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A B S T R A C T

We propose a reinforcement learning (RL) approach to address a multiperiod optimization problem in which a
portfolio manager seeks an optimal constant proportion portfolio strategy by minimizing a tail risk measure
consistent with second order stochastic dominance (SSD) principles. As a risk measure, we consider in particular
the Interval Conditional Value-at-Risk (ICVaR) shown to be mathematically related to SSD principles. By
including the ICVaR in the reward function of an RL method we show that an optimal fixed-mix policy
can be derived as solution of short- to medium-term allocation problems through an accurate specification
of the learning parameters under general statistical assumptions. The financial optimization problem, thus,
carries several novel features and the article details the required steps to accommodate those features within a
reinforcement learning architecture. The methodology is tested in- and out-of-sample on market data showing
good performance relative to the SP500, adopted as benchmark policy.
0. Introduction

We consider in this contribution a popular portfolio selection model,
the so-called fixed-mix (FxM) model, that carries a long history in
financial practice (Bianchi and Guidolin, 2014). The FxM paradigm,
also commonly referred to as constant proportion portfolio insurance
(CPPI), was established rigorously in finance theory by Black and
Perold (1992) under Gaussian assumption on the risky assets’ return
processes. It was then generalized to the case of discontinuous processes
by Cont and Tankov (2009). The rationale of FxM investment strategies
is simple, mainly motivated by the stable performance induced by
constant proportion portfolios and its simple rationale: buy low and
sell high relative to an evolving average market scenario. The 60%–40%
equity-bond proportions, for instance, have been advocated over the
years as a consistent portfolio composition to attain high performance
in the medium-long term (Bender et al., 2010) even outside of classical
Gaussian assumptions. The literature on the topic is extensive and rich,
see Ziemba and Ziemba (2008), Dempster et al. (2011) to span the early
debate on this investment rule. In this introduction, we analyze the key
elements of this financial problem and motivate this contribution from
a financial and methodological perspective. In the following section,
we frame the work in the state-of-the-art and discuss the specific
contributions of this article.

From a mathematical perspective the optimization problem associ-
ated with an FxM policy was already highlighted by Fleten et al. (2002),
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Dempster and Leemans (2006) to result in a non-convex optimization
problem, making the derivation of the optimal constant proportions
hard through numerical methods and jeopardizing the possibility to
derive closed-form solutions. In the case of a discrete, scenario-based
formulation, however, Dempster et al. (2007), by emphasizing its near
convexity under relatively general assumptions, proposed a solution
method based on a search routine followed by a local convex optimizer.
A common way to derive this class of portfolio strategies, tradition-
ally, relied then on policy simulation (Kim et al., 2014; Denault and
Simonato, 2017).

As the first motivation of this research, the development of a re-
inforcement learning approach that would help through the learning
process to overcome the potential lack of convexity and the risk of local
optima.

Furthermore, from a financial viewpoint, the definition of an opti-
mal dynamic FxM policy has become popular as an allocation criterion
when allowing for sufficiently extended investment horizons, typically
several years, and rarely associated with some form of risk control or
considered in relationship to some benchmark financial strategy. As
a result of these limitations, even if effective in the long term, CPPI
is known to be exposed to possible losses over short periods. Instead,
in this work, the derivation of an optimal FxM strategy is considered
over a short-term horizon and jointly with the optimization of a tail
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risk measure. To wit, the Interval Conditional Value at Risk (ICVaR). The
elationship between ICVaR and second-order stochastic dominance (SSD)

was established in Liu et al. (2021) and will be recalled below to clarify
the adopted modeling approach. We show in the computational results
that the proposed decision paradigm, based on a stationary fixed-mix
policy and the ICVaR optimization under SSD conditions, leads to an
effective short-term risk control of portfolio dynamics and positive risk-
adjusted returns over increasing investment horizons, from very short:
one month, to medium-term: one and a half years.

The adoption of a reinforcement learning approach has other more
general motivations. The optimization problem is formulated below
with a continuous action space, to determine optimal portfolio allo-
cations, a discrete model of uncertainty, and a risk-based objective
function. Classical methods to tackle this general problem include
stochastic dynamic programming (SDP) approaches (Infanger, 2008) un-
der Markovian assumptions or multistage stochastic programming (MSP)
methods (Dupačová et al., 2000; Consigli et al., 2016). In the presence
of partial orders among the probability distributions, as in the case
of stochastic dominance constraints, see Ogryczak and Ruszczyński
(2001), Dentcheva and Ruszczyński (2003), Ruszczynski (2010), both
the SDP and the MSP formulations suffer from the so-called curse
of dimensionality and have proven computationally infeasible (Gomez
et al., 2024).

Indeed machine learning techniques and the RL methodology have
been recently used to tackle large-scale stochastic optimization prob-
lems as shown in Bayraktar and Kara (2023), Jaimungal (2022), Al-
Aradi et al. (2018), Han et al. (2017), Huré et al. (2020), Wang et al.
(2020), Hambly et al. (2021). The opportunity to accommodate a
concave objective function, based on the ICVaR measure, furthermore,
is provided by recent advances in so-called risk-sensitive RL and convex
RL: the optimization of the classical Conditional Value-at-Risk intro-
duced by Rockafellar and Uryasev (2002) has been recently considered
in those contexts. See Tamar et al. (2014), Chow et al. (2018). We
provide further details, here below, in Section 1.

Problems in RL that involve optimizing concave or convex objective
functions are now addressed within a novel framework known as
convex RL (Mutti et al., 2023; Miryoosefi et al., 2019; Zhang et al.,
2020; Geist et al., 2021; Zahavy et al., 2021), where the objective
function can take on either concave or convex forms. We frame this
contribution in the state-of-the-art in Section 1.

After this introduction, the article evolves from the analysis here
next in Section 1 of the state-of-the-art relevant to properly frame
and characterize our contribution from a methodological and financial
perspective to the definition of the portfolio optimization model in
Section 2, where the adopted risk measure and fixed-mix constraints
are explained in detail, to Section 3 focusing on the RL methodology
and the adopted RL algorithm. In Section 4 we present extended
computational evidence to validate the proposed approach in- and out-
of-sample, before the conclusion with an indication of future research.
The article includes an extended set of results presented in Appendix.

1. State-of-the-art and contribution

The state-of-the-art, specifically in the domain of RL developments
for financial optimization and portfolio management problems, is grow-
ing rapidly. Yet, it is reasonable to say that as of today, the presented
RL approaches are rather problem-specific, and this holds for the
methodology presented in this contribution. A step forward to deal with
dynamic control problems, came from the introduction of deep rein-
forcement learning, specifically through the Deep Q Network (DQN)
method (Mnih et al., 2015, 2016, 2013).

Under relatively mild assumptions, however an issue of value func-
tion overestimation, specifically associated with the DQN algorithm
was reported by Hasselt (2010), Hasselt et al. (2016), who proposed
the double Q-learning method (DDQN). Unlike the single-network ap-
proach of DQN, DDQN utilizes two separate networks. The first, known
2

as the online network, selects actions, while the second, the target
network, evaluates these actions. This dual-network strategy effec-
tively tackles the overestimation problem encountered in the DQN
framework. Both the DQN and DDQN methods are primarily based on
value-based approaches, aiming to determine the optimal action solely
from an action-value function. These methods are typically employed
when the action space is discrete.

In many reinforcement learning (RL) scenarios, however, the action
space is continuous, making discretization impractical. Value-based RL
methods often struggle to handle this complexity effectively. In recent
years, successful implementations of deep deterministic policy gradient
(DDPG) methods have emerged to address continuous action spaces, as
proposed by Silver et al. (2014), Lillicrap et al. (2015), Gu et al. (2016),
Wang et al. (2020) (2015). DDPG algorithms are grounded in the actor–
critic paradigm, where two neural networks interact. The actor network
determines actions, while the critic network evaluates the action-value
function.

In the work (Zhang et al., 2020), the authors introduce a Vari-
ational Policy Gradient (VPG) method, which extends the classical
Policy Gradient method (Silver et al., 2014). This method extended the
applicability of reinforcement learning (RL) techniques from problems
based on simple reward functions to those formulated with more gen-
eral convex (or concave) objective functions. It anticipated the stream
of contributions now associated with the general class of convex RL
methods, mentioned in the introduction.

Early applications of ML relied on the adoption of a linear reward
function. This, for instance, was the case in a financial context of Deng
et al. (2016), in which the authors employ deep direct reinforcement
learning to maximize the expected compounded return for a trading
system. Specifically in financial optimization problems such assumption
is consistent with so-called risk-neutral investors.

In various real-world applications, including those in financial engi-
neering, there are numerous challenges involving a general concave or
convex function 𝑄. For instance, in risk-sensitive problems, when the
action value 𝑄 depends on a risk measure (Dentcheva and Ruszczyński,
2008; Fei et al., 2020).

Most recent novel RL algorithms have been proposed to solve
more complex dynamic risk-control problems based on time-consistent
formulations and general risk functions (Jaimungal, 2022; Coache and
Jaimungal, 2024; Coache et al., 2023; Chow et al., 2018). The dynamic
model proposed in Das and Varma (2020) based as a risk measure of
the shortfall for a pre-specified investment goal is particularly relevant
to the present article. This is formulated as a Markov decision problem
(MDP) and solved by backward recursion based on a specific charac-
terization of the value function. We adopt this RL methodology as a
benchmark to analyze the properties of the algorithm proposed below.

We have summarized the set of RL methods we consider relevant to
assessing our contribution in Table 1. From top to bottom, row-wise we
recall a set of key contributions spanning from 2013 to 2023, from the
works on DQN to more recent works employing convex RL. For a more
comprehensive recent overview of the state-of-the-art in RL, readers are
referred to Shakya et al. (2023).

Table 2, instead provides a concise summary of RL-based contri-
butions from 2017 to date, specifically in the finance domain, which
preceded our contribution. It is hardly meant to be an exhaustive
account of a continuously evolving scientific domain, but surely it
conveys the contributions we have considered in our proposal.

Compared with previous applications of RL methodologies in port-
folio management, which usually rely on a recursive formula, as in
standard RL and RL with dynamic risk measures, our work consid-
ers a more general concave utility function which is defined only at
terminal stage. This utility function includes a penalty component to
enforce stochastic dominance, which is used as a reward function in
the optimization model described in Section 2.

We summarize previous RL approaches in finance and portfolio

management in Table 2.
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Table 1
Summary of recent advancements in deep and convex reinforcement learning methods.

RL method Advances Assumptions made Limitations

∙ Deep Q Network (DQN)(2013)
(Mnih et al., 2015, 2016, 2013)

∙ This approach employs deep
neural networks to learn the
action value function

∙ The objective function takes the
form of linear compounded
returns. No risk evaluation

∙ Discrete action space

∙ Poor risk assessment
∙ Overestimation of the value
function

∙ Double Deep Q Network (DDQN)
(2015) (Hasselt, 2010; Hasselt et al.,
2016)

∙ Addresses the overestimation of
the value function in DQN.

∙ The objective function takes the
form of linear compounded
returns. No risk evaluation

∙ Discrete action space

∙ Poor risk assessment

∙ Deep Deterministic Policy Gradient
(DDPG) (2016) (Silver et al., 2014;
Lillicrap et al., 2015; Gu et al., 2016;
Wang et al., 2020)

∙ Addresses the deep RL problem
for continuous spaces

∙ Continuous action space ∙ Can only be applied to
compounded linear rewards
objective functions

∙ The objective function takes the
form of a linear compounded
return

∙ Variational Policy Gradient (2020)
(Zhang et al., 2020)

∙ Generalizes the policy gradient
methodology to concave or
convex objective functions

∙ Continuous action space ∙ Assumes an infinite number of
scenarios or trials

∙ Concave or convex objective
functions

∙ Convex Reinforcement Learning
(2023) (Mutti et al., 2023)

∙ Considers the case of finite
scenarios or trials

∙ Concave (or convex) objective
functions and continuous action
space

∙ The method does not address
non-concave (non-convex)
objective functions
f
a
p
w
e
f

The derivation through reinforcement learning of an optimal dy-
amic fixed-mix policy, based on a risk measure whose minimization
eads to a strategy stochastically dominating a benchmark to the second
rder, represents the key contribution of this research paper from a
inancial and decision modeling perspective. The stochastic environ-
ent is characterized by a model-free data-driven return model on
hich the training phase is conducted. From a methodological per-

pective, we propose an RL approach relying on DDPG and convex RL
ethodologies.

In summary, the following can thus be claimed as specific contribu-
ions of this article to be validated in the following sections:

• The derivation of an optimal constant proportion investment
policy by reinforcement learning consistent with second order
stochastic dominance (SSD) over a benchmark portfolio.

• We show that such optimal fixed-mix, contrary to traditional
results, may turn out very effective over a very short-term invest-
ment horizon by out-of-sample backtesting.

• The proposed methodology is based on the exploration-
exploitation dilemma, the deep deterministic policy gradient,
and recent advancements in convex reinforcement learning tech-
niques. In Section 3, we provide detailed insight into why these
recent RL techniques are chosen to tackle the fixed-mix portfolio
optimization problem introduced in Section 2. The proposed ap-
proach shows convergence in computational results, as discussed
in Section 4.

. Portfolio problem formulation

We assume a problem in which a portfolio manager seeks the
efinition of an optimal constant proportion 𝜃𝑖 invested in asset 𝑖 =
, 2,… , 𝐼 defined as a ratio to the current portfolio value. Assuming
3

finite and discrete time set 𝑡 ∈  ,  ∶= {0, 1, 2,… , 𝑇 }, then
or every 𝑡, according to current prices, she/he is expected to rebal-
nce the portfolio to recover that proportion.  is referred to as the
lanning horizon of the problem, which terminates in 𝑇 . Consistently
ith canonical non-anticipativity requirements of the investment policy,
very portfolio allocation must occur under residual uncertainty: the
irst portfolio allocation occurs at 𝑡 = 0 and the last one will then

occur at the beginning of the last period. Accordingly, asset returns
are random variables at decision times and realized at the end of each
stage, until 𝑇 . The FxM policy rule is determined to maximize the
expected terminal value of the portfolio while controlling the excess
tail risk relative to a benchmark portfolio, here denoted by 𝑦𝑇 . To this
purpose we introduce as a risk measure, the interval Conditional Value-
at-Risk (ICVaR), defined below as a function of the coefficients 𝛼 and
𝛽 and denoted by 𝜌𝛼,𝛽 (.), as further clarified in Eq. (4). We look for the
solution by reinforcement learning of the following multistage stochastic
optimization problem:

max
𝜃

E(𝑤(𝑥𝑇 )) + [𝜌𝛼,𝛽 (𝑤(𝑥𝑇 )) − 𝜌𝛼,𝛽 (𝑤(𝑦𝑇 ))]− (1a)

s.t. 𝑤(𝑥𝑡) =
𝑚
∑

𝑖=1
𝑥𝑖,𝑡 + 𝑥0,𝑡 𝑡 = 1,… , 𝑇 , (1b)

𝑥𝑖,0 = �̂�𝑖,0 + 𝑥+𝑖,0 − 𝑥−𝑖,0, 𝑖 = 1,… , 𝐼, (1c)

𝑥0,0 = �̂�0,0 +
𝐼
∑

𝑖=1
𝑥−𝑖,0(1 − 𝑐𝑠) −

𝐼
∑

𝑖=1
𝑥+𝑖,0(1 + 𝑐𝑏) (1d)

𝑥+𝑖,0 − 𝑥−𝑖,0 + �̂�𝑖,0
∑

𝑖 𝑥𝑖,0
= 𝜃𝑖, 𝑖 = 1,… , 𝐼, (1e)

𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1(1 + 𝑟𝑖,𝑡) + 𝑥+𝑖,𝑡 − 𝑥−𝑖,𝑡, 𝑖 = 1,… , 𝐼, 𝑡 = 1,… , 𝑇 , (1f)

𝑥0,𝑡 = 𝑥0,𝑡−1(1 + 𝑟0,𝑡) +
𝐼
∑

𝑖=1
𝑥−𝑖 (1 − 𝑐𝑠) −

𝐼
∑

𝑖=1
𝑥+𝑖 (1 + 𝑐𝑏) (1g)

𝑥+𝑖,𝑡 − 𝑥−𝑖,𝑡 + 𝑥𝑖,𝑡−1(1 + 𝑟𝑖,𝑡)
∑ = 𝜃𝑖, 𝑖 = 1,… , 𝐼, 𝑡 = 1,… , 𝑇 , (1h)
𝑖 𝑥𝑖,𝑡
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Table 2
Recent advances in portfolio management based on reinforcement learning.

Work Contribution Methodology

∙ Deep direct reinforcement learning for
financial signal representation and
trading (2016) (Deng et al., 2016)

∙ The paper introduces an
algorithm that utilizes
reinforcement learning (RL) for
trading strategies. This algorithm
is tested in both the stock and
commodity futures markets

∙ The work introduces the Direct
RL algorithm to optimize
cumulative rewards

∙ A Deep Reinforcement Learning
Framework for the Financial Portfolio
Management Problem (2017) (Jiang
et al., 2017)

∙ The work presents a dynamic
portfolio allocation aimed at
maximizing the logarithmic
cumulative returns

∙ The methodology employs the
DDPG method with a long
short-term memory (LSTM) neural
network structure

∙ A risk-return portfolio optimization
using recurrent reinforcement learning
with expected maximum drawdown
(2017) (Almahdi and Yang, 2017)

∙ The paper addresses a dynamic
risk-return portfolio model that
includes the Sharpe ratio

∙ The work utilizes recurrent RL
to optimize the respective
objective function

∙ Continuous-time mean–variance
portfolio selection (2020) (Wang and
Zhou, 2020)

∙ Solves a dynamic mean–variance
portfolio model using RL

∙ Introduces the RL Exploratory
Mean–Variance algorithm and
compares it against two other
algorithms: maximum likelihood
estimation and DDPG

∙ Dynamic goal-based wealth
management using reinforcement
learning (2020) (Das and Varma, 2020)

∙ Solves a dynamic goal-based
portfolio problem using an RL
approach

∙ The methodology discretizes the
set of optimal actions and uses
the deep Q - learning method to
solve it.

∙ The reinforcement learning Kelly
strategy (2022) (Jiang et al., 2022)

∙ Solves a dynamic Kelly portfolio
strategy using an RL approach

∙ This work utilizes
entropy-regularization RL to solve
the optimization problem

∙ Reinforcement Learning with Dynamic
Convex Risk Measures (2022–2023)
(Coache and Jaimungal, 2024; Coache
et al., 2023)

∙ The paper develops an
algorithm to solve optimization
problems with time-consistent
dynamic risk measures. It also
presents financial applications
within this context.

∙ The algorithm utilizes DDPG
with a recurrent learning
methodology to learn dynamic
risk measures

∙ Optimal dynamic fixed-mix portfolios
based on reinforcement learning with
second order stochastic dominance
(2024) (This work)

∙ A dynamic fixed-mix portfolio
strategy with stochastic
dominance is solved using an RL
approach

∙ The optimization problem is
solved by combining DDPG and
Convex reinforcement learning
methods
a

𝑥

F
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E
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𝑥+𝑖,𝑇 = 𝑥−𝑖,𝑇 = 0, 𝑖 = 1,… , 𝐼, (1i)

𝑤(𝑥𝑡), 𝑥𝑖,𝑡, 𝑥+𝑖,𝑡, 𝑥
−
𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝐼, 𝑡 = 0, 1,… , 𝑇 − 1. (1j)

We denote the portfolio allocation in asset 𝑖 at time 𝑡 by {𝑥𝑖,𝑡}𝐼𝑖=1,
nd the rebalancing decisions, in terms of buying and selling decisions,
y {𝑥+𝑖,𝑡}

𝐼
𝑖=1 and {𝑥−𝑖,𝑡}

𝐼
𝑖=1 respectively, see (1c) and (1f). We assume that

o rebalancing decisions are allowed at the end of the planning horizon
, as from (1i). The wealth process {𝑤(𝑥𝑡)}𝑇𝑡=1 in Eq. (1b) is determined
y the evolution of the investment portfolio 𝑥𝑡 and cash surpluses 𝑥0,𝑡.

Furthermore, 𝑌 = {𝑦}𝑇𝑡=0 denotes the benchmark portfolio process
etermined exogenously and assumed in what follows to reflect the
𝑃500 market index. Finally, here next, we let 𝑊𝑇 and 𝑌𝑇 denote

espectively 𝑤(𝑥𝑇 ) and 𝑤(𝑦𝑇 ), the terminal portfolio values.
The fixed-mix strategy is enforced through constraint (1h). For-

ally, through the parameter 𝜃 = (𝜃1,… , 𝜃𝐼 ) ∈ R𝐼
+ where ∑

𝑖 𝜃𝑖 = 1,
e define an investment policy. Depending on the return of an asset

elative to the portfolio, if 𝑥 > 𝜃
∑

𝑥 a selling decision will be
4

𝑖,𝑡 𝑖 𝑖 𝑖,𝑡
dopted, while if smaller 𝑥𝑖,𝑡 < 𝜃𝑖
∑

𝑖 𝑥𝑖,𝑡, a buying decision:

𝑖,𝑡−1(1+𝑟𝑖,𝑡)+𝑥+𝑖,𝑡𝛿{𝑥𝑖,𝑡−1(1+𝑟𝑖,𝑡)<𝜃𝑖
∑

𝑖 𝑥𝑖,𝑡}−𝑥
−
𝑖,𝑡𝛿{𝑥𝑖,𝑡−1(1+𝑟𝑖,𝑡)>𝜃𝑖

∑

𝑖 𝑥𝑖,𝑡} = 𝜃𝑖
∑

𝑖
𝑥𝑖,𝑡.

(2)

or every asset 𝑖 = 1, 2,… , 𝐼 , Eq. (2) represents the constraint asso-
iated with the fixed-mix policy in problem (1a). Since the vector 𝜃
eflects the portfolio weights, then, if necessary, a normalization step
s introduced in the learning process, as further explained below.

At 𝑡 = 0, we also specify an input portfolio �̂�𝑖,0, if any. The optimal
ecision at 𝑡 = 0 as in (1c) will be determined by buying or selling
ccording to the fixed-mix strategy (1e).

The objective function can be written as:

(𝑊𝑇 ) + [𝜌𝛼,𝛽 (𝑊𝑇 ) − 𝜌𝛼,𝛽 (𝑌𝑇 )]−, (3)

ith [𝑥]− = 𝑚𝑖𝑛(0, 𝑥). Eq. (3) specifies the objective function in terms
f expected wealth, a performance measure, and a risk measure here
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determined by the difference between the ICVaR of the managed
portfolio and the benchmark: the higher such difference, the better.

The introduction of the penalty term [𝜌𝛼,𝛽 (𝑊 ) − 𝜌𝛼,𝛽 (𝑌 )]− in the
objective function (1a), is based on the relationship between the ICVaR
and second order stochastic dominance (SSD).

By definition, the ICVaR is the expected value over a shortfall
distribution specified on the left of 𝛽 and it generalizes the Conditional
Value-at-Risk (CVaR), over the restricted domain (−∞, 𝛽]:

𝜌𝛼,𝛽 (𝑊 ) = sup
𝜂≤𝛽

{𝜂 − 1
1 − 𝛼

E[𝜂 −𝑊 ]+}, 𝛼 ∈ [0, 1). (4)

For 𝛽 = 𝑉 𝑎𝑅𝛼 in the return distribution, then 𝜌𝛼,𝛽 will agree with
the canonical 𝐶𝑉 𝑎𝑅𝛼(𝑊 ) risk measure.

The following results from Liu et al. (2021) establishes the relation-
ship between the SSD partial order and 𝜌𝛼,𝛽 (.):

Proposition 1. The constraint 𝐹2(𝑊 , 𝜂) ≤ 𝐹2(𝑌 , 𝜂), ∀ 𝜂 ≤ 𝛽, is
equivalent to 𝜌𝛼,𝛽 (𝑊 ) ≥ 𝜌𝛼,𝛽 (𝑌 ), ∀ 𝛼 ∈ [0, 1).

We refer the reader to Liu et al. (2021) for the proof of this result. In
Proposition 1 𝐹𝑘(𝑊 , 𝜂) = E[(𝜂−𝑊 )𝑘−1+ ]

(𝑘−1)! if 𝑘 > 1 and 𝐹1(𝑊 , 𝜂) = P[𝑊 ≤ 𝜂].
ased on the reference point 𝛽 and 𝑘 = {1, 2} and random variables 𝑊
nd 𝑌 , it becomes natural to establish a stochastic dominance order

⪰(𝑘,𝛽) 𝑌 between the two. The theory on a continuous spanning
f partial orders for 𝑘 = 1, 2, 𝛽 ∈ R is developed in Liu et al. (2021),
ollowing previous contributions by Tsetlin et al. (2015), Müller et al.
2017).

From a decision-theoretic viewpoint, thanks to the ICVaR, we can
efine, as we do here, a mean-risk trade-off model, that without explic-
tly introducing a feasibility condition based on SSD order or any mul-
ivariate version of it, may enforce the stochastic dominance through
ime, by relying on the ICVaR (Gomez et al., 2024). On these grounds,
e employ a reward function in the RL approach based on those
rinciples.

. Methodology

We propose a deep reinforcement learning (RL) methodology to
olve the dynamic portfolio problem (1). Consider again the objective
unction (1a): it includes the expected terminal wealth and a penalty
unction based on the ICVaR associated with the managed portfolio, say
, and the benchmark 𝑌 . Let 𝑄(𝑇 ,𝑊 𝜃

𝑇 , 𝜌𝛼,𝛽 (𝑊
𝑋 , 𝑌 )) ∶  × R × R → R

e a very general concave function of a risk-averse decision maker. To
implify notation, let 𝑄(𝑊 𝜃

𝑇 ) be the such function. The optimization
roblem (1a) can be written in a very compact way, under an extended
et of constraints, as

max
𝜃

𝑄(𝑊 𝜃
𝑇 ) , (5)

here, the maximization is over the set of investment policies 𝜃, to
epresent the fixed-mix strategy, and 𝑄 is a positive expected terminal
tility defined as a function of the expected wealth and the penalty at
he end of the investment horizon. The terminal wealth 𝑊 𝜃

𝑇 is attained
s a result of the sequence of non-anticipative fixed-mix allocations 𝑥𝜃𝑡
nd random returns �̂�𝑡. Reinforcement learning provides an approach
o solving the general problem (5).

Implementing a reinforcement learning approach encounters model-
ng challenges, particularly when dealing with an objective function as
n (5). However, in specific cases where the 𝑄 functions follow specific
orms, reinforcement learning shows promising performance.

This section is organized in two parts. In the first one, we explain
he reinforcement learning methodology adopted to solve problem (5).
n the second part, we provide further details on all specific steps
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mployed to solve the fixed-mix problem (1a). f
3.1. Deep reinforcement learning

In this section, we utilize a refined approach based on the determin-
istic policy gradient method (DDPG) and convex reinforcement learning
techniques to address Eq. (1a).

The main idea of the algorithm is to utilize the DDPG approach
similar to standard reinforcement learning. However, we enhance it by
updating the neural network responsible for the action-value function 𝑄
(critic network) using convex reinforcement learning principles, given
the concave nature of 𝑄.

Let  the set of all possible states and we denote by  the set of
ossible actions. In what follows, specifically in the context of dynamic
ortfolio optimization,  is assumed to be continuous. Over a finite
nd discrete investment horizon 𝑡 = 1,… , 𝑇 , we focus on a dynamical
ystem evolving from state 𝑆𝑡 ∈ 𝑆 to state 𝑆𝑡+1 ∈  as a result of
ction 𝐴𝑡 ∈ . In this context, the definition of a stationary conditional
robability function P(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡) plays a key role, as it determines the
robability distribution of a new state 𝑆𝑡+1 based on the action 𝐴𝑡 taken
n state 𝑆𝑡. We assume the transition to the new state to depend only
n the current state and action and not on the past: P(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡) =
(𝑆𝑡+1|𝑆1, 𝐴1 ⋯𝑆𝑡, 𝐴𝑡), thus satisfying the Markov property. The initial
tate 𝑆1 (which does not depend on any action) is assumed to have
ensity distribution P1. The sequence of states and actions is such that
nce a state 𝑆𝑡+1 is observed based on the action 𝐴𝑡, the decision maker
eceives a reward �̂�𝑡 = �̂�(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1). The reward is given by the wealth
volution over time, i.e, �̂�𝑡 = 𝑤(𝑆𝑡) until the horizon 𝑇 : thanks to
ebalancing decisions the terminal wealth at time 𝑇 will depend on the
ompounded returns generated over time by the adopted policy.

We consider a set of parameterized policies {𝜋𝜃}𝜃∈𝛺, where a policy
𝜃 is defined as a function between states and actions 𝜋𝜃 ∶  → , and
he parameter 𝜃 is assumed to lie in a subset 𝛺 ⊆ R𝐼 . Under the given
arkovian assumptions the parameter 𝜃 will thus induce a stationary

olicy 𝜋𝜃 independent of time. The adoption of the fixed-mix, constant
roportion portfolio rule is then fully consistent with the RL rationale in
his context. In the methodology, we assume that the set of actions 𝐴𝜃

𝑡
aken by the decision maker (commonly called the agent) are induced
y a policy 𝜋𝜃
𝜃
𝑡 = 𝜋𝜃(𝑆𝑡). (6)

The objective of the decision maker is to find the optimal 𝜃 which
aximizes the utility 𝑄(𝑊 𝜃

𝑇 ), also referred to as the action-value func-
ion and 𝑊 𝜃 is computed as the rewarding process over the horizon
= 1⋯ 𝑇 which is calculated assuming that the actions 𝐴𝜃

𝑡 are induced
y the policy 𝜋𝜃 .

Although the methodology works for general action value function
, here next we will consider a 𝑄 function specified according to

he objective in Eq. (1a). The derivation of the optimal policy 𝜋∗
𝜃 =

𝑟𝑔𝑚𝑎𝑥𝜃𝐽 (𝜃) with 𝐽 (𝜃) = E𝑠1∼P1 [𝑄(𝑊 𝜃
𝑇 )|𝑆1 = 𝑠1], for given 𝜃0, is based

n a stochastic gradient ascent method with 𝑚 = 0, 1,… ,𝑀 possible
terations:

𝑚+1 = 𝜃𝑚 + 𝜂∇𝐽 (𝜃𝑚). (7)

The updating of 𝜃𝑚+1 in the iterative scheme requires the definition
f the learning rate 𝜂 and the estimate of the gradient ∇𝐽 (𝜃𝑚). The
omputation of the gradient ∇𝐽 (𝜃𝑚) is a relevant methodological issue
n the theory of deterministic gradient policies (Zhang et al., 2020;
ilver et al., 2014; Lillicrap et al., 2015), where it is derived as the
xpected action-value function evaluated at the current reward:

𝐽 (𝜃) = E𝑠1∼P1 [∇𝑄(𝑊 𝜃)|𝑆1 = 𝑠1], (8)

The computation of ∇𝑄(𝑊 𝜃) depends on the random wealth process
and its impact on 𝑄(𝑊 𝜃), typically over a high dimensional space.

o tackle this numerical issue, the deep 𝑄-learning theory proposes a
ethodology in which a neural network (NN) 𝐿𝜃

𝜙, learns the action value
𝜃
unction 𝑄(𝑊 ), from information derived from both the states and the
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policy, 𝜋𝜃 . In this context, 𝜙 represents the weight parameters of the
neural network, which are adjusted during the training process based
on the provided training data.

When a generic action-value function 𝑄 is adopted as the expected
value of a sum of stage rewards, shortly referred to as additive form,
then it will satisfy the Bellman equation (Sutton and Barto, 2018),
on which grounds an updating of 𝜙 in the NN 𝐿𝜃

𝜙 based on the
minimization of the Mean Squared Bellman Error (MSBE). The extension
of the action-value function 𝑄 from an additive form to more general,
possibly concave (or convex), forms and its difficulties is the main
subject in the theory of convex reinforcement learning (Zhang et al.,
2020; Miryoosefi et al., 2019; Geist et al., 2021; Mutti et al., 2023,?).

In the context of Problem (1) the 𝑄− function is not in linear
compounded returns form due to the penalty term associated with the
ICVaR. In the case of generic action value functions 𝑄 to which the
Bellman principle cannot be applied, a default updating of the gradient
requires a specific approach. For the fixed-mix problem, we propose
an updating rule for 𝜙 based on the convex reinforcement learning
methodology by minimizing the error:

min
𝜙

‖𝐿𝜃
𝜙 − (𝑄(𝑊 𝜃) + 𝐿𝜃

�̂�
)∕2‖2

𝐿2 , (9)

here �̂� is the previous parameter before updating. This criterion
llows the NN 𝐿𝜃

𝜙 to learn by averaging between past knowledge
𝜃
�̂�

and new information coming from the environment 𝑄(𝑊 𝜃), thus
ithout forgetting. The technique is based on the concept of exploration–
xploitation described in Sutton and Barto (2018), Brandimarte (2021),
azan et al. (2019), Črepinšek et al. (2013), Wei (2020) whose ap-
licability is pretty general and beyond the specific portfolio problem
onsidered here.

Following Eq. (9) we expect to learn the gradient ∇𝑄(𝑊 𝜃) from
𝐿𝜃
𝜙 through the updating of parameter 𝜙. The interaction between

he parameters 𝜃 and 𝜙 reflects the actor–critic methodology proposed
n Goodfellow et al. (2016), in which 𝜃 (the actor) and 𝜙 (the critic)
earn dynamically from each other, as follows. Once the parameter 𝜙 of
he NN 𝐿𝜃

𝜙 is updated, the algorithm updates the parameter 𝜃 through
he gradient descent scheme, and once the parameter 𝜃 is updated, the
eural network 𝐿𝜃

𝜙 uses this information to update 𝜙. In the numerical
mplementation and through the iterative procedure, the gradient ∇𝜃𝐿𝜃

𝜙
s used as a numerical approximation for the gradient ∇𝜃𝑄(𝑅𝜃) of the
ction value function.

The Monte Carlo method is adopted to generate 𝐾 scenarios (𝑠𝑘)𝐾𝑘=1
sed to train the NN 𝐿𝜃

𝜙: 𝑘 is a scenario label for a trajectory, or sample
ath of the portfolio compound reward process. The set of scenarios is
enerated following the methodology proposed in Ziemba and Ziemba
2008), Dupačová et al. (2000) as follows. For every scenario 𝑘 and
ction following the policy 𝜋𝜃 , we generate recursively the realization
𝑘
𝑡+1 of scenario 𝑘 in state 𝑆𝑡+1, by sampling from the transition prob-
bility P(𝑆𝑡+1|𝑆𝑡 = 𝑠𝑘𝑡 , 𝐴𝑡 = 𝜋𝜃(𝑠𝑘𝑡 )) for 𝑡 ≥ 1, where the initial state 𝑠𝑘1

is sampled from the initial distribution P1. The branching structure of
the scenario tree over 𝑇 stages is denoted by [𝑛1, 𝑛2, 𝑛3,… , 𝑛𝑇 ], where
𝑡 defines the number of children nodes at the 𝑡−th stage. Thus gradient
8) is approximated by

𝐽 (𝜃) ≈ 1
𝐾

𝐾
∑

𝑘=1
∇𝐿𝜃

𝜙(𝑠
𝑘). (10)

The increasing path of the value function and convergence to 0 of
the stochastic gradient, associated with the derivation of an optimal
fixed-mix, are used to validate computationally the method, which is
then tested on market data. The stopping criterion of the RL algorithm
is based on a given tolerance on the gradient-decreasing norm or a
maximum number of iterations. Throughout the learning process, it
is anticipated that the gradient norm will decrease, while the action-
value function will increase. Such behavior would signal an effective
learning process. The convergence of the algorithm will also depend on
6

the availability of an adequate amount of training data for the neural
networks. Insufficient training data would increase the risk of lack of
convergence.

We present evidence in Section 4 and in the Appendix to evaluate
the convergence to optimality of the proposed methodology for the
fixed-mix problem. We summarize in Algorithm 1 the pseudo-code of
the RL methodology.

Algorithm 1: Reinforcement learning.

Input Initial distribution P1 of state (𝑆1), no. of iterations 𝑀 , stages 𝑇 , no. of
trajectories 𝐾 for exploration, batch size 𝑁 , learning rate 𝜂 and tolerance 𝜖

1. Initialize the database 𝐷𝐵 (space for storing input data and iterations’
outputs)

2. Initialize the actor–critic parameters → 𝜃 and → 𝜙
3. For 𝑚 = 1 ∶ 𝑀 do for each iteration

• Generate 𝐾 sample realizations 𝑠𝑘1 from P1

• For 𝑡 = 1 ∶ 𝑇 − 1 do over the planning horizon

– For each trajectory 𝑘 = 1, 2, ..., 𝐾, along each scenario
– Compute the action 𝑎𝑘𝑡 = 𝜋𝜃(𝑠𝑘𝑡 )

– Generate the next state 𝑠𝑘𝑡+1 from P(𝑆𝑡+1|𝑠𝑘𝑡 , 𝑎
𝑘
𝑡 )

– Store the transition points (𝑠𝑘𝑡 , 𝑎
𝑘
𝑡 , 𝑠

𝑘
𝑡+1) in the database 𝐷𝐵

• end For 𝑡
• Select a batch  of 𝑁 trajectories from 𝐷𝐵
• For each trajectory in the batch, compute (𝑠𝑘𝑡 )

𝑇
𝑡=1 and the reward

function �̂�(𝑠𝑘𝑡 , 𝑎
𝑘
𝑡 , 𝑠

𝑘
𝑡+1) for 𝑡 = 1, 2⋯ , 𝑇 .

• Using the sample points 𝑠𝑘𝑡 to approximate the action value
function 𝑄(𝑊 𝜃)

• Using the critic neural network 𝐿, compute
𝑦𝑘 = (𝑄(𝑊 𝜃) + 𝐿𝜃

𝜙(𝑠
𝑘))∕2

• Update the critic neural network parameter 𝜙 by minimizing

𝜙 ← argmin
𝜙

1
𝑁

∑

𝑘∈
‖𝑦𝑘 − 𝐿𝜃

𝜙(𝑠
𝑘)‖2

• Compute the gradient approximation: ∇𝐽 ≈ 1
𝑁

∑

𝑘∈ ∇𝜃𝐿𝜃
𝜙(𝑠

𝑘)

• Update 𝜃: 𝜃 ← 𝜃 + 𝜂∇𝐽
• If ‖∇𝐽‖ ≤ 𝜖 the algorithm stops (stopping criterion)

4. end For 𝑚

Output Optimal parameter 𝜃, optimal policy 𝜋𝜃 and optimal value function
𝐽 (𝜃).

We analyze the computational complexity of this algorithm in Sec-
tion 3.3. In Section 4, we present in-sample and out-of-sample compar-
ative results of Algorithm 1 versus the RL method developed by Das
and Varma (2020) to address a Goal-based wealth management (GBWM)
problem, with a software which is available in the Financial Toolbox
of Matlab (Matlab, 2020).

3.2. RL-based FxM problem specification

Algorithm 1 is applied to solve problem (1a). The following Table 3
helps understand the correspondence between the RL parameters and
the specific financial optimization problem.

For 𝑡 = 1, 2,… , 𝑇 we have:

• The state 𝑠𝑡 of the system is determined by the portfolio allocation
in 𝑡−1 and available cash 𝑥0,𝑡−1 and the realized returns 𝑟𝑖,𝑡 of the
assets.

• The action 𝑎𝑡 includes non negative selling and buying decisions
𝑥− and 𝑥+ .
𝑖,𝑡 𝑖,𝑡
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Table 3
Summary information on the correspondence between fixed-mix portfolio problem
formulation and RL parameters.

Parameter Description

State 𝑠𝑡
𝑠𝑡 = (𝑥0,𝑡−1 , 𝑥1,𝑡−1 ,… , 𝑥𝐼,𝑡−1 , 𝑟1,𝑡 ,… , 𝑟𝐼,𝑡),
𝑥𝑡−1 = (𝑥0,𝑡−1 , 𝑥1,𝑡−1 ,… , 𝑥𝐼,𝑡−1) portfolio allocation
𝑟𝑡 = (𝑟1,𝑡 ,… , 𝑟𝐼,𝑡) return vector

Action 𝑎𝑡 𝑎𝑡 = (𝑥+1,𝑡 ,… , 𝑥+𝐼,𝑡 , 𝑥
−
1,𝑡 ,… , 𝑥−𝐼,𝑡)

𝑥−𝑖,𝑡 buying of the 𝑖th asset at time 𝑡
𝑥+𝑖,𝑡 selling of the 𝑖th asset at time 𝑡

Conditional probability P  (𝜇,𝛴)
Multivariate normal distribution
with mean 𝜇 and covariance matrix 𝛴

Policy parameterization 𝜃 = (𝜃1 ,… , 𝜃𝐼 ) ∈ R𝑛
+

𝜃 fixed-mix policy 𝜃𝑖 =
𝑥𝑖,𝑡

∑

𝑖 𝑥𝑖,𝑡

Action-value function 𝑄(𝑊 𝜃
𝑇 ) = E

[

𝑊 𝜃
𝑇

]

+ [𝜌𝛼,𝛽 (𝑊 𝜃
𝑇 ) − 𝜌𝛼,𝛽 (𝑌𝑇 )]−

𝑄(𝑊 𝜃
𝑇 ) with 𝑊 𝜃

𝑇 the wealth at 𝑡 = 𝑇 ,
𝑌𝑇 benchmark in 𝑇
𝜌𝛼,𝛽 the ICVaR risk measure.

• The transition between states and the random environment is
characterized by the random returns 𝑟𝑖,𝑡 through

𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1(1 + 𝑟𝑖,𝑡) + 𝑥+𝑖,𝑡 − 𝑥−𝑖,𝑡 (11)

and for the cash:

0 ≤ 𝑥0,𝑡−1 +
𝑛
∑

𝑖=1
(1 − 𝑐𝑠)𝑥−𝑖,𝑡 − (1 + 𝑐𝑏)𝑥+𝑖,𝑡, (12)

where 𝑐𝑠 and 𝑐𝑏 are transaction cost coefficients.
• Through 𝜃 = (𝜃1,… , 𝜃𝐼 ) ∈ R𝐼

+ we derive a policy 𝜋𝜃(𝑠𝑡) in state 𝑠𝑡
so that, after rebalancing, 𝜃𝑖 =

𝑥𝑖,𝑡
∑

𝑖 𝑥𝑖,𝑡
at the end of every period.

Depending on the return of an asset relative to the portfolio, this
policy will induce a selling or buying decision in state 𝑡 according
to the fixed-mix. With 𝐫𝑡 = {𝑟𝑖,𝑡}𝐼𝑖=1 multivariate normal with
mean vector 𝜇 and covariance matrix 𝛴.

• Finally the action-value function 𝑄(𝑊 𝜃
𝑇 ) has been discussed ex-

tensively and it does include the reward E[𝑊 𝜃
𝑇 ] and ICVaR func-

tions 𝜌𝛼,𝛽 (𝑊𝑇 ) and 𝜌𝛼,𝛽 (𝑌𝑇 ) associated with the portfolio value
evolution and the adopted benchmark, respectively.

3.3. Complexity analysis and limitations of Algorithm 1

We analyze the computational complexity of Algorithm 1. We as-
sume that the states 𝑠 and policies 𝜃 are in Euclidean spaces R𝐼

and R𝐼 , respectively, where 𝐼 corresponds to the number of assets
and 𝐼 to the set of possible policies. In Algorithm 1, we perform
a maximum of 𝑀 iterations. Each iteration involves several steps.
Firstly, we generate 𝐾 trajectories over 𝑇 stages, with a computational
complexity of at least 𝑂(𝐼 × 𝑇 ×𝐾). Secondly, we compute the reward
𝑟 and the action value function 𝑄(𝑊 𝜃)(𝑠𝑘) for a batch of 𝑁 trajectories
𝑠𝑘, with a complexity of 𝑂(𝑇 × 𝑁). The next step of the algorithm
involves updating the critic neural network 𝜙. For the FxM problem,
we opt for the Levenberg–Marquardt method for training, thanks to
its fast and stable convergence, as reported by Yu and Wilamowski
(2018), Wilamowski and Yu (2010). The computational complexity for
training the critic network 𝜙 using the Levenberg–Marquardt algorithm
is 𝑂(PNNc3 ×𝑁2), where PNNc represents the number of weights and
biases in the architecture of the neural network 𝜙. This complexity
arises from the computation involving the inverse of the perturbation of
the Jacobian matrix, accounting for the size of batching points and the
weights and biases to be updated in the neural network. The final step
in each iteration involves updating the actor neural network 𝜃 using the
gradient descent method, with a computational cost of 𝑂(𝐼×𝑁) (Bottou,
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2010; Ruder, 2016). Therefore, for each iteration, the computational
complexity sums up to 𝑂(PNNc3×𝑁2+𝐼×𝑇 ×𝐾+(𝐼+𝑇 )×𝑁). Based on
a maximum of 𝑀 iterations, the minimum computational complexity
of Algorithm 1 is at least 𝑂(𝐾 × (PNNc3 ×𝑁2 + 𝐼 ×𝑇 ×𝐾 +(𝐼 +𝑇 ) ×𝑁)).

This assessment helps understand the limitations of the Algorithm.
The computational complexity is at least cubic in the dimension of
parameters involving the neural network 𝜙 and quadratic in the size
of the batching point 𝑁 , as well as multilinear in the parameters
(𝐼, 𝐼, 𝑇 ,𝐾). Therefore, a high number of layers and neurons, along
with a large number of batching points 𝑁 , will primarily limit the
computational performance of the algorithm. Similarly, a large number
of stages 𝑇 , high dimensions of both states 𝐼 and policies 𝐼 , and a large
number of trajectories 𝐾 will also contribute to this limitation.

In Section 4, we select 𝑇 = 4 as number of stages and consider
an asset universe of 8 assets, relatively low but sufficiently realistic
to address a genuine FxM portfolio problem. Potential limitations may
then emerge from employing a large number of layers and neurons in
the architecture of the critic neural network 𝜙, as well as using a large
batching size 𝑁 and number of trajectories 𝐾 for training the actor
neural network 𝜃.

4. Computational evidence

In this section, we analyze the main implications of the RL method
described in Algorithm 1 for portfolio selection under a fixed-mix
policy. We consider in the following subsections:

4.1 The definition of the dataset adopted for the validation of the
methodology and anticipate the rationale and experimental settings of
the analyses conducted in Sections 4.2–4.4. At the beginning of this
section we provide in Fig. 1 the architectural design of the critic’s NN..

4.2 The evidence emerges from the solution of one instance of a 4-
stage dynamic fixed-mix problem with a 1-month horizon and weekly
rebalancing.

4.3 A more extended analysis, spanning several problems detailed next,
associated with problem instances based on different planning horizons
and rebalancing frequency. We consider: the standard reference model
with a 1-month short-term horizon with weekly rebalancing with re-
sults spanning from January 2021 to June 2023. A 3-month problem
with monthly rebalancing and results spanning from January 2019 to
June 2023. Then a 9-months and an 18-months sequence of fixed-mix
problems with quarterly and semi-annual rebalancing, spanning respec-
tively from January 2017 and from January 2015 to June 2023. The
collected evidence aims at verifying the stability of the method under
different problem specifications and generate comparative evidence for
the RL method considered in the GBWM problem. Further to the core
and summary evidence presented in this section, we provide in the
Appendix a more extended set of financial and graphical evidence.

4.4 All instances above and related optimal solutions over the given
timeframes are considered in the out-of-sample analysis to verify their
effectiveness from market data.

In-sample validation aims at verifying the consistency of the col-
lected results in relationship with key modeling assumptions, specifi-
cally in our case related to the numerical convergence of the stochastic
gradient, the behavior of the problem objective value, and the post-
optimality stochastic dominance relationship that can be established
between the portfolio value and the benchmark cumulative distribu-
tions. The computational evidence will include benchmarking the RL
method presented in this paper against the RL methodology developed
to solve a dynamic Goal-Based Wealth Management (GBWM) problem
studied by Das and Varma (2020). The GBWM method is implemented
in Matlab and accessible in the Financial Toolbox of Matlab (Matlab,

2020).
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Fig. 1. The architectural design of the critic’s neural network. Where 𝐼𝑛𝑝𝑢𝑡1 represents the state 𝑠 while 𝐼𝑛𝑝𝑢𝑡2 corresponds to the policy 𝜃. The output 𝑂𝑢𝑡𝑝𝑢𝑡1 signifies the value
function 𝑄(𝑊 𝜃

𝑇 ). And, 𝑎(𝑖)𝑘 denotes the 𝑘th neuron in the 𝑖th hidden layer.
Table 4
Parameters’ settings in the RL procedure.

Parameter Initial value Comment

𝑤(𝑠0) 1 Initial wealth
𝛽 {0.98, 1} Reference point, left portfolio tail ≤ 𝛽
𝛼 0.95 Tolerance for the ICVaR function
𝑀 100 Max number of iterations
𝑇 4 Number of stages
𝐾 80 000 Number of trajectories
Tree [40, 20, 10, 10] Branching degree
𝑁 2000 Batch size
𝜂 0.2 Learning rate
𝜃0 Equally-Weighted Input fixed-mix
𝜖 10−3 Stopping Criterion

4.1. Numerical setting

The evidence reported in this section relies on a 2-hidden-layer re-
current neural network, with 30 neurons in each layer, which represents
the critic network 𝐿𝜃

𝜙, whose input is state 𝑠𝑘 and policy 𝜃 and output
is the action value function 𝑄(𝑊 𝜃

𝑇 ). The graphical representation of
the neural network (NN) architecture is provided in Fig. 1. The NN is
trained using the Levenberg–Marquardt algorithm (Moré, 2006; Yu and
Wilamowski, 2018; Wilamowski and Yu, 2010).

The sample-based estimation of the stochastic gradient relies on
a finite difference scheme over the policy 𝜃. The implementation of
several executions was done in Matlab Online a service provided in a
cloud server. The Algorithm 1 required about 94.40 min to complete.

The parameters used in Algorithm 1 are summarized in Table 4.
Some of the parameters in Table 4 play a relevant role in the

learning process and have indeed been subject to extensive calibration.
We refer to Algorithm 1 for further insights: 𝑀 refers to the maximum
number of macro-iterations to derive the optimal fixed-mix 𝜃. Then we
expect no more than these many iterations for the stochastic gradient to
get sufficiently close to 0. Every iteration includes the estimation of the
transition probabilities based on 𝐾 = 80 000 scenarios with associated
sequential updates of states, actions, and subsequent reward and value
function estimation based on a batch of 𝑁 = 2000 trajectories. The
definition of 𝑇 = 4 carries both financial and numerical implications.
As for the latter, jointly with 𝑀 and 𝐾, we show in Section 4.2
8

that 4 periods are sufficient to calibrate the RL method and assess
its convergence. As for the former, it is worth remarking that FxM
models have been considered primarily in medium-long term portfolio
problems (Fleten et al., 2002; Dempster et al., 2011): here, without
claiming a general result, we show however that such a very short-
term planning horizon is sufficient to collect effective performance
results. The extent of the investment period and the specific type of
FxM problem also constrain the number of assets in the case study.

For the standard problem we rely on weekly data from January
2018 to June 2023 and take the first 3 years, until December 2020 to
compute the mean 𝜇 and covariance matrix 𝛴 and derive the transition
probabilities. These are then used to generate training data as input
to compute the optimal fixed-mix policy over the following 4 weeks.
In these experiments, transaction costs are not considered. For more
extended planning horizons we always use monthly data and determine
the input statistics relying on the past 36 months to compute the mean
and variance, respectively.

The decision space of the problem is defined by the following
assets or investment opportunities, exchange traded funds (ETF): (a)
four SP500 sub-sectors for Energy (XLE), Finance (XLF), Technology
(XLK) and Industry (XLI); (b) the ETF tracking 7–10 year maturity US
Treasury bonds (IEF), the ETF for Gold commodity (GLD), to represent
an anti-cyclical real asset typically negatively correlated with equity
markets and, finally an ETF tracking the performance of the dollar
against a set of other currencies (USDU).

The benchmark strategy 𝑌 is represented by the 𝑆&𝑃 500, whose
distribution the portfolio manager intends to dominate. To this latter
aim, the two sets (a) and (b) include the former those assets that
help replicating the benchmark and the latter those ETFs that help
diversify the portfolio and potentially attain positive outcomes during
negative equity market phases. We thus verify whether the proposed
methodology may lead to an optimal fixed-mix policy able through the
implied ISD-2 conditions to outperform the benchmark.

The evidence in Table 5 provides a general assessment of the
statistical properties of the assets the portfolio manager may rely upon
to outperform the benchmark: notice, in particular, the assets’ Sharpe
ratios, computed by dividing the mean return to the standard deviations
(or asset’s volatility), which, consistently with finance theory, shows
the good performance of the benchmark relative to many of the assets

in the decision space. Table 6 completes this preliminary data analysis
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Table 5
Statistics of assets’ weekly returns from 07/01/2018 to 30/06/2023.

SP500 XLE XLF XLK XLI IEF GLD USDU

Mean % 0.07 0.05 0.04 0.13 0.05 −0.01 0.05 0
Max % 12.06 20.08 14.1 12.66 15.92 4.85 6.82 4.48
Min % −12.39 −24.22 −15.87 −12.09 −15.71 −2.79 −13.27 −5.43
Std % 2.69 5.04 3.51 3.35 3.22 0.91 2 1.01
Skewness −0.38 −0.47 −0.48 −0.27 −0.25 0.63 −0.84 −0.3
Kurtosis 6.67 6.39 7.75 4.51 8.51 7.19 10.23 8.11
Sharpe ratio % 2.53 1.01 1.1 3.93 1.65 −0.87 2.44 0.44
Table 6
Correlation matrix of weekly return rates of the asset universe in 07/01/2018 to 30/06/2023, weekly data.

SP500 XLE XLF XLK XLI IEF GLD USDU

SP500 1 0.61 0.86 0.92 0.9 −0.1 0.18 −0.4
XLE 0.61 1 0.72 0.42 0.72 −0.3 0.09 −0.24
XLF 0.86 0.72 1 0.66 0.89 −0.28 0.1 −0.39
XLK 0.92 0.42 0.66 1 0.74 −0.04 0.15 −0.31
XLI 0.9 0.72 0.89 0.74 1 −0.15 0.16 −0.44
IEF −0.1 −0.3 −0.28 −0.04 −0.15 1 0.39 −0.25
GLD 0.18 0.09 0.1 0.15 0.16 0.39 1 −0.45
USDU −0.4 −0.24 −0.39 −0.31 −0.44 −0.25 −0.45 1
Fig. 2. Plot of the learning policy along the iterations.
by displaying the estimated sample correlations from 07/01/2018 to
30/06/2023.

4.2. Method validation: one problem instance

We consider in this section only one instance of an optimal portfolio
problem defined at the beginning of December 2022 (from 04/12/2022
until 25/12/2022) to collect qualitative information on the proposed
methodology when applied to a single 4-stage problem. For 𝛽 =
{0.98, 1}, we analyze a set of results including the convergence to opti-
mality of the RL methodology for the fixed-mix portfolio and some key
statistical evidence. The purpose of this section is primarily to convey
on which qualitative evidence we rely to validate the methodology. A
more detailed set of evidence is presented in Appendix A. In the follow-
ing section, the same analyses are applied to sequences of problems to
verify both their methodological and financial consistency. In Figs. 2–
4, we display, respectively: the evolution of the portfolio composition
through the iterations of the learning process, the associated gradient
norm and optimal value 𝐽 over the 100 iterations assumed in this test.
For a fixed set of parameters, we see that the norm of the stochastic
gradient decreases and the optimal value function increases at every
iteration. Evidence suggests the convergence of the learning process
toward an optimal fixed-mix policy, as illustrated in Fig. 2.

Fig. 2 shows the evolving fixed-mix policy determined by the learn-
ing process at every iteration 𝑚 = 1, 2,… , 100. The optimal constant
proportion evolves and we consider as optimal fix-mix the one deter-
mined at 𝑚 = 100. We see indeed that the gradient’s 10−3 stopping
9

criterion wasn’t met, as clear from the evidence in Fig. 3. For 𝛽 = 1, the
stochastic gradient after the initial increase is declining consistently.
Not the same for 𝛽 = 0.98, which by definition is deeper in the tail.
Taking also the evidence in Fig. 4 into account, we see however, that
the gradient instability occurs after the marginal increase of the value
function starts declining to 0 very rapidly.

Given the initial investment of $1, from a financial viewpoint, it
is interesting to verify the expected portfolio value at the end of the
first period and then in 𝑇 = 4. Those values are averaged over the
set of trajectories of the learning process and after the algorithm’s
termination, we compute the statistics shown in Table 7. The first
section of the table shows evidence at the end of the first week 𝑊1,
the second at the end of the fourth week 𝑊4, and the last one at the
bottom, the average results over the 4 weeks �̄�4.

The evidence in Table 7 confirms the improvement of the financial
performance (see the expected wealth) and the risk control (volatility
and risk-adjusted returns) induced, ceteris paribus, by an increase of
the number of stages. Furthermore, a higher 𝛽 is beneficial to attain
a more effective control in the tail. For 𝛽 = 1 we observe that
upon termination of the RL iterations, the portfolio distribution does
dominate the benchmark distribution with order ISD-1, stronger than
SSD. This evidence is consistent with the proposed ICVaR minimization
objective. Appendix A presents the same set of evidence for single
instances of FxM problems with 3, 9, and 18 months horizons. We avoid
including here such an extended set of graphical results, which are in
any case taken into account in Section 4.3 here next, but just observe
that the convergence results of the gradient and value functions are
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Fig. 3. Plot of the gradient norm along the several iterations.
Fig. 4. Plot of the value function 𝐽 along the iterations.
Table 7
In-sample statistics of the RL solution, with a specific focus on the contrast between
first and the last-stage fixed-mixes performance. Here a 1-month horizon problem is
considered with weekly rebalancing from 04/12/2022 until 25/12/2022.

State 𝛽 0.98 1

E(𝑊1) 1.0015 1.001
𝜎(𝑊1) 2.757 0.881

First SR(𝑊1) 0.361 1.137
CVaR0.95(𝑊1) 0.9507 0.9524
ISD-𝑘.𝑞𝛽 (𝑇 = 1) 1.9249 1.9499

E(𝑊4) 1.008 1.0161
𝜎(𝑊4) 1.286 0.849

Terminal SR(𝑊4) 0.7838 1.1968
CVaR0.95(𝑊4) 0.9746 0.9764
ISD-𝑘.𝑞𝛽 (𝑇 = 4) 1.9999 1.7080

E(�̄�4) 1.002 1.003
𝜎(�̄�4) 1.644 1.644

Average SR(�̄�4) 0.608 0.608
CVaR0.95(�̄�4) 0.9665 0.9693

confirmed when extending the investment horizon, while the optimal
FxM policy becomes less diversified. We come back to this aspect in
Section 4.4.

4.3. Method validation over several instances

We extend the analysis to span different investment horizons and
rebalancing frequencies. We solve sequentially FxM problems based on:
10
• 1 month planning horizon, weekly rebalancing, spanning from
Jan 2021 to June 2023, resulting in 30 problem instances gen-
erated through a rolling windows approach with monthly steps;
using training data from January 2018 to June 2023.

• 3 months horizon, monthly rebalancing, spanning from Jan 2019
to June 2023, resulting in 18 problem instances generated through
rolling windows with quarterly steps; using training data from
January 2006 to June 2023.

• 9 months planning horizon, quarterly rebalancing, spanning from
January 2017 to June 2023 for 8 problem instances again based
on rolling windows; using training data from January 2000 to
June 2023.

• 18 months planning horizon, semi-annual rebalancing, spanning
from January 2015 to June 2023 resulting in 5 instances with 1
and half year updates of the rolling windows and training data
from January 2000 to June 2023.

Depending on the problem instance, by moving forward the training
process with monthly, quarterly, or semiannual steps, we solve the
set of 1-, 3-, 9- and 18-month horizon problems and collect a set of
evidence. The convergence and the performance of the training process
are analyzed in Fig. 5, always based on 100 iterations of the training
algorithm with reference points 𝛽 ∈ {0.98, 1}. We present additional
information on the convergence of the method in Appendix A.3.

Fig. 5 shows from left to right and top to bottom, the average
behavior of the gradient norm and optimal value function for every
problem type taking all the collected solutions into account over the
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Fig. 5. Gradient norm (left column) and optimal value functions (right column) average behavior over:- The first row: 1 month horizon, (average over 30 instances), Jan 2021
to June 2023;- Second: 3 months horizon (average over 18 instances) from Jan 2019 to June 2023;- Third: 9 months horizon (average over 8 instances) from Jan 2017 to June
2023;- Fourth row: 18 months horizon (average over 5 instances) from Jan 2015 to June 2023, for 𝛽 ∈ {0.98, 1}.
common 100 iterations. On the left column for 𝛽 = 0.98 and the right
for 𝛽 = 1. The first pair on the top is collected from the solution of the
1-month horizon problems, then the 3-month problem in the second
row, then the 9-month and 18-month problems’ solutions at the bottom.
We report in the Appendix the underlying evidence generated by each
problem solution.

Fig. 5 provides the information we may rely upon to verify the
consistency of the results when solving a sequence of FxM problems
with different planning horizons. We provide the underlying evidence
for every solved problem in Appendix A, while here we focus on
11
average dynamics. Next to Fig. 5, we report on Table 8 associated
relevant financial and statistical evidence.

As for the reference 1-month horizon problem, under the settings
in Table 4, we observe that taking all 30 instances into account the
increasing then decreasing gradient paths and consistently increasing
value functions hold almost always with a moderate anomaly after 80
iterations in the case 𝛽 = 0.98. When extending the horizon to 3 months,
the convergence results remain robust across all runs and the evidence
on the value function behavior as we decrease the 𝛽 is confirmed. As
the planning horizon increases the results are less consistent. In the
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Table 8
Average comparative in-sample monthly statistics for each planning horizon from 1- to
18-month problems: the ICVaR-based RL method versus the GBWM results.

Planning horizon 𝛽 = 0.98 𝛽 = 1 𝐺𝐵𝑊𝑀

Mean % 1.0418 1.054 1.295
1 −𝑀𝑜𝑛𝑡ℎ Std % 5.604 5.347 5.35

Skewness 0.166 0.054 0.212
Kurtosis 2.896 2.909 3.463
Sharpe ratio % 19.0 19.7 25.0
ISD-order 1.803 1.697 1.92

Mean % 1.053 1.152 1.054
3 −𝑀𝑜𝑛𝑡ℎ𝑠 Std % 2.767 2.164 2.831

Skewness 1.008 0.851 0.269
Kurtosis 4.183 3.803 3.303
Sharpe ratio % 38.06 53.23 42.8
ISD-order 2 1.944 2.105

Mean % 0.3527 0.3640 0.888
9 −𝑀𝑜𝑛𝑡ℎ𝑠 Std % 1.440 1.2213 1.954

Skewness 0.005 −0.023 0.29
Kurtosis 2.96 2.925 3.126
Sharpe ratio % 24.49 29.80 48.32
ISD-order 1.601 1.61 2.154

Mean % 0.2035 0.2008 0.565
18 −𝑀𝑜𝑛𝑡ℎ𝑠 Std % 0.8940 0.8660 0.867

Skewness 0.149 0.14 0.337
Kurtosis 2.881 2.891 3.151
Sharpe ratio % 22.76 23.19 65.8
ISD-order 1.612 1.582 1.674

following Table 8 we summarize the statistics and financial evidence
associated with every set of solutions and compare it with the results
produced with the financial toolbox of Matlab, labeled GBWM.

The results in Table 8 are all expressed on a monthly basis and
comparable. The statistics are averages over the set of runs for each
problem instance.

We summarize here below the main evidence of this in-sample
analysis. Different perspectives can be adopted for this purpose. From a
modeling viewpoint, one expects the solution to generate relatively sta-
ble optimal FxM policies across time, the enforcement of the dominance
relationship relative to the benchmark, and a slight discrepancy of the
𝛽 = 1 versus 𝛽 = 0.98 instances. From a methodological perspective,
s discussed above, we expect primarily a stable convergence of the
radient norm and the value functions.

• The evolution of the optimal FxM policies is shown in Section 4.4
and a good level of diversification is shown over time and,
supported by the evidence in Appendix A, we confirm a good
convergence to diversified portfolios particularly for 𝑇 = 1, 3
months.

• The stochastic dominance for the benchmark distribution is sys-
tematically less or equal to 2. Often below. The specification of
the reward function is consistent with the enforcement of the
mathematical result.

• For 𝛽 = 1, the proposed RL model exhibits slightly lower volatil-
ity, measured by the standard deviation (Std), compared to RL
with 𝛽 = 0.98 and the GBWM method. Therefore, using 𝛽 = 1 in RL
provides an interesting parameter for evaluating the methodology
in an out-of-sample analysis

• As for the gradient decreasing pattern and increasing value func-
tions in Fig. 5, we refer to the comments above. As the rebalanc-
ing frequency decreases and the investment horizon increases the
convergence tends to worsen: when the value function stabilizes
and so does the gradient, we also see a well-diversified optimal
FxM policy.

We complete this section by sharing the numerical evidence col-
ected through this extensive numerical exercise. As detailed in Table 9,
e realized that the computational time to run the RL Algorithm 1 is in-

luenced solely by the variables 𝑀 , 𝑇 , 𝐾, Branching Tree, 𝑁 , and 𝜖. To
12
Table 9
Average expected time and convergence depending on both the branching tree structure
and the sample batching size, denoted as 𝑁 .

Avg Time Convergence Periods Branching N Iter. limit

110’24’’ No 5 [40 20 10 10 10] 20 000 0

116’26’’ No 5 [40 20 10 10 5] 10 000 4

116’18’’ No 5 [40 20 10 10 4] 8000 5

120’29’’ No 5 [40 20 10 10 3] 6000 11

129’38’’ No 5 [40 20 10 10 2] 4000 25

94’40’’ Yes 4 [40 20 10 10] 2000 100

21’13’’ Yes 3 [40 20 10] 200 100

ensure convergence and prevent infinite loops, we keep the parameters
𝑀 and 𝜖 fixed as stopping criteria. However, the batching size parame-
ters 𝑇 and 𝐾 are determined based on the Branching Tree. Notably,
when 𝑇 , 𝐾, and 𝑁 are large, the algorithm encounters infeasibility
issues and fails to converge effectively as examined in Section 3.3.

In comparison to our algorithm, the Matlab GBWM algorithm shows
much faster convergence in seconds. Surely, we need to attain a sub-
stantial complexity reduction of Algorithm 1.

The computational evidence in Table 9 shows the current clear
limitations of the algorithm, in the absence of any dimensional re-
duction technique. Nonetheless, it shouldn’t be underestimated the
relevant implications, in the case of 4 stages, of the extremely high
set of scenarios, namely 80,000, aimed primarily at spanning the state
space of the problem with high accuracy. When reducing the number of
stages the convergence is reduced significantly, yet by several minutes.
An important related remark is that it is thanks to the rich scenario
branching adopted in the RL algorithm that we can assess precisely the
evolution of the stochastic dominance against the benchmark distribu-
tion. As further commented in the conclusion, a more efficient and fast
converging methodology is among the next research tasks.

4.4. Optimal policy back-testing

We now present the evidence relative to the actual market per-
formance that would have been generated by the adoption of the
optimal Fx strategies, and output of the RL method. Depending on the
investment horizon, from the reference 1-month horizon to 18 months,
we verify the ex-post performance of the FxM strategies.

Table 10 provides a comprehensive set of comparative evidence col-
lected over the out-of-sample periods: for each time horizon, we display
top to bottom the average monthly return, the standard deviation, the
loss associated with the Conditional Value-at-Risk at 95%, the Sharpe
ratio (mean return per unit standard dev) the percentage of weeks in
which the SP500 has been outperformed, the positive and negative
excess returns to the benchmark.

The evidence has primarily a financial and economic rationale when
comparing column-wise the results of different strategies depending on
the planning horizon and row-wise when assessing their consistency
across different horizons. In this same section, we focus below on the
representative 1-month horizon on which the RL method has been
primarily calibrated. From Table 10 is not easy to derive general and
robust evidence, surely the 𝛽 = 1 RL solutions do generate consistently
across the different horizons very good risk-adjusted performances. We
provide more details, below.

We highlight the main results of this out-of-sample analysis.

• The RL methodology outperforms the GBWM, 1/N portfolio, and
60%–40% strategy over 1-month, 9-month, and 18-month plan-
ning horizons. This is shown by comparing the Sharpe ratio and

metrics like 𝑊𝑅, 𝐸(𝐸𝑅)+, and 𝐸(𝐸𝑅)−.
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Table 10
Average out-of-sample monthly returns over increasing planning horizons. Optimal strategies resulting from the RL model, 1∕𝑁 , the 60%–40%
equity-bond strategy, and multiperiod goal-based wealth management (GBWM) versus the SP500. The first column is the time horizon in months.

Horizon RL 𝛽 = 0.98 ˙ RL 𝛽 = 1 1∕𝑁 60% − 40% 𝐺𝐵𝑊𝑀 SP500

Mean % 0.53 1.22 0.61 0.47 0.04 0.55
Std % 9.38 8.47 6.06 5.32 6.66 9.39
CVaR −4.92 −4.61 −3.6 −3.13 −3.94 −5.63

1 − 𝑚 Sharpe ratio % 5.6 14.37 10.13 8.78 0.55 5.87
WR (%) 45.74 53.49 41.86 43.41 45.74 –
𝐸(𝐸𝑅)+ (%) 5.25 5.06 4.94 4.94 3.65 0
𝐸(𝐸𝑅)− (%) −4.47 −4.39 −3.45 −3.94 −4.03 0

Mean % 0.93 0.76 0.81 0.75 1.19 1.17
Std % 4.63 4.22 3.83 3.38 4.72 5.65
CVaR −10.73 −10.04 −8.44 −7.12 −9.76 −12.04

3 − 𝑚𝑚 Sharpe ratio % 20 17.97 21.27 22.22 25.1 20.63
WR (%) 46.30 33.33 35.19 35.19 46.30 –
𝐸(𝐸𝑅)+ (%) 1.24 2.13 1.97 2.36 2.09 0
𝐸(𝐸𝑅)− (%) −1.51 −1.67 −1.61 −1.92 −1.76 0

Mean % 0.76 0.93 0.73 0.66 0.49 1.05
Std % 2.95 2.27 2.1 1.82 1.42 3.37
CVaR −24.44 −14.66 −11.49 −9.93 −7.56 −21.87

9 − 𝑚𝑚 Sharpe ratio % 25.8 41.07 34.7 36.37 34.62 31.15
WR (%) 42.31 42.31 34.62 30.77 38.46 –
𝐸(𝐸𝑅)+ (%) 1.04 2.05 1.14 1.55 1.83 0
𝐸(𝐸𝑅)− (%) −1.26 −1.71 −1.10 −1.25 −2.05 0

Mean % 0.75 0.75 0.64 0.57 0.38 0.86
Std % 1.8 1.61 1.25 1.12 1.08 1.8
CVaR −14.81 −8.25 −13.74 −12.41 −9.14 −20.94

18 − 𝑚𝑚 Sharpe ratio % 41.72 46.89 50.74 50.9 34.76 47.71
WR (%) 52.94 52.94 29.41 29.41 29.41 –
𝐸(𝐸𝑅)+ (%) 0.99 0.96 0.61 0.81 1.26 0
𝐸(𝐸𝑅)− (%) −1.34 −1.31 −0.57 −0.74 −1.21 0
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• For the 3-month planning horizon, the GBWM outperforms the
proposed methodology. The proposed fixed-mix problem achieves
second-order, but not first-order stochastic dominance. This sug-
gests that the out-sample performance of the proposed RL
methodology is influenced by first-order stochastic dominance.
Further studies are needed to determine when the proposed RL
algorithm can achieve both second-order and first-order stochas-
tic dominance, which would improve the performance of the
proposed fixed-mix problem

• When the time horizon is increased from 1 month to 18 months,
the volatility decreases for the RL model, as indicated by the
standard deviation (Std). This confirms the assumption made in
the in-sample analysis that increasing the time horizon leads to a
significant decrease in volatility.

The statistics in Table 10 are computed from the extended set
f solutions included in Appendix B, to which we refer for further
etails. Here next, focusing only on the reference FxM problem with
onthly investment horizon, we share the sequence of optimal strate-

ies adopted in the out-of-sample period and comparative dynamics of
100 USD investment from January 2021 to the end of June 2023.

The optimal portfolio allocations over the 30 months are displayed
n Fig. 6, while the back-testing wealth process is illustrated in Fig. 7.

The evidence from Fig. 6 is of a sequence of optimal FxM strategies,
hat without imposing any policy constraints, thus any bounds on the
nvestment proportions, changes over time and preserves very good
iversification properties. We present similar evidence for the 3-, 9- and
8-months problems in Appendix B. The sequence of optimal FxM gen-
rated by the algorithm varies with the market phase and all show good
x-post performance relative to the 𝑆𝑃500. We noticed however that
n particular, the 18-month RL case problem did not always converge.
he optimal FxM policies are benchmarked against the 𝑆𝑃500, and
wo popular heuristic rules: the 1∕𝑁 perfectly diversified strategy (take
= 𝐼 the number of asset classes considered in the problem), and the

0%–40% equity-bond composition based the former on all equity ETF
nd the latter on the remaining asset classes. We also rely on Matlab’s
BWM RL software as a benchmark to evaluate the proposed algorithm.
13
. Conclusion and future directions

We conclude by summarizing the key evidence presented in this
rticle, primarily for the developed RL methodology and the solution
o the financial optimization problem. We have initially motivated the
odeling framework adopted to tackle the FxM problem, relevant in

inancial practice and that over the years has attracted interest in
he area of quantitative finance. In this work, the FxM investment
aradigm has been extended to accommodate a tail risk measure with
he potential to improve downside risk control but also to bring in the
oncept of stochastic dominance relative to an exogenous benchmark
olicy. We propose a solution approach based on a reinforcement
earning methodology, tested over several years and under different
ime frames. The collected evidence allows some concluding remarks:

• The adopted action-value function in Eq. (5) and error mini-
mization in Eq. (9) lead consistently to convergence of the RL
algorithm 1 for 1-, 3- and 9-months problems: the evidence is
slightly different when considering the 𝛽 = 1 and 𝛽 = 0.98 cases.
The algorithm has difficulties converging in the 18-month prob-
lem. As a result, we highlight the dependence of the convergence
on the problem characteristics and associated dataset.

• A positive outcome of the learning process requires a careful
calibration of the key parameters through extensive tests: in the
current version, computational times suffered from the adopted
state-space characterization (several thousand scenarios) and call
for the adoption of efficient sampling schemes. On the positive
side, the convergence to the optimal FxM led consistently to good
in-sample and out-of-sample results as shown in Tables 8 and 10.

• Focusing on the original 1-month FxM problem, the evidence is
very positive both from methodological and financial perspec-
tives. In this instance, the wealth distribution generated by the
optimal control has been shown to stochastically dominate the
benchmark distribution with an order often much stronger than
SSD, consistently so, over several instances and with very good

ex-post performance.
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Fig. 6. Portfolio allocation based on the RL approach, 𝛽 = 0.98, 1.
Fig. 7. Backtesting results: investing $100 over the period January 2021–June 2023. Optimal RL fixed-mix portfolios, 1∕𝑁 , the 60%–40% equity-bond strategy, and multiperiod
goal-based wealth management (GBWM) versus the SP500.
• From a computational viewpoint it must be remarked that when
employing for comparative reasons a different RL approach, the
GBWM model, accessible within the Matlab financial toolbox,
the evidence is significantly improved while from a financial
perspective, given the underlying different type of problem, the
results are overall comparable in-sample but far less consistent
out-of-sample and in general do not accommodate any form of
risk control based on stochastic dominance principles.

The above remarks should be considered relying also on the quite
extended set of results presented in Appendix A and Appendix B, that
contribute to the project.

Future directions

There is quite some space for improvements and future work.
From a financial perspective, very much related to the refinement

of the methodology, to further improve performance on similar mean-
risk problems, the decision space should be increased as a number of
14
assets and the investment horizon extended preserving the rebalancing
frequency. In the context of the proposed ICVaR-based performance
enhancement, a dynamic calibration of the reference 𝛽 for a given 𝛼
should be evaluated.

From a decision-theoretic standpoint, the research on risk func-
tionals with a theoretical guarantee of first- rather than second-order
stochastic dominance is ongoing. The integration of such a result in
the RL model specification, as suggested by the computational results,
could enhance the out-sample results of the proposed methodology.

Most of the work should go nonetheless on the RL methodol-
ogy. From a methodological perspective, utilizing machine learning
tools and artificial intelligence techniques could be valuable. Improve-
ments in the adopted RL methodology could include using techniques
from Gomez et al. (2021, 2023) to compute the actor gradient based
on sample points. Implementing dimensional reduction techniques to
reduce the algorithm’s computational complexity while preserving rel-
evant data features, particularly in the branching tree, is important.
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