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Abstract
We show how to deform a Poisson quasi-Nijenhuis manifold by means of a closed
2-form. Then we interpret this procedure in the context of quasi-Lie bialgebroids, as a
particular case of the so called twisting of a quasi-Lie bialgebroid. Finally, we frame
our result in the setting of Courant algebroids and Dirac structures.
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1 Introduction

A tensor N of type (1, 1) on a manifold M is called a Nijenhuis operator if its
Nijenhuis torsion vanishes—see (11). Such a geometrical object was introduced in
Nijenhuis (1951) and is still the subject of interesting investigations (see Bolsinov
and Konyaev 2022 and references therein). Moreover, it is very useful in the the-
ory of integrable systems thanks to the notion of Poisson–Nijenhuis (PN) manifold
(Kosmann-Schwarzbach andMagri 1990;Magri et al. 1985), i.e., a manifold endowed
with a Poisson tensor π and a Nijenhuis operator N fulfilling suitable compatibility
conditions—see (6). This approach to integrability was put in a more general context
in Dorfman (1987), Dorfman (1993), using suitable pairs of Dirac structures.
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Poisson quasi-Nijenhuis (PqN) manifolds, see Stiénon and Xu (2007), are a gen-
eralization of PN manifolds, where π and N are still compatible but the Nijenhuis
torsion of N is just required to be controlled by a suitable 3-form (so it is not necessar-
ily zero). Some preliminary results about the relevance of PqN manifolds in the study
of integrable systems have recently been obtained in Falqui et al. (2020), Falqui et al.
(2023). Much remains to be done as far as the construction of a family of functions in
involution is concerned.

As shown in Kosmann-Schwarzbach (1996), one can associate a Lie bialgebroid,
see Mackenzie and Xu (1994), to a PN manifold. In a similar way, a quasi-Lie bialge-
broid can be associated to a PqNmanifold, see Stiénon and Xu (2007) and Roytenberg
(2002). A general setting to describe Lie bialgebroids and quasi-Lie bialgebroids is
supplied by the notions of Courant algebroid and Dirac structure (Courant 1990;
Liu et al. 1997)—for the definition of Courant algebroid, see Appendix A and refer-
ences therein. Indeed, Lie bialgebroids are in one-to-one correspondence with pairs of
transversal Dirac structures in a Courant algebroid. If one of the transversal structure
is not Dirac but Lagrangian, one obtains a quasi-Lie bialgebroid (see, e.g., Stiénon and
Xu (2007) and references therein).Moreover, in Iglesias-Ponte et al. (2012) (following
Roytenberg (2002)) it is shown how to deform a quasi-Lie bialgebroid (A, A∗) thanks
to the so called twisting by a section of

∧2 A.
The aim of this paper is to present a result about the deformation of a PqNmanifold

into another PqNmanifold, bymeans of a closed2-form.This is a first step to generalize
the ideas inDorfman (1993), with the aim of constructing (under suitable assumptions)
an involutive family of functions on a PqN manifold. We will give a direct proof of
our result in Sect. 2.1, a proof in the setting of twists of quasi-Lie bialgebroids in Sect.
2.2, and a proof in the context of Courant algebroids and Dirac structures in Sect. 3.

Conventions and Notations. Hereafter all manifolds will be smooth of class C∞ and
defined over the real numbers R. In the same vein, all vector bundles considered will
be real and smooth of class C∞ and their sections will be always considered smooth
of the same class. As far as the notation is concerned, a vector bundle whose total
space, base and canonical projection are E , M and, respectively, p will be denoted
by the triple (E, p,M) or, more simply, by E , if this will not be cause of confusion.
The space of (global) sections of E will be denoted by �(E). For the general notions
about Lie algebroids used hereafter we refer the reader to the monograph Mackenzie
(2005).

2 Poisson Quasi-Nijenhuis Manifolds and Quasi-Lie Bialgebroids

In the first part of this section we recall the definition of Poisson quasi-Nijenhuis
manifold and we present a result, generalizing that in Falqui et al. (2023), concerning
the deformations of PqN manifolds. The second part is devoted to a recollection of
definitions and results on quasi-Lie bialgebroids, and to an alternative proof of our
result.
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2.1 Poisson Quasi-Nijenhuis Manifolds

First of all, recall (see, e.g., Kosmann-Schwarzbach andMagri 1990) that any bivector
π on a manifold M induces a bracket on the space �(T ∗M) of 1-forms, given by

[α, β]π = Lπ�αβ − Lπ�βα − d〈β, π�α〉, (1)

where π� : T ∗M → TM is defined as 〈β, π�α〉 = π(α, β), and that (1) is a
Lie bracket if and only if π is Poisson. Suppose that it is so, and extend (1) to a
degree −1, R-bilinear bracket on �(

∧• T ∗M), still denoted by [·, ·]π , such that for

all η ∈ �(
∧q T ∗M) and η′ ∈ �(

∧q ′
T ∗M)

(K1) [η, η′]π = −(−1)(q−1)(q ′−1)[η′, η]π ;
(K2) [α, f ]π = iπ�α d f = 〈d f , π�α〉 for all f ∈ C∞(M) and for all 1-forms α;
(K3) [η, ·]π is a graded derivation of (�(

∧• T ∗M),∧), that is, for any differential
form η′′,

[η, η′ ∧ η′′]π = [η, η′]π ∧ η′′ + (−1)(q−1)q ′
η′ ∧ [η, η′′]π . (2)

It follows that the graded Jacobi identity,

(−1)(q1−1)(q3−1)[η1, [η2, η3]π ]π + (−1)(q2−1)(q1−1)[η2, [η3, η1]π ]π
+ (−1)(q3−1)(q2−1)[η3, [η1, η2]π ]π = 0, (3)

holds (see, e.g., Marle (2008), Proposition 5.4.9), where qi is the degree of ηi , and
that, for any differential form η and for any f ∈ C∞(M),

[ f , η]π = iπ�d f η. (4)

Remark 1 The bracket on �(
∧• T ∗M) introduced above is an instance of the so

called generalized Schouten bracket, which can be defined on the exterior algebra
of the vector space �(A) of any Lie algebroid (A, [·, ·]A, ρA), see pages 418-419
in Mackenzie and Xu (1994). The generalized Schouten bracket associated to the Lie
algebroid (TM, [·, ·], id) is the usual Schouten bracket defined on �(

∧• TM), while
the one stemming from (1) is associated to the Lie algebroid defined by the Poisson
bivector field π . Note that the sign conventions in the above formulas are the same
as in Mackenzie and Xu (1994) and in agreement with the ones adopted in Dorfman
(1993), see Proposition 2.13. Indeed, if read at the level of the generalized Schouten
bracket [·, ·]π , it becomes, for 1-forms αi and β j ,

[α1 ∧ · · · ∧ αn, β1 ∧ · · · ∧ βm]π
=

n∑

i=1

m∑

j=1

(−1)i+ j [αi , β j ]π ∧ α1∧· · · ∧ α̂i ∧· · · ∧ αn ∧ β1 ∧ · · · ∧ β̂ j ∧ · · ·∧βm,

that can be obtained applying iteratively (K1) and (K3) to its left-hand side.

The following example points to a useful identity.
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Example 2 If 	 ∈ �(
∧2 T ∗M) and 	
 : TM → T ∗M is defined as usual by

	
(X) = iX	, then for all X ,Y , Z ∈ �(TM)

[	,	]π (X ,Y , Z) = 2
∑

�(X ,Y ,Z)

(〈[	
X ,	
Y ]π , Z〉) − Lπ�	
X (	(Y , Z))
)
, (5)

which follows by applying to our setting Formula (2.31) and Proposition 2.15 in
Dorfman (1993).

Recall now that a Poisson tensor π and a (1, 1) tensor field N : TM → TM on
M are said to be compatible (Kosmann-Schwarzbach and Magri 1990; Magri et al.
1985) if

Nπ� =π�N∗ and [α, β]πN =[N∗α, β]π +[α, N∗β]π −N∗[α, β]π for all 1-forms α, β,

(6)

where N∗ : T ∗M → T ∗M is the transpose of N and πN is the bivector field defined
by π

�
N = Nπ� (notice that it is a bivector thanks to the first condition).

Finally, given a p-form α with p ≥ 1, the p-form iNα is defined as

iNα(X1, . . . , X p) =
p∑

i=1

α(X1, . . . , N Xi , . . . , X p), (7)

while iN f = 0 for all functions f . After introducing

dN = iN ◦ d − d ◦ iN , (8)

it can be proved, see Kosmann-Schwarzbach (1996), that the compatibility between
a Poisson tensor π and a (1, 1) tensor field N is equivalent to requiring that dN is a
derivation of [·, ·]π , a fact that we will often use in the rest of the paper. Moreover, for
any k-form η one has that

(dNη)(X1, . . . , Xk+1) =
k+1∑

i=1

(−1)i+1LN Xi

(
η(X1, . . . , X̂i , . . . , Xk+1)

)

+
∑

i< j

(−1)i+ jη([Xi , X j ]N , X1 . . . , X̂i , . . . , X̂ j , . . . , Xk+1),

(9)

where
[X ,Y ]N = [N X ,Y ] + [X , NY ] − N [X ,Y ]. (10)

In Stiénon and Xu (2007) a Poisson quasi-Nijenhuis (PqN) manifold was defined
as a quadruple (M, π, N , φ) such that:

• the Poisson bivector π and the (1, 1) tensor field N are compatible;
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• the 3-forms φ and iNφ are closed;
• TN (X ,Y ) = π� (iX∧Yφ) for all vector fields X and Y , where iX∧Yφ is the 1-form
defined as 〈iX∧Yφ, Z〉 = φ(X ,Y , Z), and

TN (X ,Y ) = [N X , NY ] − N [X ,Y ]N (11)

is the Nijenhuis torsion of N .

A slightly more general definition of PqNmanifold was recently proposed in Bursztyn
and Drummond (2019)—see also Bursztyn et al. (2022), where the PqN structures are
recast in the more general framework of the Dirac-Nijenhuis ones. Another interesting
generalization, given by the so called PqNmanifoldswith background, was considered
in Antunes (2008), see also Cordeiro and Nunes da Costa (2010).

If φ = 0, then the torsion of N vanishes and M becomes a Poisson–Nijenhuis
(PN) manifold (see Kosmann-Schwarzbach andMagri (1990) and references therein).
In this case, πN is a Poisson tensor compatible with π , so that (M, π, πN ) is a bi-
Hamiltonian manifold.

The following theorem generalizes a result in Falqui et al. (2023), where the starting
point was a PN manifold.

Theorem 3 Let (M, π, N , φ) be a PqN manifold and let 	 be a closed 2-form. If
N̂ = N + π� 	
 and

φ̂ = φ + dN	 + 1

2
[	,	]π , (12)

then (M, π, N̂ , φ̂) is a PqN manifold. In particular, if 	 is a solution of the non
homogeneous Maurer-Cartan equation

dN	 + 1

2
[	,	]π = −φ, (13)

then (M, π, N̂ ) is a PN manifold.

Proof It is similar to the one given in Falqui et al. (2023), corresponding to the case
φ = 0. We present here only the main points, focussing on the differences.

To prove the compatibility between π and N̂ , we notice that d	 = 0 implies

dπ� 	
 = [	, ·]π . (14)

In fact, both dπ� 	
 and [	, ·]π are graded derivation of (	•(M),∧), anticommuting
with d and coinciding on C∞(M)—see Falqui et al. (2023) for details. The previous
identity entails that

dN̂ = dN+π� 	
 = dN + [	, ·]π .

Hence dN̂ is a derivation of [·, ·]π , yielding the compatibility between N̂ and π .
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The closedness of φ̂ easily follows from that of φ and 	, recalling that d ◦ dN =
−dN ◦ d and that d is a derivation of [·, ·]π . Moreover,

dN̂ φ̂ = (dN + [	, ·]π )(φ + dN	 + 1

2
[	,	]π )

= dNφ + d2N	 + 1

2
[dN	,	]π − 1

2
[	, dN	]π + [	,φ]π + [	, dN	]π

+ 1

2
[	, [	,	]π ]π

= [φ,	]π + [dN	,	]π + [	,φ]π + [	, dN	]π + 1

2
[	, [	,	]π ]π = 0,

(15)
thanks to d2N = [φ, ·]π , the fact that dN is a derivation of [·, ·]π , the commutation
rule (K1), and the graded Jacobi identity (3). Furthermore, observe that dNφ = 0 as
a consequence of (8). Then i N̂ φ̂ is closed because of (8) and dφ̂ = 0.

Finally, if α is any differential form,

d2
N̂
α = (dN + [	, ·]π )(dNα + [	,α]π )

= d2Nα + [dN	,α]π − [	, dNα]π + [	, dNα]π + [	, [	,α]π ]π
= [φ, α]π + [dN	,α]π + 1

2
[[	,	]π , α]π

= [φ̂, α]π .

(16)

As shown in Lemma 3.7 of Stiénon and Xu (2007), this implies that TN̂ (X ,Y ) =
π�

(
iX∧Y φ̂

)
for all vector fields X ,Y . �

Remark 4 If G	2
c
is the (additive) group of closed 2-forms on M, the theorem above

implies that the set of the PqN-structures on M carries the following G	2
c
-action:

	.(M, π, N , φ) = (M, π, N + π�	
, φ + dN	 + 1

2
[	,	]π ). (17)

In fact, if 	1,	2 ∈ G	2
c
, then

	1.(	2.(M, π, N , φ))

= 	1.(M, π, N + π�	


2, φ + dN	2 + 1

2
[	2,	2]π ))

= (M, π, N + π�(	1 + 	2)

, φ + dN	2

+1

2
[	2,	2]π + d

N+π�	


2
	1 + 1

2
[	1,	1]π )

= (M, π, N + π�(	1 + 	2)

, φ + dN (	1 + 	2) + 1

2
[	1 + 	2,	1 + 	2]π ),

where the last equality was obtained observing that dN+π�	2
= dN + dπ�	2

= dN +
[	2, ·]π since d	2 = 0, and [	1,	2]π = [	2,	1]π , see Property (K1).
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The aim of the rest of the paper is two give two alternative proofs of Theorem 3, in
the frameworks of quasi-Lie bialgebroids (see next subsection) and Dirac structures
(see Sect. 3).

2.2 Quasi-Lie Bialgebroids

Suppose that p : A → M is a Lie algebroid (see, e.g., Mackenzie (2005)) with anchor
ρA : A → TM and Lie bracket [·, ·]A, defined on the space of sections �(A) and
then extended to �(

∧• A), see Remark 1. Recall that, given P ∈ �(
∧k A∗), one can

define dAP ∈ �(
∧k+1 A∗) as

(dAP)(α1, . . . , αk+1) =
k+1∑

i=1

(−1)i+1ρA(αi )
(
P(α1, . . . , α̂i , . . . , αk+1)

)

+
∑

i< j

(−1)i+ j P([αi , α j ]A, α1 . . . , α̂i , . . . , α̂ j , . . . , αk+1),

(18)
for all α1, . . . , αk+1 ∈ �(A), and that dA is a degree-1 derivation of �(

∧• A∗) such
that d2A = 0.

Definition 5 (Stiénon and Xu (2007)) A quasi-Lie bialgebroid is a triple (A, dA∗ , φ),
where

• A is a Lie algebroid
• dA∗ is a degree-1 derivation of �(

∧• A), both with respect to the wedge product
and [·, ·]A

• φ ∈ �(
∧3 A) satisfies dA∗φ = 0 and d2A∗ = [φ, ·]A.

Under these assumptions, one can define a morphism ρA∗ : A∗ → TM by

ρA∗(X)( f ) = X(dA∗ f ), ∀X ∈ �(A∗), f ∈ C∞(M), (19)

a bracket in �(A∗) by

[X ,Y ]A∗(α) = ρA∗(X)(α(Y )) − ρA∗(Y )(α(X)) − (dA∗α)(X ,Y ), ∀α ∈ �(A),

(20)
and show that dA∗ is explicitly given by a formulawhich is analog to (18). Ifφ = 0, then
(A∗, ρA∗ , [·, ·]A∗) is also a Lie algebroid, and (A, A∗) turns out to be a Lie bialgebroid
(see, e.g., Stiénon and Xu (2007)).

The first alternative proof of Theorem 3 hinges on the following two results.

Proposition 6 (Stiénon and Xu 2007, Proposition 3.5) The quadruple (M, π, N , φ)

is a Poisson quasi-Nijenhuis manifold if and only if ((T ∗M)π , dN , φ) is a quasi-Lie
bialgebroid and φ is closed.

Proposition 7 If (A, dA∗ , φ) is a quasi-Lie bialgebroid, 	 ∈ ∧2 A, and

d̂A∗ = dA∗ + [	, ·]A, φ̂ = φ + dA	 + 1

2
[	,	]A,
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then (A, d̂A∗ , φ̂) is a quasi-Lie bialgebroid too, called the twist of (A, dA∗ , φ) by 	.

This statement can be found, for example, at the beginning of Section 4.4 of Iglesias-
Ponte et al. (2012). Its proof consists in showing that the new defined triple satisfies
what is needed to form a quasi-Lie bialgebroid, i.e., d̂A∗ φ̂ = 0 and d̂2A∗ = [φ̂, ·]A,
which can be both checked by a direct computation completely analogous to (15) and,
respectively, (16).

Remark 8 Note that if φ = 0 Proposition 6 reduces to the correspondence between
Lie bialgebroids and PN manifolds described in Kosmann-Schwarzbach (1996).

Going back to the proof Theorem 3, let ((T ∗M)π , dN , φ) be the quasi-Lie bialge-
broid associated to the PqN manifold (M, π, N , φ), and let 	 be any 2-form on M.
Then we obtain the twist ((T ∗M)π , dN + [	, ·]π , φ̂), where

φ̂ = φ + dN	 + 1

2
[	,	]π .

If d	 = 0, we know from (14) that [	, ·]π = dπ� 	
 . Therefore

dN + [	, ·]π = dN+π� 	
 = dN̂ , where N̂ = N + π� 	
.

The last step is to realize that the quasi-Lie bialgebroid
(
(T ∗M)π , dN̂ , φ̂

)
comes from

a PqN manifold, i.e., that φ̂ is closed. This follows, as already observed just above
Formula (15), from the fact that both φ and 	 are closed.

Remark 9 Proposition 7 and a computation very similar to the one in Remark 4 show
that the (additive) group G	2 of all 2-forms on M acts on the set of all quasi-Lie
bialgebroids of the form ((T ∗M)π , dN , φ) by twisting them, i.e.,

	.((T ∗M)π , dN , φ) = ((T ∗M)π , dN + [	, ·]π , φ + dN	 + 1

2
[	,	]π ). (21)

The latter restricts to an action of G	2
c
, see Remark 4, on the set of all quasi-Lie

bialgebroids of the form ((T ∗M)π , dN , φ)with dφ = 0. Finally, the bijection between
the set of PqN structures (M, π, N , φ) and the quasi-Lie bialgebroids of the form
((T ∗M)π , dN , φ) invoked in Proposition 6 intertwines (21) with (17).

3 Courant Algebroids and Dirac Structures

In this section we give a second alternative proof of Theorem 3 in the framework
of Dirac structures. To this end, we start by recalling how quasi-Lie bialgebroids
are related to Courant algebroids, see (Roytenberg 2002; Stiénon and Xu 2007)—
more precisely, how quasi-Lie bialgebroids correspond to the pairs formed by a Dirac
structure and a complementary Lagrangian subbundle in a given Courant algebroid,
see the proof of part (ii) of Theorem 2.6 in Stiénon and Xu (2007). For the reader
convenience, we recall the definition of a Courant algebroid in Appendix A.
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Given a quasi-Lie bialgebroid (A, dA∗ , φ), and using the notations in and after
Definition 5, we consider E = A∗ ⊕ A together with the non degenerate symmetric
pairing

〈X1 + α1, X2 + α2〉E = 1

2
(X1 (α2) + X2 (α1)) ,

the bundle map ρ : E → T M given by

ρ(X + α) = ρA∗(X) + ρA(α),

and the bracket in �(E) defined by

[[α, β]] = [α, β]A
[[X ,Y ]] = [X , Y ]A∗ + iX∧Yφ

[[α,Y ]] =
(

iα(dAY ) + 1

2
dA(Y (α))

)

−
(

iY (dA∗α) + 1

2
dA∗(Y (α))

)

,

(22)

for all X ,Y ∈ �(A∗) and α, β ∈ �(A), where the bracket [·, ·]A∗ was defined in
(20) while dA is the differential defined on �(

∧• A∗) by the algebroid A. Then
(E, 〈·, ·〉E , [[·, ·]], ρ) is a Courant algebroid, A is a Dirac structure (i.e., it is maxi-
mal isotropic and its space of sections is closed under [[·, ·]]), and A∗ is a Lagrangian
(i.e., maximal and isotropic) subbundle of E . Note that, if φ = 0, i.e., in the case of a
Lie bialgebroid, A∗ is a Dirac structure too.

On the other hand, let (E, 〈·, ·〉E , [[·, ·]], ρ) be a Courant algebroid and let A ⊂ E
be a Dirac structure (it follows that A has an induced Lie algebroid structure). Suppose
that there exists a Lagrangian subbundle L which is transversal to A. Then we can
identify A∗ with L through

A∗ → L

X �→ X̃
(23)

where X(α) = 2〈X̃ , α〉E for all α ∈ A. Since we have the identification �(
∧• A) �

�(
∧• L∗), we can define dL : �(

∧• A) → �(
∧• A) as in (18), that is,

(dLψ)(X1, . . . , Xk+1) =
k+1∑

i=1

(−1)i+1ρ(X̃i )
(
ψ̃(X̃1, . . . ,

ˆ̃Xi , . . . , X̃k+1)
)

+
∑

i< j

(−1)i+ j ψ̃([X̃i , X̃ j ]L , X̃1 . . . ,
ˆ̃Xi , . . . ,

ˆ̃X j , . . . , X̃k+1),

(24)
for all X1, . . . , Xk+1 ∈ �(A∗), where ψ ∈ �(

∧k A) corresponds to ψ̃ ∈ �(
∧k L∗),

and [·, ·]L is the L-component of [[·, ·]]with respect to the splitting E = L⊕ A. Notice
that dL is a derivation, but d2L �= 0 since L in general is not a Dirac structure. Finally,
let ϕ ∈ �(

∧3 A) be defined as

ϕ(X1, X2, X3) = 2〈[[X̃1, X̃2]], X̃3〉E for all X1, X2, X3 ∈ �(A∗). (25)
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Then (A, dL , ϕ) turns out to be a quasi-Lie bialgebroid.

Example 10 Consider the quasi-Lie bialgebroid (T ∗M, d, φ), where A = T ∗M with
its trivial Lie algebroid structure, i.e., with zero bracket and zero anchor, d is the Cartan
differential and φ is any closed 3-form on M. Applying (22) to the this setting, one
finds

[[α, β]] = 0

[[X ,Y ]] = [X ,Y ] + iX∧Yφ

[[α,Y ]] = −
(

iY (dα) + 1

2
d(Y (α))

)

,

for all X ,Y ∈ �(TM) and α, β ∈ �(T ∗M), since, in that case, dA = 0, [·, ·]A = 0,
dA∗ = d and [·, ·]A∗ = [·, ·] is the usual Lie bracket defined on �(TM). Computing
the bracket so obtained on a pair of general sections of E , one has

[[X + α,Y + β]] = [X ,Y ] + iX (dβ) − iY (dα) + 1

2
(d(X(β) − d(Y (α)) + iX∧Yφ,

(26)

i.e., E is the Courant algebroidTMφ , obtained twisting the standard one by the closed
3-form φ, see Example 19. Note that TM is a Lagrangian subbundle of E transversal
to the Dirac structure T ∗M ⊂ E . In particular (TM, T ∗M) is the pair corresponding
to (T ∗M, d, φ). Note now that if 	 is any closed 2-form in M , its graph

Gr(	) = {X + 	
X ∈ TM ⊕ T ∗M | X ∈ �(TM)} (27)

is a Lagrangian subbundle ofTMφ , transversal to T ∗M. A simple computation, using
(24) and (25), shows that the quasi-Lie bialgebroid corresponding to (Gr(	), T ∗M)

is (T ∗M, d, φ).

Remark 11 It is worth recalling that every closed 2-form 	 defines an automorphism
of TMφ via the formula

	.(X + α) = X + iX	 + α, ∀X + α ∈ �(TMφ), (28)

see for example Gualtieri (2011), just above Proposition 2.2, the proof of Lemma 3.1
in Bressler (2007) and, in a more general setting, Remark 4.2 in Roytenberg (2002). In
particular, the image of a Dirac structure under (28) is still a Dirac structure. More in
general, if 	 is any 2-form onM, (28) sends a Lagrangian subbundle to a Lagrangian
subbundle and a pair of transversal Lagrangian subbundles to a pair of transversal
Lagrangian subbundles. Note that, in the previous example, the pair (Gr(	), T ∗M) is
obtained applying (28) to the pair of transversal Lagrangian subbundles (TM, T ∗M).
On the other hand, since d	 = 0 and the Poisson structure π is trivial, i.e., identically
zero, (21) yields

	.(T ∗M, d, φ) = (T ∗M, d, φ). (29)
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As opposed to what is stated in part (ii) of Theorem 2.6 in Stiénon and Xu (2007), this
example seems to suggest that the correspondence between quasi-Lie bialgebroids and
pairs of a Lagrangian subbundle and of a transversal Dirac structure of a given Courant
algebroid, described in the first part of this section is, in general, not one-to-one. On
the other hand, the above example and its generalization, contained in Theorem 12,
propound the existence of a one-to-one correspondence between the	2

c(M)-orbits of
quasi-Lie bialgebroids of the type ((T ∗M)π , dN , φ) and the	2

c(M)-orbits of pairs of
a Lagrangian subbundle and of a transversal Dirac structure of the type (Gr(	), T ∗M)

in a Courant algebroid of the type E = (TM)N ⊕ (T ∗M)π , where 	2
c(M) is the

(additive) group of the closed 2-forms on M acting, on these sets, via (21) and,
respectively, (28).

We are now ready to present the third proof of Theorem 3. We start from a PqN
manifold (M, π, N , φ) to construct the quasi-Lie bialgebroid ((T ∗M)π , dN , φ) as
recalled in Sect. 2.2, and therefore the Courant algebroid E = (TM)N ⊕ (T ∗M)π
with its Lagrangian subbundle A∗ = TM and its Dirac structure A = T ∗M. Given
a closed 2-form 	, we apply Formula (28) to each member of the pair (TM, T ∗M),
see Remark 11, to get (L = Gr(	), T ∗M), where L is a non-integrable Lagrangian
subbundle of E . Note that the action of 	 on the original pair leaves T ∗M fixed.
Applying the construction presented in the first part of this section to the new pair
(L, T ∗M), we obtain the quasi-Lie bialgebroid ((T ∗M)π , dL , ϕ) which, thanks to
Theorem 12, we are able to identify with ((T ∗M)π , dN̂ , φ̂). Finally, applying Propo-
sition 6 to this quasi-Lie bialgebroid we conclude that the quadruplet (M, π, N̂ , φ̂) is
a Poisson quasi-Nijenhuis manifold, yielding our (third) proof of Theorem 3. In this
way we are left with proving the following

Theorem 12 If the 2-form 	 is closed, the quasi-Lie bialgebroid ((T ∗M)π , dL , ϕ)

coincides with ((T ∗M)π , dN̂ , φ̂), where N̂ = N + π� 	
 and φ̂ is given by (12).

The first step to prove this theorem is the computation of the bracket (22) between two
sections of L . To this aim, we need two preliminary results.

Lemma 13 For any closed 2-form 	, the following relation holds:

[	
X ,	
Y ]π = 	
[X ,Y ]π�	
 + 1

2
iX∧Y [	,	]π . (30)

A direct proof of this lemma is given in Appendix B. Another proof can be spelled
out along the lines of the following

Remark 14 For any 2-form 	, not necessarily closed, a tedious but straightforward
computation which uses (5) shows that

[	
X ,	
Y ]π = 	
[X ,Y ]π	 + 1

2
iX∧Y [	,	]π , (31)

where

[X ,Y ]π	 = Lπ
	
XY − Lπ

	
Y X − dπ (	(X ,Y ))
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and

Lπ
αY = Lπ�αY + π�(iY (dα)),

for all X ,Y ∈ �(TM) and α ∈ �(T ∗M). Then one can obtain (30) from the fact
that [X ,Y ]π	 = [X ,Y ]π�	
 for all vector field X ,Y if 	 is closed.

Lemma 15 For any 2-form 	, one has that

dN (iX∧Y	) = iXdN iY	 − iY dN iX	 − iX∧Y dN	 − i[X ,Y ]N 	. (32)

Proof Using (9), we obtain

dN	(X ,Y , Z) = LN X 〈iY	, Z〉 − LNY 〈iX	, Z〉 + LN Z 〈iX	,Y 〉
− 	([X ,Y ]N , Z) + 	([X , Z ]N ,Y ) − 	([Y , Z ]N , X)

= LN X 〈iY	, Z〉 − LNY 〈iX	, Z〉 + 〈d(	(X ,Y )), N Z〉
− 〈i[X ,Y ]N 	, Z〉 − 〈iY	, [X , Z ]N 〉 + 〈iX	, [Y , Z ]N 〉

(33)

and

〈iXdN iY	, Z〉 = dN (iY	)(X , Z) = LN X 〈iY	, Z〉 − LN Z 〈iY	, X〉 − 〈iY	, [X , Z ]N 〉
〈iY dN iX	, Z〉 = dN (iX	)(Y , Z) = LNY 〈iX	, Z〉 − LN Z 〈iX	, Y 〉 − 〈iX	, [Y , Z ]N 〉.

Substituting these relations into (33), we find (32) evaluated on an arbitrary vector
field Z . �
Lemma 16 If d	 = 0, then

[[X + 	
X ,Y + 	
Y ]] = [X ,Y ]N̂ + 	
[X ,Y ]N̂ + iX∧Y
(

φ + dN	 + 1

2
[	,	]π

)

.

(34)

Proof First we compute the vector field component of the left-hand side of (34). By
definition (22), it is given by

[X ,Y ]N + i	
X (dπY ) − i	
Y (dπ X) + dπ (	(X ,Y ))

= [X ,Y ]N − i	
X (LYπ) + i	
Y (LXπ) − π�d(	(X ,Y ))

= [X ,Y ]N −LY (i	
Xπ)+iLY (	
X)π+LX (i	
Yπ) − iLX (	
Y )π − π�d(	(X ,Y ))

= [X ,Y ]N + [π�	
X ,Y ] + [X , π�	
Y ]
+ π�

(LY (	
X) − LX (	
Y ) − d(	(X ,Y ))
)
.

Now, the last three terms are simply given by

LY (iX	) − LX (iY	) − (d ◦ iY )iX	 = (iY ◦ d)iX	 − LX (iY	)

= iY ((d ◦ iX )	) − i[X ,Y ]	 − iY (LX	)

= −iY iXd	 − i[X ,Y ]	 = −	
[X ,Y ]
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since	 is closed.Hencewe have shown that the vector field component of the left-hand
side of (34) is

[X ,Y ]N + [π�	
X ,Y ] + [X , π�	
Y ] − π�	
[X ,Y ] = [X ,Y ]N+π�	
 = [X ,Y ]N̂ .

The 1-form component of the left-hand side of (34) is

[	
X ,	
Y ]π + iX∧Yφ − iY dN iX	 + iXdN iY	 − dN (	(X ,Y )). (35)

Using Lemma 13 for the first term and Lemma 15 for the last three, the sum (35) turns
out to be

	
[X ,Y ]π�	
 + 1

2
iX∧Y [	,	]π + iX∧Yφ + iX∧Y dN	 + i[X ,Y ]N 	

= 	
[X ,Y ]N̂ + iX∧Y
(

φ + dN	 + 1

2
[	,	]π

)

.

�

WecannowproveTheorem12, i.e., that the quasi-Lie bialgebroid ((T ∗M)π , dL , ϕ)

coincides with ((T ∗M)π , dN̂ , φ̂), where N̂ = N + π� 	
 and φ̂ = φ + dN	 +
1
2 [	,	]π . First of all, we notice that the identification (23) in this case is simply
X̃ = X + 	
X , where X ∈ �(TM). By definition (25) of ϕ and using Lemma 16,
we have that

ϕ(X ,Y , Z) = 2〈[[X̃ , Ỹ ]], Z̃〉E
= 2〈[[X + 	
X ,Y + 	
Y ]], Z + 	
Z〉E
= 2

〈

[X ,Y ]N̂ +	
[X ,Y ]N̂ +iX∧Y
(

φ+dN	+ 1

2
[	,	]π

)

, Z+	
Z

〉

E

= 〈
	
Z , [X ,Y ]N̂

〉 +
〈

	
[X ,Y ]N̂ + iX∧Y
(

φ + dN	 + 1

2
[	,	]π

)

, Z

〉

=
〈

iX∧Y
(

φ + dN	 + 1

2
[	,	]π

)

, Z

〉

= φ̂(X ,Y , Z)

for all X ,Y , Z ∈ �(TM). So we are left with showing that dL acts as dN̂ . But this
immediately follows from

ρ(X + 	
X) = N X + π�	
X = N̂ X

and [X + 	
X ,Y + 	
Y ]L = [X ,Y ]N̂ + 	
[X ,Y ]N̂ .

Indeed, if ψ ∈ �(
∧k A) corresponds to
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ψ̃ ∈ �(
∧k L∗), then from (24) we obtain

(dLψ)(X1, . . . , Xk+1) =
k+1∑

i=1

(−1)i+1ρ(X̃i )
(
ψ̃(X̃1, . . . ,

ˆ̃Xi , . . . , X̃k+1)
)

+
∑

i< j

(−1)i+ j ψ̃([X̃i , X̃ j ]L , X̃1 . . . ,
ˆ̃Xi , . . . ,

ˆ̃X j , . . . , X̃k+1)

=
k+1∑

i=1

(−1)i+1 (
N̂ Xi

) (
ψ(X1, . . . , X̂i , . . . , Xk+1)

)

+
∑

i< j

(−1)i+ jψ([Xi , X j ]N̂ , X1 . . . , X̂i , . . . , X̂ j , . . . , Xk+1)

= (dN̂ψ)(X1, . . . , Xk+1).

Appendix A: Definition of Courant Algebroid

In this appendix we will recall the definition of Courant algebroid following Liu et al.
(1997)—see also Courant (1990), where this definition appeared for the first time.
To this end, let M be a manifold. A Courant algebroid (over M) is a quadruplet
(E, 〈·, ·〉E , [[·, ·]], ρ), where

(1) E is a vector bundle over M;
(2) 〈·, ·〉E : �(E)×�(E) → R is a symmetric, non-degenerate, andC∞(M)-bilinear

form;
(3) [[·, ·]] : �(E) × �(E) → �(E) is an R-bilinear, skew-symmetric bracket and
(4) ρ : E → T M is a bundle-map, called the anchor of the Courant algebroid,

inducing the R-linear operator D : C∞(M) → �(E), via the formula

〈D f , A〉E := 1

2
ρ(A)( f ), ∀A ∈ �(E), f ∈ C∞(M), (A1)

satisfying the following compatibility conditions. For all A, B,C ∈ �(E) and f , g ∈
C∞(M),

(i) ρ is bracket-compatible, i.e., ρ([[A, B]]) = [ρ(A), ρ(B)];
(ii) [[[[A, B]],C]]+[[[[B,C]], A]]+[[[[C, A]], B]] = 1

3D
(〈[[A, B]],C〉E+〈[[B,C]], A〉E

+ 〈[[C, A]], B〉E
);

(iii) [[A, f B]] = f [[A, B]] + ρ(A)( f )B − 〈A, B〉E D( f );
(iv) 〈D( f ),D(g)〉E = 0;
(v) ρ(A)〈B,C〉E = 〈[[A, B]] + D〈A, B〉E ,C〉E + 〈B, [[A,C]] + D〈A,C〉E 〉E .
A few comments are in order.

Remark 17 Note that:

• as shown in Uchino (2002), conditions (iii) and (iv) follow from the other condi-
tions;
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• D defined in (A1) is a differential operator in the sense that it satisfies the Leibniz
identity;

• [[·, ·]] is not a Lie bracket since it does not satisfies the Jacobi’s identity, see item
(ii) of the previous list.

Example 18 (Quadratic Lie algebras) A Courant algebroid over a point, i.e., if M =
{pt}, is the same as a quadratic Lie algebra, i.e., a Lie algebra endowed with a sym-
metric, non-degerate and ad-invariant bilinear form. In fact, ifM = {pt}, then ρ = 0,
which forces the conditionD = 0. In this way [[·, ·]] becomes a Lie bracket and 〈·, ·〉E
becomes a non-degenerate, symmetric and ad-invariant bilinear form, see items (ii)
and (v) above.

Example 19 (Standard Courant algebroid) In this case E = TM = TM ⊕ T ∗M,
ρ : E → TM is the projection on the first summand, and 〈X + α,Y + β〉E =
1
2 (〈α,Y 〉 + 〈β, X〉). In particular, 〈D f , X + α〉E = 1

2 X( f ). Moreover,

[[X + α,Y + β]] = [X ,Y ] + LXβ − LYα + 1

2
d(iYα − iXβ)

= [X ,Y ] + iXdβ − iY dα + 1

2
d(iXβ − iYα) (A2)

for all f ∈ C∞(M) and X + α,Y + β ∈ �(E). Note that the pair (TM, T ∗M)

forms a Lie bialgebroid, i.e., a Lie quasi-bialgebroid such that φ = 0, see Definition
5. It turns out that TM carries the structure of Lie algebroid defined by the standard
Lie brackets on vector fields and by the identity as anchor map, while T ∗M carries
the trivial Lie algebroid structure, i.e., with zero Lie bracket and zero anchor map.

The bracket (A2) can be modified by twisting it with the term iX∧Yφ, where φ is
any closed 3-form on M. The resulting structure is called twisted Courant algebroid
and it is denoted with TMφ . Twisted Courant algebroids were introduced by S̆evera,
see S̆evera (2017), who proved that a Courant algebroid E fits into the exact sequence

0 −→ T ∗M ρ∗
−→ E

ρ−→ TM −→ 0,

if and only if E is isomorphic to TMφ for some closed 3-form. In the exact sequence
ρ denotes the anchor of E .

Appendix B: Proof of Lemma 13

We will now prove that, for all vector fields X ,Y , the identity

[	
X ,	
Y ]π = 	
[X ,Y ]π�	
 + 1

2
iX∧Y [	,	]π
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holds true. Since d	 = 0, we can use (14) to compute [	,	]π = dπ�	
	. Then (9)
entails that

[	,	]π (X ,Y , Z) =
∑

�(X ,Y ,Z)

(Lπ�	
Z (	(X ,Y )) − 	
([X ,Y ]π�	
, Z

))
(B1)

for any vector fields X , Y , and Z . To show that (30) holds, we define

A(X ,Y , Z) = 〈[	
X ,	
Y ]π − 	
[X ,Y ]π�	
, Z〉

and we first show that A(X ,Y ,Y ) = 0, so that A(X ,Y , Z) = −A(X , Z ,Y ) for all
X ,Y , Z ∈ �(TM). Indeed,

A(X ,Y ,Y ) = 〈Lπ�	
X (	
Y ) − Lπ�	
Y (	
X) − d〈	
Y , π�	
X〉
−	


([π�	
X ,Y ] + [X , π�	
Y ] − π�	
[X ,Y ]) ,Y
〉

= Lπ�	
X 〈	
Y ,Y 〉 −���������〈	
Y , [π�	
X ,Y ]〉 − Lπ�	
Y 〈	
X ,Y 〉
+ 〈	
X , [π�	
Y ,Y ]〉 − LY 〈	
Y , π�	
X〉
+���������〈	
Y , [π�	
X ,Y ]〉 + 〈	
Y , [X , π�	
Y ]〉 − 〈	
π�	
Y , [X ,Y ]〉

= −Lπ�	
Y 〈	
X ,Y 〉 − 〈	
[π�	
Y ,Y ], X〉
− LY 〈	
Y , π�	
X〉 − 〈	
Y ,Lπ�	
Y X〉
+ 〈	
π�	
Y ,LY X〉

= −��������Lπ�	
Y 〈	
X ,Y 〉 − 〈	
[π�	
Y ,Y ], X〉
−��������LY 〈	
Y , π�	
X〉 −��������Lπ�	
Y 〈	
Y , X〉
+ 〈Lπ�	
Y (	
Y ), X〉 +��������LY 〈	
π�	
Y , X〉 − 〈LY (	
π�	
Y ), X〉

= 〈−	
[π�	
Y ,Y ] + Lπ�	
Y (	
Y ) − LY (	
π�	
Y ), X〉,

and we have that

− 	
[π�	
Y ,Y ] + Lπ�	
Y (	
Y ) − LY (	
π�	
Y )

= −iL
π�	
Y Y

(	) + Lπ�	
Y (iY	) − LY (iπ�	
Y	)

= iY
(Lπ�	
Y	

) − (d ◦ iY + iY ◦ d)
(
iπ�	
Y	

)

= iY
(Lπ�	
Y	

) − (
iY ◦ d ◦ iπ�	
Y

)
	

= iY
(Lπ�	
Y	

) − iY
(Lπ�	
Y	 − iπ�	
Y d	

)
,

which vanishes if 	 is closed. Now,
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2A(X , Y , Z) = A(X , Y , Z) − A(X , Z , Y )

=
〈
Lπ�	
X (	
Y ) − Lπ�	
Y (	
X) − d〈	
Y , π�	
X〉 − 	
[X , Y ]π�	
, Z

〉

−
〈
Lπ�	
X (	
Z) − Lπ�	
Z (	
X) − d〈	
Z , π�	
X〉 − 	
[X , Z ]π�	
 , Y

〉

= Lπ�	
X 〈	
Y , Z〉 − 〈	
Y , [π�	
X , Z ]〉 − Lπ�	
Y 〈	
X , Z〉
+ 〈	
X , [π�	
Y , Z ]〉
−

〈
d〈	
Y , π�	
X〉, Z

〉
− 	

([X , Y ]π�	
 , Z
)

− 〈Lπ�	
X (	
Z),Y 〉 + Lπ�	
Z 〈	
X , Y 〉 − 〈	
X , [π�	
Z , Y ]〉
+

〈
d〈	
Z , π�	
X〉, Y

〉
+ 	

([X , Z ]π�	
 , Y
)

= Lπ�	
X (	(Y , Z)) + Lπ�	
Y (	(Z , X)) + Lπ�	
Z (	(X , Y ))

− 	
([X , Y ]π�	
 , Z

) − 	
([Z , X ]π�	
 , Y

)

− 〈	
Y , [π�	
X , Z ]〉 + 〈	
X , [π�	
Y , Z ]〉 −
〈
d〈	
Y , π�	
X〉, Z

〉

− 〈Lπ�	
X (	
Z),Y 〉 − 〈	
X , [π�	
Z , Y ]〉 +
〈
d〈	
Z , π�	
X〉,Y

〉
.

The last six terms are equal to

〈	
Y ,LZ (π�	
X)〉 − 	
([π�	
Y , Z ] + [Y , π�	
Z ], X) − LZ 〈	
Y , π�	
X〉

−����������〈(d ◦ iπ�	
X )(iZ	), Y 〉 − 〈(iπ�	
X ◦ d)(iZ	), Y 〉
+���������〈

d〈iZ	,π�	
X〉,Y 〉 = −〈LZ (	
Y ), π�	
X〉
− 	

([π�	
Y , Z ] + [Y , π�	
Z ], X) + 〈(iY ◦ d)(iZ	), π�	
X〉
= −〈LZ (iY	), π�	
X〉 − 	

([π�	
Y , Z ] + [Y , π�	
Z ], X)

+ 〈iY (LZ	 − iZ (d	)), π�	
X〉
= −〈i[Z ,Y ]	,π�	
X〉 − 	

([π�	
Y , Z ] + [Y , π�	
Z ], X)

= −	
([Y , Z ]π�	
, X

)
,

where we have used again the fact that d	 = 0. So we conclude that

2A(X ,Y , Z) =
∑

�(X ,Y ,Z)

(Lπ�	
X (	(Y , Z)) − 	
([X ,Y ]π�	
, Z

))
.

The comparison between this formula and (B1) ends the proof.
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