fo-

cused on the individual parts of automated recognition, such as

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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image processing and image segmentation. Besides, only common

image features have been used for the automated identification algo-

rithms of phytoplankton and FlowCAM (Poulton, 2016) is one of

the more advanced technologies. It is an intelligent system for the

automated analysis and sorting of phytoplankton cells. It can simul-

taneously measure multiple parameters of each cell and classify

them according to their special characteristics. Although FlowCAM

can directly measure seawater samples rapidly, qualitatively, and

quantificationally, only a few traditional technologies are imple-

mented such as clustering and image processing. Therefore, a huge

improvement is urgent, especially with state-of-the-art artificial in-

telligence methods.

Deep learning (Deng and Yu, 2014; Lecun et al., 2015;

Schmidhuber, 2015) is about learning multiple levels of represen-

tation that helps to make sense of data such as images (Ren et al.,

2015; He et al., 2016), audio (Deng, 2014; Noda et al., 2015;

Badjatiya et al., 2017; Fayek et al., 2017; Yu et al., 2017), and text

(Lopez and Kalita, 2017; Young et al., 2018). It has made great

achievements in many fields, especially in computer vision

(Rawat and Wang, 2017; Sun et al., 2019), audio recognition

(Yu et al., 2017), and natural language processing (Watanabe

et al., 2018; Young et al., 2018). One key of the success of deep

learning is large training dataset. However, tedious and inefficient

data annotating progress present an obstacle to further develop-

ment of deep learning models. The model will not extract effec-

tive and distinctive features and lead to overfitting problems

without enough train data (Srivastava et al., 2014). As a conse-

quence, whether classification, recognition, or detection task, the

use of deep learning methods requires a large amount of labelled

data for model training. Especially in the process of microscopic

observation of phytoplankton, where there is more than one ob-

ject in a view. Researchers have to recognize and count each ob-

ject in the given view, which is equivalent to object detection in

the field of computer vision. In order to introduce the advanced

deep learning approaches into the field of phytoplankton recogni-

tion, a phytoplankton dataset for deep learning is necessary.

It is difficult to train a deep learning model with strong gener-

alization performance on the existing phytoplankton datasets.

The existing datasets have several difficulties for training the deep

learning methods as shown in Figure 1. First, the resolution of

Figure 1. PMID2019 is the first high resolution dataset for phytoplankton detection, compared with the existing datasets as shown above,
ZooScan, WHOI, ASLO, and Kaggle-Plankton. The images from the various datasets are scaled to show the relative resolutions of the datasets.
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phytoplankton images is too low to extract distinct features in de-

tail. Second, the phytoplankton images are mostly grey-scale

images. Third, the instance-level annotations are urgently needed,

while current image datasets only have image-level annotations.

Therefore, it is difficult to introduce the deep learning methods

of detection with these existing datasets.

In this work, we focus on constructing a new phytoplankton

dataset of high-resolution colourful images along with instance-

level annotations for the detection task. The phytoplankton sam-

ples are from Jiaozhou Bay in Qingdao, Shandong Province. The

phytoplankton in the images is rationally divided into 24 catego-

ries by experts and the phytoplankton in all images is categorized

to construct an RGB high-resolution phytoplankton detection

dataset V1.0 (PMID2019). Compared with the existing datasets,

as shown in Figure 1, PMID2019 has the following advantages:

(i) The resolution of the image is high, i.e. 2040 � 1536, which

enables the deep network to learn specific details more

effectively.

(ii) Compared with grey-scale images, RGB images are more ca-

pable of retaining the effective information of

phytoplankton.

(iii) Each image has instance-level annotations, which can be

used for phytoplankton detection tasks.

PMID2019 not only contains images of dead phytoplankton cells,

but also has a few images of living cells. Living phytoplankton

cells will be observed during the phytoplankton in situ observa-

tion and it is difficult to capture enough living cell samples in the

laboratory environment, because the living cells move rapidly on

the microscopic slide. In order to make the detection model have

better generalization performance, it is better to establish the

mapping between dead cell images and living cell images. To

solve this problem, we apply Cycle-GAN (Zhu et al., 2017) to this

task, so that both living and dead phytoplankton cell images can

be converted to each other without losing their original features.

Finally, we get synthetic images of living phytoplankton cells.

The contributions of this article are as follows:

(i) A phytoplankton microscopic image dataset, PMID2019, is

constructed to train the advanced artificial intelligence

model for phytoplankton detection.

(ii) New synthetic images are generated for the in situ phyto-

plankton detection by using Cycle-GAN to migrate the

images of phytoplankton dead cells to living cells.

(iii) We evaluate many state-of-the-art deep learning detection

methods on PMID2019, in order to provide new ideas to

researchers on phytoplankton microscopic image detection

and recognition. The dataset is publicly available on the

project page https://github.com/ouc-ocean-group/

PMID2019.

The rest of this article is organized as follows. Related work sec-

tion summarizes the related works. Our procedure for construct-

ing the dataset section is the construction procedure of the

dataset. Synthetic dataset of living cells section formally introdu-

ces our model in detail. Evaluation on PMID2019 section

presents the experimental results. Finally, we conclude our work

in Conclusion section.

Related work
Non-in situ phytoplankton observation method

Optical microscopy is the most traditional method for the detection

and analysis of phytoplankton samples. Such detection technique is a

method for identifying phytoplankton species based on the morpho-

logical characteristics of phytoplankton. It is supplemented by cell

counting plates for density counting and has always played an im-

portant role in the identification and quantification of phytoplank-

ton (Hallegraeff et al., 1995). However, microscopy testing

techniques require testers to have a rich knowledge of phytoplankton

taxonomy, which is demanding and time consuming. Scanning elec-

tron microscope (SEM) and transmission electron microscope

(TEM) are also important tools for phytoplankton research. They

can display the fine features of phytoplankton cell surface morphol-

ogy and internal structure, and are also one of the basic means of

phytoplankton identification (Berdach, 2010). Nevertheless, electron

microscopy samples which require complex pretreatment processes

are time consuming. Flow cytometry FCM has a wide range of appli-

cations in the detection of marine phytoplankton (Jonker et al.,

1995). Unfortunately, flow cytometry cannot effectively identify tar-

get cells with weak fluorescent labelling, and there is a possibility of

missed recording, and the high cost of the instrument limits the wide

application of flow cytometry in the detection of phytoplankton. The

above methods are all non-in situ phytoplankton detection methods.

In situ phytoplankton observation methods

Acoustic systems, such as Acoustic Doppler Current Profiler,

Multifrequency Hydroacoustic Probing System, and wideband sonar

have many advantages for plankton detection. Sound waves are less af-

fected by underwater environments. The characteristics of underwater

propagation are better than for visible light and electromagnetic waves.

Therefore, sound waves can be used for long-distance positioning.

However, its poor ability to distinguish underwater organisms, unap-

parent detail features, and inaccurate positioning affects the reliability

and accuracy of observation (Warren et al., 2001). Chlorophyll fluores-

cence instrument for phytoplankton detection is the most mature, di-

verse, and widely used in situ observation device for marine organisms.

Its main disadvantage is that it can only detect auto-fluorescent organ-

isms (Kolber and Falkowski, 1993). Because the advent of optical mi-

croscope, it has become an important tool for basic micro-organism

research. In 2004, Yu (Yu et al., 2004) developed an “underwater auto-

mated digital microscope imager” based on optical microscopes that

can be directly placed in water to achieve automated shooting of in

situ plankton images. However, the instrument is only suitable for

high concentration conditions. As early as 1992, the first in situ auto-

mated identification device, Video Plankton Recorder, was produced

and has become a pioneer in modern in situ plankton imaging devices

(Sullivan-Silva and Forbes, 1992). For small and microplankton, Olson

et al. used the Imaging FlowCytobot for long-term monitoring of

microzooplankton and phytoplankton from 10 to 100mm (Olson and

Sosik, 2007). Similar systems are also available, including FlowCAM,

CytoSense, CytoBuoy, and CytoSub, which enable the acquisition of

information from micro to small phytoplankton, providing an effec-

tive method for in situ observation of full-grained phytoplankton.

Existing phytoplankton datasets

There are two categories of existing phytoplankton datasets. One

is related to abundance, biomass, and composition, and the other

is the phytoplankton microscopic image dataset.

Phytoplankton microscopic image dataset PMID2019 1429
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COPEPOD’s global plankton database (O’Brien, 2005) pro-

vides plankton and ecosystem researchers with an integrated

dataset of quality-reviewed, globally distributed plankton abun-

dance, biomass, and composition data. In addition to data distri-

bution maps, COPEPOD offers a variety of text and graphical

content summaries and searching options. The Belgian

Phytoplankton Database is a comprehensive data collection com-

prising quantitative phytoplankton cell counts from multiple re-

search projects conducted since 1968. The collection is focused

on the Belgian part of the North Sea, but also includes data from

the French and the Dutch part of the North Sea. The database

includes almost 300 unique sampling locations and more than

3000 sampling events resulting in more than 86 000 phytoplank-

ton cell count records (Nohe et al., 2018).

WHOI–Plankton (Orenstein et al., 2015) is a large-scale, fine-

grained visual recognition dataset for plankton classification,

which comprises over 3.4 million expert-labelled images across 70

classes. The labelled image set is compiled from over 8 years of

near continuous data collection with the IFCB at the Martha’s

Vineyard Coastal Observatory since 2006. But the images in this

dataset only have image-level labels, which can only be used to

classify different plankton. Kaggle-Plankton (Li and Cui, 2016),

which consists of 30 336 plankton images of 121 classes is also a

dataset for plankton classification. The images in this dataset are

low-resolution grey images, which are not conducive to getting

the detail features. ZooScan (Gorsky et al., 2010) is a zooplankton

dataset including 20 classes. The images are also low-resolution

grey images.

Researchers from Xiamen University use laboratory specimens

to collect common phytoplankton samples from coastal areas of

China. They collect images of morphological characteristics of al-

gae cells on different sides using digital microphotography techni-

ques, and combine them with textual data to establish a database

of common phytoplankton network searches in China’s coastal

areas. At present, the database includes 144 species of common

phytoplankton in China, with 704 characteristic images, mainly

diatoms (93 species) and dinoflagellate (40 species). This database

consists of the main characteristic parameters and ecological dis-

tribution characteristic parameters of cells. These parameters are

used for detailed information retrieval, rather than directly iden-

tifying images. They also constructed a digital microscopic image

database of common marine phytoplankton species in China.

The database contains 3239 images from 241 species of phyto-

plankton, including 168 species of diatoms, 70 species of dinofla-

gellates, and 3 other phytoplankton. However, the resolution of

each image is very low.

Domain adaptation

Recently, transfer learning (Sun et al., 2018) and domain adapta-

tion methods have been proposed to mitigate the domain gap.

These methods can be divided into three categories. The first one

is to introduce different learning schema to align the source and

target domains. Inspired by the kernel two-sample test (Gretton

et al., 2008), Maximum Mean Discrepancy is applied to reduce

distribution shift in various methods (Ghifary et al., 2014; Long

et al., 2017). The second category is the adversarial-based

approach. A domain discriminator is leveraged to encourage the

domain confusion by an adversarial objective. Generative adver-

sarial networks are widely utilized to learn domain-invariant fea-

tures as well to generate target source (Dong et al., 2019).

The third category is reconstruction-based. The reconstruction is

obtained by an encoder–decoder or a GAN discriminator such as

Dual-GAN (Yi et al., 2017), Cycle-GAN (Zhu et al., 2017), and

Disco-GAN (Kim et al., 2017). Self-ensembling is also utilized for

visual adaptation problems (French et al., 2017). Wang et al. pro-

pose a combined model to learn feature and class jointly invariant

representation (Wang et al., 2018). In Peng et al. (2018), the

researchers propose a new deep learning approach, Moment

Matching for Multi-Source Domain Adaptation, which aims to

transfer knowledge learned from multiple labelled source

domains to a un-labelled target domain.

Our procedure for constructing the dataset
In order to construct the detection dataset of phytoplankton, we

first capture tens of thousands of phytoplankton microscopic

images using an optical microscope in the laboratory environ-

ment. Then we divide all the phytoplankton cells into 24 catego-

ries according to the advice of marine biologists. Finally, we label

all the images to localize and classify each object as ground-truth.

Image acquisition

In this article, an Olympus BX53 was used to collect the micro-

scopic images of phytoplankton. The samples were taken from

the sea area of Qingdao Jiaozhou Bay, and formaldehyde solution

was added to fix the phytoplankton morphology. The slide was

prepared by pipetting an appropriate amount of phytoplankton

formaldehyde solution then placed on the stage. The magnifica-

tion of the objective lens was set to 20 times, the eyepiece was 10

times, and the overall magnification was 200 times. The stage was

moved in an S-shape from the upper right corner of the slide to

obtain a microscopic image in all fields of view. And the image in

the field of view with phytoplankton was collected. In order to in-

crease the richness of our dataset, we collected images of different

illumination conditions in the same field of view. On the other

hand, we acquired images obtained by fine-focusing spiral adjust-

ment. The image resolution is 2040 � 1536. Raw images have

three uncompressed colour channels. Figure 2 shows the images

obtained by adjusting different focal lengths through a fine focus

screw, and the images in the second row are the magnification of

the image in the blue box. Figure 3 shows images of different illu-

mination conditions in the same field of view.

A few living cell images in the dataset

Most of the samples in our dataset are dead cells. The reason is

that the cells prepared with formaldehyde can maintain a fixed

shape for image acquisition. Meanwhile, we still collect a few liv-

ing cell samples for dynamic change process. However, it is a dif-

ficult task to obtain living phytoplankton because they tend to

move very fast. So it is very hard to obtain the images. There are

only 217 living cell images including 10 different categories in our

dataset. And each category only consists of a few images. Figure 4

shows some images of living cell samples. Compared with the

dead cell images in Figures 2 and 3, the living cells are all yellow-

ish because of the plastid inside. In Figure 5, three different cate-

gories, Pleurosigma pelagicum, Ceratium furca, and Ceratium

trichoceros, are shown from top to bottom. Each row of the

images is from the same phytoplankton with different motion

states. The task of collecting images of living cells is particularly

complex and difficult. Therefore, in order to achieve the in situ

observation of phytoplankton, it is necessary to construct a
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Figure 2. Images of the same view obtained by adjusting different focal lengths through a fine focus screw.

Figure 3. Eight illustrative images of the database: images of different lighting conditions.

Figure 4. The living cell images in our dataset belonging to eight categories, from left to right, top to bottom: Skeletonema, Navicula,
Ceratium furca, Biddulphia, Pleurosigma pelagicum, Coscinodiscus, Rhizosolenia, and Guinardia flaccida.

Phytoplankton microscopic image dataset PMID2019 1431
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synthetic dataset of phytoplankton living cells. We will introduce

the details in Synthetic dataset of living cells section.

Object category

The sample collection work took a total period of 2months and we

finally collected 10 819 images, each of which contains a number of

phytoplankton cells (i.e. averaging 3 cells per image). Under the

guidance of marine ecology experts, we divided all the collected

phytoplankton cells collected into the 24 categories including

Chaetoceros, Eucampia, Skeletonema, Coscinodiscus, Thalassionema

nitzschioides, Guinardia flaccida, Ceratium furca, Ceratium fusus,

Bacteriastrum, Ceratium trichoceros, Thalassionema frauenfeldii,

Dinophysis caudata, Biddulphia, Helicotheca, Pleurosigma pelagi-

cum, Ceratium tripos, Navicular, Ditylum, Protoperidinium,

Rhizosolenia, Detonula pumila, Coscinodiscus flank, Corethron, and

Ceratium carriense. The amount of each category is shown as a his-

togram in Figure 6 where Chaetoceros contains the most samples

and Ceratium carriense the least. The extreme imbalance of the

samples increases the difficulty of detection. However, according to

the experiment results in Evaluation on PMID2019 section, the

categories which only have a few samples also have a high detection

accuracy. In the meantime, it can be used to evaluate the perfor-

mance of the methods for solving sample imbalance.

Annotations

Each phytoplankton target in the captured microscopic images

has been manually annotated to form the ground-truth. The

ground-truth labels are important for the supervised learning

techniques in machine learning.

We used the ground-truth generation tool named LabelImg

(Tzutalin, 2015) to label the images. Six human annotators were

asked to overlay a bounding box tightly around the object one by

one in the image. Each object was given a category it belongs to.

Bounding boxes are used to locate the objects in an image. Then

LabelImg will automatically generate an Extensible Markup

Language file of the image to save the coordinates (in pixels) of

its four corners and its class label. Each annotator spent around

30 s to draw a bounding box in an image. Figure 7 shows some

images with bounding boxes. It can be seen that each object in

the image is tightly surrounded by a blue bounding box.

Comparison with the existing datasets

To the best of our knowledge, PMID2019 is the first high resolution

dataset for the detection of phytoplankton. As shown in Figure 1,

we show some examples of the existing dataset according to their

original scale of image size. The images from the various datasets

are scaled to show the relative resolutions of the datasets. ZooScan

is a zooplankton dataset including 20 classes with low-resolution

grey images. It can only be used to classify zooplankton. WHOI–

Plankton is a dataset for plankton classification consisting of 3.4

million labelled grey images divided into 70 classes. Kaggle-

Plankton contains low-resolution grey images for plankton classifi-

cation. The same as the others, ASLO can only be utilized for plank-

ton classification. Compared with these existing datasets,

PMID2019 is the first dataset with high-resolution colour images

for phytoplankton detection. The resolution of each image is 2040

� 1536, much higher than the images in the compared datasets.

Our dataset also has different lighting conditions to simulate the

real in situ environment and help train a robust detection model.

Figure 5. Each row belongs to the same phytoplankton with different motion forms, from top to bottom, Pleurosigma pelagicum, Ceratium
furca, and Ceratium trichoceros.
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Figure 6. A histogram statistics of the dataset. The phytoplankton cells are divided into 24 categories as shown above. From left to right, the
value progressively becomes smaller and the amount of each category is extremely unbalanced.

Figure 7. Some images with bounding boxes.

Phytoplankton microscopic image dataset PMID2019 1433
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We also cut out all the bounding boxes in the dataset to generate a

classification dataset, which can also be able to achieve excellent

performance in the classification task.

Synthetic dataset of living cells
In our dataset, just 2% of the images are living cells, the rest are

dead phytoplankton treated with formaldehyde. However, living

phytoplankton cells will be acquired during the in situ observa-

tion procedures. To generalize the dataset to in situ applications,

we use Cycle-GAN (Zhu et al., 2017) to achieve the domain mi-

gration between dead and living cell, so as to generate the corre-

sponding living cell images from the original dead cell images in

order to build a synthetic dataset.

Before the introduction of Cycle-GAN, we will give a brief ex-

planation of GAN (Generative Adversarial Nets). It is a framework

for estimating generative models via an adversarial process, in

which two models are simultaneously trained: a generative model

G that captures the data distribution, and a discriminative model

D that estimates the probability that a sample comes from the

training data rather than G. Cycle-GAN is an approach for learning

to translate an image from a source domain X to target domain Y .

The space of dead cell images constitutes the source domain X (the

grey box in Figure 8) and the limited living cell belongs to the tar-

get domain Y (the yellow box in Figure 8). Our goal is to learn

the mapping functions between the two domains X and Y , given

training samples of real dead cell images fxig
N
i¼1, where xi 2 X ,

and real living cell images fyig
M
i¼1, where yi 2 Y . The data distribu-

tion is denoted as x � pdataðxÞ and y � pdataðyÞ. As shown in

Figure 8, there are two mappings, i.e. GL : X ! Y and

GD : Y ! X , in addition, two adversarial discriminators DD and

DL, where DD aims to distinguish between real dead cell images

fxg and translate fake dead cell images fGD yð Þg. In the same way,

DL aims to discriminate between real living cell images fyg and

translates fake living cell images fGL xð Þg. The grey lines mean the

process of translating dead cell images to living cell images, and the

yellow lines mean the opposite direction from living cell images to

dead cell images. The solid ones mean transferring real cell images

into fake cell images, and the dotted ones mean the process from

fake cell images into real cell images.

The objective function, as shown in Equation (1), contains two

adversarial losses (Goodfellow et al., 2014) of both mapping func-

tions in Equations (2) and (3) and one cycle consistency loss

(Zhu et al., 2017) Lcyc in Equation (4) to guarantee that the

learned function can map an individual input xi to a desired out-

put yi . Therefore, the objective functions are as follows:

L GD;GL;DD;DLð Þ ¼ LGAN GD;DL;X ;Yð Þ
þ LGAN GL;DD;Y ;Xð Þ þ kLcyc GD;GLð Þ

(1)

LGAN GD;DL;X ;Yð Þ ¼ Ey�pdataðyÞ logDL yð Þ
� �

þ Ex�pdataðxÞ logð1� DL GDðxÞð Þ½ � (2)

LGAN GL;DD;Y ;Xð Þ ¼ Ey�pdataðyÞ logDD xð Þ½ �
þ Ex�pdataðxÞ logð1� DD GLðyÞð Þ½ � (3)

Lcyc GD;GLð Þ ¼ Ex�pdataðxÞ½jjGL GD xð Þð Þ � xjj1�

þ Ey�pdataðyÞ jjGD GL yð Þ
� �

� yjj1
h i

(4)

The generative network contains two stride-2 convolutions, six

residual blocks, and two half stride convolutions. Similar to

Johnson et al. (2016), we use instance normalization. For the dis-

criminator networks we use 70� 70 PatchGANs (Isola et al.,

2016; Ledig et al., 2017), which aims to determine whether 70�
70 overlapping image patches are real or fake. The parameters of

such a patch-level discriminator architecture are fewer than a

full-image discriminator. We use the settings as suggested by Zhu

et al. (2017). For all experiments, we set k ¼ 10 in Equation (1).

Adam solver is utilized and the batch size is set to 1. The size of

the input image is 256� 256. The network is trained from scratch

for 200 epochs and the learning rate is set to 0.0002. We keep the

same learning rate for the first 100 epochs then linearly decay the

rate to zero for the remaining 100 epochs.

Figure 8. The migration model contains two mapping functions GL : X! Y and GD : Y! X, and the associated adversarial discriminators
DD and DL. The grey box is the source domain X, the yellow box is the target domain Y. There is a cycle consistency loss Lcyc to guarantee
both GD can transform the fake living cell images generated by GL into dead cell images as illustrated in Figure 8 by grey dotted lines, and GL
can transform the fake dead cell images generated by GD into living cell images as shown by yellow dotted lines.
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Figure 9 shows the results of various phytoplankton cells, in-

cluding Ceratium trichoceros, Guinardia flaccida, Ceratium furca,

and Ceratium fusus.

With Cycle-GAN, we can finally migrate all the dead cell

images into corresponding living cell images. It helps us to con-

struct a more comprehensive, adequate, and reasonable synthetic

dataset that can be utilized in the in situ observation scenarios.

A set of experiments are carried out to prove the effectiveness

of the utilization of Cycle-GAN. First, we split the captured

images into real images of dead and living cells. Then we use

Cycle-GAN to generate 1000 images of 5 categories to make a

Synthetic living cells dataset. Third, we train a typical detector,

Faster R-CNN, on Real dead cells, Real living cells, and

PMID2019 consisting of Synthetic images separately. Finally, we

test each model for detection and classification on the Real living

cells of PMID2019 and we get average precision values of 75%.

The detection results of the five categories are shown in Table 1.

Although the amount of Real dead cells is larger than Real living

cells, the performance of the latter is better than the former,

which illustrates that living cell samples play an important role in

the in situ detection process. The better performance of the model

trained on PMID2019 consisting of Synthetic data depends on a

larger dataset with more living cell samples.

Evaluation on PMID2019
The main purposes of evaluating baseline methods on the phyto-

plankton microscopic image dataset are as follows. First, we want

to investigate the difficulties of the state-of-the-art detection

methods on the microscopic dataset to make a benchmark.

Second, we want to provide reference evaluation results to

researchers on phytoplankton microscopic image detection and

computer vison. Third, we want to find out the shortcomings of

Figure 9. The input images x are real dead cell images from the source domain X. The images in the middle column are output images GL(x),
which have been translated into the target domain Y. The images in the right column are reconstructed images GD(GL(x)), which match
closely to the input images x. From top to the bottom: Ceratium trichoceros, Guinardia flaccida, Ceratium furca, and Ceratium fusus.
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existing state-of-the-art detection methods for microscopic images.

In the following, we first introduce several state-of-the-art object

detection approaches. All code can be downloaded from our project

page: https://github.com/ouc-ocean-group/PMID2019.

Faster R-CNN

Faster R-CNN (Ren et al., 2015) is a state-of-the-art object detec-

tion network that is different from the earlier detectors, which de-

pend on region proposal algorithms like SPPnet (He et al., 2015)

and Fast R-CNN (Girshick, 2015). A region proposal network

(RPN), which shares full-image convolutional features with de-

tection networks is introduced in Faster R-CNN. The RPN is a

fully convolutional network (Shelhamer et al., 2014), which can

be trained end-to-end specifically for generating detection pro-

posals instead of the previous algorithms like Selective Search

(Uijlings et al., 2013) and EdgeBoxes (Zitnick and Dollár, 2014).

RPNs are trained to efficiently predict region proposals with a

wide range of scales and aspect ratios. Therefore, “anchor” boxes

are introduced as references at different scales and aspect ratios.

The structure of Faster R-CNN can be divided into four stages.

The first stage of Faster R-CNN is a backbone consisting of con-

volutional layers that are used for feature extraction. They are

taken from a pre-trained image classification network, one

trained on the ImageNet dataset. Common choices are VGG-16,

ResNet-50, or ResNet-101. In this article, both ResNet-101 and

VGG-16 are used. The second stage is RPN. After receiving the

feature maps from the first stage, the RPNs will generate region

proposals then transfer to the next stage. We use a 3� 3 convolu-

tional layer followed by two sliding 1� 1 convolutional layers for

regression and classification, respectively. The third stage is ROI

(Region of Interest) Pooling. ROI pooling treats the features

extracted by the shared backbone as an image and crops rectan-

gular regions corresponding to the regions predicted by the RPN.

The final stage consists of a classifier that identifies the type of ob-

ject and a regressor that predicts final bounding box refinements

to improve the accuracy of the bounding box. In the meantime,

non-maximum suppression (Hosang et al., 2017) is used to filter

the predictions from both the RPN and the final bounding box

predictions. We randomly initialize all new layers by drawing

weights from a zero-mean Gaussian distribution with standard

deviation 0.01. All other layers are initialized by pre-training a

model for ImageNet classification. We use a learning rate of 0.001

for 60k mini-batches, and 0.0001 for the rest on our dataset. The

other implementation details are as described in Ren et al. (2015).

Feature pyramid network

Feature pyramids built upon image pyramids form the basis of a

standard solution of recognizing objects at vastly different scales

(Adelson et al., 1983). FPN (feature pyramid network) is a clean

and simple framework for building feature pyramids inside con-

volutional networks (Lin et al., 2017a). Feature pyramids with

marginal extra cost are constructed by exploiting the inherent

multi-scale, pyramidal hierarchy of deep convolutional networks.

FPN develops a top-down architecture with lateral connections to

build high-level semantic feature maps at all scales. It can be

trained end-to-end with all scales and is used consistently at

train/test time.

FPN takes a single-scale image with a random size as input,

and outputs proportionally sized feature maps at multiple levels,

in a fully convolutional way. The process is independent of the

backbone convolutional architectures (e.g. Krizhevsky et al.,

2012; He et al., 2016; Yan et al., 2015). FPN combines the low-

resolution high-level features from the later layers of the convolu-

tional backbone with higher resolution lower-level features drawn

from the backbone via lateral connection. This helps the network

resolve high resolution structures while retaining the semantic

richness of the high-level features from later layers in the back-

bone. Using FPN in a basic Faster R-CNN system achieves state-

of-the-art results. The input image is resized such that its shorter

side has 800 pixels. The learning rate is 0.02 for the first 30k

mini-batches and 0.002 for the rest. The other settings are as de-

scribed in Lin et al. (2017a). Both FPN with Faster R-CNN and

Faster R-CNN are two-stage region-based detectors.

Single shot multibox detector

Although the above detectors achieve high accuracies, they are

too computationally intensive for embedded systems and too

slow for real-time applications. SSD (single shot multibox detec-

tor; Liu et al., 2016) is a method for detecting objects in images

using a single deep neural network. It is the first deep network-

based object detector that does not resample pixels or features for

bounding box hypotheses and achieves good results.

This method utilizes a small convolutional filter to predict ob-

ject categories and offsets in bounding box locations. In order to

perform detection at multiple scales, it uses separate predictors

for different aspect ratio detections, and applies these predictors

to multiple feature maps from the later stages of a network. SSD

can be trained in an end-to-end way and achieves high accuracy.

We fine-tune the resulting model using SGD with initial learning

rate 10�3, 0.9 momentum, 0.0005 weight decay, and batch size

32. Then, after 40k iterations, continue training for 10k iterations

with 10�4 and 10�5. The other implementation details are as de-

scribed in Liu et al. (2016). It is faster and more accurate than the

present state-of-the-art detectors such as (YOLO) for single shot

detectors, and even as accurate as slower detectors such as Faster

R-CNN.

YOLOv3

YOLO (You Only Look Once) utilizes an end-to-end single neu-

ral network to predict bounding boxes and class probabilities di-

rectly from full images in one evaluation. It frames object

detection as a regression problem to spatially separate bounding

boxes and associated class probabilities. However, YOLO is not

effective enough for small objects in the image, and the generali-

zation ability would be very weak when the same object has a new

uncommon aspect ratio. Especially, because of the limitation of

the loss function, location error is the main problem affecting de-

tection results. Therefore, the improved versions, YOLOv2,

Table 1. The real living cell detection results of Faster R-CNN

models trained with real dead cells, real living cells, and PMID2019

consisting of synthetic data separately.

Phytoplankton

Real dead cells

from PMID2019

Real living cells

from PMID2019 PMID2019

Navicula 0.3636 0.8831 0.9900

Ceratium furca 0.8695 0.9051 0.9992

Ceratium trichoceros 0.8972 0.9091 0.9870

Guinardia flaccida 0.8329 0.8894 0.9091

Ceratium fusus 0.7091 0.9091 0.9910
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YOLO9000 (Redmon and Farhadi, 2017) and YOLOv3 (Redmon

and Farhadi, 2018) were gradually proposed.

YOLOv3 uses a few tricks to improve training and increase

performance, including multi-scale predictions, a better backbone

classifier, and an effective loss function. The backbone network is

Darknet-53 with much deeper convolutional networks and has

some shortcut connections to avoid gradient disappearance. In

the prediction period, YOLOv3 extracts features from multiple

scales using a similar concept to feature pyramid networks. The

deep features provide semantic information, and the shallow fea-

tures can provide fine-grained information. During training, bi-

nary cross-entropy loss is used for the classification.

RetinaNet

The detectors with the highest accuracy are based on a two-stage,

proposal-driven mechanism. The first stage generates a sparse set

of region proposals and the second stage classifies each region

proposal using a convolutional neural network. In contrast, one-

stage detectors are applied over a regular, dense sampling of ob-

ject locations, scales, and aspect ratios. To help the one-stage

detectors achieve similar accuracy as the two-stage approaches, a

novel Focal Loss function is proposed to address class imbalance.

Therefore, RetinaNet (Lin et al., 2017b) was designed and trained

to evaluate the effectiveness of this loss.

The loss function is a dynamically scaled cross-entropy loss.

When confidence in the correct class increases, the scaling factor

decays to zero. The scaling factor can automatically down-weight

the contribution of easy examples during training and rapidly fo-

cus the model on hard examples. RetinaNet is a single, unified

network composed of a backbone network, which is utilized to

compute convolutional feature maps and two task-specific sub-

networks. In this work, we experiment with the ResNet-50

backbone, which is pre-trained on ImageNet. The model is

trained for 90k iterations with an initial learning rate of 0.01,

which is then divided by 10 at 60k and again at 80k iterations.

Weight decay of 0.0001 and momentum of 0.9 are used. The

other settings are the same as described in Lin et al. (2017b). One

subnetwork is to perform convolutional object classification; the

other is to perform convolutional bounding box regression. This

approach is simple and highly effective and achieves state-of-the-

art accuracy and speed.

Phytoplankton detection

In our experiments, we evaluate state-of-the-art baseline detec-

tors: Faster R-CNN (Ren et al., 2015), FPN, SSD (Liu et al.,

2016), YOLOv3 (Redmon et al., 2016; Redmon and Farhadi,

2018), and RetinaNet (Lin et al., 2017b) on our dataset. We sepa-

rate the dataset into two parts, 50% images of training set, 50%

images of test set. Unless otherwise noted, we leveraged their de-

fault settings. The first group of the detection models in Table 2 is

two-stage region-based detectors, the second group one-stage re-

gion-free detectors. Six classes are selected based on the amount

to show their detection results as displayed in Table 2. We utilize

average precisions (APs) at different intersection over union

(IoU) where a predicted bounding box is correct if its IoU with

the ground-truth bounding box is higher than 0.5 or 0.75 and

Aps for different object sizes as the main evaluation metrics.

Figure 10 shows the qualitative prediction results of the previ-

ous methods. The original images are in the first row, the second

to the fourth rows are sequentially the prediction results of Fast

R-CNN, SSD, and YOLOv3. The first 4 columns in Figure 10 are

simple images of our dataset. Different scenarios are shown in

Figure 10, various lighting conditions from bright to dark like

columns e, f, g, and h, complex background like columns g, h, i,

Table 2. The detection results on PMID2019 with state-of-the-art methods.

Detection Methods Backbone AP50 ð%Þ AP75ð%Þ CHAE SKEL DICA NAVI RHIZ COFL

Faster R-CNN ResNet-101 91.26 87.65 89.55 88.61 96.30 86.58 83.10 70.27

Faster R-CNN VGG16 90.54 86.95 88.99 85.98 99.13 84.78 82.83 62.79

FPN RssNet-101 92.68 89.19 80.89 80.12 99.95 73.89 75.39 70.95

SSD ResNet-101 88.12 84.66 77.81 76.06 90.91 67.31 75.95 70.75

YOLOv3 DarkNet-19 93.10 82.81 79.11 67.29 96.94 61.40 65.10 50.11

RetinaNet ResNet-50 89.25 88.82 88.12 87.18 98.77 72.70 67.81 79.28

Figure 10. The original images are in the first row, the second to the fourth rows are sequentially the prediction results of Fast R-CNN, SSD,
and YOLOv3.
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and j, and overlap like columns i and j. Compared with the other

two detectors, the prediction results of Fast R-CNN are the best,

which can accurately predict the location and class of all the phy-

toplankton cells in the images.

Conclusion
In this article, we introduced a new phytoplankton microscopic

image dataset, which contains 10 819 phytoplankton microscopic

images of 24 different classes. Each object in the image has been

manually labelled with a bounding box and category of ground-

truth. In order to generalize the dataset for in situ applications,

we further utilize Cycle-GAN to achieve the domain migration

between dead and living cell samples. We build a synthetic dataset

to generate the corresponding living cell samples from the origi-

nal dead cell ones. The PMID2019 dataset can not only be used to

assess and evaluate the performance of the state-of-the-art phyto-

plankton detection algorithms on microscopic images, but also

can particularly benefit the development of phytoplankton micro-

scopic vision technology in the future. Marine biologists can use

PMID2019 to train a detection model to help them count, detect,

and classify phytoplankton automatically. Therefore, it is able to

gain great benefits for scientific research. Moreover, the resolu-

tion of the images in our dataset is large enough for marine biolo-

gists to study the detailed features of both phytoplankton cells.

The reported performances of some state-of-the-art object detec-

tion algorithms may provide new ideas for the monitoring of ma-

rine ecosystems.
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A novel plankton imager was developed and deployed aboard a profiling mooring in Prince William Sound in 2016–2018. The imager

consisted of a 12-MP camera and a 0.137� telecentric lens, along with darkfield illumination produced by an in-line ring/condenser lens

system. Just under 2.5 � 106 images were collected during 3 years of deployments. A subset of almost 2 � 104 images was manually identified

into 43 unique classes, and a hybrid convolutional neural network classifier was developed and trained to identify the images. Classification

accuracy varied among the different classes, and applying thresholds to the output of the neural network (interpretable as probabilities or

classifier confidence), improved classification accuracy in non-ambiguous groups to between 80% and 100%.

Keywords: convolutional neural network, machine vision, Prince William Sound, zooplankton.

Introduction
There is a considerable interest in moving marine resource

management away from a single-species approach to a more

mechanistic ecosystem approach (e.g. Friedland et al., 2012), but

that has proved to be challenging in practice given the complexity

and variability of large marine ecosystems. Technologies for mea-

suring physical parameters (temperature and salinity) are mature,

and technologies for measuring biogeochemical parameters (e.g.

nitrate, phosphate) are also now available and reasonably robust

(Johnson et al., 2006). Similarly, the practice of using in situ fluo-

rescence as a proxy for primary producer biomass is well estab-

lished (e.g. Strickland and Parsons, 1972). The assessment of

higher trophic levels, particularly fish stocks, is also mature and

features an array of well-developed methods (e.g. King, 2007).

Zooplankton are the link between primary productivity and fish-

eries, but zooplankton studies have often been sidelined within

ecosystem studies (Mitra et al., 2014) because they are difficult

and expensive to enumerate.

In high latitude ecosystems, secondary producers are mostly

small Eumetazoan zooplankton (Longhurst, 2006). Although the

dominant large grazers are often crustaceans, there is a diversity

of other taxa present: most every phylum within the subkingdom

has a member that may be found in the plankton during at least

part of their life history. Until recently, the assessment of zoo-

plankton was primarily done by collecting them with nets and ex-

amining the resulting samples under a microscope. This method

is time consuming and expensive and destroys fragile taxa but

is required if species-level taxonomic resolution is desired. There

has been much work in recent years on new methods to enumer-

ate zooplankton taxa, both in situ and in manus (reviewed

by Wiebe and Benfield, 2003). One of the more promising meth-

ods has proved to be in situ imagery, which permits the

VC International Council for the Exploration of the Sea 2020. All rights reserved.
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discrimination of plankton from abiotic particulates, provides a

level of taxonomic resolution, and sizing of imaged plankton and

particulates (which is useful because biomass, and many physio-

logical rates scale with size).

A number of in situ imagers have been developed, including

traditional camera-based systems such as the Video Plankton

Recorder (Davis et al., 1992), ZOOVIS (Benfield et al., 2003), and

the Scripps Plankton Camera (spc.ucsd.edu). A number of sys-

tems have also been developed that employ shadowgraph imagery

(Samson et al., 2001; Cowen and Guigand, 2008; Ohman et al.,

2019); shadowgraph systems possess a very long depth of field

and consequently permit sampling large volumes of water. The

disadvantage of shadowgraph systems is that only the silhouette

of non-transparent plankton is recovered and only greyscale

images may be collected.

Given the high abundance of zooplankton in situ (order 102–106

individuals l�1), most imaging systems collect many more images

than may be identified manually and there has also been a parallel ef-

fort to develop machine vision techniques to automate the identifica-

tion of those images (Benfield et al., 2007). Early methods included

discriminant analysis (Jeffries et al., 1984), and more recently

Support Vector Machines and Artificial Neural Networks (e.g.

Culverhouse et al., 1996; Hu and Davis, 2005) and Random Forest

(Gorsky et al., 2010) methods have been employed successfully.

With recent advances in computing hardware, most notably

the development of cost-effective massively parallel graphics

processing unit (GPU) based processors, very deep convolutional

neural networks (CNNs) have been developed for solving com-

plex computer vision problems such as image classification

(Krizhevsky et al., 2012). CNNs of varying architecture are now

commonly employed to address the classification of plankton

images from in situ imaging systems (e.g. Cui et al., 2018; Luo

et al., 2018; Schröder et al., 2018; Bochinski et al., 2019; Cheng

et al., 2019). Many studies have focused on smaller phyto- and

microzooplankton images based on the publicly available WHOI

database (Orenstein et al., 2015; Sosik et al., 2015) and report ac-

curacies in the range of 86–96% (e.g. Lee et al., 2016; Cui et al.,

2018; Liu et al., 2018). Among larger zooplankton, Luo et al.

(2018) used a CNN to identify shadowgraph images to a classifi-

cation accuracy of order of 90%, if rare difficult-to-classify groups

were omitted. Bochinsky et al. (2019), using a similar image set,

reported accuracies between 69% and 98%. Cheng et al. (2019)

showed accuracies of between 91% and 98% on a seven-class set

of shadowgraph images collected by the ZOOVIS camera (Bi

et al., 2013). Transfer learning, the use of pre-trained very deep

CNNs has been shown to improve both speed and accuracy when

classifying plankton image sets (Lee et al., 2016; Orenstein and

Beijbom, 2017; Rodriques et al., 2018; Schröder et al., 2018).

As a part of the GulfWatch Alaska programme (gulfwatch.-

com), a long-term monitoring effort in the area impacted by the

Exxon Valdez oil spill, a WETlabs Autonomous Moored Profiler

(AMP) has been deployed in central Prince William Sound annu-

ally since 2013. The AMP site is �5 nautical miles southeast of

Naked Island, in 200m water depth. The AMP system is a surface

piercing profiler that profiles from a parking depth to surface at a

user-specified rate and interval. Once at the surface, the profiler

connects to a server computer on land via a cellular data link for

data upload and command/control telemetry and then pulls itself

back down the line to the park depth with a small onboard

winch.

In 2015, an in situ zooplankton camera system was developed

for the PWS AMP. The camera system was based on the Scripps

Plankton Camera, but with larger optics and a higher resolution

camera, to sample a larger volume of water to better sample mes-

ozooplankton. The camera system was integrated with the profiler

electronics and deployed on the profiler during deployments in

2016–2018. We present here a description of the camera system

and a CNN-based classification system that was developed using

the images collected during the deployments.

Methods
PWS profiler

The PWS AMP system is based on a WETLabs Thetis profiler,

which consists of a positively buoyant frame (�20 lbs), an electric

winch, and a 2.8-mm UHMWPE tether. Starting from a user-

specified parking depth, the winch pays out the tether at a speci-

fied rate to allow the profiler to ascend. Upon reaching the sur-

face, the profiler enters into a “hold” mode, while an onboard

cellular modem connects to the local cellular network. Upon con-

necting, new profile parameters may be sent to the profiler and a

small amount of decimated data from the profile sent out.

Following that, or if the profiler is unable to connect to the cellu-

lar network before a timeout period (as will occur during heavy

weather), it engages the winch and pulls the frame back down to

the park depth (Figure 1). The system is powered by a 1.5-kW

lithium polymer battery manufactured by Bluefin Robotics for

autonomous underwater vehicle use, and with the current config-

uration it is capable of conducting �70 60-m profiles per charge.

The instrument suite on the AMP includes a Seabird model 19

CTD, a WETLabs FLNTU chlorophyll-a fluorometer/backscatter

turbidometer, a Satlantic SUNA nitrate sensor, and a Seabird

SBE43 oxygen sensor. During the 2016–2018 deployments, the

profiler was set to conduct twice daily profiles from 60m depth

to the surface. Profiles were usually done within 15min of the

solar minimum and maximum of each day. The ascent rate was

set to 30 cm s�1.

PWS Plankton Camera

The optical system of the PWS Plankton Camera (PWSPC)

includes a 0.137� 143-mm telecentric lens (Opto Engineering

TC2MHR-96) mounted on a 12-MP colour camera (a Point Grey

Grasshopper GS3-U3-120S6C-C) inside a large pressure housing

with a sapphire glass optical port (Figure 2). Illumination is

provided from a second pressure housing on titanium standoffs

aimed at the imaging system, with a custom white light emitting di-

ode (LED) array focused through condenser lenses (Edmund

Optics 125mm plano-convex anti-reflective coated lenses) and a

white LED ring ahead of the condenser lenses, to produce darkfield

illumination of the imaged volume (Figure 2). The LEDs are

strobed with a control signal from the camera to synchronize with

the frame rate. The imaged volume of the camera is �450ml, and

the nominal pixel size is 22.6mm.

The camera takes 12-bit colour images at a maximum frame

rate of 7 frames s�1, which produces more data that can be prac-

tically logged to disk (�500 MB s�1, or �5.5 TB for a 1 month

deployment of twice daily profiles lasting 3min). However, mes-

ozooplankton are sparse enough that most of each frame does

not contain an image of a particle, it is mostly empty space.

The PWSPC thus also incorporates an onboard computer

(an Odroid XU4) to segment each image and retain regions of

The Prince William Sound Plankton Camera 1441
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interests (ROIs) that contain images of individual plankters.

Raw input images were downsampled by a factor of 4 using

nearest-neighbour interpolation and then scaled to 8 bits by di-

viding the pixel values by 256. This approach preserves

resolution in one colour channel and avoids the computation-

ally costly debayering operation on the full 12-MP image. ROIs

in each frame were detected with the Canny algorithm (Canny,

1986), a multi-step algorithm commonly used to detect edges in

surface

60 m

bo�om

(220 m)

anchor

(700lbs)

Float

w/ ADCPs

mooring

line

acous�c

release

AMP

Parked at 60 m

23 hr., 40 min.

Ascending

5 min.

At surface

Transmi�ng data

5 min.

Descending

10 min.

Figure 1. Schematic representation of the PWS profiling mooring and its operation.
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images. High and low thresholds were set at 50 and 100, respec-

tively, and kernel size was 3; those thresholds were empirically

set and gave good detection of objects in sharp focus or with

very high contrast. The edge mask from the Canny operation

was then post-processed with a binary morphological closing oper-

ation (dilation followed by erosion) with a 5 � 5 kernel to bridge

disjoint edges together. Contours were then detected in the image

using the OpenCV findContours function. For each contour with

area larger than a threshold of 300 pixels, the contour bounding

box was padded by a factor of 50% and upsampled to the scale of

the raw image. The coordinates of the padded and upsampled

bounding box were then used to extract the ROI from the raw in-

put image and save it to disk in raw 16-bit TIFF format. An upper

limit of 50 ROIs per image was imposed by hardware limitations

and was not often reached: over the 3 years of deployments, the

mean number of ROIs per image was 7.8, and the 50 ROI limit was

reached only 0.36% of the time. Images were downloaded from the

camera over Gigabit Ethernet during regular service visits to the

profiler done every 4–6weeks.

The PWSPC was integrated with the AMP electronics, and

control of the camera system done via an RS232 serial link. Prior

to each profile, the AMP control module supplied power to the

camera and waited for the onboard computer to boot. After

the computer had booted, the AMP sent a string to synchronize

the computer clock and an instruction to start logging and then

started the profile. As the profile occurred, the PWSPC computer

output status messages (time, number of ROIs collected, status

messages from the various components) at 1Hz that were logged

by the AMP electronics. ROIs saved to the onboard disk were

given timestamped filenames to be used to infer the depth of

the profiler at the time each image was taken from the pressure

record recorded by the CTD. Following the profile, the AMP con-

troller shut down the computer and removed power to the cam-

era system before returning to the park depth. During profiling

the camera and strobes were set to operate at 4Hz to prevent

overlapping images from being taken. The technical specifications

of the PWSPC are outlined in Table 1.

Image preprocessing and CNN classifier

Prior to analysis, 16-bit ROIs were debayered to produce a colour

image at full camera resolution. These colour images were then

Figure 2. Schematic representation of the PWS Plankton Camera.

Table 1. Specifications of the PWS Plankton Camera.

Exposure time (ls) 10–60

Magnification 0.137�
Field of view (mm) 93 � 70

Pixel size (object space) (lm) 22.6

Optical resolution 8 lp/mm at 30% contrast

Depth of field 64 mm at 8 lp/mm at 20%

contrast

Full-resolution imaged volume (ml) 400

Blob detection imaged volume (ml) >1 000

Frame rate 4 frames/s with ROI processing

Onboard storage (GB) 64

Dimensions (excluding cables) 120 cm L � 18 cm OD

Total system weight (kg) �10 (air), �2 (seawater)
Power requirements 9–36 V input, 20 W consumption

External communications RS232, 100 Mbit Ethernet

The Prince William Sound Plankton Camera 1443
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contrast-enhanced by subtracting the minimum and dividing by

the maximum of the image. The contrast-enhanced images were

then converted to 8 bits by multiplying by 255 and coercing to

integer values. The full-resolution colour images were then post-

processed using a method similar to the real-time detection

method. The images were first converted to greyscale and then

filtered with a Sobel edge detector. The edge magnitude image

was then thresholded by setting edge magnitudes >2.5 times the

median edge magnitude to 255 and others to 0. The edge image

was then closed using binary morphological operations, and

closed contours are enumerated. The contour with the largest

area was then selected as the foreground object. Finally, the con-

tour mask was smoothed with a Gaussian filter and the mask

multiplied with the colour image. Each colour channel of the

resulting masked image was then deconvolved with the Lucy–

Richardson algorithm with seven iterations and a Gaussian point

spread function estimate with full width half maximum set to

three pixels. The deconvolved colour channels were then com-

bined together to yield the masked, sharpened, colour ROI.

The CNN chosen to classify the PWSPC images was the

“Inception v3” model (Szegedy et al., 2015). Inception v3 is a

very deep CNN with numerous symmetric and asymmetric neu-

rons that has proved to be adept at image classification problems,

and it and its predecessors have consistently ranked highly in the

ImageNet Large Scale Recognition Competition (Russakovsky

et al., 2015). The ImageNet database for the 2015 competition in-

cluded �1.2 million images in 1000 unique categories; the

Inception v3 model had an overall error rate of 5.6%. Because the

model is very large, it can be very time intensive to train from

scratch, but pre-trained weights (such as from the ImageNet

competition) may be used to significantly reduce training time

(Tajbakhsh et al., 2016; Orenstein and Beijbom, 2017). To work

with the Inception v3 model, the shorter dimension of each image

was padded with black values (red-green-blue 0, 0, 0) to make a

square image. Both sides of the image were padded to approxi-

mately centre the image. Images were rescaled to a dimension of

299 � 299 pixels (the default size of the model).

Resizing the images for input to the CNN necessarily discards

size information that is encoded in the image, which can lead to

confusion among similar looking but differently sized plankton.

For instance, Pseudocalanus and Neocalanus copepods have a sim-

ilar appearance but are fairly easily distinguished by size. To rein-

troduce size information to be used to improve classification, a

hybrid architecture was employed, with a second parallel neural

network developed to operate on a small set of features extracted

from each image, including the major and minor axis lengths and

areas in pixels. The first 12 Haralick texture features (Haralick,

1979), a common set of statistics used for image classification

(Hu and Davis, 2005), were also included. The features were

encoded into a single neuron, batch-normalized, and

concatenated with the Inception v3 model prior to the last two

layers to produce a hybrid model (Figure 3). The network was

implemented in Tensorflow (Abadi et al., 2016) through the

Keras front end (Chollet, 2015) in the Python programming lan-

guage. Training of the network and image classification was done

on an NVIDIA Tesla K40 GPU.

CNN training

To produce a training set, images were randomly subsampled

from the entire image set. Because the size frequency distribution

of the images was roughly lognormal (Figure 4), sampling ran-

domly from the entire set produced batches of images that were

mostly smaller particles, which also tended to be of lower resolu-

tion and more difficult to identify. Therefore, the images were

stratified into four logarithmically scaled size groups based on file

size (<1642; >1642, 
10 000; >10 000, 
28 183, and

>28 183 bytes) before being identified. File size is a useful proxy

of image size, and this subsampling scheme allowed more larger

images to be classified, which were more likely to be identifiable

mesozooplankton. The image set was further stratified by time,

such that approximately one-third of the images were taken from

each of the 3 years, to provide a subsample representative of all

the images.

The amount of training data available is a bottleneck in

the training process of CNNs; for complex classification tasks,

a large training dataset (105 images or more) is desirable. To

streamline the identification of the stratified subsets, a custom

programme was developed in the Matlab GUIDE framework.

The programme consists of a graphical interface that presents an

observer with the image displayed at its actual size alongside a

larger zoomed version and has a text box into which descriptive

text may be entered. Upon entering text and pressing enter, the

identification is recorded and the next image in the set pre-

sented. Using the GUI, each image could be identified in a few

seconds, allowing a large number of images to be identified in a

relatively short time.

The training set was produced by an expert zooplankton

taxonomist, and each image was identified to the finest taxo-

nomic resolution possible. The training set produced contained

18 868 images within 43 separate classes; some classes were

taxon based, while others were based on visual characteristics

(Figure 5, Table 2). A number of rare classes (<10 images) were

identified during manual classification but were not included

for analysis.

The model was initialized with ImageNet weights and was

trained using categorical crossentropy as the loss function and the

Adam optimizer (Kingma and Ba, 2015); accuracy was the pri-

mary metric. The training set was split randomly 90/10 into a

training and test set, and 10% of the training set was used for

validation purposes during training. Image augmentation (Perez

and Wang, 2017) has been shown to improve classification accu-

racy in classification problems with relatively small amounts of

training data and was applied to the images during training.

Images were randomly flipped, scaled (620%), rotated (690�),

or sheared (68�) as they were input into the model during each

training epoch. Network parameters were only retained if they

resulted in an increase in validation accuracy.

Input image

Feature extraction (size, texture)

Figure 3. Schematic representation of the Inception v3 CNN and
concatenated feature size and texture model.
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Figure 5. Examples of non-ambiguous taxa groups among the 43 unique classes identified. Scaling is consistent among different taxa, and the
number corresponds to the taxa group number in Table 2.
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Figure 4. Size frequency histograms of ROI sizes during the 3 years of deployments.
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Results
A total of 2 424 329 ROIs totalling just over 60 GB were collected

during the 2016–2018 deployments (Figure 4).

The Inception v3 model was trained on the training set for 500

epochs and took �275 s per epoch, taking slightly under 40 h.

Training accuracy increased to >90% by the 100th epoch, and

the rate of increase in training accuracy declined after that,

slightly exceeding 98% by the 500th epoch (Figure 6). Validation

accuracy and loss was much more variable, presumably due to

variability in the image set from epoch to epoch but followed the

same trend.

A confusion matrix is a method of representing the accuracy of

the classifier (Pearson, 1904; Hu and Davis, 2005; Luo et al.,

2018); the confusion matrix of the classifier run on the training

data is the theoretical maximum performance that can be

expected from the classifier (Figure 7). Furthermore, there are a

Table 2. Description of the 43 classes in the training set.

Name Number

Number

of images Notes

Acartia 1 100

Aegina 2 147

Aglantha 3 330

Amphipoda 4 100 Merged several amphipod species

to produce larger group

Beroe 5 100

Blob 6 2 989 Characteristic opaque large single

cell. Possibly Noctiluca

Bolinopsis 7 255

Calanus 8 613

Calyptopis 9 198

Chaetognatha 10 212

Clione 11 100

Clytia 12 100

Cnidaria 13 262 Catchall group of several

uncommon species and images

not identifiable to species

Cope_lg 14 815 Catchall group of large copepods

(approximately Calanus/

Metridia sized and larger) not

identifiable to species

Cope_sm 15 1 117 Catchall group of large copepods

(approximately Pseudocalanus

sized and smaller) not

identifiable to species

Ctenophora 16 174 Catchall group of Ctenophora not

identifiable to lobate groups or

Pleurobrachia

Doliolida 17 103

Dot 18 110 Image artefact: small white dots

Eucalanus 19 177

Euphausiid 20 97 Juvenile and larger

Filament 21 656 Long thin forms likely diatom

chains or large pennate

diatoms.

Filaments 22 199 Multiple filaments, often poorly

segmented cnidarian tentacles

Furcilia 23 114 Euphausiid furcilia

Larvacea 24 100 Catchall group for non-identifiable

and not Oikopleura

Limacina 25 210

Metridia 26 1 353

Nauplius 27 256 Nauplii of all types, taxonomically

ambiguous

Neocalanus 28 1 574

Oikopleura 29 207 House usually segmented out

Oithona 30 197

Paraeuchaeta 31 100

Pleurobrachia 32 262

Pluteus 33 308 Primarily echinoderm pluteus

larvae

Polychaeta 34 100 Catchall for all polychaetes not

identifiable as Spionidae

Pseudocalanus 35 1 004

Radiolarian 36 251

Siphonophora 37 204

Snow 38 172 Amorphous aggregates

Spionidae 39 99

Spiral 40 177

Tentacle 41 132 Cnidarian tentacles

Tentacles 42 145 Multiple tentacles in frame.

Unknown 43 2 949
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Figure 6. Training and validation accuracy (top panel) and loss
(bottom panel) over the 500 training epochs.

1446 R. W. Campbell et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3



number of statistics that maybe be derived to examine the relative

success of the classifier. For each class (i), the number of true pos-

itives (T), false positives, and false negatives, which may be used

to infer the precision, P:

P ¼ Ti= Ti þ FPið Þ:

The recall, R:

Ri ¼ Ti=ðTi þ FNiÞ;

and the F1 score:

F1i ¼ 2PiRi=ðPi þ RiÞ:

The precision indicates the relative success by the classifier,

while recall is a measure of how complete the classifier was; the

F1 score is a relative measure of overall accuracy (van Rijsbergen,

1979; Luo et al., 2018).

When used on the training set, the classifier showed compara-

tively little confusion and generally high scores in the accuracy

metrics with precision exceeding recall (Figure 7; Table 3). The

“unknown” class had the lowest scores, which is unsurprising

since it is by nature a heterogeneous group. A more realistic
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Figure 7. Confusion matrix for the classifier applied to the training data only.
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assessment of the usefulness of the classifier is to test it on a set of

images that it did not see during training (the 10% of images set

aside as a “test” set). Deep neural networks tend to overfit to

the training set, and image augmentation and aggressive use of

dropout layers used in the Inception v3 model are techniques

to reduce that (Yamashita et al., 2018). When the classifier was

applied to the test set, there were considerably more confusion

and lower scores in all of the accuracy metrics (Figure 8; Table 3).

If the overall success of the classifier with the different taxa is

summarized by sorting by the F1 score (Figure 9), some taxa were

resolved quite well, while others were not. Less populated groups

were not less likely to be classified accurately, several of the

smaller classes were classified well (many were visually distinc-

tive), and several larger groups (which were more heterogeneous

visually) had lower success.

The presence of “unknown” (cannot be identified by a human

observer) and novel (not seen before by the network) categories is

problematic for CNNs, since their structure assumes a fixed and

known set of classes. The softmax function used as the final layer

in the Inception model returns scaled outputs that sum to 1 and

may be interpreted as probabilities (Bridle, 1990; Goodfellow

et al., 2016); the prediction made by the classifier is usually

assigned to the category with the highest associated probability.
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Figure 8. Changes in the accuracy metrics (precision, recall, and F1
score) in all of the 43 different classes of the training set as a
function of varying the probability cut-off.

Table 3. Accuracy metrics of the training set (left) and test set

(right) for each class.

Class name

Training set Test set

Precision Recall

F1

score Precision Recall

F1

score

Acartia 1 1 1 0.7 0.88 0.78

Aegina 1 1 1 0.87 1 0.93

Aglantha 1 0.99 1 0.91 0.83 0.87

Amphipoda 1 1 1 0.95 0.86 0.9

Beroe 1 1 1 1 0.83 0.91

Blob 0.98 0.96 0.97 0.85 0.88 0.86

Bolinopsis 1 1 1 0.88 0.76 0.82

Calanus 0.99 0.98 0.99 0.52 0.53 0.52

Calyptopis 1 1 1 0.78 0.94 0.85

Chaetognatha 1 1 1 0.84 0.82 0.83

Clione 1 1 1 1 1 1

Clytia 1 1 1 0.65 0.62 0.63

Cnidaria 1 0.97 0.99 0.25 0.35 0.29

Cope_lg 1 0.98 0.99 0.47 0.54 0.5

Cope_sm 0.99 0.96 0.98 0.51 0.53 0.52

Ctenophora 1 0.99 1 0.14 0.26 0.19

Doliolida 1 1 1 0.62 0.87 0.72

Dot 0.99 0.73 0.84 0.77 0.53 0.63

Eucalanus 1 1 1 0.92 0.97 0.94

Euphausiid 1 0.96 0.98 1 1 1

Filament 1 0.97 0.98 0.79 0.57 0.66

Filaments 1 0.99 0.99 0.7 0.68 0.69

Furcilia 0.97 0.98 0.97 0.78 0.78 0.78

Larvacea 1 0.99 0.99 0.6 0.6 0.6

Limacina 1 0.98 0.99 0.74 0.74 0.74

Metridia 0.99 1 0.99 0.89 0.84 0.87

Nauplius 1 0.96 0.98 0.88 0.77 0.82

Neocalanus 0.99 1 0.99 0.72 0.81 0.77

Oikopleura 1 0.97 0.99 0.76 0.71 0.74

Oithona 1 0.98 0.99 0.6 0.55 0.57

Paraeuchaeta 1 1 1 0.9 0.9 0.9

Pleurobrachia 1 0.99 1 0.74 0.72 0.73

Pluteus 1 1 1 0.97 0.9 0.93

Polychaeta 1 0.93 0.96 0.8 0.43 0.56

Pseudocalanus 1 1 1 0.7 0.69 0.69

Radiolarian 1 1 1 0.94 0.98 0.96

Siphonophora 1 0.99 0.99 0.71 0.78 0.74

Snow 1 0.95 0.98 0.63 0.79 0.7

Spionidae 1 0.95 0.98 0.85 0.81 0.83

Spiral 1 0.96 0.98 0.92 0.57 0.7

Tentacle 0.99 0.99 0.99 0.89 0.71 0.79

Tentacles 1 1 1 0.86 0.93 0.89

Unknown 0.91 0.98 0.95 0.68 0.7 0.69
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The associated probability may also be used as a threshold to re-

duce the amount of misclassification and new groups that have

not been encountered by the model before (Hendrycks and

Gimpel, 2018). The technique has been used successfully with

plankton images (Faillettaz et al., 2016; Luo et al., 2018).

To examine how a probability threshold might improve

classification accuracy, the accuracy statistics were recalculated

at varying probability thresholds (i.e. if the prediction for a par-

ticular image did not exceed the threshold it was not included in

the calculation). Applying this procedure to all classes in the

train and test sets (Figures 8 and 10, respectively) produced

“trajectories” for each class that generally showed that a more re-

strictive probability threshold resulted in improvements in

classification accuracy. The three taxa with the lowest F1 scores in

the test set (Figure 9) showed an opposite trend, with a decrease

in accuracy metrics at higher probability thresholds. Those

classes were among the more ambiguous ones (“Ctenophora”,

“Cnidaria”, “Calanus”) that exhibited high confusion with other

classes with similar or even overlapping appearance (e.g.

“Calanus” and “Cope-lg”; see Figure 11). Because those classes

were employed when the human observer had low confidence of

the identification, it is perhaps unsurprising that the confidence

of the machine classifier remained low as well. A trade-off to this

technique is that as higher probabilities are used, more images are

discarded from the analysis (Figure 12). If a 90% threshold is

used, the overall error rate drops from �30% to �10%, but ap-

proximately a fifth of the images are discarded. A 95% threshold

results in �25% of images being discarded. Applying a 90% prob-

ability threshold resulted in an increase in most accuracy statistics

in most classes (Figure 13, Table 4).

Discussion
The camera system developed here is among the highest resolu-

tion in situ zooplankton camera systems deployed thus far, with a

comparatively large sampled volume as well (Table 5). It is also

among the first colour imagers deployed, joining the Video

Plankton Recorder (Davis et al., 1992; Lombard et al., 2019) and

CPICS (Continuous Particle Imaging and Classification System:

Grossmann et al., 2015). Given that the system was designed for

battery-limited autonomous vertical profiling (as opposed to

long tows), a relatively large sampling volume was desirable, to

capture adequate numbers of relatively dilute mesozooplankton

(Sheldon and Parsons, 1967) during each profile. Colour infor-

mation is also useful, because it may be diagnostic of some plank-

ton classes (e.g. red pigments are common in some copepod
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Figure 9. F1 scores for each of the 43 different classes in the test set.
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species), and features of the plankters are also discernable in

some images (e.g. full guts and lipid sacs in copepods).

The image set collected during the 2016–2018 deployments

spanned large phytoplankton to large mesozooplankton and

exhibited a diversity of taxa, orientations, and qualities. Although

magnification is constant across the depth of field with a telecen-

tric lens, they do not have an infinite depth of field and particles

on either side of the depth of field will be less sharp than those in

the centre. Scattering by small particulates (phytoplankton cells

too small to resolve and inorganic particles) may also have re-

duced the practical resolution at times. Not all images were sharp

enough to detect the features required to identify a plankter to a

fine taxonomic level. Larger raw images obviously had more fea-

tures (sensu Hassaballah and Awad, 2016) that were more useful

to a human observer and presumably to a machine observer as

well; smaller raw images, when upsized to 299 � 299 pixels for

classification, remained less sharp.

Identification of taxa from images is a difficult task, and

the error rate of human observers can be significant. In a dino-

flagellate classification task, Culverhouse et al. (2003) found

that expert taxonomists achieved 84–95% accuracy at best,

although accuracy dropped considerably among multiple

observers (43%). Similar studies in other fields have shown

lower ranges in more visually complex situations (69–96%:

Austen et al., 2017). The proportion of unknown images can

also vary among observers and can depend on the number of

classes involved (Cowen et al., 2015). Luo et al. (2018) suggest

that 90% accuracy be used as a benchmark for automated clas-

sification. Those levels of accuracy were possible with the

Inception v3 CNN for a number of taxa, particularly if images

with lower confidence were not used.

Filtering images by probability, as suggested by Faillettaz et al.

(2016), improved precision and recall in most taxa by 5–10%.

Examination of the confusion matrix post filtering (Figure 13)

shows that much of the confusion was between related classes, for

instance the large calanoid copepods Metridia, Calanus,

Neocalanus, and the catchall group Cope_lg and the small cope-

pod classes Oithona, Pseudocalanus, and the catchall group

Cope_sm. There was also confusion among the classes represent-

ing gelatinous forms, both cnidarians and ctenophores. The

catchall groups Cnidarian and Ctenophora were not well re-

solved, while individual taxa within those groups (e.g. the cteno-

phore groups Bolinopsis, Beroe, and Pleurobrachia) were well

classified. The catchall groups may have thus likely represented

lower quality images (to both human and machine observers)

that were more visually heterogeneous and possessed fewer useful

features for identification.

Large, very deep CNNs benefit from large training sets

(e.g. Cho et al., 2016), and the training set used here is small

compared with those used in contemporary machine vision re-

search like ImageNet. It is however of similar size to several

training sets used in plankton identification studies (order of

hundreds to thousands of images per class: Hu and Davis, 2005;

Bi et al., 2015; Faillettaz et al., 2016). The roughly lognormal

size distribution of plankton populations makes finding less

common taxa problematic. The size stratified technique used

here attempted to balance the need to obtain examples of as

many classes as possible, while not missing out on more rare

forms. The classifier developed here discriminated several com-

paratively rare (and visually distinctive) taxa with high accuracy.

An iterative process where the results of the classifier are

checked and added to the training set will aid in producing

a larger training set, but that does however leave open the possi-

bility of an unknown bias being introduced to the network

(i.e. the network probably classifies some images better than

other and will bias towards those images). Examination of the

unknown class and those removed by probability filtering will

also be instructive, though in the case of the latter would

involve looking through a very large image set (105 images in

the case of the PWS image set so far) and would likely need to

be subsampled. Training set size will continue to be problematic

for plankton studies using imagery, every plankton imager

has different optical characteristics, resolution, and lighting,

which makes each image set different and not directly compara-

ble. Presently, there are several large plankton training image
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Figure 10. Changes in the accuracy metrics (precision, recall, and F1
score) in all of the 43 different classes in the test set as a function of
varying the probability cut-off.
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sets available (Cowen et al., 2015; Orenstein et al., 2015) and,

transfer learning, the use of networks pre-trained on other

image sets has shown to improve the speed and accuracy of

results (Orenstein and Beijbom, 2017; Rodrigues et al., 2018;

ICES, 2020).

There is no panacea when approaching the problem of under-

standing zooplankton dynamics. Zooplankton are dilute, and a

large volume of water must be sampled to obtain representative

estimates of abundance. Plankton nets sample a large volume of

water and allow fine scale taxonomic resolution but are expensive

in terms of time and money and damage fragile taxa. Cameras

sample a smaller volume of water and provide less taxonomic in-

formation but are inexpensive to operate following the initial cap-

ital outlay. Obtaining twice daily profiles over several months is

simply not tractable with nets (Huntley and Lopez, 1992) but is

with a camera. The classifier developed here permits high confi-

dence the discrimination of several species-level and more

broadly based groups.
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Figure 11. Confusion matrix for the classifier applied to the test set (i.e. images that the classifier did not experience while training).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability cutoff

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

po
rt

io
n 

fa
ls

e 
po

si
tiv

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n 

of
 im

ag
es

Figure 12. Proportion of false positives (black, left axis) and
proportion of images that were rejected (red, right axis) as the
probability cut-off was varied in the test set.

The Prince William Sound Plankton Camera 1451

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3



The value and usefulness of automatically classified imagery

depends on the questions at hand. Simple information from zoo-

plankton imagery such as abundance and size is easily determined

with high confidence. For example, although there was some con-

fusion between copepod species and the generalized copepod

group, but if one is primarily interested in the abundance and rel-

ative biomass of copepods, that information may be determined

with high confidence. Done over several years, estimates of zoo-

plankton biomass could be of value to fisheries and ecosystem

managers (e.g. Möllmann et al., 2014). If there is interest in a sin-

gle species, then more work may be required with the classified

images to assure confidence but more inferential questions may

be addressed.
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Figure 13. Confusion matrix for the classifier when applied to the test set and using a 90% probability threshold to discard uncertain
classifications.
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Table 4. Accuracy metrics for each class in the test set, when a 90% probability threshold was applied.

Class name Precision Recall F1 score

Acartia 0.82 1 0.9

Aegina 0.92 1 0.96

Aglantha 0.93 0.86 0.9

Amphipoda 1 0.86 0.93

Beroe 1 0.83 0.91

Blob 0.91 0.92 0.92

Bolinopsis 0.91 0.78 0.84

Calanus 0.59 0.64 0.61

Calyptopis 0.93 0.97 0.95

Chaetognatha 0.92 0.9 0.91

Clione 1 1 1

Clytia 0.68 0.76 0.72

Cnidaria 0.26 0.41 0.32

Cope_lg 0.53 0.62 0.57

Cope_sm 0.58 0.63 0.6

Ctenophora 0.2 0.36 0.26

Doliolida 0.79 0.92 0.85

Dot 0.87 0.65 0.74

Eucalanus 1 0.97 0.98

Euphausiid 1 1 1

Filament 0.87 0.69 0.77

Filaments 0.71 0.73 0.72

Furcilia 0.92 0.86 0.89

Larvacea 0.86 0.75 0.8

Limacina 0.84 0.86 0.85

Metridia 0.95 0.87 0.91

Nauplius 0.96 0.92 0.94

Neocalanus 0.79 0.85 0.81

Oikopleura 0.88 0.75 0.81

Oithona 0.69 0.62 0.65

Paraeuchaeta 0.95 0.9 0.92

Pleurobrachia 0.83 0.81 0.82

Pluteus 0.98 0.95 0.97

Polychaeta 0.93 0.61 0.74

Pseudocalanus 0.8 0.78 0.79

Radiolarian 0.96 0.98 0.97

Siphonophora 0.84 0.87 0.85

Snow 0.68 0.83 0.75

Spionidae 0.88 0.88 0.88

Spiral 0.97 0.71 0.82

Tentacle 0.96 0.81 0.88

Tentacles 0.89 1 0.94

Unknown 0.77 0.79 0.78

Table 5. Comparison of the imaging specifications of published plankton imagers designed for zooplankton.

System Imager resolution Pixel resolution

Sampled

volume Illumination References

CPICS 1 360 � 1 024 30 mm to 20 mm 1 ml Darkfield Grossmann et al. (2015)

VPR Varies 30 mm to 5 cm 1.25–380 ml Darkfield Davis et al. (1992),

Lombard et al. (2019)

ZOOVIS 2 448 � 2 050 10 mm 240 ml Shadowgraph Bi et al. (2013, 2015)

UVP 1 280 � 1 024 174 mm 1 020 ml Light sheet Picheral et al. (2010)

ISIIS 2 048 � 17 frames per second (line scan) 68 mm (in vertical) 169 l s�1 Shadowgraph Cowen and Guigand

(2008)

Zoocam 1 280 � 960 40 mm 250 ml Shadowgraph Ohman et al. (2019)

PWSPC 4 240 � 2 824 22.6 mm 450 ml Darkfield This project

The Prince William Sound Plankton Camera 1453

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/4

/1
2
6
7
/5

8
7
3
7
4
9
 b

y
 U

n
iv

e
rs

ita
 d

i B
e
rg

a
m

o
 u

s
e
r o

n
 1

9
 S

e
p
te

m
b
e
r 2

0
2
3



authors are their own and do not necessarily reflect the views or

position of the Trustee Council.
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Möllmann, C., Lindegren, M., Blenckner, T., Bergström, L., Casini,
M., Diekmann, R., Flinkman, J. et al. 2014. Implementing
ecosystem-based fisheries management: from single-species to in-
tegrated ecosystem assessment and advice for Baltic Sea fish
stocks. ICES Journal of Marine Science, 71: 1187–1197.

Ohman, M. D., Davis, R. E., Sherman, J. T., Grindley, K. R.,
Whitmore, B. M., Nickels, C. F., and Ellen, J. S. 2019. Zooglider:
an autonomous vehicle for optical and acoustic sensing of zoo-
plankton. Limnology Oceanography Methods, 17: 686.

Orenstein, E. C., Beijbom, O., Peacock, E. E., and Sosik, H. M. 2015.
WHOI-plankton-a large scale fine grained visual recognition
benchmark dataset for plankton classification. CoRR 2015;
abs/1510.00745.

Orenstein, E. C., and Beijbom, O. 2017. Transfer learning and deep
feature extraction for planktonic image data sets. In 2017 IEEE
Winter Conference on Applications of Computer Vision
(WACV), Santa Rosa, CA, 2017, pp. 1082–1088. doi:
10.1109/WACV.2017.125.

Pearson, K. 1904. Mathematical Contributions to the Theory of
Evolution on the Theory of Contingency and Its Relation to
Association and Normal Correlation. Dulau and Co., London. 34
pp.

Perez, L., and Wang, J. 2017. The effectiveness of data augmentation
in image classification using deep learning. arXiv:1712.04621.

Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., and
Gorsky, G. 2010. Limnology Oceanography Methods, 8: 462–473.

Rodriques, F. C. M., Hirata, N. S. T., Abello, A. A., De La Cruz, L. T.,
Lopes, R. M., and Hirata, R. Jr 2018. Evaluation of Transfer
Learning Scenarios in Plankton Image Classification. VISIGRAPP,
doi: 10.5220/0006626703590366.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., et al. 2015. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115:
211–252.

Samson, S., Hopkins, T., Remsen, A., Langebrake, L., Sutton, T., and
Patten, J. 2001. A system for high resolution zooplankton imag-
ing. IEEE Journal of Oceanic Engineering, 26: 671–676.
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