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Abstract: The design of temperature controllers is impaired by the limited accuracy of the
models employed for thermal systems, which are commonly estimated from uninformative data,
such as step responses, due to the restrictive experimental design connected to the long duration
of the experiments. This paper focuses on modelling an industrial convection oven following
different rationales. Three continuous-time models are proposed and compared: a grey-box
parametric thermal network model, a black-box parametric first order lag plus time delay model,
and a black-box non-parametric model based on reproducing kernel Hilbert spaces. These are
all estimated and validated on step response experimental data. Lastly, the pros and cons of
each model are highlighted.
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1. INTRODUCTION

Thermal systems are present in disparate industrial
sectors, including industrial furnaces used for metal-
lurgy (Zhang et al., 2014), convection ovens employed in
the food industry (Ryckaert et al., 1999), temperature
test chambers for environmental testing (He et al., 2014),
and Heating, Ventilation and Air Conditioning (HVAC)
systems in buildings (Afroz et al., 2018). The design of
temperature controllers for thermal systems is typically
model-based and can be particularly challenging for two
main reasons. Firstly, the controlled plants are intrinsically
Multiple Inputs Multiple Outputs (MIMO) systems since
they are made up of several heating/cooling zones. Sec-
ondly, the derivation of accurate control-oriented models
is limited by the restrictive experimental design due to
the long duration of the experiments, which can take
from several hours to even days. Usually, only open-loop
step responses can be carried out on thermal systems, see
e.g. He et al. (2014); Ryckaert et al. (1999); Zhang et al.
(2014). Consequently, modelling complexity must be kept
in check. Most often, thermal systems are described by
either grey-box models, which are derived from energy
balance equations but need system identification methods
to estimate their parameters, or black-box models, which
are purely data-driven and require no physical knowl-
edge (Afroz et al., 2018). Among the former, the most
common are thermal network models (Sidebotham, 2015).
Instead, disparate black-box models are available, ranging
from First Order Lag Plus time Delay (FOLPD) transfer
functions to Artificial Neural Networks (ANNs), depend-
ing on the availability of data (Afroz et al., 2018).

Thermal systems are Continuous-Time (CT) systems by
nature. Consequently, it can be beneficial to describe them
by CT models, such as the just mentioned thermal network
models and FOLPD models, for several reasons (Garnier

and Young, 2012): (i) physical insights are retained, (ii) a
priori knowledge, such as the relative degree of a transfer
function, is preserved, and (iii) differently from Discrete-
Time (DT) models, CT models do not depend on the
sampling frequency. This last advantage can be particu-
larly relevant when designing the controller for a thermal
system. For example, the derived continuous-time models
can be discretized for application in a Model Predictive
Control (MPC) scheme, allowing the control designer to
tune the sampling/execution time of the algorithm a pos-
teriori. We can distinguish between parametric and non-
parametric CT models and identification methods. Para-
metric models include the previously mentioned thermal
network models and FOLPD transfer functions, for which
the system complexity is set a priori. Typically, parametric
CT models are estimated via the output-error approach,
by minimizing the difference between the measured and
predicted outputs in the Least Squares sense (Garnier,
2015). Instead, kernel methods provide a non-parametric
CT model which constitutes an estimate of the impulse
response of the system, see i.a. Pillonetto and De Nicolao
(2010); Pillonetto et al. (2014); Chen (2018); Scandella
et al. (2022, 2023). If needed, a parametric model can
be derived from a non-parametric one via order reduction
techniques, such as Loewner interpolants (Antoulas et al.,
2017; Simard and Moreschini, 2023) or similar techniques.

Contributions. In this paper, we consider the problem of
modelling an industrial convection oven equipped with
multiple thermocouples and heat resistors. We present
and compare three state-space continuous-time models for
the just mentioned application. Similarly to many thermal
systems applications, the model parameters are estimated
from step response experimental data. We derive:

(1) An ad hoc Grey-Box thermal network Parametric
Model (GBPM),
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larly relevant when designing the controller for a thermal
system. For example, the derived continuous-time models
can be discretized for application in a Model Predictive
Control (MPC) scheme, allowing the control designer to
tune the sampling/execution time of the algorithm a pos-
teriori. We can distinguish between parametric and non-
parametric CT models and identification methods. Para-
metric models include the previously mentioned thermal
network models and FOLPD transfer functions, for which
the system complexity is set a priori. Typically, parametric
CT models are estimated via the output-error approach,
by minimizing the difference between the measured and
predicted outputs in the Least Squares sense (Garnier,
2015). Instead, kernel methods provide a non-parametric
CT model which constitutes an estimate of the impulse
response of the system, see i.a. Pillonetto and De Nicolao
(2010); Pillonetto et al. (2014); Chen (2018); Scandella
et al. (2022, 2023). If needed, a parametric model can
be derived from a non-parametric one via order reduction
techniques, such as Loewner interpolants (Antoulas et al.,
2017; Simard and Moreschini, 2023) or similar techniques.

Contributions. In this paper, we consider the problem of
modelling an industrial convection oven equipped with
multiple thermocouples and heat resistors. We present
and compare three state-space continuous-time models for
the just mentioned application. Similarly to many thermal
systems applications, the model parameters are estimated
from step response experimental data. We derive:

(1) An ad hoc Grey-Box thermal network Parametric
Model (GBPM),

Continuous-time identification of grey-box
and black-box models of an industrial oven

Davide Previtali ∗ Matteo Scandella ∗ Leandro Pitturelli ∗

Mirko Mazzoleni ∗ Antonio Ferramosca ∗ Fabio Previdi ∗

∗ Department of Management, Information and Production
Engineering, University of Bergamo, Dalmine, Italy.

email: {name.surname}@unibg.it

Abstract: The design of temperature controllers is impaired by the limited accuracy of the
models employed for thermal systems, which are commonly estimated from uninformative data,
such as step responses, due to the restrictive experimental design connected to the long duration
of the experiments. This paper focuses on modelling an industrial convection oven following
different rationales. Three continuous-time models are proposed and compared: a grey-box
parametric thermal network model, a black-box parametric first order lag plus time delay model,
and a black-box non-parametric model based on reproducing kernel Hilbert spaces. These are
all estimated and validated on step response experimental data. Lastly, the pros and cons of
each model are highlighted.

Keywords: System identification and modelling, Grey-box modelling, Black-box modelling,
Continuous-time system estimation, Thermal systems.

1. INTRODUCTION

Thermal systems are present in disparate industrial
sectors, including industrial furnaces used for metal-
lurgy (Zhang et al., 2014), convection ovens employed in
the food industry (Ryckaert et al., 1999), temperature
test chambers for environmental testing (He et al., 2014),
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temperature controllers for thermal systems is typically
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is limited by the restrictive experimental design due to
the long duration of the experiments, which can take
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step responses can be carried out on thermal systems, see
e.g. He et al. (2014); Ryckaert et al. (1999); Zhang et al.
(2014). Consequently, modelling complexity must be kept
in check. Most often, thermal systems are described by
either grey-box models, which are derived from energy
balance equations but need system identification methods
to estimate their parameters, or black-box models, which
are purely data-driven and require no physical knowl-
edge (Afroz et al., 2018). Among the former, the most
common are thermal network models (Sidebotham, 2015).
Instead, disparate black-box models are available, ranging
from First Order Lag Plus time Delay (FOLPD) transfer
functions to Artificial Neural Networks (ANNs), depend-
ing on the availability of data (Afroz et al., 2018).

Thermal systems are Continuous-Time (CT) systems by
nature. Consequently, it can be beneficial to describe them
by CT models, such as the just mentioned thermal network
models and FOLPD models, for several reasons (Garnier

and Young, 2012): (i) physical insights are retained, (ii) a
priori knowledge, such as the relative degree of a transfer
function, is preserved, and (iii) differently from Discrete-
Time (DT) models, CT models do not depend on the
sampling frequency. This last advantage can be particu-
larly relevant when designing the controller for a thermal
system. For example, the derived continuous-time models
can be discretized for application in a Model Predictive
Control (MPC) scheme, allowing the control designer to
tune the sampling/execution time of the algorithm a pos-
teriori. We can distinguish between parametric and non-
parametric CT models and identification methods. Para-
metric models include the previously mentioned thermal
network models and FOLPD transfer functions, for which
the system complexity is set a priori. Typically, parametric
CT models are estimated via the output-error approach,
by minimizing the difference between the measured and
predicted outputs in the Least Squares sense (Garnier,
2015). Instead, kernel methods provide a non-parametric
CT model which constitutes an estimate of the impulse
response of the system, see i.a. Pillonetto and De Nicolao
(2010); Pillonetto et al. (2014); Chen (2018); Scandella
et al. (2022, 2023). If needed, a parametric model can
be derived from a non-parametric one via order reduction
techniques, such as Loewner interpolants (Antoulas et al.,
2017; Simard and Moreschini, 2023) or similar techniques.

Contributions. In this paper, we consider the problem of
modelling an industrial convection oven equipped with
multiple thermocouples and heat resistors. We present
and compare three state-space continuous-time models for
the just mentioned application. Similarly to many thermal
systems applications, the model parameters are estimated
from step response experimental data. We derive:

(1) An ad hoc Grey-Box thermal network Parametric
Model (GBPM),
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(2) A Black-Box FOLPD Parametric Model (BBPM),
(3) A Black-Box state-space model defined as a Loewner

interpolant of a Non-Parametric Model (BBNPM), see
the method proposed by Scandella et al. (2023).

In the thermal systems literature, few works focus on com-
paring different models. Most often, due to the restric-
tive experimental design, FOLPD models are the default
choice. Consequently, comparing both parametric and non-
parametric, grey-box and black-box, models is particu-
larly relevant in this context. It is worth noting that the
extension to the MIMO case of the method presented
by Scandella et al. (2023) is an additional contribution.

Organization. The rest of this paper is organized as follows.
Section 2 presents the industrial oven under study. Then,
Section 3 describes the three different models and how
their parameters are estimated. Their accuracy is assessed
in Section 4. Finally, Section 5 compares the proposed
models, summing up their pros and cons.

Notations. We denote by C, R, Z, and N the set of
complex, real, integer, and natural numbers respectively
(0 /∈ N). ι is the imaginary unit. Given n,m ∈ N, Cn is
the set of complex column vectors of dimension n while
Cn×m is the set of complex matrices of dimension n×m.
Furthermore, In ∈ Rn×n is the n × n identity matrix,
and diag(a1, . . . , an) ∈ Rn×n is the diagonal matrix with
entries a1, . . . , an ∈ R on the main diagonal. R>0 and
R≥0 stand for the set of positive and non-negative real
numbers respectively. Given a ∈ R, ⌊a⌋ is the greatest
integer less than or equal to a. Given a signal f : R≥0 →
R, L[f ] : C → C is the Laplace transform of f . The
convolution between two signals f, g : R≥0 → R is denoted
as [g ⋆ f ](t) =

∫∞
0

g (ψ) f (t− ψ) dψ.

2. PROBLEM STATEMENT

System description. We consider an industrial convection
oven employed in plastic-shrinking processes used for prod-
uct wrapping, whose schematic is depicted in Fig. 1a. The
oven cavity has a volume of 2.26m3 and is divided into
two interconnected heating zones. The heat in each zone
is produced by a pair of heat resistors, located in separate
compartments. The heat resistors are connected to the
electrical grid by relays (one per zone), which modulate
their voltages via Pulse-Width Modulation (PWM). The
duty cycles of the just mentioned voltage PWM signals are
the inputs for the thermal system under study. The hot
air in the proximity of the heat resistors diffuses inside the
oven cavity by means of four convection fans installed at
the top of the oven. The air temperature inside the oven
is measured by twelve equally spaced thermocouples.

For each zone i ∈ {1, 2}, qi : R≥0 → R is the continuous-

time signal (in J
s ) of the heat flow rate produced by the

heat resistors located in zone i and ui : R≥0 → [0, 1] is
the duty cycle of its corresponding voltage PWM signal.
Similarly, for each thermocouple j ∈ {1, . . . , 12}, yj :
R≥0 → R is its measurement (in ◦C). See Fig. 1a for more
details about the positioning of the sensors inside the oven.
We group the nu = 2 inputs (duty cycles) and ny = 12
outputs (temperatures) in the vector signals u : R≥0 →
[0, 1]nu and y : R≥0 → Rny , respectively. In particular,
for every t ∈ R≥0, we have u(t) = [u1(t), u2(t)]

⊤ and
y(t) = [y1(t), . . . , y12(t)]

⊤.

Experimental setup. We have carried out three open-
loop step response experiments on the industrial oven
under study. We denote the data belonging to the e-th
experiment, e ∈ {1, 2, 3}, with the superscript (e). The
first two experiments are used for model estimation. In the

first trial, for every t ∈ R≥0, u1(t) = u
(1)
1 (t) = 0.5 while

u2(t) = u
(1)
2 (t) = 0. Vice versa, for the second experiment,

u1(t) = u
(2)
1 (t) = 0, u2(t) = u

(2)
2 (t) = 0.5. Instead, the

third experiment, during which u1(t) = u
(3)
1 (t) = 0.5

and u2(t) = u
(3)
2 (t) = 0.5, will be used to validate the

quality of the estimated models in Section 4. From each

trial, we collect a dataset D(e) =
{
(t

(e)
k ,y

(e)
k )

}N(e)

k=1
where

N (e) ∈ N is the length of the experiment, t
(e)
k ∈ R is

the sampling time of the k-th observation, and y
(e)
k =[

y
(e)
k,1, . . . , y

(e)
k,ny

]⊤
= y(t

(e)
k ) are the output measurements.

The signals are measured uniformly with sampling time

Ts = 1 s, i.e. t
(e)
k = (k − 1)Ts for every k ∈

{
1, . . . , N (e)

}
.

3. MODELLING AND IDENTIFICATION

This Section is devoted to the derivation of continuous-
time state-space models for the industrial oven under
study. All models are estimated from the available data
described in Section 2.

3.1 Grey-Box thermal network Parametric Model (GBPM)

Following the thermal-electrical analogy (Sidebotham,
2015), we describe the relationship between the heat pro-
duced by the heat resistors and the temperatures measured
by the twelve thermocouples using the electro-equivalent
thermal circuit presented in Fig. 1b. For each zone i ∈
{1, 2}, location k ∈ {1, 2, 3}, k′ ∈ {1, 2}, and side d ∈ {l, r}
(l: left, r: right), we define:

• R
(k,d)
i ∈ R>0 (in

◦C
J s) is the thermal resistance

between the oven walls of zone i, location k, side d,
and the ambient;

• R
(k′,d)
Ti

∈ R>0 (in
◦C
J s) is the thermal resistance

related to the transfer of heat between two locations
of zone i, side d;

• R
(d)
T12

∈ R>0 (in
◦C
J s) is the thermal resistance related

to the transfer of heat between the two zones of the
oven, for what concerns side d;

• RTlr
∈ R>0 (in

◦C
J s) is the thermal resistance related

to the transfer of heat between the left and the right
side of the oven cavity;

• Cz ∈ R>0 (in
J

◦C ) is the thermal capacitance of the air
in each zone/location/side of the oven cavity, which
all have the same volume.

• Ta : R≥0 → R is the ambient temperature as a
function of time. It is assumed to be constant, i.e.
Ta(t) = T̄a ∈ R (in ◦C), for every t ∈ R≥0.

The relationship between each temperature and the heat
flow rates can be readily derived from the circuit in Fig. 1b,
leading to the following system of linear differential equa-
tions (Sidebotham, 2015):

ẏ(t) = ATT y(t) +Bq q(t) + bT Ta(t), (1)

where q(t) = [q1(t), q2(t)]
⊤ while ATT ∈ Rny×ny , Bq ∈

Rny×2 and bT ∈ Rny are matrices whose definition can
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(2) A Black-Box FOLPD Parametric Model (BBPM),
(3) A Black-Box state-space model defined as a Loewner

interpolant of a Non-Parametric Model (BBNPM), see
the method proposed by Scandella et al. (2023).
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tive experimental design, FOLPD models are the default
choice. Consequently, comparing both parametric and non-
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larly relevant in this context. It is worth noting that the
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Section 3 describes the three different models and how
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in Section 4. Finally, Section 5 compares the proposed
models, summing up their pros and cons.
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the set of complex column vectors of dimension n while
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2. PROBLEM STATEMENT

System description. We consider an industrial convection
oven employed in plastic-shrinking processes used for prod-
uct wrapping, whose schematic is depicted in Fig. 1a. The
oven cavity has a volume of 2.26m3 and is divided into
two interconnected heating zones. The heat in each zone
is produced by a pair of heat resistors, located in separate
compartments. The heat resistors are connected to the
electrical grid by relays (one per zone), which modulate
their voltages via Pulse-Width Modulation (PWM). The
duty cycles of the just mentioned voltage PWM signals are
the inputs for the thermal system under study. The hot
air in the proximity of the heat resistors diffuses inside the
oven cavity by means of four convection fans installed at
the top of the oven. The air temperature inside the oven
is measured by twelve equally spaced thermocouples.

For each zone i ∈ {1, 2}, qi : R≥0 → R is the continuous-
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s ) of the heat flow rate produced by the

heat resistors located in zone i and ui : R≥0 → [0, 1] is
the duty cycle of its corresponding voltage PWM signal.
Similarly, for each thermocouple j ∈ {1, . . . , 12}, yj :
R≥0 → R is its measurement (in ◦C). See Fig. 1a for more
details about the positioning of the sensors inside the oven.
We group the nu = 2 inputs (duty cycles) and ny = 12
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for every t ∈ R≥0, we have u(t) = [u1(t), u2(t)]

⊤ and
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⊤.
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described in Section 2.
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function of time. It is assumed to be constant, i.e.
Ta(t) = T̄a ∈ R (in ◦C), for every t ∈ R≥0.
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Fig. 1. Schematic of the considered industrial oven and associated thermal network (zone 1 in blue, zone 2 in red).

be found from the electro-equivalent thermal circuit in
Fig. 1b. Their expressions are omitted here for space
reason.

The heat flow rates q in (1) are generated by the heat
resistors located in the corresponding zones, which operate
in pairs. We denote the voltage signals across the couples of
heat resistors as V1, V2 : R≥0 → R (in V). Let Rheat ∈ R>0

(in Ω) be the resistance of a pair of heat resistors and
assume that it is the same for each pair. Then, due to
Joule heating, we have qi(t) = R−1

heatVi(t)
2 for i ∈ {1, 2}.

As pointed out in Section 2, the voltages V1 and V2 are
PWM signals with period TP ∈ R>0 and duty cycles u1(t)
and u2(t), respectively, for every t ∈ R≥0. By definition,
for every i ∈ {1, nu}, ui is a piecewise constant signal since

∀t̃ ∈ N ∪ {0}, ∀t ∈ [t̃ TP, (t̃+ 1) TP), ui(t) = ui(t̃TP).
Then, assuming that the grid voltage stays constant at a
value Vg ∈ R>0 (in V), we have

Vi(t) = fV (t, ui(t); TP, Vg)

=

�
Vg if t̃ TP ≤ t <

�
t̃+ ui(t)

�
TP

0 otherwise
, t̃ =

�
t

TP

�
,

where fV : R≥0× [0, 1]×R>0×R>0 → R≥0 is the function
describing a PWM signal. Consequently, we define the
multivariable function fVsq

as follows:

fVsq
(t,u(t); TP, Vg) =

�
fV (t, u1(t); TP, Vg)

2

fV (t, u2(t); TP, Vg)
2

�
,

leading to

q(t) = R−1
heat fVsq

(t,u(t); TP, Vg) . (2)

Finally, we model the propagation of heat from the heat
resistors to the air inside the oven cavity using a first-order
low-pass filter with unitary gain:

∀i ∈ {1, 2}, q̇
(f)
i (t) = −τ−1

i q
(f)
i (t) + τ−1

i qi(t) (3)

where q
(f)
i is the filtered signal and τi ∈ R>0 (in s) is the

time constant for zone i. By combining (1), (2), and (3),
we obtain the GBPM:

�
q̇(f)(t) = Aff q

(f)(t) +Bf fVsq
(t,u(t); TP, Vg)

ẏ(t) = ATT y(t) +Bq q
(f)(t) + bT Ta(t),

(4)

where q(f)(t) = [q
(f)
1 (t), q

(f)
2 (t)]⊤,Aff = − diag(τ−1

1 , τ−1
2 ) ∈

R2×2 and Bf = −R−1
heatAff ∈ R2×2. This model has

nx = 14 states, i.e. x = [q(f),y]⊤, which all have physical
meaning.

Identification. The thermal capacitance and the grid volt-
age can be readily derived from the dimensions of the
oven and its nominal working conditions, resulting in
Cz = 231 J

◦C and Vg = 390V. Consequently, the GBPM
in (4) depends only on nθ = 26 unknown parameters,

i.e. the thermal resistances R
(k,d)
i , R

(k′,d)
Ti

, R
(d)
T12

, RTlr
for

each i ∈ {1, 2}, k ∈ {1, 2, 3}, k′ ∈ {1, 2}, d ∈ {l, r}, the
ohmic resistance Rheat, and the time constants τ1 and τ2.
These are collected in the vector θ ∈ Rnθ

>0 and they are
estimated from the available data. In particular, we employ
a simulation error approach that minimizes the difference
between the available measurements and the simulated
temperatures with a specific parameter vector in the Least
Squares sense. More formally, we define the cost function

JGBPM(θ) =
1

2

2�
e=1


 1

N (e)

N(e)�
k=1

���y(e)
k − ŷ(e)

�
t
(e)
k ;θ

����
2

2


,

where ŷ(e)(t;θ) is the output of Model (4) with parameter
vector θ ∈ Rnθ

>0 simulated with the input of experiment
e ∈ {1, 2} at time t ∈ R≥0. Due to the MIMO nature of
the model in (4), cost function JGBPM(θ) considers the first
two experiments in the same optimization problem.

3.2 Black-Box FOLPD Parametric Model (BBPM)

Instead of relying on the physical description of the system
provided in Section 3.1, in this method, we model the
relationship between the inputs u and outputs y using a
FOLPD transfer function. Here, we neglect the effect of the
ambient temperature because we assume its contribution
to the output to be constant (see Section 3.1); conse-
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quently, it can be added a posteriori. For each i ∈ {1, nu}
and j ∈ {1, . . . , ny}, we have:

Gj,i(s) =
L[yj ](s)
L[ui](s)

=
µj,i

1 + sτj,i
e−sLj,i , (5)

where µj,i ∈ R>0 is the gain (in ◦C), τj,i ∈ R>0 is the time
constant (in s), and Lj,i ∈ R≥0 is the input-output time
delay (in s). A possible realization of its corresponding
MIMO state-space model is (BBPM):



vi(t) = ui

�
t− L

(u)
i

�
i = 1, nu

ẋ(t) = Ax(t) +Bv(t)

z(t) = Cx(t)

yj(t) = zj
�
t+ L

(y)
j

�
j = 1, . . . , ny

(6)

where v(t) = [v1(t), vnu
(t)]⊤ are the delayed inputs

with associated input delays L
(u)
1 , L

(u)
nu ∈ R≥0, z(t) =

[z1(t), . . . , zny (t)]
⊤ are the outputs before the time shift,

with associated output delays L
(y)
1 , . . . , L

(y)
ny ∈ R≥0, and

A=− diag
�
τ−1
1,1 , . . . , τ

−1
ny,1

, τ−1
1,nu

, . . . , τ−1
ny,nu

�
∈Rnx×nx ,

B=

�
τ−1
1,1 · · · τ−1

ny,1
0 · · · 0

0 · · · 0 τ−1
1,nu

· · · τ−1
ny,nu

�⊤

∈Rnx×nu ,

C=
�
diag

�
µ1,1, . . . , µny,1

�
diag

�
µ1,nu

, . . . , µny,nu

��
∈Rny×nx

where nx = nynu = 24 is the number of states for the BBPM
in (6). Moreover, the BBPM in (6) is an exact realization of
Model (5) if and only if

∀i ∈ {1, nu}, ∀j ∈ {1, . . . , ny}, Lj,i = L
(y)
j + L

(u)
i . (7)

In practice, these conditions amount to an overdetermined
system with nynu = 24 equations and ny + nu = 14

unknows. Thus, we select an approximation of
�
L
(y)
j

�ny

j=1

and
�
L
(u)
i

�nu

i=1
by solving (7) via ordinary Least Squares.

Identification. Similarly to the approach explained in Sec-
tion 3.1, we employ a simulation error method that min-
imizes the difference between the available data and the
simulated measurements obtained with a specific param-
eter vector. Exploiting the structure of Model (6), we
simplify the problem by identifying nynu SISO models
separately, one for each couple of input and output. In
particular, for each i ∈ {1, nu} and j ∈ {1, . . . , ny},
θj,i = [µj,i, τj,i, Lj,i]

⊤ ∈ R3
≥0 is the parameter vector of

the (j, i)-th transfer function in (5). We select θj,i by
minimizing the cost function

JBBPM,j,i (θj,i) =

N(i)�
k=1

�
y
(i)
k,j − ŷ

(i)
j

�
t
(i)
k ;θj,i

��2

where ŷ
(i)
j (t;θj,i) is the output of Gj,i in (5) with param-

eter vector θj,i simulated with the input of experiment
i ∈ {1, 2} at time t ∈ R≥0. Then, we derive the state-space
model in (6) using the 3nynu = 72 identified parameters.

3.3 Black-Box Non-Parametric Model (BBNPM)

As a third approach, we use the non-parametric method
illustrated by Scandella et al. (2022) to estimate the SISO
model between each input and output (neglecting the
ambient temperature as in Section 3.2). Then, we obtain
the complete MIMO model via the procedure in Scandella

et al. (2023) expanded to handle MIMO models. In more
details, for each i ∈ {1, nu} and j ∈ {1, . . . , ny}, we
estimate the impulse response ĝj,i : R≥0 → R of the model
with input ui and output yj by solving

argmin
ĝj,i∈Hj,i

N(i)�
k=1

�
y
(i)
k,j −

�
ĝj,i ⋆ u

(i)
i

��
t
(i)
k

��2

+σj,i∥ĝj,i∥2Hj,i
(8)

where Hj,i is the Reproducing Kernel Hilbert Space
(RKHS) associated with kernel κj,i (Aronszajn, 1950),
∥ĝj,i∥Hj,i

is its norm, and σj,i ∈ R≥0 is a hyperparameter
that regulates the complexity of the model (which needs
to be tuned). Here, we propose to use the stable spline
kernel κj,i : R≥0 × R≥0 → R, which is defined as:

κj,i(a, b) = λj,i

pj,i−1�
h=0

γpj,i,h

�
e−βj,i[(2pj,i−h−1)a+hb] a ≥ b

e−βj,i[(2pj,i−h−1)b+ha] a < b

where λj,i, βj,i ∈ R≥0 and pj,i ∈ N are kernel hyper-
parameters that need to be tuned, while

γpj,i,h =
(−1)pj,i+h+1

h!(2pj,i − h− 1)!
.

Due to the Representer Theorem (Dinuzzo and Schölkopf,
2012), the solution of Problem (8) amounts to

ĝj,i(t) =

N(i)�
k=1

cj,i,k

� ∞

0

u
(i)
i

�
t
(i)
k − ψ

�
κj,i(t, ψ) dψ, (9)

where cj,i =
�
cj,i,1, . . . , cj,i,N(i)

�⊤ ∈ RN(i)

is the solution
of the linear system

Oj,i

�
Oj,i + σj,iIN(i)

�
cj,i = Oj,iȳj

with ȳj =
�
y
(i)
1,j , . . . , y

(i)

N(i),j

�⊤ ∈ RN(i)

and Oj,i ∈
RN(i)×N(i)

being a matrix whose (k, k′)-th entry is� ∞

0

� ∞

0

u
(i)
i

�
t
(i)
k − ξ

�
u
(i)
i

�
t
(i)
k′ − ψ

�
κj,i(ξ, ψ) dψ dξ.

(10)

The hyperparameters θj,i = [λj,i, βj,i, pj,i, σj,i]
⊤

can be
found using the empirical Bayes method (Rasmussen and
Williams, 2006, Sec. 5.4.1). In particular, they are selected
by minimizing the cost function

JBBNPM,j,i(θj,i) = ȳ⊤
j

�
Oj,i + σj,iIN(i)

�−1
ȳj+

+ ln det
�
Oj,i + σj,iIN(i)

�
. (11)

In total, there are 4nynu = 96 hyperparameters to esti-
mate. The estimated model are then optimized using the
method presented by Scandella et al. (2021). Finally, we
can merge the nynu estimated impulse responses to define

the MIMO transfer function Ĝ : C → Cny×nu of the
model. In particular, we have

Ĝ =

�
L[ĝ1,1] · · · L[ĝny,1]
L[ĝ1,nu ] · · · L[ĝny,nu ]

�⊤
.

In Scandella et al. (2022), the authors analyze this transfer
function when the experiment is executed with a step
input, and they derive a closed-form expression for (10).

However, Ĝ is a transcendental transfer function that does
not admit a finite rational form. In this paper, we retrieve a
rational form using a Loewner interpolant (Antoulas et al.,
2017), as proposed by Scandella et al. (2023).
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quently, it can be added a posteriori. For each i ∈ {1, nu}
and j ∈ {1, . . . , ny}, we have:

Gj,i(s) =
L[yj ](s)
L[ui](s)

=
µj,i

1 + sτj,i
e−sLj,i , (5)

where µj,i ∈ R>0 is the gain (in ◦C), τj,i ∈ R>0 is the time
constant (in s), and Lj,i ∈ R≥0 is the input-output time
delay (in s). A possible realization of its corresponding
MIMO state-space model is (BBPM):
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vi(t) = ui
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(u)
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i = 1, nu

ẋ(t) = Ax(t) +Bv(t)

z(t) = Cx(t)

yj(t) = zj
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t+ L

(y)
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(6)

where v(t) = [v1(t), vnu
(t)]⊤ are the delayed inputs

with associated input delays L
(u)
1 , L

(u)
nu ∈ R≥0, z(t) =

[z1(t), . . . , zny (t)]
⊤ are the outputs before the time shift,

with associated output delays L
(y)
1 , . . . , L

(y)
ny ∈ R≥0, and

A=− diag
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τ−1
1,1 , . . . , τ
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diag
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diag
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µ1,nu

, . . . , µny,nu
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∈Rny×nx

where nx = nynu = 24 is the number of states for the BBPM
in (6). Moreover, the BBPM in (6) is an exact realization of
Model (5) if and only if

∀i ∈ {1, nu}, ∀j ∈ {1, . . . , ny}, Lj,i = L
(y)
j + L

(u)
i . (7)

In practice, these conditions amount to an overdetermined
system with nynu = 24 equations and ny + nu = 14

unknows. Thus, we select an approximation of
�
L
(y)
j

�ny

j=1

and
�
L
(u)
i

�nu

i=1
by solving (7) via ordinary Least Squares.

Identification. Similarly to the approach explained in Sec-
tion 3.1, we employ a simulation error method that min-
imizes the difference between the available data and the
simulated measurements obtained with a specific param-
eter vector. Exploiting the structure of Model (6), we
simplify the problem by identifying nynu SISO models
separately, one for each couple of input and output. In
particular, for each i ∈ {1, nu} and j ∈ {1, . . . , ny},
θj,i = [µj,i, τj,i, Lj,i]

⊤ ∈ R3
≥0 is the parameter vector of

the (j, i)-th transfer function in (5). We select θj,i by
minimizing the cost function

JBBPM,j,i (θj,i) =

N(i)�
k=1

�
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(i)
k,j − ŷ
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(i)
k ;θj,i

��2

where ŷ
(i)
j (t;θj,i) is the output of Gj,i in (5) with param-

eter vector θj,i simulated with the input of experiment
i ∈ {1, 2} at time t ∈ R≥0. Then, we derive the state-space
model in (6) using the 3nynu = 72 identified parameters.

3.3 Black-Box Non-Parametric Model (BBNPM)

As a third approach, we use the non-parametric method
illustrated by Scandella et al. (2022) to estimate the SISO
model between each input and output (neglecting the
ambient temperature as in Section 3.2). Then, we obtain
the complete MIMO model via the procedure in Scandella

et al. (2023) expanded to handle MIMO models. In more
details, for each i ∈ {1, nu} and j ∈ {1, . . . , ny}, we
estimate the impulse response ĝj,i : R≥0 → R of the model
with input ui and output yj by solving

argmin
ĝj,i∈Hj,i
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(8)

where Hj,i is the Reproducing Kernel Hilbert Space
(RKHS) associated with kernel κj,i (Aronszajn, 1950),
∥ĝj,i∥Hj,i

is its norm, and σj,i ∈ R≥0 is a hyperparameter
that regulates the complexity of the model (which needs
to be tuned). Here, we propose to use the stable spline
kernel κj,i : R≥0 × R≥0 → R, which is defined as:

κj,i(a, b) = λj,i

pj,i−1�
h=0

γpj,i,h

�
e−βj,i[(2pj,i−h−1)a+hb] a ≥ b

e−βj,i[(2pj,i−h−1)b+ha] a < b

where λj,i, βj,i ∈ R≥0 and pj,i ∈ N are kernel hyper-
parameters that need to be tuned, while

γpj,i,h =
(−1)pj,i+h+1

h!(2pj,i − h− 1)!
.

Due to the Representer Theorem (Dinuzzo and Schölkopf,
2012), the solution of Problem (8) amounts to

ĝj,i(t) =
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k=1

cj,i,k

� ∞

0
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(i)
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�
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(i)
k − ψ

�
κj,i(t, ψ) dψ, (9)

where cj,i =
�
cj,i,1, . . . , cj,i,N(i)

�⊤ ∈ RN(i)

is the solution
of the linear system

Oj,i
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with ȳj =
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The hyperparameters θj,i = [λj,i, βj,i, pj,i, σj,i]
⊤

can be
found using the empirical Bayes method (Rasmussen and
Williams, 2006, Sec. 5.4.1). In particular, they are selected
by minimizing the cost function

JBBNPM,j,i(θj,i) = ȳ⊤
j

�
Oj,i + σj,iIN(i)

�−1
ȳj+

+ ln det
�
Oj,i + σj,iIN(i)

�
. (11)

In total, there are 4nynu = 96 hyperparameters to esti-
mate. The estimated model are then optimized using the
method presented by Scandella et al. (2021). Finally, we
can merge the nynu estimated impulse responses to define

the MIMO transfer function Ĝ : C → Cny×nu of the
model. In particular, we have

Ĝ =

�
L[ĝ1,1] · · · L[ĝny,1]
L[ĝ1,nu ] · · · L[ĝny,nu ]

�⊤
.

In Scandella et al. (2022), the authors analyze this transfer
function when the experiment is executed with a step
input, and they derive a closed-form expression for (10).

However, Ĝ is a transcendental transfer function that does
not admit a finite rational form. In this paper, we retrieve a
rational form using a Loewner interpolant (Antoulas et al.,
2017), as proposed by Scandella et al. (2023).

The Loewner interpolant provides an LTI model whose
transfer function interpolates a set of interpolation points.
In particular, we consider 2m ∈ N interpolation points
divided in two sets{(

s
(ℓ)
k , ℓk

)}m

k=1
∈ C× Cny ,

{(
s
(r)
k , rk

)}m

k=1
∈ C× Cnu ,

such that
{
s
(ℓ)
k

}m

k=1
∩
{
s
(r)
k

}m

k=1
= ∅. Then, we say that

a model with transfer function Ǧ : C → Cny×nu is
a tangential interpolant of Ĝ if and only if, for each
k ∈ {1, . . . ,m},

ℓ⊤k Ĝ
(
s
(ℓ)
k

)
= ℓ⊤k Ǧ

(
s
(ℓ)
k

)
, Ĝ

(
s
(r)
k

)
rk = Ǧ

(
s
(r)
k

)
rk.

Now, a tangential interpolant of Ĝ has transfer function

Ǧ(s) = −W (r)(sL− Ls)
−1

W (ℓ)

where

W (r) =
[
Ĝ
(
s
(r)
1

)
r1, . . . , Ĝ

(
s(r)m

)
rm

]
∈ Cny×m,

W (ℓ) =
[
ℓ⊤1 Ĝ

(
s
(ℓ)
1

)
, . . . , ℓ⊤mĜ

(
s(ℓ)m

)]⊤
∈ Cm×nu ,

and L,Ls ∈ Cm×m are, respectively, the solutions of the
Sylvester equations

S(ℓ)L− LS(r) = W (ℓ)R− LW (r)

S(ℓ)Ls − LsS
(r) = S(ℓ)W (ℓ)R− LW (r)S(r)

in which R = [r1, . . . , rm] ∈ Rnu×m, L = [ℓ1, . . . , ℓm]
⊤ ∈

Rm×ny , and S(ℓ), S(r) ∈ Rm×m are matrices whose eigen-

values are
{
s
(ℓ)
k

}m

k=1
and

{
s
(r)
k

}m

k=1
, respectively. In gen-

eral, this approximant cannot be applied as is because
it may generate complex outputs and because it may
be unstable. Furthermore, the matrices L and Ls can
be singular. Hence, the rational model may not be in
minimum realization. These problems were solved in Scan-
della et al. (2023) by proposing a real and asymptotically
stable interpolant in minimum realization. In particular,
the reduced model admits the following state-space repre-
sentation (BBNPM){

Ěẋ(t) = Ǎx(t) + B̌u(t)

y(t) = Čx(t)

where Ě, Ǎ ∈ Rnx×nx , B̌ ∈ Rnx×nu , Č ∈ Rny×nx and
nx ∈ N is the order of the model. It is worth noting that
nx ≤ m. Thus, the order of the estimated model is not
set a priori: it can be modified by changing the number of
interpolation points.

For comparison purposes, we employ three different sets of
interpolation points with m = 50, m = 30 and m = 20, re-
spectively. In all the three cases, we define the set of inter-
polation point as {ωk, ιωk,−ιωk, (1 + ι)ωk, (1− ι)ωk}0.4mk=1

where ω1 = 10−4, ω0.4m = 10−1 and ln(ωk+1) − ln(ωk) =
ln(ωk′+1) − ln(ωk′) for every k, k′ ∈ {1, . . . , 0.4m − 1}. In
all cases, the matrices R and L are chosen randomly, and
their elements are mutually independent random variables
distributed according to a Normal distribution with zero
mean and unitary variance. Therefore, we obtain three
different estimated models:

(1) BBNPM 42 with m = 50 leading to nx = 42;
(2) BBNPM 24 with m = 30 leading to nx = 24, making its

order comparable to the BBPM model in Section 3.2;
(3) BBNPM 14 with m = 20 leading to nx = 14, making

its order comparable to the GBPM in Section 3.1.

4. EXPERIMENTAL RESULTS

We evaluate the performances of the models on the avail-
able experimental data according to the following measure
of fit for each output yj , j ∈ {1, . . . , ny}:

Fit
(e)
j = 1−

√√√√√√
∑N(e)

k=1

∣∣∣y(e)k,j − ŷ
(e)
j

(
t
(e)
k

)∣∣∣
2

∑N(e)

k=1

∣∣∣y(e)k,j −
1

N(e)

∑N(e)

k′=1 y
(e)
k′,j

∣∣∣
2 , (12)

where ŷ
(e)
j (t) is the j-th output of the estimated model

simulated using the input of experiment e ∈ {1, 2, 3} at
time t ∈ R≥0. The results are reported in Fig. 2.

We can clearly see that the GBPM and BBNPM 14 (with
nx = 14) severely underperform on the datasets used for
parameters estimation (i.e. e = 1 or e = 2) compared
to those with higher orders, mostly because they fail to
capture the static gains of the system (see Fig. 3). This
could be due to the input choice, which is not sufficiently
informative for estimation purposes, or the model order,
which may be too low for describing the system under
study. Clearly, it is not straightforward to increase nx for
the GBPM in Section 3.1 since its structure is intrinsically
connected to the considered industrial oven. On the other
hand, the order of the non-parametric model in Section 3.3
can be easily changed by modifying the interpolation
points for Loewner reduction. In fact, that is the case for
the BBNPM 42 and BBNPM 24 models, which are the best
performing ones for e = 1 and e = 2. On estimation
data, the BBPM model also behaves quite well, achieving
fits that are only slightly lower than the aforementioned
models. For what concerns the validation dataset (e = 3),
the disparity in performances is less evident. In any case,
Fig. 2 shows that BBNPM 24 has better performances by
a small margin (median-wise). Overall, when compar-
ing models with the same order nx (BBNPM 24/BBPM and
BBNPM 14/GBPM), the non-parametric methodologies seem
to outperform the others. Finally, the experimental results
depicted in Fig. 2 show that, even when compared to the
most complex model (i.e. the BBNPM 42), the BBNPM 24
achieves the best complexity/performances trade-off.

5. DISCUSSION

This paper proposed and compared three continuous-time
models for an industrial convection oven, either parametric
or non-parametric, grey-box or black-box. This Section
is devoted to highlighting their pros and cons. Due to
the restrictive experimental design that is common to
most thermal systems, only open-loop step responses are
available for model estimation. The GBPM in Section 3.1
is derived by building an ad hoc thermal network for
the system under study. Although the model has strong
physical meaning and takes into account the locations at
which the temperatures are measured, its derivation is
quite cumbersome and requires solving a complex electri-
cal circuit. However, its parameters are useful for designing
the industrial oven itself since they give an indication on
the efficiency related to the transfer of heat within the
cavity and the losses towards the ambient. Unfortunately,
experimental results show that simple step response tests
are not suitable for the estimation of the parameters of
the GBPM. Instead, the black-box models in Section 3.2
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Fig. 2. Box plots of the performance index in (12) for each model and each experiment.

Fig. 3. Example of performances on D(1) that highlights
the shortcomings of the GBPM and BBNPM 14.

and Section 3.3 have no physical meaning but are general
and easily applicable, at the cost of having more param-
eters. FOLPD models (Section 3.2) are commonly used
when only step data is available, due to their simplicity,
exhibiting satisfactory performances on the experimental
data at our disposal. Analogously to the GBPM, the BBPM
has a fixed order but presents input and output delays that
can impair controller design. In any case, the parameters
of the BBPM model are easily interpretable, highlighting the
hottest spots within the oven (larger gains) and the time
required for the heat to propagate inside the cavity (time
constants/time delays). Lastly, the BBNPM in Section 3.3
is the most complex and least interpretable among the
three, but the best performing one. Its main advantage
is the possibility of setting the model order a posteriori.
Moreover, step response data is not a limiting factor; in
fact, there are readily available closed-form expressions
for (9) and (10) in this case (Scandella et al., 2022).
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